ISLA214P12 [INTERSIL]

High Performance 14-Bit, 125MSPS ADC; 高性能14位, 125MSPS ADC
ISLA214P12
型号: ISLA214P12
厂家: Intersil    Intersil
描述:

High Performance 14-Bit, 125MSPS ADC
高性能14位, 125MSPS ADC

文件: 总34页 (文件大小:963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance 14-Bit, 125MSPS ADC  
ISLA214P12  
Features  
The ISLA214P12 is a high performance 14-bit 125MSPS  
analog-to-digital converter offering very high dynamic range  
and low power consumption. It carries the export control  
classification number 3A991.c.3 and can be exported  
without a license to most countries, including China and  
Russia. It is part of a pin-compatible family of 12- to 16-bit  
A/Ds with maximum sample rates ranging from 125 to  
500MSPS. This allows a design using the ISLA214P12 to  
accommodate any of the other pin-compatible A/Ds with  
minimal changes.  
• License-free Import for most countries including China and  
Russia (ECCN 3A991.c.3).  
• Multi-ADC Support  
- SPI Programmable Fine Gain and Offset Control  
- Multiple ADC Synchronization  
- Optimized Output Timing  
• Clock Duty Cycle Stabilizer  
• Nap and Sleep Modes  
• Programmable Built-in Test Patterns  
• SDR/DDR LVDS-Compatible or LVCMOS Outputs  
• Data Output Clock  
The ISLA214P12 is very flexible and can be designed into a wide  
variety of systems. A serial peripheral interface (SPI) port allows  
access to its extensive configurability as well as provides digital  
control over various analog parameters such as input gain and  
offset. Digital output data is presented in selectable LVDS or  
CMOS formats and can be configured as full-width, single data  
rate (SDR) or half-width, double data rate (DDR). Operating from a  
1.8V supply, performance is specified over the full industrial  
temperature range (-40°C to +85°C).  
Key Specifications  
• SNR @ 125MSPS  
- 74.9dBFS f = 30MHz  
IN  
- 70.9dBFS fIN = 363MHz  
• SFDR @ 125MSPS  
Applications  
• Radar Array Processing  
- 88dBc f = 30MHz  
IN  
- 84dBc f = 363MHz  
IN  
• Software Defined Radio  
• Total Power Consumption = 310mW  
• Broadband Communications  
• High Performance Data Acquisition  
• Communications Test Equipment  
-
-
-
Pin-Compatible Family  
SPEED  
(MSPS)  
MODEL  
RESOLUTION  
ISLA216P25  
ISLA216P20  
ISLA216P13  
ISLA214P50  
ISLA214P25  
ISLA214P20  
ISLA214P13  
ISLA212P50  
ISLA212P25  
ISLA212P20  
ISLA212P13  
16  
16  
16  
14  
14  
14  
14  
12  
12  
12  
12  
250  
200  
130  
500  
250  
200  
130  
500  
250  
200  
130  
CLKP  
CLKN  
CLKOUTP  
CLKOUTN  
CLOCK  
MANAGEMENT  
VINP  
VINN  
14-BIT  
125 MSPS  
ADC  
SHA  
D[13:0]P  
D[13:0]N  
DIGITAL  
ERROR  
CORRECTION  
+
VCM  
SPI  
CONTROL  
June 27, 2012  
FN7982.2  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 |Copyright Intersil Americas Inc. 2012. All Rights Reserved  
Intersil (and design) and FemtoCharge are trademarks owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
1
ISLA214P12  
Pin Configuration - LVDS MODE  
ISLA214P12  
(72 LD QFN)  
TOP VIEW  
72 71 70 69 68 67 66 65 64 63  
62 61 60 59 58 57 56 55  
DNC  
DNC  
1
2
54 D3P  
D3N  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
3
NAPSLP  
VCM  
D4P  
4
D4N  
5
AVSS  
AVDD  
AVSS  
VINN  
D5P  
6
D5N  
7
CLKOUTP  
CLKOUTN  
RLVDS  
OVSS  
D6P  
8
9
VINN  
10  
11  
12  
13  
14  
VINP  
VINP  
AVSS  
AVDD  
AVSS  
CLKDIV  
DNC  
D6N  
D7P  
D7N  
15  
16  
17  
40  
D8P  
39 D8N  
38  
Thermal Pad Not Drawn to Scale,  
Consult Mechanical Drawing  
for Physical Dimensions  
DNC  
D9P  
37 D9N  
Connect Thermal Pad to AVSS  
RESETN 18  
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  
FN7982.2  
June 27, 2012  
2
ISLA214P12  
Pin Descriptions - 72 Ld QFN, LVDS Mode  
PIN NUMBER  
LVDS PIN NAME  
LVDS PIN FUNCTION  
DDR MODE COMMENTS  
1, 2, 16, 17  
DNC  
Do Not Connect  
6, 13, 19, 20, 21, 70, 71,  
72  
AVDD  
1.8V Analog Supply  
5, 7, 12, 14  
AVSS  
OVDD  
Analog Ground  
1.8V Output Supply  
Output Ground  
27, 32, 62  
26, 45, 61, 65  
OVSS  
3
4
NAPSLP  
VCM  
Tri-Level Power Control (Nap, Sleep modes)  
Common Mode Output  
8, 9  
10, 11  
15  
VINN  
Analog Input Negative  
VINP  
Analog Input Positive  
CLKDIV  
RESETN  
CLKP, CLKN  
Tri-Level Clock Divider Control  
Power On Reset (Active Low)  
Clock Input True, Complement  
18  
22, 23  
24, 25  
28  
CLKDIVRSTP, CLKDIVRSTN Synchronous Clock Divider Reset True, Complement  
D13N  
D13P  
D12N  
D12P  
D11N  
D11P  
D10N  
D10P  
D9N  
LVDS Bit 13(MSB) Output Complement  
LVDS Bit 13 (MSB) Output True  
LVDS Bit 12 Output Complement  
LVDS Bit 12 Output True  
NC in DDR Mode  
29  
NC in DDR Mode  
30  
DDR Logical Bits 12, 13  
DDR Logical Bits 12, 13  
NC in DDR Mode  
31  
33  
LVDS Bit 11 Output Complement  
LVDS Bit 11 Output True  
34  
NC in DDR Mode  
35  
LVDS Bit 10 Output Complement  
LVDS Bit 10 Output True  
DDR Logical Bits 10, 11  
DDR Logical Bits 10, 11  
NC in DDR Mode  
36  
37  
LVDS Bit 9 Output Complement  
LVDS Bit 9 Output True  
38  
D9P  
NC in DDR Mode  
39  
D8N  
LVDS Bit 8 Output Complement  
LVDS Bit 8 Output True  
DDR Logical Bits 8, 9  
DDR Logical Bits 8, 9  
NC in DDR Mode  
40  
D8P  
41  
D7N  
LVDS Bit 7 Output Complement  
LVDS Bit 7 Output True  
42  
D7P  
NC in DDR Mode  
43  
D6N  
LVDS Bit 6 Output Complement  
LVDS Bit 6 Output True  
DDR Logical Bits 6, 7  
DDR Logical Bits 6, 7  
44  
D6P  
46  
RLVDS  
CLKOUTN, CLKOUTP  
D5N  
LVDS Bias Resistor (Connect to OVSS with 1% 10kΩ)  
LVDS Clock Output Complement, True  
LVDS Bit 5 Output Complement  
LVDS Bit 5 Output True  
47, 48  
49  
NC in DDR Mode  
50  
D5P  
NC in DDR Mode  
51  
D4N  
LVDS Bit 4 Output Complement  
LVDS Bit 4 Output True  
DDR Logical Bits 4, 5  
DDR Logical Bits 4, 5  
NC in DDR Mode  
52  
D4P  
53  
D3N  
LVDS Bit 3 Output Complement  
LVDS Bit 3 Output True  
54  
D3P  
NC in DDR Mode  
55  
D2N  
LVDS Bit 2 Output Complement  
LVDS Bit 2 Output True  
DDR Logical Bits 2, 3  
DDR Logical Bits 2, 3  
NC in DDR Mode  
56  
D2P  
57  
D1N  
LVDS Bit 1 Output Complement  
LVDS Bit 1 True  
58  
D1P  
NC in DDR Mode  
FN7982.2  
June 27, 2012  
3
ISLA214P12  
Pin Descriptions - 72 Ld QFN, LVDS Mode (Continued)  
PIN NUMBER  
LVDS PIN NAME  
LVDS PIN FUNCTION  
LVDS Bit 0 (LSB) Output Complement  
LVDS Bit 0 (LSB) Output True  
LVDS Over Range Complement, True  
SPI Serial Data Output  
DDR MODE COMMENTS  
DDR Logical Bits 0, 1  
DDR Logical Bits 0, 1  
DDR Over Range  
59  
D0N  
60  
D0P  
63, 64  
ORN, ORP  
SDO  
66  
67  
CSB  
SPI Chip Select (active low)  
SPI Clock  
68  
69  
SCLK  
SDIO  
SPI Serial Data Input/Output  
Analog Ground  
Exposed Paddle  
AVSS  
Pin Configuration - CMOS MODE  
ISLA214P12  
(72 LD QFN)  
TOP VIEW  
72 71 70 69 68 67 66 65 64 63 62 61  
60 59 58 57 56 55  
DNC  
DNC  
1
2
54 D3  
DNC  
D4  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
3
NAPSLP  
VCM  
4
DNC  
D5  
5
AVSS  
AVDD  
AVSS  
VINN  
6
DNC  
CLKOUT  
DNC  
RLVDS  
OVSS  
D6  
7
8
9
VINN  
10  
11  
12  
13  
VINP  
VINP  
AVSS  
AVDD  
AVSS  
CLKDIV  
DNC  
DNC  
D7  
14  
41  
40  
DNC  
D8  
15  
16  
17  
39 DNC  
38  
Thermal Pad Not Drawn to Scale,  
Consult Mechanical Drawing  
for Physical Dimensions  
DNC  
D9  
37 DNC  
Connect Thermal Pad to AVSS  
RESETN 18  
19 20 21 22 23 24 25 26  
27 28 29 30 31 32 33 34 35 36  
FN7982.2  
June 27, 2012  
4
ISLA214P12  
Pin Descriptions - 72 Ld QFN, CMOS Mode  
PIN NUMBER  
CMOS PIN NAME  
CMOS PIN FUNCTION  
DDR MODE COMMENTS  
1, 2, 16, 17, 28, 30, 33,  
35, 37, 39, 41, 43, 47,  
49, 51, 53, 55, 57, 59, 63  
DNC  
Do Not Connect  
6, 13, 19, 20, 21, 70, 71,  
72  
AVDD  
1.8V Analog Supply  
5, 7, 12, 14  
AVSS  
OVDD  
Analog Ground  
1.8V Output Supply  
Output Ground  
27, 32, 62  
26, 45, 61, 65  
OVSS  
3
NAPSLP  
VCM  
Tri-Level Power Control (Nap, Sleep modes)  
Common Mode Output  
4
8, 9  
VINN  
Analog Input Negative  
10, 11  
VINP  
Analog Input Positive  
15  
CLKDIV  
RESETN  
CLKP, CLKN  
Tri-Level Clock Divider Control  
Power On Reset (Active Low)  
Clock Input True, Complement  
18  
22, 23  
24, 25  
CLKDIVRSTP, CLKDIVRSTN Synchronous Clock Divider Reset True, Complement  
29  
D13  
D12  
D11  
D10  
D9  
CMOS Bit 13 (MSB) Output  
CMOS Bit 12 Output  
CMOS Bit 11 Output  
CMOS Bit 10 Output  
CMOS Bit 9 Output  
NC in DDR Mode  
31  
DDR Logical Bits 12, 13  
NC in DDR Mode  
34  
36  
DDR Logical Bits 10, 11  
NC in DDR Mode  
38  
40  
D8  
CMOS Bit 8 Output  
DDR Logical Bits 8, 9  
NC in DDR Mode  
42  
D7  
CMOS Bit 7 Output  
44  
D6  
CMOS Bit 6 Output  
DDR Logical Bits 6, 7  
46  
RLVDS  
CLKOUT  
D5  
LVDS Bias Resistor (connect to OVSS with 1% 10kΩ)  
CMOS Clock Output  
CMOS Bit 5 Output  
48  
50  
NC in DDR Mode  
52  
D4  
CMOS Bit 4 Output  
DDR Logical Bits 4, 5  
NC in DDR Mode  
54  
D3  
CMOS Bit 3 Output  
56  
D2  
CMOS Bit 2 Output  
DDR Logical Bits 2, 3  
NC in DDR Mode  
58  
D1  
CMOS Bit 1 Output  
60  
D0  
CMOS Bit 0 (LSB) Output  
CMOS Over Range  
DDR Logical Bits 0, 1  
DDR Over Range  
64  
OR  
66  
SDO  
CSB  
SCLK  
SDIO  
AVSS  
SPI Serial Data Output  
SPI Chip Select (active low)  
SPI Clock  
67  
68  
69  
SPI Serial Data Input/Output  
Analog Ground  
Exposed Paddle  
FN7982.2  
June 27, 2012  
5
ISLA214P12  
Ordering Information  
PART NUMBER  
(Notes 1,2)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
ISLA214P12IRZ  
ISLA214IR72EV1Z  
KMB-001LEVALZ  
KMB-001CEVALZ  
NOTES:  
ISLA214P12 IRZ  
-40°C to +85°C  
72 Ld QFN  
L72.10x10E  
Evaluation Board - Supports 125/130/200/250Msps Grades  
LVDS Motherboard (Interfaces with ISLA214IR72EV1Z operating in LVDS Output Mode)  
CMOS Motherboard (Interfaces with ISLA214IR72EV1Z operating in CMOS Output Mode)  
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate-e4  
termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
2. For Moisture Sensitivity Level (MSL), please see device information page for ISLA214P12. For more information on MSL please see techbrief TB363.  
FN7982.2  
June 27, 2012  
6
ISLA214P12  
Table of Contents  
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin-Compatible Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin Descriptions - 72 Ld QFN, LVDS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions - 72 Ld QFN, CMOS Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
8
Digital Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Switching Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power-On Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
User Initiated Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Temperature Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Digital Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Nap/Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clock Divider Synchronous Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SPI Physical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Device Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Device Configuration/Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Global Device Configuration/Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SPI Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Equivalent Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
A/D Evaluation Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Split Ground and Power Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Clock Input Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Exposed Paddle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Bypass and Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LVDS Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LVCMOS Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Unused Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Package Outline Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FN7982.2  
June 27, 2012  
7
ISLA214P12  
Absolute Maximum Ratings  
Thermal Information  
AVDD to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.4V to 2.1V  
OVDD to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-0.4V to 2.1V  
AVSS to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 0.3V  
Analog Inputs to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD + 0.3V  
Clock Inputs to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD + 0.3V  
Logic Input to AVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to OVDD + 0.3V  
Logic Inputs to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to OVDD + 0.3V  
Latchup (Tested per JESD-78C;Class 2,Level A) . . . . . . . . . . . . . . . . 100mA  
Thermal Resistance (Typical)  
72 Ld QFN (Notes 3, 4) . . . . . . . . . . . . . . . .  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
θ
(°C/W)  
23  
θ
(°C/W)  
0.9  
JA  
JC  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
3. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
4. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V, OVDD = 1.8V,  
T
= -40°C to +85°C (Typical specifications at +25°C), A = -1dBFS, f  
= 125Msps. Boldface limits apply over the operating temperature  
A
IN  
SAMPLE  
range, -40°C to +85°C.  
ISLA214P12  
MIN  
MAX  
PARAMETER  
DC SPECIFICATIONS (Note 6)  
Analog Input  
SYMBOL  
CONDITIONS  
(Note 5)  
TYP  
(Note 5)  
UNITS  
Full-Scale Analog Input Range  
Input Resistance  
V
Differential  
Differential  
Differential  
Full Temp  
1.95  
-5.0  
2.0  
600  
4.5  
2.1  
5.0  
V
P-P  
FS  
R
Ω
IN  
IN  
Input Capacitance  
C
pF  
ppm/°C  
mV  
Full Scale Range Temp. Drift  
Input Offset Voltage  
A
74  
VTC  
V
-1.7  
0.94  
2.6  
OS  
CM  
CM  
Common-Mode Output Voltage  
V
V
Common-Mode Input Current  
(per pin)  
I
µA/MSPS  
Clock Inputs  
Inputs Common Mode Voltage  
CLKP,CLKN Input Swing (Note 7)  
Power Requirements  
0.9  
1.8  
V
V
1.8V Analog Supply Voltage  
1.8V Digital Supply Voltage  
1.8V Analog Supply Current  
1.8V Digital Supply Current (Note 6)  
Power Supply Rejection Ratio  
Total Power Dissipation  
Normal Mode  
AVDD  
OVDD  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
161  
77  
V
V
I
I
152  
68.5  
40  
mA  
mA  
dB  
AVDD  
3mA LVDS (SDR)  
OVDD  
PSRR  
30MHz, 30mV  
signal on AVDD  
P-P  
P
CMOS (DDR)  
CMOS (SDR)  
310  
313  
369  
360  
397  
mW  
mW  
mW  
D
2mA LVDS (SDR)  
3mA LVDS (DDR)  
3mA LVDS (SDR)  
428  
mW  
FN7982.2  
June 27, 2012  
8
ISLA214P12  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V, OVDD = 1.8V,  
T
= -40°C to +85°C (Typical specifications at +25°C), A = -1dBFS, f  
= 125Msps. Boldface limits apply over the operating temperature  
A
IN  
SAMPLE  
range, -40°C to +85°C. (Continued)  
ISLA214P12  
MIN  
MAX  
PARAMETER  
Nap Mode  
SYMBOL  
CONDITIONS  
(Note 5)  
TYP  
48.6  
6
(Note 5)  
UNITS  
mW  
mW  
µs  
P
53  
10  
D
D
Sleep Mode  
P
CSB at logic high  
Sample Clock Running  
Nap/Sleep Mode Wakeup Time  
AC SPECIFICATIONS  
Differential Nonlinearity  
Integral Nonlinearity  
630  
DNL  
INL  
f
f
= 105MHz  
= 105MHz  
±0.25  
±2.5  
LSB  
LSB  
IN  
IN  
Minimum Conversion Rate (Note 8)  
Maximum Conversion Rate  
f
MIN  
40  
MSPS  
MSPS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
Bits  
S
f
MAX  
125  
S
Signal-to-Noise Ratio  
(Note 9)  
SNR  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 30MHz  
74.9  
74.3  
73.3  
70.9  
69.5  
67.8  
74.6  
73.6  
72.2  
70.6  
65.9  
61.1  
12.10  
11.93  
11.70  
11.44  
10.65  
9.86  
88  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
= 30MHz  
73.0  
Signal-to-Noise and Distortion  
(Note 9)  
SINAD  
ENOB  
SFDR  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
= 30MHz  
70.8  
11.47  
70  
Effective Number of Bits  
(Note 9)  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
= 30MHz  
Bits  
Bits  
Bits  
Bits  
Bits  
Spurious-Free Dynamic Range  
(Note 9)  
dBc  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
83  
dBc  
78  
dBc  
84  
dBc  
68  
dBc  
61  
dBc  
FN7982.2  
June 27, 2012  
9
ISLA214P12  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD = 1.8V, OVDD = 1.8V,  
T
= -40°C to +85°C (Typical specifications at +25°C), A = -1dBFS, f  
= 125Msps. Boldface limits apply over the operating temperature  
A
IN  
SAMPLE  
range, -40°C to +85°C. (Continued)  
ISLA214P12  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 5)  
TYP  
99  
(Note 5)  
UNITS  
dBc  
Spurious-Free Dynamic Range  
Excluding H2, H3  
SFDRX23  
f
f
f
f
f
f
f
f
= 30MHz  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 105MHz  
= 190MHz  
= 363MHz  
= 461MHz  
= 605MHz  
= 70MHz  
95  
dBc  
91  
dBc  
95  
dBc  
94  
dBc  
87  
dBc  
Intermodulation Distortion  
IMD  
-85  
-105  
dBFS  
dBFS  
= 170MHz  
-12  
10  
Word Error Rate  
Full Power Bandwidth  
NOTES:  
WER  
FPBW  
700  
MHz  
5. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
6. Digital Supply Current is dependent upon the capacitive loading of the digital outputs. I  
7. See “Clock Input” on page 20.  
specifications apply for 10pF load on each digital output  
OVDD  
8. The DLL Range setting must be changed for low-speed operation.  
9. Minimum specification guaranteed when calibrated at +85°C.  
Digital Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
(Note 5)  
TYP  
(Note 5) UNITS  
INPUTS (Note 10)  
Input Current High (RESETN)  
Input Current Low (RESETN)  
Input Current High (SDIO)  
Input Current Low (SDIO)  
Input Current High (CSB)  
Input Current Low (CSB)  
Input Current High (CLKDIV)  
Input Current Low (CLKDIV)  
I
V
V
V
V
V
V
= 1.8V  
= 0V  
0
1
-12  
4
10  
-8  
µA  
µA  
µA  
µA  
IH  
IN  
IN  
IN  
IN  
IN  
IN  
I
-25  
IL  
I
= 1.8V  
= 0V  
12  
IH  
I
-600  
40  
-415  
58  
5
-300  
75  
IL  
I
= 1.8V  
= 0V  
IH  
I
10  
IL  
I
16  
-34  
25  
-25  
34  
µA  
µA  
V
IH  
I
-16  
IL  
Input Voltage High (SDIO, RESETN)  
Input Voltage Low (SDIO, RESETN)  
Input Capacitance  
V
1.17  
IH  
V
0.63  
V
IL  
C
4
pF  
DI  
LVDS INPUTS (CLKDIVRSTP, CLKDIVRSTN)  
Input Common Mode Range  
V
825  
250  
1575  
450  
mV  
mV  
kΩ  
kΩ  
ICM  
Input Differential Swing (peak to peak, single-ended)  
CLKDIVRSTP Input Pull-down Resistance  
CLKDIVRSTN Input Pull-up Resistance  
V
ID  
R
R
100  
100  
Ipd  
Ipu  
FN7982.2  
June 27, 2012  
10  
ISLA214P12  
Digital Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
(Note 5)  
MAX  
(Note 5) UNITS  
PARAMETER  
SYMBOL  
CONDITIONS  
TYP  
LVDS OUTPUTS  
Differential Output Voltage (Note 11)  
Output Offset Voltage  
Output Rise Time  
Output Fall Time  
V
3mA Mode  
3mA Mode  
612  
1150  
240  
mV  
T
P-P  
V
1120  
1200  
mV  
OS  
t
ps  
ps  
R
t
240  
F
CMOS OUTPUTS  
Voltage Output High  
Voltage Output Low  
Output Rise Time  
Output Fall Time  
V
I
I
= -500µA  
= 1mA  
OVDD - 0.3 OVDD - 0.1  
V
V
OH  
OH  
V
0.1  
1.8  
1.4  
0.3  
OL  
OL  
t
ns  
ns  
R
t
F
NOTES:  
10. The Tri-Level Inputs internal switching thresholds are approximately. 0.43V and 1.34V. It is advised to float the inputs, tie to ground or AVDD  
depending on desired function.  
11. The voltage is expressed in peak-to-peak differential swing. The peak-to-peak singled-ended swing is 1/2 of the differential swing.  
Timing Diagrams  
INP  
INN  
tA  
CLKN  
CLKP  
LATENCY = L CYCLES  
tCPD  
CLKOUTN  
CLKOUTP  
tDC  
tPD  
D[12/10/8/6/4/2/0]N  
ODD  
N-L  
EVEN  
N-L  
ODD  
N-L+1  
EVEN  
N-L+1  
EVEN  
N-1  
ODD  
N
EVEN  
N
D[12/10/8/6/4/2/0]P  
FIGURE 1A. LVDS DDR  
FN7982.2  
June 27, 2012  
11  
ISLA214P12  
Timing Diagrams(Continued)  
INP  
INN  
tA  
CLKN  
CLKP  
LATENCY = L CYCLES  
tCPD  
CLKOUTN  
CLKOUTP  
tDC  
tPD  
D[13:0]N  
D[13:0]P  
DATA  
N-L  
DATA  
N-L+1  
DATA  
N
FIGURE 1B. LVDS SDR  
FIGURE 1. LVDS TIMING DIAGRAMS  
INP  
INN  
tA  
CLKN  
CLKP  
LATENCY = L CYCLES  
tCPD  
CLKOUT  
tDC  
tPD  
ODD  
N-L  
EVEN  
N-L  
ODD  
N-L+1  
EVEN  
N-L+1  
EVEN  
N-1  
ODD  
N
EVEN  
N
D[12/10/8/6/4/2/0]  
FIGURE 2A. CMOS DDR  
FN7982.2  
June 27, 2012  
12  
ISLA214P12  
Timing Diagrams(Continued)  
INP  
INN  
tA  
CLKN  
CLKP  
LATENCY = L CYCLES  
tCPD  
CLKOUT  
tDC  
tPD  
DATA  
N-L  
DATA  
N-L+1  
DATA  
N
D[13:0]  
FIGURE 2B. CMOS SDR  
FIGURE 2. CMOS TIMING DIAGRAMS  
Switching Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C.  
MIN  
(Note 5)  
MAX  
(Note 5)  
PARAMETER  
SYMBOL  
CONDITION  
TYP  
UNITS  
ADC OUTPUT  
Aperture Delay  
t
114  
75  
ps  
fs  
A
RMS Aperture Jitter  
j
A
Input Clock to Output Clock Propagation  
Delay  
t
t
AVDD, OVDD = 1.7V to 1.9V,  
1.65  
2.4  
3
ns  
CPD  
T
= -40°C to +85°C  
A
AVDD, OVDD = 1.8V, T = +25°C  
A
1.9  
2.3  
2.75  
450  
ns  
ps  
CPD  
Relative Input Clock to Output Clock  
Propagation Delay (Note 12)  
dt  
AVDD, OVDD = 1.7V to 1.9V,  
-450  
CPD  
T
= -40°C to +85°C  
A
Input Clock to Data Propagation Delay  
t
t
1.65  
-0.1  
2.4  
3.5  
0.5  
ns  
ns  
PD  
Output Clock to Data Propagation Delay,  
LVDS Mode  
Rising/Falling Edge  
Rising/Falling Edge  
0.16  
DC  
Output Clock to Data Propagation Delay,  
CMOS Mode  
t
-0.1  
0.4  
0.2  
0.65  
ns  
ns  
DC  
Synchronous Clock Divider Reset Setup  
Time (with respect to the positive edge of  
CLKP)  
t
0.06  
RSTS  
Synchronous Clock Divider Reset Hold Time  
(with respect to the positive edge of CLKP)  
t
0.02  
30  
0.35  
ns  
RSTH  
Synchronous Clock Divider Reset Recovery  
Time  
t
DLL recovery time after  
Synchronous Reset  
cycles  
RSTRT  
(sample clock not interrupted)  
Latency (Pipeline Delay)  
Overvoltage Recovery  
L
10  
1
cycles  
cycles  
t
OVR  
FN7982.2  
June 27, 2012  
13  
ISLA214P12  
Switching Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)  
MIN  
MAX  
PARAMETER  
SPI INTERFACE (Notes 13, 14)  
SCLK Period  
SYMBOL  
CONDITION  
(Note 5)  
TYP  
(Note 5)  
UNITS  
t
Write Operation  
16  
16  
28  
5
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
cycles  
CLK  
t
Read Operation  
Read or Write  
Write  
CLK  
CSBto SCLKSetup Time  
CSBafter SCLKHold Time  
CSBafter SCLKHold Time  
Data Valid to SCLKSetup Time  
Data Valid after SCLKHold Time  
Data Valid after SCLKTime  
NOTES:  
t
S
t
H
t
Read  
16  
6
HR  
t
Write  
DS  
DH  
t
Read or Write  
Read  
4
5
t
DVR  
12. The relative propagation delay is the difference in propagation time between any two devices that are matched in temperature and voltage, and is  
specified over the full operating temperature and voltage range.  
13. SPI Interface timing is directly proportional to the ADC sample period (t ). Values above reflect multiples of a 4ns sample period, and must be scaled  
S
proportionally for lower sample rates. ADC sample clock must be running for SPI communication.  
14. The SPI may operate asynchronously with respect to the ADC sample clock.  
Typical Performance Curves  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C, A = -1dBFS,  
A
IN  
f
= 105MHz, f  
= 125MSPS.  
IN  
SAMPLE  
90  
-55  
-60  
-65  
-70  
SFDR @ 125MSPS  
85  
80  
75  
70  
65  
60  
H2 @ 125MSPS  
-75  
-80  
-85  
SNR @ 125MSPS  
-90  
-95  
H3 @ 125MSPS  
-100  
55  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
FIGURE 4. HD2 AND HD3 vs f  
FIGURE 3. SNR AND SFDR vs f  
IN  
IN  
100  
90  
-45  
-55  
HD3(dBc)  
SFDR (dBFS)  
80  
-65  
70  
SNR (dBFS)  
SFDR (dBc)  
HD2 (dBc)  
-75  
60  
50  
40  
30  
20  
10  
-85  
HD3 (dBFS)  
-95  
SNR (dBc)  
-30  
-105  
HD2 (dBFS)  
-115  
-60  
-50  
-40  
-20  
-10  
0
-60  
-50  
-40  
-30  
-20  
-10  
0
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
FIGURE 5. SNR AND SFDR vs A  
FIGURE 6. HD2 AND HD3 vs A  
IN  
IN  
FN7982.2  
June 27, 2012  
14  
ISLA214P12  
Typical Performance Curves  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C, A = -1dBFS,  
A
IN  
f
= 105MHz, f  
= 125MSPS. (Continued)  
IN  
SAMPLE  
90  
-75  
-80  
85  
80  
75  
H3  
-85  
SFDR  
-90  
-95  
H2  
-100  
-105  
SNR  
70  
40  
40  
50  
60  
70  
80  
90  
100  
110  
120  
60  
80  
100  
120  
SAMPLE RATE (MSPS)  
SAMPLE RATE (MSPS)  
FIGURE 8. HD2 AND HD3 vs f  
FIGURE 7. SNR AND SFDR vs f  
SAMPLE  
SAMPLE  
400  
375  
350  
325  
300  
275  
250  
225  
1.0  
0.8  
0.6  
0.4  
0.2  
0
LVDS  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
CMOS  
200  
40  
60  
80  
100  
120  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODES  
SAMPLE RATE (MSPS)  
IN 3mA LVDS MODE (SDR) AND  
FIGURE 9. POWER vs f  
FIGURE 10. DIFFERENTIAL NONLINEARITY  
SAMPLE  
CMOS MODE (DDR)  
4
3
95  
90  
85  
80  
75  
70  
65  
60  
SFDR A = -2dBFS  
IN  
2
1
SFDR A = -1dBFS  
IN  
0
-1  
-2  
-3  
-4  
SNR A = -1dBFS  
IN  
0.75  
0.85  
0.95  
1.05  
1.15  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODES  
INPUT COMMON MODE (V)  
FIGURE 11. INTEGRAL NONLINEARITY  
FIGURE 12. SNR AND SFDR vs VCM  
FN7982.2  
June 27, 2012  
15  
ISLA214P12  
Typical Performance Curves  
All Typical Performance Characteristics apply under the following conditions unless otherwise noted: AVDD = OVDD = 1.8V, T = +25°C, A = -1dBFS,  
A
IN  
f
= 105MHz, f  
= 125MSPS. (Continued)  
IN  
SAMPLE  
0
-20  
80000  
70000  
75501  
71821  
STDEV = 0.95 CODES  
A
= -1.0 dBFS  
IN  
SNR = 74.7 dBFS  
SFDR = 84.5 dBc  
SINAD = 74.1 dBFS  
60000  
50000  
40000  
30000  
-40  
-60  
24535  
22204  
-80  
20000  
10000  
-100  
-120  
2939  
2775  
118  
0
106  
1
0
0
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179  
CODE  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FIGURE 13. NOISE HISTOGRAM  
FIGURE 14. SINGLE-TONE SPECTRUM @ 105MHz  
0
0
A
= -1.0 dBFS  
A
= -1.0 dBFS  
IN  
IN  
SNR = 73.5 dBFS  
SFDR = 82.2 dBc  
SINAD = 72.9 dBFS  
SNR = 70.3 dBFS  
SFDR = 81.0 dBc  
SINAD = 69.9 dBFS  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 16. SINGLE-TONE SPECTRUM @ 363MHz  
FIGURE 15. SINGLE-TONE SPECTRUM @ 190MHz  
0
0
IMD2  
IMD3  
2ND HARMONICS  
3RD HARMONICS  
IMD2  
-20  
-40  
-20  
IMD3  
2ND HARMONICS  
3RD HARMONICS  
-40  
-60  
-60  
IMD3 = -85 dBFS  
IMD3 = -105 dBFS  
-80  
-80  
-100  
-120  
-100  
-120  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 17. TWO-TONE SPECTRUM (F1 = 70MHz, F2 = 71MHz AT  
-7dBFS)  
FIGURE 18. TWO-TONE SPECTRUM (F1 = 170MHz, F2 = 171MHz AT  
-7dBFS)  
FN7982.2  
June 27, 2012  
16  
ISLA214P12  
A user-initiated reset can subsequently be invoked in the event  
that the above conditions cannot be met at power-up.  
Theory of Operation  
Functional Description  
The ISLA214P12 is based on a 14-bit, 125MSPS A/D converter  
core that utilizes a pipelined successive approximation  
After the power supply has stabilized the internal POR releases  
RESETN and an internal pull-up pulls it high, which starts the  
calibration sequence. If a subsequent user-initiated reset is  
desired, the RESETN pin should be connected to an open-drain  
driver with an off-state/high impedance state leakage of less  
than 0.5mA to assure exit from the reset state so calibration can  
start.  
architecture (see Figure 19). The input voltage is captured by a  
Sample-Hold Amplifier (SHA) and converted to a unit of charge.  
Proprietary charge-domain techniques are used to successively  
compare the input to a series of reference charges. Decisions  
made during the successive approximation operations determine  
the digital code for each input value. Digital error correction is also  
applied, resulting in a total latency of 10 clock cycles. This is  
evident to the user as a latency between the start of a conversion  
and the data being available on the digital outputs.  
The calibration sequence is initiated on the rising edge of  
RESETN, as shown in Figure 20. Calibration status can be  
determined by reading the cal_status bit (LSB) at 0xB6. This bit is  
‘0’ during calibration and goes to a logic ‘1’ when calibration is  
complete. The data outputs produce 0xCCCC during calibration;  
this can also be used to determine calibration status.  
Power-On Calibration  
While RESETN is low, the output clock (CLKOUTP/CLKOUTN) is  
set low. Normal operation of the output clock resumes at the  
next input clock edge (CLKP/CLKN) after RESETN is de-asserted.  
At 125MSPS the nominal calibration time is 560ms, while the  
maximum calibration time is 1000ms.  
As mentioned previously, the cores perform a self-calibration at  
start-up. An internal power-on-reset (POR) circuit detects the  
supply voltage ramps and initiates the calibration when the  
analog and digital supply voltages are above a threshold. The  
following conditions must be adhered to for the power-on  
calibration to execute successfully.  
• A frequency-stable conversion clock must be applied to the  
CLKP/CLKN pins  
• DNC pins must not be connected  
• SDO has an internal pull-up and should not be driven externally  
• RESETN is pulled low by the ADC internally during POR.  
External driving of RESETN is optional.  
• SPI communications must not be attempted  
CLOCK  
GENERATION  
INP  
2.5-BIT  
2.5-BIT  
6- STAGE  
1.5-BIT/ STAGE  
3- STAGE  
1-BIT/ STAGE  
3-BIT  
FLASH  
SHA  
FLASH  
FLASH  
INN  
+
1.25V  
DIGITAL  
ERROR  
CORRECTION  
LVDS/ LVCMOS  
OUTPUTS  
FIGURE 19. A/D CORE BLOCK DIAGRAM  
FN7982.2  
June 27, 2012  
17  
ISLA214P12  
The performance of the ISLA214P12 changes with variations in  
CLKN  
CLKP  
temperature, supply voltage or sample rate. The extent of these  
changes may necessitate recalibration, depending on system  
performance requirements. Best performance will be achieved  
by recalibrating the A/D under the environmental conditions at  
which it will operate.  
CALIBRATION  
TIME  
RESETN  
CALIBRATION  
BEGINS  
A supply voltage variation of <100mV will generally result in an  
SNR change of <0.5dBFS and SFDR change of <3dBc.  
CAL_STATUS  
BIT  
CALIBRATION  
COMPLETE  
In situations where the sample rate is not constant, best results  
will be obtained if the device is calibrated at the highest sample  
rate. Reducing the sample rate by less than 80MSPS will typically  
result in an SNR change of <0.5dBFS and an SFDR change of  
<3dBc.  
CLKOUTP  
FIGURE 20. CALIBRATION TIMING  
Figures 21 through 26 show the effect of temperature on SNR  
and SFDR performance with power on calibration performed at  
-40°C, +25°C, and +85°C. Each plot shows the variation of  
SNR/SFDR across temperature after a single power on  
calibration at -40°C, +25°C and +85°C. Best performance is  
typically achieved by a user-initiated power on calibration at the  
operating conditions, as stated earlier. However, it can be seen  
that performance drift with temperature is not a very strong  
function of the temperature at which the power on calibration is  
performed.  
User Initiated Reset  
Recalibration of the A/D can be initiated at any time by driving  
the RESETN pin low for a minimum of one clock cycle. An  
open-drain driver with a drive strength in its high impedance  
state of less than 0.5mA is recommended, as RESETN has an  
internal high impedance pull-up to OVDD. As is the case during  
power-on reset, RESETN and DNC pins must be in the proper  
state for the calibration to successfully execute.  
Temperature Calibration  
75.50  
95  
90  
85  
75.25  
75.00  
74.75  
74.50  
-2dBFS ANALOG INPUT  
-1dBFS ANALOG INPUT  
74.25  
74.00  
-2dBFS ANALOG INPUT  
-1dBFS ANALOG INPUT  
80  
-40  
-40  
-35  
-30  
-25  
-20  
-35  
-30  
-25  
-20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 22. TYPICAL SFDR PERFORMANCE vs TEMPERATURE,  
FIGURE 21. TYPICAL SNR PERFORMANCE vs TEMPERATURE,  
DEVICE CALIBRATED AT -40°C, f = 105MHz  
DEVICE CALIBRATED AT -40°C, f = 105MHz  
IN  
IN  
75.50  
75.25  
75.00  
74.75  
74.50  
95  
90  
85  
74.25  
-2dBFS ANALOG INPUT  
-2dBFS ANALOG INPUT  
-1dBFS ANALOG INPUT  
-1dBFS ANALOG INPUT  
74.00  
80  
5
10  
15  
20  
25  
30  
35  
40  
45  
5
10  
15  
20  
25  
30  
35  
40  
45  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 23. TYPICAL SNR PERFORMANCE vs TEMPERATURE,  
FIGURE 24. TYPICAL SFDR PERFORMANCE vs TEMPERATURE,  
DEVICE CALIBRATED AT +25°C, f = 105MHz  
DEVICE CALIBRATED AT +25°C, f = 105MHz  
IN  
IN  
FN7982.2  
June 27, 2012  
18  
ISLA214P12  
Temperature Calibration(Continued)  
75.50  
75.25  
75.00  
74.75  
74.50  
74.25  
74.00  
95  
90  
85  
80  
-2dBFS ANALOG INPUT  
-1dBFS ANALOG INPUT  
-2dBFS ANALOG INPUT  
-1dBFS ANALOG INPUT  
65  
70  
75  
80  
85  
65  
70  
75  
80  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 26. TYPICAL SFDR PERFORMANCE vs TEMPERATURE,  
DEVICE CALIBRATED AT +85°C, f = 105MHz  
FIGURE 25. TYPICAL SNR PERFORMANCE vs TEMPERATURE,  
DEVICE CALIBRATED AT +85°C, f = 105MHz  
IN  
IN  
FN7982.2  
June 27, 2012  
19  
ISLA214P12  
transformer and low shunt resistance are recommended for  
optimal performance.  
Analog Input  
A single fully differential input (VINP/VINN) connects to the  
sample and hold amplifier (SHA) of each unit A/D. The ideal  
full-scale input voltage is 2.0V, centered at the VCM voltage of  
0.94V as shown in Figure 27.  
A/D  
1.8  
1.4  
1.0  
0.6  
0.2  
VINN  
VINP  
VCM  
0.94V  
1.0V  
FIGURE 30. DIFFERENTIAL AMPLIFIER INPUT  
A differential amplifier, as shown in the simplified block diagram  
in Figure 30, can be used in applications that require  
DC-coupling. In this configuration, the amplifier will typically  
dominate the achievable SNR and distortion performance.  
Intersil’s new ISL552xx differential amplifier family can also be  
used in certain AC applications with minimal performance  
degradation. Contact the factory for more information.  
FIGURE 27. ANALOG INPUT RANGE  
Best performance is obtained when the analog inputs are driven  
differentially. The common-mode output voltage, VCM, should be  
used to properly bias the inputs as shown in Figures 28 through  
30. An RF transformer will give the best noise and distortion  
performance for wideband and/or high intermediate frequency  
(IF) inputs. Two different transformer input schemes are shown in  
Figures 28 and 29.  
Clock Input  
The clock input circuit is a differential pair (see Figure 44).  
Driving these inputs with a high level (up to 1.8V  
on each  
P-P  
input) sine or square wave will provide the lowest jitter  
performance. A transformer with 4:1 impedance ratio will  
provide increased drive levels. The clock input is functional with  
AC-coupled LVDS, LVPECL, and CML drive levels. To maintain the  
lowest possible aperture jitter, it is recommended to have high  
slew rate at the zero crossing of the differential clock input  
signal.  
ADT1-1WT  
ADT1-1WT  
1000pF  
A/D  
VCM  
0.1µF  
The recommended drive circuit is shown in Figure 31. A duty  
range of 40% to 60% is acceptable. The clock can be driven  
single-ended, but this will reduce the edge rate and may impact  
SNR performance. The clock inputs are internally self-biased to  
AVDD/2 to facilitate AC coupling.  
FIGURE 28. TRANSFORMER INPUT FOR GENERAL PURPOSE  
APPLICATIONS  
TX-2-5-1  
ADTL1-12  
1000pF  
TC4-19G2+  
CLKP  
200  
1000pF  
A / D  
VCM  
0.01µF  
1000pF  
FIGURE 29. TRANSMISSION-LINE TRANSFORMER INPUT FOR  
HIGH IF APPLICATIONS  
CLKN  
1000pF  
1000pF  
This dual transformer scheme is used to improve common-mode  
rejection, which keeps the common-mode level of the input  
matched to VCM. The value of the shunt resistor should be  
determined based on the desired load impedance. The  
differential input resistance of the ISLA214P12 is 600Ω.  
FIGURE 31. RECOMMENDED CLOCK DRIVE  
A selectable 2x or 4x frequency divider is provided in series with  
the clock input. The divider can be used in the 2x mode with a  
sample clock equal to twice the desired sample rate or in 4x  
mode with a sample clock equal to four times the desired  
sample rate. This allows the use of the Phase Slip feature, which  
enables synchronization of multiple ADCs. The Phase Slip feature  
can be used as an alternative to using the CLKDIVRST pins to  
synchronize ADCs in a multiple ADC system.  
The SHA design uses a switched capacitor input stage (see  
Figure 43), which creates current spikes when the sampling  
capacitance is reconnected to the input voltage. This causes a  
disturbance at the input which must settle before the next  
sampling point. Lower source impedance will result in faster  
settling and improved performance. Therefore a 2:1 or 1:1  
FN7982.2  
June 27, 2012  
20  
ISLA214P12  
TABLE 1. CLKDIV PIN SETTINGS  
Digital Outputs  
Output data is available as a parallel bus in  
CLKDIV PIN  
DIVIDE RATIO  
LVDS-compatible(default) or CMOS modes. In either case, the data  
is presented in either double data rate (DDR) or single data rate  
(default) format. Figures 1A and 1B show the timing relationships  
for LVDS and CMOS modes, respectively.  
AVSS  
Float  
AVDD  
2
1
4
Additionally, the drive current for LVDS mode can be set to a  
nominal 3mA(default) or a power-saving 2mA. The lower current  
setting can be used in designs where the receiver is in close  
physical proximity to the A/D. The applicability of this setting is  
dependent upon the PCB layout, therefore the user should  
experiment to determine if performance degradation is  
observed. Note that a far-end termination resistor is required in  
LVDS mode for correct operation.  
The clock divider can also be controlled through the SPI port,  
which overrides the CLKDIV pin setting. See “SPI Physical  
Interface” on page 25. A delay-locked loop (DLL) generates  
internal clock signals for various stages within the charge  
pipeline. If the frequency of the input clock changes, the DLL may  
take up to 100μs to regain lock at 125MSPS. The lock time is  
inversely proportional to the sample rate.  
The DLL has two ranges of operation, slow and fast. The slow  
range can be used for sample rates between 40MSPS and  
100MSPS, while the default fast range can be used from  
80MSPS to the maximum specified sample rate.  
The output mode can be controlled through the SPI port, by  
writing to address 0x73, see “Serial Peripheral Interface” on  
page 25.  
An external resistor creates the bias for the LVDS drivers. A 10kΩ,  
1% resistor must be connected from the RLVDS pin to OVSS.  
Jitter  
In a sampled data system, clock jitter directly impacts the  
achievable SNR performance. The theoretical relationship  
Over-Range Indicator  
The over-range (OR) bit is asserted when the magnitude of the  
analog input exceeds positive or negative fullscale of the ADC.  
The output code does not wrap around during an over-range  
condition. The OR bit is updated at the sample rate.  
between clock jitter (t ) and SNR is shown in Equation 1 and is  
J
illustrated in Figure 32.  
1
-------------------  
SNR = 20 log  
(EQ. 1)  
10  
2πf  
t
IN J  
Power Dissipation  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
The power dissipated by the ISLA214P12 is primarily dependent  
on the sample rate and the output modes: LVDS vs CMOS and  
DDR vs SDR. There is a static bias in the analog supply, while the  
remaining power dissipation is linearly related to the sample  
rate. The output supply dissipation changes to a lesser degree in  
LVDS mode, but is more strongly related to the clock frequency in  
CMOS mode.  
tj = 0.1ps  
14 BITS  
tj = 1ps  
12 BITS  
tj = 10ps  
10 BITS  
Nap/Sleep  
tj = 100ps  
Portions of the device may be shut down to save power during  
times when operation of the A/D is not required. Two power saving  
modes are available: Nap, and Sleep. Nap mode reduces power  
dissipation to < 60mW while Sleep mode reduces power  
dissipation to 9mW typically.  
50  
1M  
10M  
INPUT FREQUENCY (Hz)  
FIGURE 32. SNR vs CLOCK JITTER  
100M  
1G  
This relationship shows the SNR that would be achieved if clock  
jitter were the only non-ideal factor. In reality, achievable SNR is  
limited by internal factors such as linearity, aperture jitter and  
thermal noise. Internal aperture jitter is the uncertainty in the  
sampling instant shown in Figure1A. The internal aperture jitter  
combines with the input clock jitter in a root-sum-square fashion,  
since they are not statistically correlated, and this determines  
the total jitter in the system. The total jitter, combined with other  
noise sources, then determines the achievable SNR.  
All digital outputs (Data, CLKOUT and OR) are placed in a high  
impedance state during Nap or Sleep. The input clock should  
remain running and at a fixed frequency during Nap or Sleep, and  
CSB should be high. Recovery time from Nap mode will increase  
if the clock is stopped, since the internal DLL can take up to  
100µs to regain lock at 125MSPS.  
By default after the device is powered on, the operational state is  
controlled by the NAPSLP pin as shown in Table 2.  
TABLE 2. NAPSLP PIN SETTINGS  
Voltage Reference  
NAPSLP PIN  
AVSS  
MODE  
Normal  
Sleep  
Nap  
A temperature compensated internal voltage reference provides  
the reference charges used in the successive approximation  
operations. The full-scale range of each A/D is proportional to the  
reference voltage. The nominal value of the voltage reference is  
1.25V.  
Float  
AVDD  
FN7982.2  
June 27, 2012  
21  
ISLA214P12  
The power-down mode can also be controlled through the SPI  
port, which overrides the NAPSLP pin setting. Details on this are  
contained in “Serial Peripheral Interface” on page 25.  
Mapping of the input voltage to the various data formats is  
shown in Table 3.  
TABLE 3. INPUT VOLTAGE TO OUTPUT CODE MAPPING  
Data Format  
INPUT  
VOLTAGE  
TWO’S  
COMPLEMENT  
OFFSET BINARY  
GRAY CODE  
Output data can be presented in three formats: two’s  
complement (default), Gray code and offset binary. The data  
format can be controlled through the SPI port, by writing to  
address 0x73. Details on this are contained in “Serial Peripheral  
Interface” on page 25.  
–Full Scale 00 0000 0000 0000 10 0000 0000 0000 00 0000 0000 0000  
–Full Scale 00 0000 0000 0001 10 0000 0000 0001 00 0000 0000 0001  
+ 1LSB  
Mid–Scale 10 0000 0000 0000 00 0000 0000 0000 11 0000 0000 0000  
Offset binary coding maps the most negative input voltage to  
code 0x000 (all zeros) and the most positive input to 0xFFF (all  
ones). Two’s complement coding simply complements the MSB  
of the offset binary representation.  
+Full Scale 11 1111 1111 1110 01 1111 1111 1110 10 0000 0000 0001  
– 1LSB  
+Full Scale 11 1111 1111 1111 01 1111 1111 1111 10 0000 0000 0000  
When calculating Gray code the MSB is unchanged. The  
remaining bits are computed as the XOR of the current bit  
position and the next most significant bit. Figure 33 shows this  
operation.  
Clock Divider Synchronous Reset  
An output clock (CLKOUTP, CLKOUTN) is provided to facilitate  
latching of the sampled data. The output clock frequency is  
equal to the input clock frequency divided by the internal clock  
divider setting. (See clock input description).  
BINARY  
13  
12  
11  
1
0
• • • •  
For clock divide settings > ‘1’, the absolute phase of the output  
clocks for multiple A/Ds is indeterminate - there will be a phase  
ambiguity between the output clocks of ADCs in a multiple ADC  
system. The CLKDIVRST feature allows the phase of multiple  
A/Ds to be synchronized (see Figure35) when the internal clock  
divider is used, greatly simplifying data capture in systems  
employing multiple A/Ds. For clock divide setting=’1’, there is no  
phase ambiguity between clock outputs in a multiple ADC  
system and CLKDIVRST can be left as a DNC (do not connect)  
• • • •  
• • • •  
GRAY CODE  
13  
12  
11  
1
0
FIGURE 33. BINARY TO GRAY CODE CONVERSION  
The CLKDIVRST signal must be well-timed with respect to the  
sample clock (See “Switching Specifications” on page 13). Figure  
35 shows assertion of CLKDIVRSTP by a positive edge  
(CLKDIVRSTN must be driven but is not shown); CLKDIVRSTP can  
remain high indefinitely after a synchronization event.  
CLKDIVRSTP can also be a pulse if needed, with CLKDIVRSTP  
returning to a logic ‘0’ after assertion; in this case the CLKDIVRST  
pulse width should be a minimum of 3 input sample clock  
periods. In applications where multiple CLKDIVRST pulse events  
are required a user should wait a minimum of 30 clock cycles  
before starting a second CLKDIVRST pulse event.  
Converting back to offset binary from Gray code must be done  
recursively, using the result of each bit for the next lower bit as  
shown in Figure 34.  
GRAY CODE  
13  
12  
11  
1
0
• • • •  
• • • •  
• • • •  
• • • •  
It will take a maximum of 30 input clock cycles to attain  
synchronization (t  
) in applications where the input clock is  
RSTRT  
not interrupted; if the input clock is interrupted CLKOUT will be  
static or indeterminate until synchronization is attained.  
In some applications, interrupting the input sample clock briefly  
(~ 150 cycles max) can simplify the timing requirements for  
synchronization using CLKDIVRST), in this case the total  
CLKDIVRST recovery time will increase by the number of input  
clock cycles the sample clock is held static. Valid data is  
available (after recovery) in all cases after the normal pipeline  
latency. Assertion of CLKDIVRST resets  
BINARY  
13  
12  
11  
1
0
Intersil Application Note 1604 describes the synchronization of  
multiple ISLA1xxP50s. This document discusses the topic of  
synchronization in more detail and can be used to better  
understand the ISLA2XXPxx ADCs’ operation.  
FIGURE 34. GRAY CODE TO BINARY CONVERSION  
FN7982.2  
June 27, 2012  
22  
ISLA214P12  
SAMPLE CLOCK  
INPUT  
(CLKDIV=2)  
s1  
L+td  
ANALOG INPUT  
(Note 15)  
tRSTH  
(Note 16)  
CLKDIVRSTP  
tRSTS  
tRSTRT  
ADC1 OUTPUT DATA  
s0  
s0  
s1  
s1  
s2  
s2  
s3  
s3  
ADC1 CLKOUTP  
ADC2 OUTPUT DATA  
(Note 16)  
ADC2 CLKOUTP  
(phase 1)  
(Note 17)  
ADC2 CLKOUTP  
(phase 2)  
NOTES:  
15. Delay equals fixed pipeline latency (L cycles) plus fixed analog propagation delay td.  
16. CLKDIVRSTP setup and hold times are with respect to input sample clock rising edge.  
CLKDIVRSTN is not shown, but must be driven, and is the compliment of CLKDIVRSTP.  
17. Either Output Clock Phase (phase 1 or phase 2 ) equally likely prior to synchronization.  
FIGURE 35. SYNCHRONOUS RESET OPERATION  
CSB  
SCLK  
SDIO  
R/W  
W1  
W0  
A12  
A11  
A10  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FIGURE 36. MSB-FIRST ADDRESSING  
CSB  
SCLK  
SDIO  
A0  
A1  
A2  
A11  
A12  
W0  
W1  
R/W  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
FIGURE 37. LSB-FIRST ADDRESSING  
FN7982.2  
June 27, 2012  
23  
ISLA214P12  
t
DSW  
t
t
t
CLK  
HI  
H
t
DHW  
CSB  
t
t
S
LO  
SCLK  
SDIO  
R/W W1 W0 A12 A11 A10 A9  
A8  
A7  
D0  
D5  
D4  
D3  
D2  
D1  
SPI WRITE  
FIGURE 38. SPI WRITE  
tDSW  
tCLK  
tHR  
tHI  
tDVR  
tS  
CSB  
tDHW  
tLO  
SCLK  
WRITING A READ COMMAND  
A9 A2 A1  
READING DATA  
)
( 3 WIRE MODE  
D2 D1 D0  
SDIO  
SDO  
A0  
D7  
D6  
D3  
W1 W 0  
A12 A11  
A10  
R/W  
( 4 WIRE MODE)  
D3 D2 D1  
D7  
D0  
SPI READ  
FIGURE 39. SPI READ  
CSB STALLING  
CSB  
SCLK  
SDIO  
INSTRUCTION/ADDRESS  
DATA WORD 1  
DATA WORD 2  
FIGURE 40. 2-BYTE TRANSFER  
LAST LEGAL  
CSB STALLING  
CSB  
SCLK  
SDIO  
INSTRUCTION/ADDRESS  
DATA WORD 1  
DATA WORD N  
FIGURE 41. N-BYTE TRANSFER  
FN7982.2  
June 27, 2012  
24  
ISLA214P12  
A/D (based on the R/W bit status). The data transfer will  
continue as long as CSB remains low and SCLK is active. Stalling  
of the CSB pin is allowed at any byte boundary  
(instruction/address or data) if the number of bytes being  
transferred is three or less. For transfers of four bytes or more,  
CSB is allowed to stall in the middle of the instruction/address  
bytes or before the first data byte. If CSB transitions to a high  
state after that point the state machine will reset and terminate  
the data transfer.  
Serial Peripheral Interface  
A serial peripheral interface (SPI) bus is used to facilitate  
configuration of the device and to optimize performance. The  
SPI bus consists of chip select (CSB), serial clock (SCLK) serial  
data output (SDO), and serial data input/output (SDIO). The  
maximum SCLK rate is equal to the A/D sample rate (f  
)
SAMPLE  
divided by 16 for both write operations and read operations. At  
= 125MHz, maximum SCLK is 7.8125MHz for writing  
f
SAMPLE  
and read operations. There is no minimum SCLK rate.  
TABLE 4. BYTE TRANSFER SELECTION  
The following sections describe various registers that are used to  
configure the SPI or adjust performance or functional parameters.  
Many registers in the available address space (0x00 to 0xFF) are  
not defined in this document. Additionally, within a defined  
register there may be certain bits or bit combinations that are  
reserved. Undefined registers and undefined values within defined  
registers are reserved and should not be selected. Setting any  
reserved register or value may produce indeterminate results.  
[W1:W0]  
00  
BYTES TRANSFERRED  
1
01  
2
3
10  
11  
4 or more  
Figures 40 and 41 on page 24 illustrate the timing relationships  
for 2-byte and N-byte transfers, respectively. The operation for a  
3-byte transfer can be inferred from these diagrams.  
SPI Physical Interface  
The serial clock pin (SCLK) provides synchronization for the data  
transfer. By default, all data is presented on the serial data  
input/output (SDIO) pin in three-wire mode. The state of the SDIO  
pin is set automatically in the communication protocol  
(described in the following). A dedicated serial data output pin  
(SDO) can be activated by setting 0x00[7] high to allow operation  
in four-wire mode.  
SPI Configuration  
ADDRESS 0X00: CHIP_PORT_CONFIG  
Bit ordering and SPI reset are controlled by this register. Bit order  
can be selected as MSB to LSB (MSB first) or LSB to MSB (LSB  
first) to accommodate various micro controllers.  
The SPI port operates in a half duplex master/slave  
configuration, with the ISLA214P12 functioning as a slave.  
Multiple slave devices can interface to a single master in  
three-wire mode only, since the SDO output of an unaddressed  
device is asserted in four wire mode.  
Bit 7 SDO Active  
Bit 6 LSB First  
Setting this bit high configures the SPI to interpret serial data  
as arriving in LSB to MSB order.  
The chip-select bar (CSB) pin determines when a slave device is  
being addressed. Multiple slave devices can be written to  
concurrently, but only one slave device can be read from at a  
given time (again, only in three-wire mode). If multiple slave  
devices are selected for reading at the same time, the results will  
be indeterminate.  
Bit 5 Soft Reset  
Setting this bit high resets all SPI registers to default values.  
Bit 4 Reserved  
This bit should always be set high.  
The communication protocol begins with an instruction/address  
phase. The first rising SCLK edge following a high-to-low  
transition on CSB determines the beginning of the two-byte  
instruction/address command; SCLK must be static low before  
the CSB transition. Data can be presented in MSB-first order or  
LSB-first order. The default is MSB-first, but this can be changed  
by setting 0x00[6] high. Figures 36 and 37 show the appropriate  
bit ordering for the MSB-first and LSB-first modes, respectively. In  
MSB-first mode, the address is incremented for multi-byte  
transfers, while in LSB-first mode it’s decremented.  
Bits 3:0 These bits should always mirror bits 4:7 to avoid  
ambiguity in bit ordering.  
ADDRESS 0X02: BURST_END  
If a series of sequential registers are to be set, burst mode can  
improve throughput by eliminating redundant addressing. The  
burst is ended by pulling the CSB pin high. Setting the burst_end  
address determines the end of the transfer; during a write  
operation, the user must be cautious to transmit the correct  
number of bytes based on the starting and ending addresses.  
In the default mode, the MSB is R/W, which determines if the  
data is to be read (active high) or written. The next two bits, W1  
and W0, determine the number of data bytes to be read or  
written (see Table 4). The lower 13 bits contain the first address  
for the data transfer. This relationship is illustrated in Figure 38,  
and timing values are given in “Switching Specifications” on  
page 13.  
Bits 7:0 Burst End Address  
This register value determines the ending address of the burst  
data.  
After the instruction/address bytes have been read, the  
appropriate number of data bytes are written to or read from the  
FN7982.2  
June 27, 2012  
25  
ISLA214P12  
TABLE 6. COARSE GAIN ADJUSTMENT  
Device Information  
0x22[3:0] core 0 NOMINAL COARSE GAIN ADJUST  
ADDRESS 0X08: CHIP_ID  
(%)  
+2.8  
+1.4  
-2.8  
-1.4  
Bit3  
Bit2  
Bit1  
Bit0  
ADDRESS 0X09: CHIP_VERSION  
The generic die identifier and a revision number, respectively, can  
be read from these two registers.  
Device Configuration/Control  
A common SPI map, which can accommodate single-channel or  
multi-channel devices, is used for all Intersil A/D products. Single  
core ADCs use ADC0, while multiple-core devices use both ADC0  
and ADC1.  
TABLE 7. MEDIUM AND FINE GAIN ADJUSTMENTS  
0x23[7:0]  
0x24[7:0]  
PARAMETER  
Steps  
MEDIUM GAIN  
FINE GAIN  
256  
-2%  
256  
ADDRESS 0X20: OFFSET_COARSE_ADC0  
ADDRESS 0X21: OFFSET_FINE_ADC0  
–Full Scale (0x00)  
Mid–Scale (0x80)  
+Full Scale (0xFF)  
Nominal Step Size  
-0.20%  
0.00%  
0.00%  
+2%  
The input offset of the A/D core can be adjusted in fine and  
coarse steps. Both adjustments are made via an 8-bit word as  
detailed in Table 5. The data format is twos complement. Bit 0 in  
register 0xFE must be set high to enable updates written to 0x20  
and 0x21 to be used by the ADC.(See description for 0xFE)  
+0.2%  
0.016%  
0.0016%  
ADDRESS 0X25: MODES  
Two distinct reduced power modes can be selected. By default,  
the tri-level NAPSLP pin can select normal operation, nap or  
sleep modes (refer to“Nap/Sleep” on page 21). This functionality  
can be overridden and controlled through the SPI. This is an  
indexed function when controlled from the SPI, but a global  
function when driven from the pin. This register is not changed by  
a Soft Reset.  
The default value of each register will be the result of the  
self-calibration after initial power-up. If a register is to be  
incremented or decremented, the user should first read the  
register value then write the incremented or decremented value  
back to the same register.  
TABLE 5. OFFSET ADJUSTMENTS  
TABLE 8. POWER-DOWN CONTROL  
0x25[2:0]  
0x20[7:0]  
COARSE OFFSET  
0x21[7:0]  
FINE OFFSET  
PARAMETER  
Steps  
VALUE  
000  
001  
POWER DOWN MODE  
255  
255  
Pin Control  
–Full Scale (0x00)  
Mid–Scale (0x80)  
+Full Scale (0xFF)  
Nominal Step Size  
-133LSB (-47mV)  
0.0LSB (0.0mV)  
+133LSB (+47mV)  
1.04LSB (0.37mV)  
-5LSB (-1.75mV)  
0.0LSB  
Normal Operation  
Nap Mode  
010  
+5LSB (+1.75mV)  
0.04LSB (0.014mV)  
100  
Sleep Mode  
ADDRESS 0X22: GAIN_COARSE_ADC0  
ADDRESS 0X23: GAIN_MEDIUM_ADC0  
ADDRESS 0X24: GAIN_FINE_ADC0  
Global Device Configuration/Control  
ADDRESS 0X71: PHASE_SLIP  
The output data clock is generated by dividing down the A/D input  
sample clock. Some systems with multiple A/Ds can more easily latch  
the data from each A/D by controlling the phase of the output data  
clock. This control is accomplished through the use of the phase_slip  
SPI feature, which allows the rising edge of the output data clock to be  
advanced by one input clock period, as shown in the Figure 42.  
Execution of a phase_slip command is accomplished by first writing a  
Gain of the A/D core can be adjusted in coarse, medium and fine  
steps. Coarse gain is a 4-bit adjustment while medium and fine  
are 8-bit. Multiple Coarse Gain Bits can be set for a total  
adjustment range of ±4.2%. (‘0011’ -4.2% and ‘1100’ +4.2%)  
It is recommended to use one of the coarse gain settings (-4.2%,  
-2.8%, -1.4%, 0, 1.4%, 2.8%, 4.2%) and fine-tune the gain using the  
registers at 0x0023 and 0x24.  
The default value of each register will be the result of the  
self-calibration after initial power-up. If a register is to be  
incremented or decremented, the user should first read the  
register value then write the incremented or decremented value  
back to the same register. Bit 0 in register 0xFE must be set high  
to enable updates written to 0x23 and 0x24 to be used by the  
ADC.(See description for 0xFE)  
FN7982.2  
June 27, 2012  
26  
ISLA214P12  
TABLE 11. OUTPUT FORMAT CONTROL  
0x73[2:0]  
'0' to bit 0 at address 0x71, followed by writing a '1' to bit 0 at address  
0x71.  
VALUE  
OUTPUT FORMAT  
ADC Input  
Clock (500MHz)  
010  
Gray Code  
2ns  
4ns  
100  
Offset Binary  
Output Data  
Clock (250MHz)  
No clock_slip  
ADDRESS 0X74: OUTPUT_MODE_B  
2ns  
Bit 6 DLL Range  
Output Data  
Clock (250MHz)  
1 clock_slip  
This bit sets the DLL operating range to fast (default) or slow.  
Output Data  
Clock (250MHz)  
2 clock_slip  
Internal clock signals are generated by a delay-locked loop (DLL),  
which has a finite operating range. Table 12 shows the allowable  
sample rate ranges for the slow and fast settings.  
Bit 4 DDR Enable  
FIGURE 42. PHASE SLIP  
Set to a ‘1’ to enable DDR.  
ADDRESS 0X72: CLOCK_DIVIDE  
TABLE 12. DLL RANGES  
The ISLA214P12 has a selectable clock divider that can be set to  
divide by four, two or one (no division). By default, the tri-level  
CLKDIV pin selects the divisor. This functionality can be  
overridden and controlled through the SPI, as shown in Table 9.  
This register is not changed by a Soft Reset.  
DLL RANGE  
Slow  
MIN  
40  
MAX  
100  
125  
UNIT  
MSPS  
MSPS  
Fast  
80  
ADDRESS 0XB6: CALIBRATION STATUS  
TABLE 9. CLOCK DIVIDER SELECTION  
The LSB at address 0xB6 can be read to determine calibration  
status. The bit is ‘0’ during calibration and goes to a logic ‘1’  
when calibration is complete.This register is unique in that it can  
be read after POR at calibration, unlike the other registers on  
chip, which can’t be read until calibration is complete.  
0x72[2:0]  
CLOCK DIVIDER  
VALUE  
000  
Pin Control  
001  
Divide by 1  
010  
Divide by 2  
DEVICE TEST  
100  
Divide by 4  
The ISLA214P12 can produce preset or user defined patterns on  
the digital outputs to facilitate in-situ testing. A user can pick  
from preset built-in patterns by writing to the output test mode  
field [7:4] at 0xC0 or user defined patterns by writing to the user  
test mode field [2:0] at 0xC0. The user defined patterns should  
be loaded at address space 0xC1 through 0xD0, see the “SPI  
Memory Map” on page 29 for more detail.The predefined  
patterns are shown in Table 13. The test mode is enabled  
asynchronously to the sample clock, therefore several sample  
clock cycles may elapse before the data is present on the output  
bus.  
other  
Not Allowed  
ADDRESS 0X73: OUTPUT_MODE_A  
The output_mode_A register controls the physical output format  
of the data, as well as the logical coding. The ISLA214P12 can  
present output data in two physical formats: LVDS (default) or  
LVCMOS. Additionally, the drive strength in LVDS mode can be set  
high (default,3mA or low (2mA).  
Data can be coded in three possible formats: two’s complement  
(default), Gray code or offset binary. See Table 11.  
ADDRESS 0XC0: TEST_IO  
This register is not changed by a Soft Reset.  
Bits 7:4 Output Test Mode  
TABLE 10. OUTPUT MODE CONTROL  
0x73[7:5]  
These bits set the test mode according to Table 13. Other  
values are reserved.User test patterns loaded at 0xC1 through  
0xD0 are also available by writing ‘1000’ to [7:4] at 0xC0 and a  
pattern depth value to [2:0] at 0xC0. See the memory map.  
VALUE  
OUTPUT MODE  
LVDS 3mA (Default)  
LVDS 2mA  
000  
Bits 2:0 User Test Mode  
001  
The three LSBs in this register determine the test pattern in  
combination with registers 0xC1 through 0xD0. Refer to the  
SPI Memory Map on page 29.  
100  
LVCMOS  
TABLE 11. OUTPUT FORMAT CONTROL  
0x73[2:0]  
VALUE  
OUTPUT FORMAT  
000  
Two’s Complement (Default)  
FN7982.2  
June 27, 2012  
27  
ISLA214P12  
ADDRESS 0XC7: USER_PATT4_LSB  
TABLE 13. OUTPUT TEST MODES  
0xC0[7:4]  
ADDRESS 0XC8: USER_PATT4_MSB  
VALUE  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
OUTPUT TEST MODE  
WORD 1  
WORD 2  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 4.  
Off  
Midscale  
0x8000  
0xFFFF  
0x0000  
N/A  
N/A  
N/A  
ADDRESS 0XC9: USER_PATT5_LSB  
ADDRESS 0XCA: USER_PATT5_MSB  
Positive Full-Scale  
Negative Full-Scale  
SDR/DDR Dependent  
Reserved  
N/A  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 5.  
N/A  
N/A  
N/A  
ADDRESS 0XCB: USER_PATT6_LSB  
ADDRESS 0XCC: USER_PATT6_MSB  
Reserved  
N/A  
N/A  
SDR/DDR Dependent  
User Pattern  
Reserved  
N/A  
N/A  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 6.  
user_patt1  
N/A  
user_patt2  
N/A  
ADDRESS 0XCD: USER_PATT7_LSB  
ADDRESS 0XCE: USER_PATT7_MSB  
Ramp  
N/A  
N/A  
ADDRESS 0XC1: USER_PATT1_LSB  
ADDRESS 0XC2: USER_PATT1_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 7.  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 1.  
ADDRESS 0XCF: USER_PATT8_LSB  
ADDRESS 0XD0: USER_PATT8_MSB  
ADDRESS 0XC3: USER_PATT2_LSB  
ADDRESS 0XC4: USER_PATT2_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 8.  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 2  
ADDRESS 0XFE: OFFSET/GAIN_ADJUST_ENABLE  
Bit 0 at this register must be set high to enable adjustment of  
offset coarse and fine adjustments (0x20 and 0x21) and gain  
medium and gain fine adjustments(0x23 and 0x24). It is  
recommended that new data be written to the offset and gain  
adjustment registers (0x20, 0x21, 0x23, 0x24) while Bit 0 is a  
‘0’. Subsequently, Bit 0 should be set to ‘1’ to allow the values  
written to the aforementioned registers to be used by the ADC.  
Bit 0 should be set to a ‘0’ upon completion.  
ADDRESS 0XC5: USER_PATT3_LSB  
ADDRESS 0XC6: USER_PATT3_MSB  
These registers define the lower and upper eight bits,  
respectively, of the user-defined pattern 3  
FN7982.2  
June 27, 2012  
28  
ISLA214P12  
SPI Memory Map  
ADDR.  
DEF. VALUE  
(HEX)  
(Hex)  
PARAMETER NAME  
Port_config  
Reserved  
BIT 7 (MSB)  
SDO Active  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0 (LSB)  
00  
LSB First  
Soft Reset  
Mirror (bit5) Mirror (bit6) Mirror (bit7)  
00h  
01  
Reserved  
02  
Burst_end  
Burst end address [7:0]  
Reserved  
00h  
03-07  
Reserved  
08  
09  
Chip_id  
Chip_version  
Chip ID #  
Chip Version #  
Reserved  
Read only  
Read only  
0A-0F  
10-1F  
20  
Reserved  
Reserved  
Reserved  
Offset_coarse_adc0  
Offset_fine_adc0  
Gain_coarse_adc0  
Gain_medium_adc0  
Gain_fine_adc0  
Modes_adc0  
Coarse Offset  
Fine Offset  
cal. value  
cal. value  
cal. value  
cal. value  
cal. value  
21  
22  
Reserved  
Coarse Gain  
23  
Medium Gain  
Fine Gain  
24  
25  
Reserved  
Power Down Mode ADC0 [2:0]  
000 = Pin Control  
001 = Normal Operation  
010 = Nap  
00h  
NOTresetbySoft  
Reset  
100 = Sleep  
Other codes = Reserved  
26  
27  
28  
29  
2A  
2B  
Offset_coarse_adc1  
Offset_fine_adc1  
Gain_coarse_adc1  
Gain_medium_adc1  
Gain_fine_adc1  
Coarse Offset  
Fine Offset  
cal. value  
cal. value  
cal. value  
cal. value  
cal. value  
Reserved  
Coarse Gain  
Medium Gain  
Fine Gain  
Modes_adc1  
Reserved  
Power Down Mode ADC1 [2:0]  
000 = Pin Control  
001 = Normal Operation  
00h  
NOTresetbySoft  
Reset  
010 = Nap  
100 = Sleep  
Other codes = Reserved  
2C-2F  
33-4A  
4B  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Skew_diff  
Phase_slip  
Reserved  
Reserved  
Reserved  
Read only  
Read only  
00h  
4C  
Reserved  
Reset  
4D  
Enable  
PD  
Divider [2:0]  
Select  
4E-6F  
70  
Reserved  
Differential Skew  
Reserved  
80h  
00h  
71  
Next Clock  
Edge  
72  
Clock_divide  
Clock Divide [2:0]  
00h  
NOTresetbySoft  
Reset  
000 = Pin Control  
001 = divide by 1  
010 = divide by 2  
100 = divide by 4  
Other codes = Reserved  
73  
Output_mode_A  
Output Mode [7:5]  
000 = LVDS 3mA (Default)  
001 = LVDS 2mA  
Output Format [2:0]  
000 = Two’s Complement (Default)  
010 = Gray Code  
00h  
NOTresetbySoft  
Reset  
100 = LVCMOS  
100 = Offset Binary  
Other codes = Reserved  
Other codes = Reserved  
74  
Output_mode_B  
Reserved  
DLL Range  
0 = Fast  
1 = Slow  
DDR Enable  
Reserved  
00h  
NOTresetbySoft  
Reset  
Default=’0’  
75-B5  
FN7982.2  
June 27, 2012  
29  
ISLA214P12  
SPI Memory Map (Continued)  
ADDR.  
DEF. VALUE  
(HEX)  
(Hex)  
PARAMETER NAME  
Cal_status  
BIT 7 (MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0 (LSB)  
B6  
Calibration  
Done  
Read Only  
B7-BF  
C0  
Reserved  
Test_io  
Output Test Mode [7:4]  
User Test Mode [2:0]  
00h  
Part in SDR Mode  
0 = Off (Note 15)  
1 = Midscale Short  
2 = +FS Short  
Part in SDR Mode  
0 = User pattern 1 only  
1 = Cycle pattern 1 through 2  
2 = Cycle pattern 1 through 3  
3 = Cycle pattern 1 through 4  
4 = Cycle pattern 1 through 5  
5= Cycle pattern 1 through 6  
6 = Cycle pattern 1 through7  
7 = Cycle pattern 1 through 8  
3 = -FS Short  
4 = Checkerboard Output (0xAAAA, 0x5555) (Note16  
7 = 0xFFFF, 0x0000 all on pattern (Note17)  
8 = User Pattern (1 to 8 deep, MSB Justified)  
10 = Ramp  
5, 6, 9, 11-15 = Reserved  
Part in DDR Mode  
Part in DDR Mode  
0 = Off (Note 15)  
1 = Midscale Short  
2 = +FS Short  
3 = -FS Short  
4 = Reserved (Note16)  
7 = Reserved (Note17)  
8 = User Pattern (1 to 4 deep, MSB Justified)  
10 = Ramp  
0 = User pattern 1 only  
1 = Cycle pattern 1,3  
2 = Cycle pattern 1,3,5  
3 = Cycle pattern 1,3,5,7  
4-7 = NA  
5, 6, 9, 11-15 = Reserved  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
User_patt1_lsb  
User_patt1_msb  
User_patt2_lsb  
User_patt2_msb  
User_patt3_lsb  
User_patt3_msb  
User_patt4_lsb  
User_patt4_msb  
User_patt5_lsb  
User_patt5_msb  
User_patt6_lsb  
User_patt6_msb  
User_patt7_lsb  
User_patt7_msb  
User_patt8_lsb  
User_patt8_msb  
Reserved  
B7  
B15  
B7  
B6  
B14  
B6  
B5  
B13  
B5  
B4  
B12  
B4  
B3  
B11  
B3  
B2  
B10  
B2  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
B0  
B8  
0x00  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
CD  
CE  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
CF  
D0  
D1-FD  
FE  
B15  
B14  
B13  
B12  
B11  
B10  
Reserved  
Reserved  
Offset/Gain_Adjust_Enable  
00h  
Enable  
‘1’ = Enable  
FF  
Reserved  
Reserved  
NOTES:  
15. During Calibration xCCCC (MSB justified) is presented at the output data bus, toggling on the LSB (and higher) data bits occurs at completion of calibration. This behavior  
can be used as an option to determine calibration state.  
16. Use test_io = 0x80 and User Pattern 1 = 0x9999 for Checkerboard outputs in DDR mode. In SDR mode, write ‘0x41’ to test_io for Checkerboard outputs.  
17. Use test_io = 0x80 and User Pattern 1 = 0xAAAA for all ones/zeroes outputs in DDR mode. In SDR mode, write ‘0x71’ to test_io for all ones/zeroes outputs  
FN7982.2  
June 27, 2012  
30  
ISLA214P12  
Equivalent Circuits  
AVDD  
AVDD  
TO  
CLOCK-PHASE  
GENERATION  
CLKP  
AVDD  
AVDD  
CSAMP  
4pF  
TO  
11k  
11k  
INP  
INN  
CHARGE  
PIPELINE  
18k  
E2  
E3  
E3  
E1  
600  
AVDD  
CSAMP  
4pF  
18k  
AVDD  
TO  
CHARGE  
PIPELINE  
E2  
CLKN  
E1  
FIGURE 43. ANALOG INPUTS  
FIGURE 44. CLOCK INPUTS  
AVDD  
AVDD  
(20k PULL-UP  
ON RESETN  
ONLY)  
OVDD  
AVDD  
75k  
OVDD  
AVDD  
TO  
SENSE  
LOGIC  
75k  
280  
OVDD  
20k  
INPUT  
INPUT  
TO  
LOGIC  
280  
75k  
75k  
FIGURE 45. TRI-LEVEL DIGITAL INPUTS  
FIGURE 46. DIGITAL INPUTS  
OVDD  
2mA OR  
3mA  
OVDD  
DATA  
DATA  
OVDD  
OVDD  
D[13:0]P  
OVDD  
DATA  
D[13:0]  
D[13:0]N  
DATA  
DATA  
2mA OR  
3mA  
FIGURE 48. CMOS OUTPUTS  
FIGURE 47. LVDS OUTPUTS  
FN7982.2  
June 27, 2012  
31  
ISLA214P12  
Equivalent Circuits(Continued)  
AVDD  
VCM  
+
0.94V  
FIGURE 49. VCM_OUT OUTPUT  
LVCMOS Outputs  
Output traces and connections must be designed for 50Ω  
A/D Evaluation Platform  
Intersil offers an A/D Evaluation platform which can be used to  
evaluate any of Intersil’s high speed A/D products. The platform  
consists of a FPGA based data capture motherboard and a family  
of A/D daughtercards. This USB based platform allows a user to  
quickly evaluate the A/D’s performance at a user’s specific  
application frequency requirements. More information is  
available at  
characteristic impedance.  
Unused Inputs  
Standard logic inputs (RESETN, CSB, SCLK, SDIO, SDO) which will  
not be operated do not require connection to ensure optimal A/D  
performance. These inputs can be left floating if they are not  
used. Tri-level inputs (NAPSLP) accept a floating input as a valid  
state, and therefore should be biased according to the desired  
functionality.  
http://www.intersil.com/converters/adc_eval_platform/  
Layout Considerations  
Split Ground and Power Planes  
Definitions  
Data converters operating at high sampling frequencies require  
extra care in PC board layout. Many complex board designs  
benefit from isolating the analog and digital sections. Analog  
supply and ground planes should be laid out under signal and  
clock inputs. Locate the digital planes under outputs and logic  
pins. Grounds should be joined under the chip.  
Analog Input Bandwidth is the analog input frequency at which  
the spectral output power at the fundamental frequency (as  
determined by FFT analysis) is reduced by 3dB from its full-scale  
low-frequency value. This is also referred to as Full Power  
Bandwidth.  
Aperture Delay or Sampling Delay is the time required after the  
rise of the clock input for the sampling switch to open, at which  
time the signal is held for conversion.  
Clock Input Considerations  
Use matched transmission lines to the transformer inputs for the  
analog input and clock signals. Locate transformers and  
terminations as close to the chip as possible.  
Aperture Jitter is the RMS variation in aperture delay for a set of  
samples.  
Clock Duty Cycle is the ratio of the time the clock wave is at logic  
high to the total time of one clock period.  
Exposed Paddle  
The exposed paddle must be electrically connected to analog  
ground (AVSS) and should be connected to a large copper plane  
using numerous vias for optimal thermal performance.  
Differential Non-Linearity (DNL) is the deviation of any code width  
from an ideal 1 LSB step.  
Effective Number of Bits (ENOB) is an alternate method of  
specifying Signal to Noise-and-Distortion Ratio (SINAD). In dB, it  
is calculated as: ENOB = (SINAD - 1.76)/6.02  
Bypass and Filtering  
Bulk capacitors should have low equivalent series resistance.  
Tantalum is a good choice. For best performance, keep ceramic  
bypass capacitors very close to device pins. Longer traces will  
increase inductance, resulting in diminished dynamic  
performance and accuracy. Make sure that connections to  
ground are direct and low impedance. Avoid forming ground  
loops.  
Gain Error is the ratio of the difference between the voltages that  
cause the lowest and highest code transitions to the full-scale  
voltage less than 2 LSB. It is typically expressed in percent.  
I2E The Intersil Interleave Engine. This highly configurable  
circuitry performs estimates of offset, gain, and sample time  
skew mismatches between the core converters, and updates  
analog adjustments for each to minimize interleave spurs.  
LVDS Outputs  
Output traces and connections must be designed for 50Ω (100Ω  
differential) characteristic impedance. Keep traces direct and  
minimize bends where possible. Avoid crossing ground and  
power-plane breaks with signal traces.  
Integral Non-Linearity (INL) is the maximum deviation of the  
A/D’s transfer function from a best fit line determined by a least  
squares curve fit of that transfer function, measured in units of  
LSBs.  
FN7982.2  
June 27, 2012  
32  
ISLA214P12  
Least Significant Bit (LSB) is the bit that has the smallest value or  
weight in a digital word. Its value in terms of input voltage is  
Signal to Noise-and-Distortion (SINAD) is the ratio of the RMS  
signal amplitude to the RMS sum of all other spectral  
components below one half the clock frequency, including  
harmonics but excluding DC.  
N
V
/(2 -1) where N is the resolution in bits.  
FS  
Missing Codes are output codes that are skipped and will never  
appear at the A/D output. These codes cannot be reached with  
any input value.  
Signal-to-Noise Ratio (without Harmonics) is the ratio of the RMS  
signal amplitude to the RMS sum of all other spectral  
components below one-half the sampling frequency, excluding  
harmonics and DC.  
Most Significant Bit (MSB) is the bit that has the largest value or  
weight.  
SNR and SINAD are either given in units of dB when the power of  
the fundamental is used as the reference, or dBFS (dB to full  
scale) when the converter’s full-scale input power is used as the  
reference.  
Pipeline Delay is the number of clock cycles between the  
initiation of a conversion and the appearance at the output pins  
of the data.  
Power Supply Rejection Ratio (PSRR) is the ratio of the observed  
magnitude of a spur in the A/D FFT, caused by an AC signal  
superimposed on the power supply voltage.  
Spurious-Free-Dynamic Range (SFDR) is the ratio of the RMS  
signal amplitude to the RMS value of the largest spurious  
spectral component. The largest spurious spectral component  
may or may not be a harmonic.  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest Rev.  
DATE  
REVISION  
FN7982.2  
CHANGE  
June 27, 2012  
Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products  
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.  
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a  
complete list of Intersil product families.  
For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on  
intersil.com: ISLA214P12  
To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff  
FITs are available from our website at: http://rel.intersil.com/reports/search.php  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time  
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be  
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third  
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7982.2  
June 27, 2012  
33  
ISLA214P12  
Package Outline Drawing  
L72.10x10E  
72 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 11/09  
10.00  
A
Z
X
6
EXPOSED  
PAD AREA  
9.75  
B
PIN #1  
72  
72  
INDEX AREA  
1
1
6
PIN 1  
INDEX AREA  
9.75  
10.00  
0.100 M C A B  
(4X)  
0.15  
4.150 REF.  
7.150 REF.  
TOP VIEW  
9.75 ±0.10  
0.100 M C A B  
BOTTOM VIEW  
11°  
Y
ALL AROUND  
C0.400X45° (4X)  
10.00 ±0.10  
SIDE VIEW  
(0.350)  
R0.200  
(7.15)  
(4.15 REF)  
1
0.500 ±0.100  
R0.115 TYP.  
72  
(4X 9.70)  
(4X 8.50)  
(3.00 )  
DETAIL "X"  
DETAIL "Z"  
(6.00)  
R0.200 MAX.  
ALL AROUND  
( 72X 0 .23)  
0.100 C  
( 72X 0 .70)  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
SEATING  
PLANE  
0.080C  
0.190~0.245  
0.23 ±0.050  
2. Dimensioning and tolerancing conform to ANSI Y14.5m-1994.  
0.50  
C
0.025 ±0.020  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.10  
Angular ±2.50°  
0.100M C A B  
0.050M C  
4. Dimension applies to the metallized terminal and is measured  
between 0.015mm and 0.30mm from the terminal tip.  
DETAIL "Y"  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
Package outline compliant to JESD-M0220.  
7.  
FN7982.2  
June 27, 2012  
34  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY