KAD2708L-17Q68 [INTERSIL]

8-Bit, 350/275/210/170/105MSPS A/D Converter; 8位,二百七十五分之三百五十〇 / 170分之210 / 105MSPS A / D转换器
KAD2708L-17Q68
型号: KAD2708L-17Q68
厂家: Intersil    Intersil
描述:

8-Bit, 350/275/210/170/105MSPS A/D Converter
8位,二百七十五分之三百五十〇 / 170分之210 / 105MSPS A / D转换器

转换器
文件: 总15页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KAD2708L  
®
Data Sheet  
December 5, 2008  
FN6813.0  
8-Bit, 350/275/210/170/105MSPS A/D  
Converter  
Features  
• On-Chip Reference  
The Intersil KAD2708L is the industry’s lowest power, 8-bit,  
350MSPS, high performance Analog-to-Digital converter. It is  
designed with Intersil’s proprietary FemtoCharge™ technology  
on a standard CMOS process. The KAD2708L offers high  
• Internal Track and Hold  
• 1.5V  
P-P  
Differential Input Voltage  
• 600MHz Analog Input Bandwidth  
• Two’s Complement or Binary Output  
• Over-Range Indicator  
dynamic performance (48.8dBFS SNR @ f = 175MHz) while  
IN  
consuming less than 330mW. Features include an over-range  
indicator and a selectable divide-by-2 input clock divider. The  
KAD2708L is one member of a pin-compatible family offering 8  
and 10-bit ADCs with sample rates from 105MSPS to  
350MSPS and LVDS-compatible or LVCMOS outputs (Table 1).  
This family of products is available in 68 Ld RoHS-compliant  
QFN packages with exposed paddle. Performance is specified  
over the full industrial temperature range (-40°C to +85°C).  
• Selectable ÷2 Clock Divider  
• LVDS Compatible Outputs  
Applications  
• High-Performance Data Acquisition  
• Portable Oscilloscope  
• Medical Imaging  
• Cable Head Ends  
CLK_P  
CLKOUTP  
Clock  
Generation  
• Power-Amplifier Linearization  
CLK_N  
CLKOUTN  
• Radar and Satellite Antenna Array Processing  
• Broadband Communications  
D7P – D0P  
D7N – D0N  
• Point-to-Point Microwave Systems  
• Communications Test Equipment  
INP  
INN  
8-bit  
350MSPS  
ADC  
ORP  
ORN  
8
LVDS  
Drivers  
S/H  
VREF  
Key Specifications  
1.21 V  
2SC  
VREFSEL  
+
• SNR = 48.8dBFS at f = 350MSPS, f = 175MHz  
IN  
S
VCM  
• SFDR = 64dBc at f = 350MSPS, f = 175MHz  
IN  
S
• Power Consumption < 330mW at f = 350MSPS  
S
Pin-Compatible Family  
TABLE 1. PIN-COMPATIBLE PRODUCTS  
Ordering Information  
RESOLUTION, SPEED LVDS OUTPUTS LVCMOS OUTPUTS  
TEMP.  
RANGE  
(°C)  
SPEED  
PART NUMBER (MSPS)  
PKG.  
DWG. #  
8 Bits 350MSPS  
10 Bits 275MSPS  
8 Bits 275MSPS  
10 Bits 210MSPS  
8 Bits 210MSPS  
10 Bits 170MSPS  
8 Bits 170MSPS  
10 Bits 105MSPS  
8 Bits 105MSPS  
KAD2708L-35  
KAD2710L-27  
KAD2708L-27  
KAD2710L-21  
KAD2708L-21  
KAD2710L-17  
KAD2708L-17  
KAD2710L-10  
KAD2708L-10  
PACKAGE  
KAD2710C-27  
KAD2708C-27  
KAD2710C-21  
KAD2708C-21  
KAD2710C-17  
KAD2708C-17  
KAD2710C-10  
KAD2708C-10  
KAD2708L-35Q68  
KAD2708L-27Q68  
KAD2708L-21Q68  
KAD2708L-17Q68  
KAD2708L-10Q68  
350  
275  
210  
170  
105  
-40 to +85 68 Ld QFN L68.10x10B  
-40 to +85 68 Ld QFN L68.10x10B  
-40 to +85 68 Ld QFN L68.10x10B  
-40 to +85 68 Ld QFN L68.10x10B  
-40 to +85 68 Ld QFN L68.10x10B  
NOTE: These Intersil Pb-free plastic packaged products employ  
special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish,  
which is RoHS compliant and compatible with both SnPb and Pb-free  
soldering operations). Intersil Pb-free products are MSL classified at  
Pb-free peak reflow temperatures that meet or exceed the Pb-free  
requirements of IPC/JEDEC J STD-020.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
FemtoCharge is a trademark of Kenet Inc. Copyright Intersil Americas Inc. 2008. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
1
KAD2708L  
Table of Contents  
Absolute Maximum Ratings ......................................... 3  
Thermal Information...................................................... 3  
Electrical Specifications............................................... 3  
Digital Specifications.................................................... 4  
Timing Diagram ............................................................. 5  
Timing Specifications ................................................... 5  
Thermal Impedance....................................................... 5  
ESD................................................................................. 5  
Pin Description.............................................................. 6  
Pin Configuration .......................................................... 7  
Typical Performance Curves........................................ 8  
Functional Description ................................................. 11  
Reset .......................................................................... 11  
Voltage Reference...................................................... 11  
Analog Input ............................................................... 11  
Clock Input ................................................................. 12  
Jitter............................................................................ 12  
Digital Outputs............................................................ 13  
Equivalent Circuits........................................................ 13  
Layout Considerations ................................................. 14  
Split Ground and Power Planes ................................. 14  
Clock Input Considerations......................................... 14  
Bypass and Filtering................................................... 14  
LVDS Outputs ............................................................ 14  
Unused Inputs ............................................................ 14  
Definitions...................................................................... 14  
Package Outline Drawing ............................................. 15  
L68.10x10B ................................................................ 15  
FN6813.0  
December 5, 2008  
2
KAD2708L  
Absolute Maximum Ratings  
Thermal Information  
AVDD2 to AVSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 2.1V  
AVDD3 to AVSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 3.7V  
OVDD2 to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 2.1V  
Analog Inputs to AVSS. . . . . . . . . . . . . . . . . -0.4V to AVDD3 + 0.3V  
Clock Inputs to AVSS. . . . . . . . . . . . . . . . . . -0.4V to AVDD2 + 0.3V  
Logic Inputs to AVSS (VREFSEL, CLKDIV) -0.4V to AVDD3 + 0.3V  
Logic Inputs to OVSS (RST, 2SC) . . . . . . . . -0.4V to OVDD2 + 0.3V  
VREF to AVSS. . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD3 + 0.3V  
Analog Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
Logic Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
LVDS Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD2 = 1.8V, AVDD3 = 3.3V,  
OVDD = 1.8V, T = -40°C to +85°C (typical specifications at +25°C), f  
= 350MSPS, 270MSPS,  
SAMPLE  
A
210MSPS, 170MSPS and 105MSPS, f = Nyquist at -0.5dBFS.  
IN  
KAD2708L-35  
KAD2708L-27  
KAD2708L-21  
KAD2708L-17  
KAD2708L-10  
PARAMETER SYMBOL CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
DC SPECIFICATIONS  
Analog Input  
Full-Scale Analog  
Input Range  
V
1.4 1.5 1.6 1.4 1.5 1.6 1.4 1.5 1.6 1.4 1.5 1.6 1.4 1.5 1.6  
V
P-P  
FS  
Full Scale Range  
Temp. Drift  
A
Full Temp  
257  
860  
230  
860  
210  
860  
198  
860  
176  
860  
ppm/°C  
mV  
VTC  
Common-Mode  
Output Voltage  
V
CM  
Power Requirements  
1.8V Analog  
Supply Voltage  
AVDD2  
AVDD3  
OVDD  
1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9  
3.15 3.3 3.45 3.15 3.3 3.45 3.15 3.3 3.45 3.15 3.3 3.45 3.15 3.3 3.45  
1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9  
V
V
3.3V Analog  
Supply Voltage  
1.8V Digital  
V
Supply Voltage  
1.8V Analog  
Supply Current  
I
I
51  
50  
39  
60  
54  
44  
44  
41  
34  
51  
45  
39  
38  
33  
33  
42  
37  
36  
35  
28  
31  
39  
32  
36  
29  
21  
28  
33  
24  
32  
mA  
mA  
mA  
mW  
AVDD2  
AVDD3  
3.3V Analog  
Supply Current  
1.8V Digital  
Supply Current  
I
OVDD  
Power  
P
327 365  
275 310  
237 263  
211 241  
172 196  
D
Dissipation  
AC SPECIFICATIONS  
Maximum  
f
MAX  
350  
275  
210  
170  
105  
MSPS  
S
Conversion Rate  
Minimum  
f
MIN  
50  
50  
50  
50  
50 MSPS  
S
Conversion Rate  
Differential  
Nonlinearity  
DNL  
INL  
f
= 10MHz  
-0.3 ±0.2 0.4 -0.3 ±0.2 0.4 -0.3 ±0.2 0.4 -0.3 ±0.2 0.4 -0.3 ±0.2 0.4  
-0.8 ±0.2 0.8 -0.8 ±0.2 0.8 -0.8 ±0.2 0.8 -0.8 ±0.2 0.8 -0.8 ±0.2 0.8  
LSB  
LSB  
IN  
(for -17 and -10  
versions only)  
Integral  
f
= 10MHz  
IN  
Nonlinearity  
(for -17 and -10  
versions only)  
FN6813.0  
December 5, 2008  
3
KAD2708L  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD2 = 1.8V, AVDD3 = 3.3V,  
OVDD = 1.8V, T = -40°C to +85°C (typical specifications at +25°C), f  
= 350MSPS, 270MSPS,  
A
SAMPLE  
210MSPS, 170MSPS and 105MSPS, f = Nyquist at -0.5dBFS. (Continued)  
IN  
KAD2708L-27  
PARAMETER SYMBOL CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
KAD2708L-35  
KAD2708L-21  
KAD2708L-17  
KAD2708L-10  
Signal-to-Noise  
Ratio  
SNR  
f
f
f
f
f
f
f
f
f
f
f
f
= 10MHz  
= Nyquist  
= 430MHz  
= 10MHz  
= Nyquist  
= 430MHz  
= 10MHz  
= Nyquist  
= 430MHz  
= 10MHz  
= Nyquist  
= 430MHz  
49.0  
46.5 48.8  
48.0  
50.4  
46.5 49.2  
49.0  
49.5  
46.5 49.2  
49.1  
49.5  
46.5 49.2  
49.1  
49.5  
46.5 49.2  
49.1  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
Bits  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Signal-to-Noise  
and Distortion  
SINAD  
48.9  
49.2  
49.5  
49.5  
49.5  
46.5 48.2  
47.7  
46.5 49.2  
48.9  
46.5 49.2  
48.9  
46.5 49.2  
49.0  
46.5 49.2  
48.9  
Effective Number ENOB  
of Bits  
7.8  
7.9  
7.9  
7.9  
7.9  
7.4 7.9  
7.6  
7.4 7.9  
7.8  
7.4 7.9  
7.8  
7.4 7.9  
7.8  
7.4 7.9  
7.8  
Bits  
Bits  
Spurious-Free  
Dynamic Range  
SFDR  
65.0  
67.6  
69.1  
69.1  
69.1  
dBc  
61  
64  
62  
61  
61 66.6  
66.1  
61 69.1  
69.0  
61 69.1  
69.0  
61 69.1  
68.9  
dBc  
dBc  
Two-Tone SFDR 2TSFDR f = 133MHz,  
IN  
63  
65  
65  
65  
dBc  
135MHz  
-12  
10  
-12  
10  
-12  
10  
-12  
10  
-12  
10  
Word Error Rate  
WER  
Full Power  
Bandwidth  
FPBW  
600  
600  
600  
600  
600  
MHz  
Digital Specifications  
PARAMETER  
INPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
High Input Voltage (VREFSEL)  
Low Input Voltage (VREFSEL)  
Input Current High (VREFSEL)  
Input Current Low (VREFSEL)  
High Input Voltage (CLKDIV)  
Low Input Voltage (CLKDIV)  
Input Current High (CLKDIV)  
Input Current Low (CLKDIV)  
High Input Voltage (RST,2SC)  
Low Input Voltage (RST,2SC)  
Input Current High (RST,2SC)  
Input Current Low (RST,2SC)  
Input Capacitance  
VREFSEL V  
0.8*AVDD3  
V
V
IH  
VREFSEL V  
0.2*AVDD3  
IL  
VREFSEL I  
V
V
= AVDD3  
= AVSS  
0
25  
1
10  
75  
µA  
µA  
V
IH  
IN  
IN  
VREFSEL I  
65  
IL  
CLKDIV V  
0.8*AVDD3  
IH  
CLKDIV V  
0.2*AVDD3  
V
IL  
CLKDIV I  
V
V
= AVDD3  
= AVSS  
25  
0
65  
1
75  
10  
µA  
µA  
V
IH  
IN  
IN  
CLKDIV I  
IL  
RST,2SC V  
0.8*OVDD2  
IH  
RST,2SC V  
0.2*OVDD2  
V
IL  
RST,2SC I  
VIN = OVDD  
VIN = OVSS  
0
1
50  
3
10  
75  
µA  
µA  
pF  
IH  
RST,2SC I  
25  
IL  
C
DI  
CLKP, CLKN P-P Differential Input Voltage  
CLKP, CLKN Differential Input Resistance  
CLKP, CLKN Common-Mode Input Voltage  
LVDS OUTPUTS  
V
R
V
0.5  
3.6  
V
P-P  
CDI  
CDI  
CCI  
10  
MΩ  
0.9  
V
Differential Output Voltage  
Output Offset Voltage  
V
210  
1.15  
500  
500  
mV  
V
T
V
OS  
Output Rise Time  
t
ps  
ps  
R
Output Fall Time  
t
F
FN6813.0  
December 5, 2008  
4
KAD2708L  
Timing Diagram  
Sample N  
INP  
INN  
tA  
CLKN  
CLKP  
L
tPID  
CLKOUTN  
CLKOUTP  
tPCD  
tPH  
D[7:0]P  
D[7:0]N  
Data N-L  
invalid  
Data N-L+1  
Data N  
FIGURE 1. LVDS TIMING DIAGRAM  
Timing Specifications  
PARAMETER  
SYMBOL  
MIN  
TYP  
1.7  
MAX  
UNITS  
ns  
Aperture Delay  
t
A
RMS Aperture Jitter  
j
200  
5.0  
fs  
A
Input Clock to Data Propagation Delay  
Data Hold Time  
t
3.5  
6.5  
3.7  
ns  
PID  
t
-300  
ps  
PH  
Output Clock to Data Propagation Delay  
Latency (Pipeline Delay)  
Overvoltage Recovery  
t
2.8  
28  
1
ns  
PCD  
L
cycles  
cycle  
t
OVR  
Thermal Impedance  
PARAMETER  
Junction to Paddle (Note 1)  
NOTE:  
SYMBOL  
TYP  
UNIT  
θ
30  
°C/W  
JP  
1. Paddle soldered to ground plane.  
ESD  
Electrostatic charge accumulates on humans, tools and  
equipment and may discharge through any metallic package  
contacts (pins, balls, exposed paddle, etc.) of an integrated  
circuit. Industry-standard protection techniques have been  
utilized in the design of this product. However, reasonable  
care must be taken in the storage and handling of ESD  
sensitive products. Contact Intersil for the specific ESD  
sensitivity rating of this product.  
FN6813.0  
December 5, 2008  
5
KAD2708L  
Pin Description  
PIN NUMBER  
NAME  
AVDD2  
FUNCTION  
1, 14, 18, 20  
1.8V Analog Supply  
2, 7, 10, 19, 21, 24  
AVSS  
Analog Supply Return  
3
VREF  
Reference Voltage Out/In  
4
VREFSEL  
VCM  
Reference Voltage Select (0:Int 1:Ext)  
Common-Mode Voltage Output  
3.3V Analog Supply  
5
6, 15, 16, 25  
8, 9  
AVDD3  
INP, INN  
DNC  
Analog Input Positive, Negative  
Do Not Connect  
11-13, 29-36, 62, 63, 67  
17  
CLKDIV  
Clock Divide by Two (Active Low)  
Clock Input Complement, True  
Output Supply Return  
22, 23  
CLKN, CLKP  
OVSS  
26, 45, 61  
27, 41, 44, 60  
28  
OVDD2  
1.8V LVDS Supply  
RST  
Power On Reset (Active Low)  
LVDS Bit 0 (LSB) Output Complement, True  
LVDS Bit 1 Output Complement, True  
LVDS Clock Output Complement, True  
LVDS Bit 2 Output Complement, True  
LVDS Bit 3 Output Complement, True  
LVDS Bit 4 Output Complement, True  
LVDS Bit 5 Output Complement, True  
LVDS Bit 6 Output Complement, True  
LVDS Bit 7 Output Complement, True  
Over-Range Complement, True  
Connect to OVDD2  
37, 38  
D0N, D0P  
D1N, D1P  
CLKOUTN, CLKOUTP  
D2N, D2P  
D3N, D3P  
D4N, D4P  
D5N, D5P  
D6N, D6P  
D7N, D7P  
ORN, ORP  
39, 40  
42, 43  
46, 47  
48, 49  
50, 51  
52, 53  
54, 55  
56, 57  
58, 59  
64-66  
68  
2SC  
Two’s Complement Select (Active Low)  
Analog Supply Return  
Exposed Paddle  
AVSS  
FN6813.0  
December 5, 2008  
6
KAD2708L  
Pin Configuration  
AVDD2  
AVSS  
VREF  
1
2
3
4
5
6
7
8
9
51 D4P  
50 D4N  
49 D3P  
VREFSEL  
VCM  
AVDD3  
AVSS  
INP  
48 D3N  
47 D2P  
46 D2N  
45 OVSS  
44 OVDD2  
43 CLKOUTP  
42 CLKOUTN  
41 OVDD2  
40 D1P  
INN  
AVSS 10  
DNC 11  
DNC 12  
DNC 13  
39 D1N  
Top View  
Not to Scale  
AVDD2 14  
AVDD3 15  
AVDD3 16  
CLKDIV 17  
38 D0P  
37 D0N  
36 DNC  
35 DNC  
FIGURE 2. PIN CONFIGURATION  
FN6813.0  
December 5, 2008  
7
KAD2708L  
Typical Performance Curves AVDD2 = OVDD2 = 1.8V, AVDD3 = 3.3V, T = +25°C, f  
= 350MHz, f = 175MHz,  
SAMPLE IN  
A
A
= -0.5dBFS unless noted.  
IN  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
70  
65  
60  
55  
50  
45  
40  
SFDR  
HD3  
HD2  
SNR  
5
105  
205  
305  
fIN(MHz)  
405  
505  
5
105  
205  
305  
fIN (MHz)  
405  
505  
FIGURE 4. HD2 AND HD3 vs f  
FIGURE 3. SNR AND SFDR vs f  
IN  
IN  
80  
70  
60  
50  
40  
30  
20  
-20  
HD3  
-30  
-40  
-50  
-60  
-70  
-80  
SNR  
HD2  
SFDR  
-30  
-25  
-20  
Input Amplitude (dBFS)  
FIGURE 6. HD2 AND HD3 vs A  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
IN (dBF S )  
-10  
-5  
0
A
FIGURE 5. SNR AND SFDR vs A  
IN  
IN  
80  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
-65  
-70  
-75  
-80  
-85  
-90  
SFDR  
HD3  
HD2  
SNR  
50  
100  
150  
200  
SAMPLE (MSPS)  
FIGURE 8. HD2 AND HD3 vs f  
250  
300  
350  
50  
100  
150  
200  
250  
300  
350  
fSAMP LE (fS) (MSPS)  
f
FIGURE 7. SNR AND SFDR vs f  
SAMPLE  
SAMPLE  
FN6813.0  
December 5, 2008  
8
KAD2708L  
Typical Performance Curves AVDD2 = OVDD2 = 1.8V, AVDD3 = 3.3V, T = +25°C, f  
= 350MHz, f = 175MHz,  
IN  
A
SAMPLE  
A
= -0.5dBFS unless noted. (Continued)  
IN  
1
0.75  
0.5  
350  
330  
310  
290  
270  
250  
230  
210  
19 0  
17 0  
15 0  
0.25  
0
-0.25  
-0.5  
-0.75  
-1  
100  
150  
200  
250  
300  
350  
0
32  
64  
96  
128  
CODE  
160  
192  
224  
255  
f
SAMPLE (fS)(MSPS)  
FIGURE 10. DIFFERENTIAL NONLINEARITY vs OUTPUT CODE  
FIGURE 9. POWER DISSIPATION vs f  
SAMPLE  
50,000  
45,000  
40,000  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5,000  
1
0.75  
0.5  
0.25  
0
-0.25  
-0.5  
-0.75  
0
-1  
124  
125  
126  
127  
128  
129  
130  
0
32  
64  
96  
128  
160  
192  
224  
255  
CODE  
CODE  
FIGURE 11. INTEGRAL NONLINEARITY vs OUTPUT CODE  
FIGURE 12. NOISE HISTOGRAM  
0
0
-20  
Ain= -0.47dBFS  
Ain= -0.47dBFS  
SNR = 49.4dBFS  
-20  
SNR= 49.4dBFS  
SFDR = 69.2dBc  
SINAD = 49.4dBFS  
HD2 = -81dBc  
SFDR = 68.4dBc  
-40  
-60  
SINAD= 49.3dBFS  
HD2 = -86dBc  
-40  
-60  
HD3 = -69dBc  
HD3 = -91dBc  
-80  
-80  
-100  
-100  
-120  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
FREQUENCY(MHz)  
FIGURE 13. OUTPUT SPECTRUM @ 9.865MHz  
FIGURE 14. OUTPUT SPECTRUM @ 133.805MHz  
FN6813.0  
December 5, 2008  
9
KAD2708L  
Typical Performance Curves AVDD2 = OVDD2 = 1.8V, AVDD3 = 3.3V, T = +25°C, f  
= 350MHz, f = 175MHz,  
IN  
A
SAMPLE  
A
= -0.5dBFS unless noted. (Continued)  
IN  
0
-20  
0
Ain = -0.48dBFS  
Ain = -7.1dBFS  
SNR= 49.3dBFS  
SFDR = 63dBc  
SINAD = 49.1dBFS  
HD2 = -63dBc  
-20  
-40  
2TSFDR = 67dBc  
IMD3 = -74dBFS  
-40  
HD3 = -67dBc  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
FRE QUE NCY (MHz)  
FIGURE 15. OUTPUT SPECTRUM @ 299.645MHz  
FIGURE 16. TWO-TONE SPECTRUM @ 69MHz, 70MHz  
0
-20  
0
-20  
Ain = -7dBFS  
Ain = -7dBFS  
2TSFD R = 63dBc  
IM D 3 = - 76 dB FS  
2TSFDR = 73dBc  
IMD3 = -81dBFS  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 17. TWO-TONE SPECTRUM @ 140MHz, 141MHz  
FIGURE 18. TWO-TONE SPECTRUM @ 300MHz, 305MHz  
75  
70  
65  
60  
55  
50  
45  
40  
700  
600  
500  
400  
300  
200  
100  
SFDR  
SNR  
100 125 150 175 200 225 250 275 300 325 350  
SAMPLE (fS) (MSPS)  
-40  
-20  
0
20  
40  
60  
80  
f
AMBIENT TEMPERATURE, C  
FIGURE 19. SNR AND SFDR vs TEMPERATURE  
FIGURE 20. CALIBRATION TIME vs f  
S
FN6813.0  
December 5, 2008  
10  
KAD2708L  
Voltage Reference  
Functional Description  
The VREF pin is the full-scale reference, which sets the full-  
scale input voltage for the chip and requires a bypass  
capacitor of 0.1µF or larger.An internally generated  
reference voltage is provided from a bandgap voltage buffer.  
This buffer can sink or source up to 50µA externally.  
The KAD2708L is an eight bit, 350MSPS A/D converter in a  
pipelined architecture. The input voltage is captured by a  
sample and hold circuit and converted to a unit of charge.  
Proprietary charge-domain techniques are used to compare  
the input to a series of reference charges. These  
comparisons determine the digital code for each input value.  
The converter pipeline requires 24 sample clocks to produce  
a result. Digital error correction is also applied, resulting in a  
total latency of 28 clock cycles. This is evident to the user as  
a latency between the start of a conversion and the data  
being available on the digital outputs.  
An external voltage may be applied to this pin to provide a  
more accurate reference than the internally generated  
bandgap voltage or to match the full-scale reference among  
a system of KAD2708L chips. One option in the latter  
configuration is to use one KAD2708L's internally generated  
reference as the external reference voltage for the other  
chips in the system. Additionally, an externally provided  
reference can be changed from the nominal value to adjust  
the full-scale input voltage within a limited range.  
At start-up, a self-calibration is performed to minimize gain  
and offset errors. The reset pin (RST) is initially held low  
internally at power-up and will remain in that state until the  
calibration is complete. The clock frequency should remain  
fixed during this time.  
To select whether the full-scale reference is internally  
generated or externally provided, the digital input port  
VREFSEL should be set appropriately, low for internal or  
high for external.This pin also has an internal 18kΩ pull-up  
resistor. To use the internally generated reference VREFSEL  
can be tied directly to AVSS, and to use an external  
reference VREFSEL can be left unconnected.  
Calibration accuracy is maintained for the sample rate at  
which it is performed, and therefore should be repeated if the  
clock frequency is changed by more than 10%. Recalibration  
can be initiated via the RST pin, or power cycling, at any  
time.  
Analog Input  
Reset  
The fully differential ADC input (INP/INN) connects to the  
sample and hold circuit. The ideal full-scale input voltage is  
Recalibration of the ADC can be initiated at any time by  
driving the RST pin low for a minimum of one clock cycle. An  
open-drain driver is recommended.  
1.5V , centered at the VCM voltage of 0.86V as shown in  
P-P  
Figure 22.  
The calibration sequence is initiated on the rising edge of  
RST, as shown in Figure 21. The over-range output (ORP) is  
set high once RST is pulled low, and remains in that state  
until calibration is complete. The ORP output returns to  
normal operation at that time, so it is important that the  
analog input be within the converter’s full-scale range in  
order to observe the transition. If the input is in an over-  
range state the ORP pin will stay high and it will not be  
possible to detect the end of the calibration cycle.  
V
1.8  
INN  
INP  
1.4  
0.75V  
VCM  
1.0  
0.86V  
0.6  
-0.75V  
0.2  
While RST is low, the output clock (CLKOUTP/CLKOUTN)  
stops toggling and is set low. Normal operation of the output  
clock resumes at the next input clock edge (CLKP/CLKN)  
after RST is deasserted. At 350MSPS the nominal  
calibration time is ~190ms.  
t
FIGURE 22. ANALOG INPUT RANGE  
Best performance is obtained when the analog inputs are  
driven differentially. The common-mode output voltage,  
VCM, should be used to properly bias each input as shown  
in Figures 23 and 24. An RF transformer will give the best  
noise and distortion performance for wideband and/or high  
intermediate frequency (IF) inputs. Two different transformer  
input schemes are shown in Figures 23 and 24.  
CLKN  
CLKP  
Calibration Time  
RST  
Calibration Begins  
ORP  
Calibration Complete  
CLKOUTP  
FIGURE 21. CALIBRATION TIMING  
FN6813.0  
December 5, 2008  
11  
KAD2708L  
Clock Input  
The clock input circuit is a differential pair (see Figure 29).  
Driving these inputs with a high level (up to 1.8V on each  
input) sine or square wave will provide the lowest jitter  
performance. The recommended drive circuit is shown in  
Figure 26. The clock can be driven single-ended, but this will  
reduce the edge rate and may impact SNR performance.  
0.01µF  
Analog  
In  
P-P  
KAD2708  
VCM  
50Ω  
ADT1-1WT  
ADT1-1WT  
0.1µF  
1kΩ  
1kΩ  
FIGURE 23. TRANSFORMER INPUT, GENERAL APPLICATION  
AVDD2  
CLKP  
CLKN  
1nF  
25Ω  
ADTL1-12  
ADTL1-12  
1nF  
Clock  
Input  
1nF  
1nF  
Analog  
Input  
200Ω  
KAD2708  
VCM  
25Ω  
0.1µF  
TC4-1W  
FIGURE 26. RECOMMENDED CLOCK DRIVE  
FIGURE 24. TRANSFORMER INPUT, HIGH IF APPLICATION  
Use of the clock divider is optional. The KAD2708L's ADC  
requires a clock with 50% duty cycle for optimum  
performance. If such a clock is not available, one option is to  
generate twice the desired sampling rate, then use the  
KAD2708L's divide-by-2 to generate a 50%-duty-cycle clock.  
This frequency divider uses the rising edge of the clock, so  
50% clock duty cycle is assured. Table 2 describes the  
CLKDIV connection.  
A back-to-back transformer scheme is used to improve  
common-mode rejection, which keeps the common-mode  
level of the input matched to V . The value of the  
CM  
termination resistor should be determined based on the  
desired impedance.  
The sample and hold circuit design uses a switched  
capacitor input stage, which creates current spikes when the  
sampling capacitance is reconnected to the input voltage.  
This creates a disturbance at the input which must settle  
before the next sampling point. Lower source impedance will  
result in faster settling and improved performance. Therefore  
a 1:1 transformer and low shunt resistance are  
TABLE 2. CLKDIV PIN SETTINGS  
CLKDIV PIN  
AVSS  
DIVIDE RATIO  
2
1
AVDD  
recommended for optimal performance.  
A differential amplifier can be used in applications that  
require DC coupling, at the expense of reduced dynamic  
performance. In this configuration the amplifier will typically  
reduce the achievable SNR and distortion performance. A  
typical differential amplifier configuration is shown in  
Figure 25.  
CLKDIV is internally pulled low, so a pull-up resistor or logic  
driver must be connected for undivided clock.  
Jitter  
In a sampled data system, clock jitter directly impacts the  
achievable SNR performance. The theoretical relationship  
between clock jitter and maximum SNR is shown in  
Equation 1 and illustrated in Figure 27.  
348OΩ  
69.8OΩ  
100O  
25OΩ  
1
-------------------  
SNR = 20 log  
(EQ. 1)  
Ω
10  
2πf  
t
IN J  
+
Vin  
-
0.22µF  
151ΩO  
KAD2708  
VCM  
CM  
Where t is the RMS uncertainty in the sampling instant.  
J
100OΩ  
69.8OΩ  
25OΩ  
This relationship shows the SNR that would be achieved if  
clock jitter were the only non-ideal factor. In reality,  
achievable SNR is limited by internal factors such as  
differential nonlinearity aperture jitter and thermal noise.  
49.9OΩ  
0.1µF  
348OΩ  
FIGURE 25. DIFFERENTIAL AMPLIFIER INPUT  
FN6813.0  
December 5, 2008  
12  
KAD2708L  
Any internal aperture jitter combines with the input clock jitter  
100  
95  
90  
85  
80  
75  
in a root-sum-square fashion since they are not statistically  
correlated, and this determines the total jitter in the system.  
The total jitter, combined with other noise sources, then  
determines the achievable SNR.  
tj = 0. 1 ps  
14 Bits  
12 Bits  
tj = 1 ps  
Digital Outputs  
70  
65  
60  
tj = 10 p s  
10 Bits  
Data is output on a parallel bus with LVDS-compatible  
drivers.  
tj = 1 00 ps  
55  
50  
The output format (Binary or Two’s Complement) is selected  
via the 2SC pin as shown in Table 3.  
1
10  
100  
1000  
Input Frequency - MH z  
TABLE 3. 2SC PIN SETTINGS  
FIGURE 27. SNR vs CLOCK JITTER  
2SC PIN  
AVSS  
MODE  
Two’s Complement  
Binary  
AVDD (or unconnected)  
Equivalent Circuits  
AVDD2  
AVDD3  
To  
Charge  
Pipeline  
AVDD2  
To Clock  
Generation  
INP  
Csamp  
0.3pF  
Φ
2  
Φ
1  
CLKP  
AVDD3  
To  
Charge  
Pipeline  
INN  
AVDD2  
2pF  
Csamp  
0.3pF  
Φ
2  
Φ
1  
CLKN  
FIGURE 28. ANALOG INPUTS  
FIGURE 29. CLOCK INPUTS  
OVDD  
OVDD  
DATA  
DATA  
D[7:0]P  
OVDD  
D[7:0]N  
DATA  
DATA  
FIGURE 30. LVDS OUTPUTS  
FN6813.0  
December 5, 2008  
13  
KAD2708L  
Aperture Jitter is the RMS variation in aperture delay for a  
set of samples.  
Layout Considerations  
Split Ground and Power Planes  
Clock Duty Cycle is the ratio of the time the clock wave is at  
logic high to the total time of one clock period.  
Data converters operating at high sampling frequencies  
require extra care in PC board layout. Many complex board  
designs benefit from isolating the analog and digital  
sections. Analog supply and ground planes should be laid  
out under signal and clock inputs. Locate the digital planes  
under outputs and logic pins. Ground planes, if separated,  
should be joined at the exposed paddle under the chip.  
Differential Non-Linearity (DNL) is the deviation of any  
code width from an ideal 1 LSB step.  
Effective Number of Bits (ENOB) is an alternate method of  
specifying Signal to Noise-and-Distortion Ratio (SINAD). In  
dB, it is calculated as: ENOB = (SINAD - 1.76)/6.02.  
Clock Input Considerations  
Integral Non-Linearity (INL) is the deviation of each individual  
code from a line drawn from negative full-scale (1/2 LSB below  
the first code transition) through positive full-scale (1/2 LSB  
above the last code transition). The deviation of any given code  
from this line is measured from the center of that code.  
Use matched transmission lines to the inputs for the analog  
input and clock signals. Locate transformers, drivers and  
terminations as close to the chip as possible.  
Bypass and Filtering  
Least Significant Bit (LSB) is the bit that has the smallest  
value or weight in a digital word. Its value in terms of input  
voltage is VFS/(2N-1) where N is the resolution in bits.  
Bulk capacitors should have low equivalent series resistance.  
Tantalum is a good choice. For best performance, keep  
ceramic bypass capacitors very close to device pins. Longer  
traces will increase inductance, resulting in diminished  
dynamic performance and accuracy. Make sure that  
connections to ground are direct and low impedance.  
Missing Codes are output codes that are skipped and will  
never appear at the ADC output. These codes cannot be  
reached with any input value.  
LVDS Outputs  
Most Significant Bit (MSB) is the bit that has the largest  
Output traces and connections must be designed for 50Ω  
(100Ω differential) characteristic impedance. Keep traces  
direct, and minimize bends where possible. Avoid crossing  
ground and power-plane breaks with signal traces.  
value or weight. Its value in terms of input voltage is VFS/2.  
Pipeline Delay is the number of clock cycles between the  
initiation of a conversion and the appearance at the output  
pins of the corresponding data.  
Unused Inputs  
Power Supply Rejection Ratio (PSRR) is the ratio of a  
change in power supply voltage to the input voltage  
necessary to negate the resultant change in output code.  
The RST and 2SC inputs are internally pulled up, and can be  
left open-circuit if not used.  
CLKDIV is internally pulled low, which divides the input clock  
by two.  
Signal to Noise-and-Distortion (SINAD) is the ratio of the  
RMS signal amplitude to the RMS sum of all other spectral  
components below one half the clock frequency, including  
harmonics but excluding DC.  
VREFSEL is internally pulled up. It must be held low for  
internal reference, but can be left open for external  
reference.  
Signal-to-Noise Ratio (SNR) (without Harmonics) is the  
ratio of the RMS signal amplitude to the RMS sum of all  
other spectral components below one-half the sampling  
frequency, excluding harmonics and DC.  
Definitions  
Analog Input Bandwidth is the analog input frequency at  
which the spectral output power at the fundamental  
frequency (as determined by FFT analysis) is reduced by  
3dB from its full-scale low-frequency value. This is also  
referred to as Full Power Bandwidth.  
Spurious-Free-Dynamic Range (SFDR) is the ratio of the  
RMS signal amplitude to the RMS value of the peak spurious  
spectral component. The peak spurious spectral component  
may or may not be a harmonic.  
Aperture Delay or Sampling Delay is the time required  
after the rise of the clock input for the sampling switch to  
open, at which time the signal is held for conversion.  
Two-Tone SFDR is the ratio of the RMS value of either input  
tone to the RMS value of the peak spurious component. The  
peak spurious component may or may not be an IMD product.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6813.0  
December 5, 2008  
14  
KAD2708L  
Package Outline Drawing  
L68.10x10B  
68 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 11/08  
PIN 1  
INDEX AREA  
10.00  
A
4X 8.00  
PIN 1  
6
INDEX AREA  
B
52  
68  
6
1
51  
64X 0.50  
Exp. DAP  
7.70 Sq.  
10.00  
17  
35  
(4X)  
0.15  
34  
18  
68X 0.55  
BOTTOM VIEW  
68X 0.25  
4
0.10 M C A B  
TOP VIEW  
SEE DETAIL "X"  
C
0.10  
0.08 C  
SEATING PLANE  
0.90 Max  
8.00 Sq  
C
64X 0.50  
68X 0.25  
SIDE VIEW  
9.65 Sq  
5
0 . 2 REF  
C
7.70 Sq  
0 . 00 MIN.  
0 . 05 MAX.  
68X 0.75  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1.  
Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN6813.0  
December 5, 2008  
15  

相关型号:

KAD2708L-21

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2708L-21Q68

8-Bit, 350/275/210/170/105MSPS A/D Converter
INTERSIL

KAD2708L-27

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2708L-27Q68

8-Bit, 350/275/210/170/105MSPS A/D Converter
INTERSIL

KAD2708L-35

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2708L-35Q68

8-Bit, 350/275/210/170/105MSPS A/D Converter
INTERSIL

KAD2708L_11

8-Bit, 350/275/210/170/105MSPS A/D Converter
INTERSIL

KAD2710C

10-Bit, 275/210/170/105MSPS A/D Converter
INTERSIL

KAD2710C-10

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2710C-10Q68

10-Bit, 275/210/170/105MSPS A/D Converter
INTERSIL

KAD2710C-17

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2710C-17Q68

10-Bit, 275/210/170/105MSPS A/D Converter
INTERSIL