KAD2710C-21Q68 [INTERSIL]

10-Bit, 275/210/170/105MSPS A/D Converter; 10位,二百一分之二百七十五/ 170 / 105MSPS A / D转换器
KAD2710C-21Q68
型号: KAD2710C-21Q68
厂家: Intersil    Intersil
描述:

10-Bit, 275/210/170/105MSPS A/D Converter
10位,二百一分之二百七十五/ 170 / 105MSPS A / D转换器

转换器
文件: 总16页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KAD2710C  
®
Data Sheet  
December 5, 2008  
FN6814.0  
10-Bit, 275/210/170/105MSPS A/D  
Converter  
Features  
• On-Chip Reference  
The KAD2710C is the industry’s lowest power, 10-bit,  
275MSPS, high performance Analog-to-Digital converter. It  
is designed with Intersil’s proprietary FemtoCharge™  
technology on a standard CMOS process. The KAD2710C  
offers high dynamic performance (55.6dBFS SNR @  
• Internal Sample and Hold  
• 1.5V  
P-P  
Differential Input Voltage  
• 600MHz Analog Input Bandwidth  
• Two’s Complement or Binary Output  
• Over-Range Indicator  
f
= 138MHz) while consuming less than 265mW. Features  
IN  
include an over-range indicator and a selectable divide-by-2  
input clock divider. The KAD2710C is one member of a  
pin-compatible family offering 8 and 10-bit ADCs with  
sample rates from 105 to 350MSPS and LVDS-compatible or  
LVCMOS outputs (Table 1). This family of products is  
available in 68-pin RoHS-compliant QFN packages with  
exposed paddle. Performance is specified over the full  
industrial temperature range (-40°C to +85°C).  
• Selectable ÷2 Clock Input  
• LVCMOS Outputs  
• Pb-Free (RoHS Compliant)  
Applications  
• High-Performance Data Acquisition  
• Portable Oscilloscope  
• Medical Imaging  
• Cable Head Ends  
CLK_P  
CLK_N  
CLKOUTP  
CLKOUTN  
• Power-Amplifier Linearization  
Clock  
Generation  
• Radar and Satellite Antenna Array Processing  
• Broadband Communications  
D9 – D0  
OR  
• Point-to-Point Microwave Systems  
• Communications Test Equipment  
INP  
10-bit  
275MSPS  
ADC  
10  
LVCMOS  
Drivers  
S/H  
INN  
Key Specs  
VREF  
2SC  
• SNR = 55.6dBFS at f = 275MSPS, f = 138MHz  
IN  
S
1.21V  
+
VREFSEL  
VCM  
• SFDR = 68.5dBc at f = 275MSPS, f = 138MHz  
IN  
S
• Power consumption <265mW at f = 275MSPS  
S
Pin-Compatible Family  
TABLE 1. PIN-COMPATIBLE PRODUCTS  
RESOLUTION, SPEED LVDS OUTPUTS LVCMOS OUTPUTS  
8 Bits 350MSPS  
8 Bits 275MSPS  
8 Bits 210MSPS  
8 Bits 170MSPS  
8 Bits 105MSPS  
10 Bits 275MSPS  
10 Bits 210MSPS  
10 Bits 170MSPS  
10 Bits 105MSPS  
KAD2708L-35  
KAD2708L-27  
KAD2708L-21  
KAD2708L-17  
KAD2708L-10  
KAD2710L-27  
KAD2710L-21  
KAD2710L-17  
KAD2710L-10  
KAD2708C-27  
KAD2708C-21  
KAD2708C-17  
KAD2708C-10  
KAD2710C-27  
KAD2710C-21  
KAD2710C-17  
KAD2710C-10  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
FemtoCharge is a trademark of Kenet Inc. Copyright Intersil Americas Inc. 2008. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
1
KAD2710C  
Ordering Information  
PART NUMBER  
(Note)  
SPEED  
(MSPS)  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG. DWG. #  
L68.10x10B  
KAD2710C-27Q68  
KAD2710C-21Q68  
KAD2710C-17Q68  
KAD2710C-10Q68  
275  
210  
170  
105  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
68 Ld QFN  
68 Ld QFN  
68 Ld QFN  
68 Ld QFN  
L68.10x10B  
L68.10x10B  
L68.10x10B  
NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100%  
matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN6814.0  
December 5, 2008  
2
KAD2710C  
Table of Contents  
Absolute Maximum Ratings ......................................... 4  
Thermal Information...................................................... 4  
Electrical Specifications............................................... 4  
Digital Specifications.................................................... 5  
Timing Diagram ............................................................. 6  
Timing Specifications ................................................... 6  
Thermal Impedance....................................................... 6  
ESD................................................................................. 6  
Pin Descriptions............................................................ 7  
Pinout............................................................................. 8  
Typical Performance Curve.......................................... 9  
Functional Description ................................................. 12  
Reset .......................................................................... 12  
Voltage Reference...................................................... 12  
Analog Input ............................................................... 12  
Clock Input ................................................................. 13  
Jitter............................................................................ 13  
Digital Outputs............................................................ 14  
Equivalent Circuits........................................................ 14  
Layout Considerations ................................................. 15  
Split Ground and Power Planes ................................. 15  
Clock Input Considerations......................................... 15  
Bypass and Filtering................................................... 15  
LVCMOS Outputs....................................................... 15  
Unused Inputs ............................................................ 15  
Definitions...................................................................... 15  
Package Outline Drawing ............................................. 16  
L68.10x10B..................................................................... 16  
FN6814.0  
December 5, 2008  
3
KAD2710C  
Absolute Maximum Ratings  
Thermal Information  
AVDD2 to AVSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 2.1V  
AVDD3 to AVSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 3.7V  
OVDD2 to OVSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to 2.1V  
Analog Inputs to AVSS. . . . . . . . . . . . . . . . . -0.4V to AVDD3 + 0.3V  
Clock Inputs to AVSS. . . . . . . . . . . . . . . . . . -0.4V to AVDD2 + 0.3V  
Logic Inputs to AVSS (VREFSEL, CLKDIV) -0.4V to AVDD3 + 0.3V  
Logic Inputs to OVSS (RST, 2SC) . . . . . . . . -0.4V to OVDD2 + 0.3V  
VREF to AVSS. . . . . . . . . . . . . . . . . . . . . . . -0.4V to AVDD3 + 0.3V  
Analog Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
Logic Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
LVDS Output Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD2 = 1.8V, AVDD3 = 3.3V,  
OVDD = 1.8V, T = -40°C to +85°C (typical specifications at +25°C), f  
= 350MSPS, 270MSPS,  
SAMPLE  
A
210MSPS, 170MSPS and 105MSPS, f = Nyquist at -0.5dBFS.  
IN  
KAD2710C-27  
KAD2710C-21  
KAD2710C-17  
KAD2710C-10  
PARAMETER  
DC SPECIFICATIONS  
Analog Input  
SYMBOL  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
Full-Scale Analog Input  
Range  
V
1.4 1.5 1.6 1.4 1.5 1.6 1.4 1.5 1.6 1.4 1.5 1.6  
V
P-P  
FS  
Full Scale Range Temp.  
Drift  
A
Full Temp  
230  
860  
210  
860  
198  
860  
178  
860  
ppm/°C  
mV  
VTC  
Common-Mode Output  
Voltage  
V
CM  
Power Requirements  
1.8V Analog Supply  
Voltage  
AVDD2  
AVDD3  
1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9  
3.15 3.3 3.45 3.15 3.3 3.45 3.15 3.3 3.45 3.15 3.3 3.45  
1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9 1.7 1.8 1.9  
V
V
3.3V Analog Supply  
Voltage  
1.8V Digital Supply Voltage OVDD  
V
1.8V Analog Supply  
Current  
I
44  
41  
26  
51  
45  
30  
38  
33  
25  
42  
37  
28  
35  
28  
24  
39  
32  
27  
29  
21  
23  
33  
24  
26  
mA  
AVDD2  
3.3V Analog Supply  
Current  
I
mA  
AVDD3  
I
1.8V Digital Supply Current  
Power Dissipation  
mA  
OVDD  
P
261 294  
222 248  
199 224  
163 185  
mW  
D
AC SPECIFICATIONS  
Maximum Conversion  
Rate  
f
MAX  
MIN  
275  
210  
170  
105  
MSPS  
S
Minimum Conversion Rate  
Differential Nonlinearity  
Integral Nonlinearity  
f
50  
50  
50  
50 MSPS  
S
DNL  
INL  
-1.0 ±0.8 1.5 -1.0 ±0.8 1.5 -1.0 ±0.8 1.5 -1.0 ±0.8 1.5  
-2.5 ±1.0 2.0 -2.5 ±1.0 1.5 -2.5 ±1.0 1.5 -2.5 ±1.0 1.5  
LSB  
LSB  
Signal-to-Noise Ratio  
SNR  
f
f
f
f
f
f
= 10MHz  
= Nyquist  
= 430MHz  
= 10MHz  
= Nyquist  
= 430MHz  
55.7  
53.5 55.6  
55.2  
56.4  
53.5 56.2  
54.8  
56.6  
53.5 56.5  
54.6  
56.6  
53.5 56.5  
54.5  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
IN  
IN  
IN  
IN  
IN  
IN  
Signal-to-Noise and  
Distortion  
SINAD  
55.3  
56.1  
56.3  
56.3  
52.5 55.2  
54.4  
52.5 56.0  
53.7  
52.5 56.2  
53.4  
52.5 56.2  
53.2  
FN6814.0  
December 5, 2008  
4
KAD2710C  
Electrical Specifications All specifications apply under the following conditions unless otherwise noted: AVDD2 = 1.8V, AVDD3 = 3.3V,  
OVDD = 1.8V, T = -40°C to +85°C (typical specifications at +25°C), f  
= 350MSPS, 270MSPS,  
A
SAMPLE  
210MSPS, 170MSPS and 105MSPS, f = Nyquist at -0.5dBFS. (Continued)  
IN  
KAD2710C-27  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
KAD2710C-21  
KAD2710C-17  
KAD2710C-10  
PARAMETER  
SYMBOL  
CONDITIONS  
= 10MHz  
Effective Number of Bits  
ENOB  
f
f
f
f
f
f
8.9  
8.4 8.9  
8.7  
9.0  
8.4 9.0  
8.6  
9.1  
8.4 9.0  
8.6  
9.1  
8.4 9.0  
8.5  
Bits  
Bits  
Bits  
dBc  
dBc  
dBc  
dBc  
IN  
IN  
IN  
IN  
IN  
IN  
= Nyquist  
= 430MHz  
= 10MHz  
Spurious-Free Dynamic  
Range  
SFDR  
68.5  
70  
71  
71  
= Nyquist  
62 68.5  
63.8  
62 71.1  
62.6  
62  
71  
60.1  
70  
62  
72  
60.9  
71  
= 430MHz  
Two-Tone SFDR  
2TSFDR f = 133MHz, 135MHz  
IN  
68  
70  
-12  
10  
-12  
10  
-12  
10  
-12  
10  
Word Error Rate  
WER  
Full Power Bandwidth  
FPBW  
600  
600  
600  
600  
MHz  
Digital Specifications  
PARAMETER  
INPUTS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage High (VREFSEL)  
Input Voltage Low (VREFSEL)  
Input Current High (VREFSEL)  
Input Current Low (VREFSEL)  
Input Voltage High (CLKDIV)  
Input Voltage Low (CLKDIV)  
Input Current High (CLKDIV)  
Input Current Low (CLKDIV)  
Input Voltage High (RST,2SC)  
Input Voltage Low (RST,2SC)  
Input Current High (RST,2SC)  
Input Current Low (RST,2SC)  
Input Capacitance  
V
0.8*AVDD3  
V
V
IH  
V
0.2*AVDD3  
IL  
I
V
V
= AVDD3  
= AVSS  
0
10  
µA  
µA  
V
IH  
IN  
IN  
I
-90  
-65  
-30  
IL  
V
0.8*AVDD3  
IH  
V
0.2*AVDD3  
V
IL  
I
V
V
= AVDD3  
= AVSS  
100  
65  
0
10  
µA  
µA  
V
IH  
IN  
IN  
I
-10  
IL  
V
0.8*OVDD2  
IH  
V
0.2*OVDD2  
V
IL  
I
VIN = OVDD  
VIN = OVSS  
0
-30  
3
10  
-5  
µA  
µA  
pF  
IH  
I
-50  
0.5  
IL  
C
DI  
CLKP, CLKN P-P Differential Input Voltage  
CLKP, CLKN Differential Input Resistance  
CLKP, CLKN Common-Mode Input Voltage  
LVCMOS OUTPUTS  
V
R
V
3.6  
V
P-P  
CDI  
CDI  
CCI  
10  
MΩ  
0.9  
V
Output Voltage High  
V
1.8  
0
V
V
OH  
Output Voltage Low  
V
OL  
Output Rise Time  
t
1.8  
1.4  
ns  
ns  
R
Output Fall Time  
t
F
FN6814.0  
December 5, 2008  
5
KAD2710C  
Timing Diagram  
Sample N  
INP  
INN  
tA  
CLKN  
CLKP  
L
tPID  
CLKOUT  
D[9:0]  
tPCD  
tPH  
Data N-L  
invalid  
Data N-L+1  
Data N  
FIGURE 1. LVCMOS TIMING DIAGRAM  
Timing Specifications  
PARAMETER  
SYMBOL  
MIN  
TYP  
1.7  
MAX  
UNITS  
ns  
Aperture Delay  
t
A
RMS Aperture Jitter  
j
200  
5.0  
fs  
A
Input Clock to Data Propagation Delay  
Data Hold Time  
t
3.5  
6.5  
3.7  
ns  
PID  
t
-300  
ps  
PH  
Output Clock to Data Propagation Delay  
Latency (Pipeline Delay)  
Overvoltage Recovery  
t
2.8  
28  
1
ns  
PCD  
L
cycles  
cycle  
t
OVR  
Thermal Impedance  
PARAMETER  
Junction to Paddle (Note 1)  
NOTE:  
SYMBOL  
TYP  
UNIT  
θ
30  
°C/W  
JP  
1. Paddle soldered to ground plane.  
ESD  
Electrostatic charge accumulates on humans, tools and  
equipment and may discharge through any metallic package  
contacts (pins, balls, exposed paddle, etc.) of an integrated  
circuit. Industry-standard protection techniques have been  
utilized in the design of this product. However, reasonable  
care must be taken in the storage and handling of ESD  
sensitive products. Contact Intersil for the specific ESD  
sensitivity rating of this product.  
FN6814.0  
December 5, 2008  
6
KAD2710C  
Pin Descriptions  
PIN NUMBER  
NAME  
AVDD2  
AVSS  
FUNCTION  
1, 14, 18, 20  
1.8V Analog Supply  
2, 7, 10, 19, 21, 24  
Analog Supply Return  
Reference Voltage Out/In  
3
VREF  
4
VREFSEL  
VCM  
Reference Voltage Select (0:Int 1:Ext)  
Common-Mode Voltage Output  
3.3V Analog Supply  
5
6, 15, 16, 25  
8, 9  
AVDD3  
INP, INN  
DNC  
Analog Input Positive, Negative  
Do Not Connect  
11-13, 29-33, 35, 37, 39, 42, 46, 48, 50,  
52, 54, 56, 58, 62, 63, 67  
17  
CLKDIV  
CLKN, CLKP  
OVSS  
OVDD2  
RST  
D0  
Clock Divide by Two (Active Low)  
Clock Input Complement, True  
Output Supply Return  
22, 23  
26, 45, 61  
27, 41, 44, 60  
1.8V LVCMOS Supply  
Power On Reset (Active Low)  
LVCMOS Bit 0 (LSB) Output  
LVCMOS Bit 1 Output  
28  
34  
36  
D1  
38  
D2  
LVCMOS Bit 2 Output  
40  
D3  
LVCMOS Bit 3 Output  
43  
CLKOUT  
D4  
LVCMOS Clock Output  
LVCMOS Bit 4 Output  
47  
49  
D5  
LVCMOS Bit 5 Output  
51  
D6  
LVCMOS Bit 6 Output  
53  
D7  
LVCMOS Bit 7 Output  
55  
D8  
LVCMOS Bit 8 Output  
57  
D9  
LVCMOS Bit 9 (MSB) Output  
Over-Range  
59  
64-66  
OR  
Connect to OVDD2  
68  
2SC  
Two’s Complement Select (Active Low)  
Analog Supply Return  
Exposed Paddle  
AVSS  
FN6814.0  
December 5, 2008  
7
KAD2710C  
Pinout  
KAD2710C  
(68 LD QFN)  
TOP VIEW  
AVDD2  
AVSS  
VREF  
VREFSEL  
VCM  
AVDD3  
AVSS  
INP  
1
2
3
4
5
6
7
8
9
51 D6  
50 DNC  
49 D5  
48 DNC  
47 D4  
46 DNC  
45 OVSS  
44 OVDD2  
43 CLKOUT  
42 DNC  
41 OVDD2  
40 D3  
INN  
AVSS 10  
DNC 11  
DNC 12  
DNC 13  
39 DNC  
38 D2  
37 DNC  
36 D1  
Top View  
Not to Scale  
AVDD2 14  
AVDD3 15  
AVDD3 16  
CLKDIV 17  
35 DNC  
FIGURE 2. PIN CONFIGURATION  
FN6814.0  
December 5, 2008  
8
KAD2710C  
Typical Performance Curves AVDD2 = OVDD2 = 1.8V, AVDD3 = 3.3V, T = +25°C, f  
= 275MSPS, f = 137MHz,  
SAMPLE IN  
A
A
= -0.5dBFS unless noted.  
IN  
80  
75  
70  
65  
60  
55  
50  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
SFDR  
HD3  
HD2  
SNR  
0
50 100 150 200 250 300 350 400 450 500 550  
IN (MHz)  
0
50 100 150 200 250 300 350 400 450 500 550  
IN (MHz)  
FIGURE 4. HD2 AND HD3 vs f  
f
f
FIGURE 3. SNR AND SFDR vs f  
IN  
IN  
75  
70  
65  
60  
55  
50  
45  
40  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
HD3  
HD2  
SNR  
SFDR  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
AIN (dBFS)  
AIN (dBFS)  
FIGURE 5. SNR AND SFDR vs A  
FIGURE 6. HD2 AND HD3 vs A  
IN  
IN  
80  
75  
70  
65  
60  
55  
50  
-70  
-75  
SFDR  
HD3  
HD2  
-80  
-85  
-90  
SNR  
-95  
-100  
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
fSAMPLE (fS) (MSPS)  
fSAMPLE (fS) (MSPS)  
FIGURE 7. SNR AND SFDR vs f  
FIGURE 8. HD2 AND HD3 vs f  
SAMPLE  
SAMPLE  
FN6814.0  
December 5, 2008  
9
KAD2710C  
Typical Performance Curves AVDD2 = OVDD2 = 1.8V, AVDD3 = 3.3V, T = +25°C, f  
= 275MSPS, f = 137MHz,  
SAMPLE IN  
A
A
= -0.5dBFS unless noted. (Continued)  
IN  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
1
0.75  
0.5  
0.25  
0
-0.25  
-0.5  
-0.75  
50  
100  
150  
fSAMPLE (fS) (MSPS)  
FIGURE 9. POWER DISSIPATION vs f  
200  
250  
300  
-1  
0
128  
256  
384  
512  
CODE  
640  
768  
896 1023  
FIGURE 10. DIFFERENTIAL NONLINEARITY vs OUTPUT CODE  
SAMPLE  
1
0.5  
0
-0.5  
-1  
0
128  
256  
384  
512  
CODE  
640  
768  
896  
1023  
FIGURE 11. INTEGRAL NONLINEARITY vs OUTPUT CODE  
FIGURE 12. NOISE HISTOGRAM  
0
0
Ain = -0.49dBFS  
Ain= -0.49dBFS  
SNR = 56.5dBFS  
SNR = 56.5dBFS  
SFDR = 70.0dBc  
SINAD = 55.7dBc  
HD2 = -94.3dBc  
HD3 = -70.5dBc  
-20  
-20  
-40  
SFDR = 71.0dBc  
-40  
-60  
SINAD = 55.7dBc  
HD2 = -84.8dBc  
HD3 = -71.0dBc  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 13. OUTPUT SPECTRUM; f = 10MHz  
IN  
FIGURE 14. OUTPUT SPECTRUM; f = 134MHz  
IN  
FN6814.0  
December 5, 2008  
10  
KAD2710C  
Typical Performance Curves AVDD2 = OVDD2 = 1.8V, AVDD3 = 3.3V, T = +25°C, f  
= 275MSPS, f = 137MHz,  
IN  
A
SAMPLE  
A
= -0.5dBFS unless noted. (Continued)  
IN  
0
-20  
0
Ain = -0.50dBFS  
SNR = 56.0dBFS  
SFD R = 63.6dBc  
SINAD = 55.1dBc  
HD2 = -67.8dBc  
HD3 = - 63.6dBc  
Ain = -7dBFS  
-20  
-40  
2TSFDR = 71dBc  
IMD3 = -78dBFS  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 15. OUTPUT SPECTRUM; f = 300MHz  
IN  
FIGURE 16. TWO-TONE SPECTRUM; f = 69MHz, 70MHz  
IN  
0
-20  
0
Ain = -7dBFS  
Ain= -7dBFS  
-20  
2TSFDR = 74.7dBc  
IMD3 = -84.5dBFS  
2TSFDR =63dBc  
IMD3 = -7 5dBFS  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 17. TWO-TONE SPECTRUM; f = 140MHz, 141MHz  
IN  
FIGURE 18. TWO-TONE SPECTRUM; f = 300MHz, 305MHz  
IN  
75  
800  
700  
600  
500  
400  
300  
200  
70  
65  
60  
55  
50  
SFDR  
SNR  
-40  
-20  
0
20  
40  
60  
80  
100  
125  
150  
175  
200  
225  
250  
275  
f
SAMPLE (fS) (MSPS)  
Ambient Temperature deg.C  
FIGURE 19. SNR vs TEMPERATURE  
FIGURE 20. CALIBRATION TIME vs f  
S
FN6814.0  
December 5, 2008  
11  
KAD2710C  
Voltage Reference  
Functional Description  
The VREF pin is the reference voltage which sets the full-  
scale input voltage for the chip. This pin requires a bypass  
capacitor of 0.1uF at a minimum. The internally generated  
bandgap reference voltage is provided by an on-chip voltage  
buffer.buffer can sink or source up to 50µA externally.  
The KAD2710 is a ten bit, 275MSPS A/D converter in a  
pipelined architecture. The input voltage is captured by a  
sample and hold circuit and converted to a unit of charge.  
Proprietary charge-domain techniques are used to compare  
the input to a series of reference charges. These  
comparisons determine the digital code for each input value.  
The converter pipeline requires 24 sample clocks to produce  
a result. Digital error correction is also applied, resulting in a  
total latency of 28 clock cycles. This is evident to the user as  
a latency between the start of a conversion and the data  
being available on the digital outputs.  
An external voltage may be applied to this pin to provide a  
more accurate reference than the internally generated  
bandgap voltage, or to match the full-scale reference for  
multiple KAD2710C chips.One option in the latter  
configuration is to use one KAD2710C's internally generated  
reference as the external reference voltage for the other  
chips in the system. Additionally, an externally provided  
reference can be changed from the nominal value to adjust  
the full-scale input voltage within a limited range.  
At power-up, a self-calibration is performed to minimize gain  
and offset errors. The reset pin (RST) is held low internally at  
power-up and will remain in that state until the calibration is  
complete. The clock frequency should remain fixed during  
this time.  
To select whether the full-scale reference is internally  
generated or externally provided, the digital input VREFSEL  
is set low for internal, or high for external.This pin has  
internal pull-up.use the internally generated reference  
VREFSEL can be tied directly to AVSS, and to use an  
external reference VREFSEL can be left unconnected.  
Calibration accuracy is maintained for the sample rate at  
which it is performed, and therefore should be repeated if the  
clock frequency is changed by more than 10%. Recalibration  
can be initiated via the RST pin, or power cycling, at any  
time.  
Analog Input  
Reset  
The ADC core contains a fully differential input (INP/INN) to  
the sample and hold circuit. The ideal full-scale input voltage  
is 1.50V, centered at the VCM voltage of 0.86V as shown in  
Figure 22.  
Recalibration of the ADC can be initiated at any time by  
driving the RST pin low for a minimum of one clock cycle. An  
open-drain driver is recommended.  
V
The calibration sequence is initiated on the rising edge of  
RST, as shown in Figure 21. The over-range output (OR) is  
set high once RST is pulled low, and remains in that state  
until calibration is complete. The OR output returns to  
normal operation at that time, so it is important that the  
analog input be within the converter’s full-scale range in  
order to observe the transition. If the input is in an  
1.8  
INN  
INP  
1.4  
0.75V  
VCM  
1.0  
0.86V  
0.6  
over-range state the OR pin will stay high and it will not be  
possible to detect the end of the calibration cycle.  
-0.75V  
0.2  
t
While RST is low, the output clock (CLKOUT) stops toggling  
and is set low. Normal operation of the output clock resumes  
at the next input clock edge (CLKP/CLKN) after RST is  
deasserted. At 275MSPS the nominal calibration time is  
~240ms.  
FIGURE 22. ANALOG INPUT RANGE  
Best performance is obtained when the analog inputs are  
driven differentially. The common-mode output voltage,  
VCM, should be used to properly bias the inputs as shown in  
Figures 23 and 24. An RF transformer will give the best  
noise and distortion performance for wideband and/or high  
intermediate frequency (IF) inputs. Two different transformer  
input schemes are shown in Figures 23 and 24.  
CLKN  
CLKP  
Calibration Time  
RST  
Calibration Begins  
ORP  
Calibration Complete  
CLKOUTP  
FIGURE 21. CALIBRATION TIMING  
FN6814.0  
December 5, 2008  
12  
KAD2710C  
The recommended drive circuit is shown in Figure 26. The  
clock can be driven single-ended, but this will reduce the  
edge rate and may impact SNR performance.  
0.01µF  
Analog  
In  
KAD2710  
VCM  
50Ω  
1kΩ  
1kΩ  
ADT1-1WT  
AVDD2  
ADT1-1WT  
0.1µF  
CLKP  
CLKN  
1nF  
1nF  
Clock  
Input  
FIGURE 23. TRANSFORMER INPUT FOR GENERAL  
APPLICATIONS  
200Ω  
TC4-1W  
FIGURE 26. RECOMMENDED CLOCK DRIVE  
ADTL1-12  
ADTL1-12  
1nF  
1nF  
Analog  
Input  
KAD2710  
VCM  
Use of the clock divider is optional. The KAD2710C's ADC  
requires a clock with 50% duty cycle for optimum  
0.1µF  
performance. If such a clock is not available, one option is to  
generate twice the desired sampling rate and use the  
KAD2710C's divide-by-2 setting. This frequency divider uses  
the rising edge of the clock, so 50% clock duty cycle is  
assured. Table 2 describes the CLKDIV connection.  
FIGURE 24. TRANSMISSION-LINE TRANSFORMER INPUT  
FOR HIGH IF APPLICATIONS  
A back-to-back transformer scheme is used to improve  
common-mode rejection, which keeps the common-mode  
TABLE 2. CLKDIV PIN SETTINGS  
level of the input matched to V . The value of the shunt  
CM  
resistor should be determined based on the desired load  
impedance.  
CLKDIV PIN  
AVSS  
DIVIDE RATIO  
2
1
The sample and hold circuit design uses a switched  
capacitor input stage, which creates current spikes when the  
sampling capacitance is reconnected to the input voltage.  
This creates a disturbance at the input which must settle  
before the next sampling point. Lower source impedance will  
result in faster settling and improved performance. Therefore  
a 1:1 transformer and low shunt resistance are  
AVDD  
CLKDIV is internally pulled low, so a pull-up resistor or logic  
driver must be connected for undivided clock.  
Jitter  
In a sampled data system, clock jitter directly impacts the  
achievable SNR performance. The theoretical relationship  
recommended for optimal performance.  
between clock jitter (t ) and SNR is shown in Equation 1 and  
J
A differential amplifier can be used in applications that  
require dc coupling. In this configuration the amplifier will  
typically determine the achievable SNR and distortion. A  
typical differential amplifier circuit is shown in Figure 25.  
is illustrated in Figure 27.  
1
-------------------  
SNR = 20 log  
(EQ. 1)  
10  
2πf  
t
IN J  
Where t is the RMS uncertainty in the sampling instant.  
J
348OΩ  
69.8OΩ  
100OΩ  
Ω
25O  
10 0  
95  
tj=0.1p s  
Analog  
Input  
0.22µF  
217ΩO  
KAD2710  
VCM  
90  
CM  
14 Bits  
85  
80  
75  
70  
100OΩ  
69.8OΩ  
25OΩ  
49.9OΩ  
tj = 1 ps  
12 Bits  
10 Bits  
0.1µF  
348OΩ  
tj = 1 0p s  
65  
60  
FIGURE 25. DIFFERENTIAL AMPLIFIER INPUT  
tj=100p s  
55  
50  
Clock Input  
1
10  
100  
1000  
The sample clock input circuit is a differential pair (see  
Figure 29). Driving these inputs with a high level (up to  
Input Frequency - MHz  
1.8V  
on each input) sine or square wave will provide the  
FIGURE 27. SNR vs CLOCK JITTER  
P-P  
lowest jitter performance.  
FN6814.0  
December 5, 2008  
13  
KAD2710C  
This relationship shows the SNR that would be achieved if  
Digital Outputs  
clock jitter were the only non-ideal factor. In reality,  
achievable SNR is limited by internal factors such as  
linearity, aperture jitter and thermal noise. Internal aperture  
jitter is the uncertainty in the sampling instant shown in  
Figure 1. The internal aperture jitter combines with the input  
clock jitter in a root-sum-square fashion, since they are not  
statistically correlated, and this determines the total jitter in  
the system. The total jitter, combined with other noise  
sources, then determines the achievable SNR.  
Data is output on a parallel bus with LVCMOS drivers.  
The output format (Binary or Two’s Complement) is selected  
via the 2SC pin as shown in Table 3.  
TABLE 3. 2SC PIN SETTINGS  
2SC PIN  
AVSS  
MODE  
Two’s Complement  
Binary  
AVDD (or unconnected)  
Equivalent Circuits  
AVDD2  
AVDD3  
To  
INP  
INN  
Charge  
Pipeline  
AVDD2  
2pF  
2pF  
To Clock  
Generation  
Csamp  
0.3pF  
Φ
2  
Φ
1  
CLKP  
AVDD3  
To  
Charge  
Pipeline  
AVDD2  
Csamp  
0.3pF  
Φ
2  
Φ
F 1  
CLKN  
FIGURE 28. ANALOG INPUTS  
FIGURE 29. CLOCK INPUTS  
OVDD  
OVDD  
DATA  
D[9:0]  
FIGURE 30. LVCMOS OUTPUTS  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6814.0  
December 5, 2008  
14  
KAD2710C  
Effective Number of Bits (ENOB) is an alternate method of  
specifying Signal to Noise-and-Distortion Ratio (SINAD). In  
dB, it is calculated as: ENOB = (SINAD - 1.76)/6.02  
Layout Considerations  
Split Ground and Power Planes  
Data converters operating at high sampling frequencies  
require extra care in PC board layout. If analog and digital  
ground planes are separate, analog supply and ground  
planes should be laid out under signal and clock inputs and  
digital planes under outputs and logic pins. Grounds should  
be joined under the chip.  
Gain Error is the ratio of the difference between the voltages  
that cause the lowest and highest code transitions to the  
full-scale voltage (less 2 LSB). It is typically expressed in  
percent.  
Integral Non-Linearity (INL) is the deviation of each  
individual code from a line drawn from negative full-scale  
(1/2 LSB below the first code transition) through positive  
full-scale (1/2 LSB above the last code transition). The  
deviation of any given code from this line is measured from  
the center of that code.  
Clock Input Considerations  
Use matched transmission lines to the inputs for the analog  
input and clock signals. Locate transformers, drivers and  
terminations as close to the chip as possible.  
Bypass and Filtering  
Least Significant Bit (LSB) is the bit that has the smallest  
Bulk capacitors should have low equivalent series  
resistance. Tantalum is recommended. Keep ceramic  
bypass capacitors very close to device pins. Longer traces  
will increase inductance, resulting in diminished dynamic  
performance and accuracy. Make sure that connections to  
ground are direct, and low impedance.  
value or weight in a digital word. Its value in terms of input  
N
voltage is V /(2 - 1) where N is the resolution in bits.  
FS  
Missing Codes are output codes that are skipped and will  
never appear at the ADC output. These codes cannot be  
reached with any input value.  
Most Significant Bit (MSB) is the bit that has the largest  
value or weight.  
LVCMOS Outputs  
Output traces and connections must be designed for 50Ω  
characteristic impedance. Keep trace lengths equal, and  
minimize bends where possible. Avoid crossing ground and  
power-plane breaks with signal traces.  
Pipeline Delay is the number of clock cycles between the  
initiation of a conversion and the appearance at the output  
pins of the data.  
Power Supply Rejection Ratio (PSRR) is the ratio of a  
change in input voltage necessary to correct a change in  
output code that results from a change in power supply  
voltage.  
Unused Inputs  
The RST and 2SC inputs are internally pulled up, and can be  
left open-circuit if not used.  
CLKDIV is internally pulled low, which divides the input clock  
by two.  
Signal to Noise-and-Distortion (SINAD) is the ratio of the  
RMS signal amplitude to the RMS sum of all other spectral  
components below one half the clock frequency, including  
harmonics but excluding DC.  
VREFSEL must be held low for internal reference, but can  
be left open for external reference.  
Signal-to-Noise Ratio (SNR) (without Harmonics) is the  
ratio of the RMS signal amplitude to the RMS sum of all  
other spectral components below one-half the sampling  
frequency, excluding harmonics and DC.  
Definitions  
Analog Input Bandwidth is the analog input frequency at  
which the spectral output power at the fundamental  
frequency (as determined by FFT analysis) is reduced by  
3dB from its full-scale low-frequency value. This is also  
referred to as Full Power Bandwidth.  
SNR and SINAD are either given in units of dBc (dB to  
carrier) when the power level of the fundamental is used as  
the reference, or dBFS (dB to full scale) when the  
Aperture Delay or Sampling Delay is the time required  
after the rise of the clock input for the sampling switch to  
open, at which time the signal is held for conversion.  
converter’s full-scale input power is used as the reference.  
Spurious-Free-Dynamic Range (SFDR) is the ratio of the  
RMS signal amplitude to the RMS value of the peak spurious  
spectral component. The peak spurious spectral component  
may or may not be a harmonic.  
Aperture Jitter is the RMS variation in aperture delay for a  
set of samples.  
Clock Duty Cycle is the ratio of the time the clock wave is at  
logic high to the total time of one clock period.  
Two-Tone SFDR is the ratio of the RMS value of the lowest  
power input tone to the RMS value of the peak spurious  
component, which may or may not be an IMD product.  
Differential Non-Linearity (DNL) is the deviation of any  
code width from an ideal 1 LSB step.  
FN6814.0  
December 5, 2008  
15  
KAD2710C  
Package Outline Drawing  
L68.10x10B  
68 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 0, 11/08  
PIN 1  
INDEX AREA  
10.00  
A
4X 8.00  
PIN 1  
6
INDEX AREA  
B
52  
68  
6
1
51  
64X 0.50  
Exp. DAP  
7.70 Sq.  
10.00  
17  
35  
(4X)  
0.15  
34  
18  
68X 0.55  
BOTTOM VIEW  
68X 0.25  
4
0.10 M C A B  
TOP VIEW  
SEE DETAIL "X"  
C
0.10  
0.08 C  
SEATING PLANE  
0.90 Max  
8.00 Sq  
C
64X 0.50  
68X 0.25  
SIDE VIEW  
9.65 Sq  
5
0 . 2 REF  
C
7.70 Sq  
0 . 00 MIN.  
0 . 05 MAX.  
68X 0.75  
DETAIL "X"  
TYPICAL RECOMMENDED LAND PATTERN  
NOTES:  
1.  
Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSEY14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
FN6814.0  
December 5, 2008  
16  

相关型号:

KAD2710C-27

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2710C-27Q68

10-Bit, 275/210/170/105MSPS A/D Converter
INTERSIL

KAD2710L

10-Bit, 275/210/170/105MSPS A/D Converter
INTERSIL

KAD2710L-10

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2710L-10Q68

10-Bit, 275/210/170/105MSPS A/D Converter
INTERSIL

KAD2710L-17

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2710L-17Q68

10-Bit, 275/210/170/105MSPS A/D Converter
INTERSIL

KAD2710L-21

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2710L-21Q68

10-Bit, 275/210/170/105MSPS A/D Converter
INTERSIL

KAD2710L-27

Providing high-performance solutions for every link in the signal chain
INTERSIL

KAD2710L-27Q68

10-Bit, 275/210/170/105MSPS A/D Converter
INTERSIL

KAD5510P

Low Power 10-Bit, 250/210/170/125MSPS ADC
INTERSIL