X28C010_07 [INTERSIL]

5V, Byte Alterable EEPROM; 5V ,字节EEPROM可变
X28C010_07
型号: X28C010_07
厂家: Intersil    Intersil
描述:

5V, Byte Alterable EEPROM
5V ,字节EEPROM可变

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总20页 (文件大小:440K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X28C010, X28HT010  
®
Data Sheet  
February 12, 2007  
FN8105.1  
5V, Byte Alterable EEPROM  
Features  
The Intersil X28C010/X28HT010 is a 128K x 8 EEPROM,  
fabricated with Intersil's proprietary, high performance,  
floating gate CMOS technology. Like all Intersil  
programmable non-volatile memories, the  
X28C010/X28HT010 is a 5V only device. The  
X28C010/X28HT010 features the JEDEC approved pin out  
for byte-wide memories, compatible with industry standard  
EEPROMs.  
• Access time: 120ns  
• Simple byte and page write  
- Single 5V supply  
- No external high voltages or V control  
PP  
circuits  
- Self-timed  
• No erase before write  
• No complex programming algorithms  
• No overerase problem  
The X28C010/X28HT010 supports a 256-byte page write  
operation, effectively providing a 19µs/byte write cycle and  
enabling the entire memory to be typically written in less  
than 2.5 seconds. The X28C010/X28HT010 also features  
DATA Polling and Toggle Bit Polling, system software  
support schemes used to indicate the early completion of a  
write cycle. In addition, the X28C010/X28HT010 supports  
Software Data Protection option.  
• Low power CMOS  
- Active: 50mA  
- Standby: 500µA  
• Software data protection  
- Protects data against system level inadvertent writes  
• High speed page write capability  
Intersil EEPROMs are designed and tested for applications  
requiring extended endurance. Data retention is specified to  
be greater than 100 years.  
• Highly reliable Direct Write cell  
- Endurance: 100,000 write cycles  
- Data retention: 100 years  
• Early end of write detection  
- DATA polling  
- Toggle bit polling  
• X28HT010 is fuly functional @ +175°C  
Pinouts  
CERDIP  
PGA  
EXTENDED LCC  
Flat Pack  
I/O  
15  
I/O  
17  
I/O  
19  
I/O  
21  
I/O  
22  
SOIC (R)  
0
2
3
5
6
4
3
2
32 31 30  
CE  
24  
NC  
1
32  
V
CC  
A
13  
A
14  
I/O  
16  
V
SS  
I/O  
20  
I/O  
23  
1
0
1
4
7
1
A
18  
5
29  
A
14  
7
A
2
3
31  
30  
WE  
16  
A
A
6
7
28  
27  
26  
25  
24  
23  
22  
21  
A
A
8
6
13  
A
A
A
10  
OE  
26  
2
3
A
5
NC  
12  
11  
25  
15  
A
A
8
9
4
9
X28C010  
(Top View)  
A
4
5
29  
28  
A
A
A
11  
A
A
A
A
12  
14  
3
4
5
11  
9
X28C010  
(Bottom View)  
10  
9
7
27  
28  
A
10  
11  
OE  
A
2
A
7
13  
A
A
1
10  
A
A
A
A
13  
A
6
6
27  
A
8
6
7
8
A
12  
13  
CE  
0
8
6
29  
30  
I/O  
I/O  
0
7
A
7
8
26  
25  
A
5
9
A
A
NC  
NC  
V
NC  
34  
NC  
32  
A
14  
31  
12  
15  
CC  
14 15 1617 18 1920  
A
4
A
5
4
2
3
36  
11  
X28C010  
A
9
24  
23  
OE  
3
A
NC  
1
NC  
33  
WE  
35  
16  
A
2
10  
A
10  
A
11  
12  
13  
14  
15  
16  
22  
21  
20  
19  
18  
17  
CE  
1
A
0
I/O  
7
I/O  
I/O  
0
6
I/O  
I/O  
5
1
I/O  
I/O  
2
4
V
I/O  
3
SS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005, 2007. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
X28C010, X28HT010  
Ordering Information  
ACCESS  
TIME  
TEMP RANGE  
(°C)  
PART NUMBER  
X28C010D-12  
PART MARKING  
PACKAGE  
32-Ld Cerdip  
PKG. DWG #  
F32.6  
X28C010D-12  
120ns  
150ns  
-
0 to +70  
0 to +70  
X28C010D-15  
X28C010D-15  
32-Ld Cerdip  
F32.6  
F32.6  
F32.6  
F32.6  
F32.6  
F32.6  
F32.6  
F32.6  
F32.6  
X28C010DI  
X28C010DI  
-40 to +85  
32-Ld Cerdip  
X28C010DI-12  
X28C010DI-15  
X28C010DM  
X28C010DI-12  
120ns  
150ns  
-
-40 to +85  
32-Ld Cerdip  
X28C010DI-15  
-40 to +85  
32-Ld Cerdip  
X28C010DM  
-55 to +125  
-55 to +125  
-55 to +125  
MIL-STD-883  
MIL-STD-883  
MIL-STD-883  
-40 to +85  
32-Ld Cerdip  
X28C010DM-12  
X28C010DM-15  
X28C010DMB-12  
X28C010DMB-15  
X28C010DMB-20  
X28C010FI-12  
X28C010FI-15  
X28C010FI-20  
X28C010FM  
X28C010DM-12  
X28C010DM-15  
C X28C010DMB-12  
C X28C010DMB-15  
C X28C010DMB-20  
X28C010FI-12  
120ns  
150ns  
120ns  
150ns  
200ns  
120ns  
150ns  
200ns  
-
32-Ld Cerdip  
32-Ld Cerdip  
32-Ld Cerdip  
32-Ld Cerdip  
32-Ld Cerdip  
32-Ld Flat Pack  
X28C010FI-15  
-40 to +85  
32-Ld Flat Pack  
X28C010FI-20  
-40 to +85  
32-Ld Flat Pack  
X28C010FM  
-55 to +125  
-55 to +125  
MIL-STD-883  
MIL-STD-883  
0 to +70  
32-Ld Flat Pack  
X28C010FM-12  
X28C010FMB-12  
X28C010FMB-15  
X28C010K-25  
X28C010FM-12  
C X28C010FMB-12  
C X28C010FMB-15  
X28C010K-25  
120ns  
120ns  
150ns  
250ns  
120ns  
250ns  
120ns  
150ns  
120ns  
150ns  
120ns  
150ns  
120ns  
200ns  
200ns  
150ns  
250ns  
200ns  
32-Ld Flat Pack  
32-Ld Flat Pack  
32-Ld Flat Pack  
36-Ld Pin Grid Array  
36-Ld Pin Grid Array  
36-Ld Pin Grid Array  
36-Ld Pin Grid Array  
36-Ld Pin Grid Array  
32-Ld Extended LCC  
32-Ld Extended LCC  
32-Ld Extended LCC  
32-Ld Extended LCC  
32-Ld Ceramic SOIC (Gull Wing)  
32-Ld Ceramic SOIC (Gull Wing)  
32-Ld Ceramic SOIC (Gull Wing)  
32-Ld Ceramic SOIC (Gull Wing)  
32-Ld Ceramic SOIC (Gull Wing)  
Wafer  
G36.760x760A  
G36.760x760A  
G36.760x760A  
G36.760x760A  
G36.760x760A  
X28C010KM-12  
X28C010KM-25  
X28C010KMB-12  
X28C010KMB-15  
X28C010NM-12  
X28C010NM-15  
X28C010NMB-12  
X28C010NMB-15  
X28C010RI-12  
X28C010RI-20  
X28C010RI-20T1  
X28C010RM-15  
X28C010RMB-25  
X28HT010W  
X28C010KM-12  
X28C010KM-25  
C X28C010KMB-12  
C X28C010KMB-15  
X28C010NM-12  
X28C010NM-15  
C X28C010NMB-12  
C X28C010NMB-15  
X28C010RI-12  
-55 to +125  
-55 to +125  
MIL-STD-883  
MIL-STD-883  
-55 to +125  
-55 to +125  
MIL-STD-883  
MIL-STD-883  
-40 to +85  
X28C010RI-20  
-40 to +85  
X28C010RI-20  
-40 to +85  
X28C010RM-15  
C X28C010RMB-25  
-55 to +125  
MIL-STD-883  
-40 to +175  
FN8105.1  
February 12, 2007  
2
X28C010, X28HT010  
Block Diagram  
X Buffers  
Latches and  
Decoder  
1Mbit  
A -A  
EEPROM  
Array  
8
16  
Y Buffers  
Latches and  
Decoder  
I/O Buffers  
and Latches  
A -A  
0
7
CE  
OE  
Control  
Logic and  
Timing  
I/O -I/O  
0
7
Data Inputs/Outputs  
WE  
V
CC  
SS  
V
Pin Descriptions  
Pin Names  
Addresses (A0-A16  
)
SYMBOL  
DESCRIPTION  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
The Address inputs select an 8-bit memory location during a  
read or write operation.  
A -A  
0
16  
I/O -I/O  
0
7
Chip Enable (CE)  
WE  
CE  
OE  
The Chip Enable input must be LOW to enable all read/write  
operations. When CE is HIGH, power consumption is  
reduced.  
Output Enable (OE)  
V
CC  
The Output Enable input controls the data output buffers,  
and is used to initiate read operations.  
V
Ground  
SS  
NC  
No Connect  
-3V  
Data In/Data Out (I/O0-I/O7)  
V
*
BB  
Data is written to or read from the X28C010/X28HT010  
through the I/O pins.  
*V applies to X28HT010 only.  
BB  
Write Enable (WE)  
Device Operation  
The Write Enable input controls the writing of data to the  
X28C010/X28HT010.  
Read  
Read operations are initiated by both OE and CE LOW. The  
read operation is terminated by either CE or OE returning  
HIGH. This two line control architecture eliminates bus  
contention in a system environment. The data bus will be in  
a high impedance state when either OE or CE is HIGH.  
Back Bias Voltage (V ) (X28HT010 only)  
BB  
It is required to provide -3V on pin 1. This negative voltage  
improves higher temperature functionality.  
Write  
Write operations are initiated when both CE and WE are  
LOW and OE is HIGH. The X28C010/X28HT010 supports  
both a CE and WE controlled write cycle. That is, the  
address is latched by the falling edge of either CE or WE,  
whichever occurs last. Similarly, the data is latched internally  
by the rising edge of either CE or WE, whichever occurs first.  
A byte write operation, once initiated, will automatically  
continue to completion, typically within 5ms.  
FN8105.1  
February 12, 2007  
3
X28C010, X28HT010  
Page Write Operation  
The page write feature of the X28C010/X28HT010 allows  
the entire memory to be written in 5 seconds. Page write  
allows two to two hundred fifty-six bytes of data to be  
consecutively written to the X28C010/X28HT010 prior to the  
commencement of the internal programming cycle. The host  
can fetch data from another device within the system during  
a page write operation (change the source address), but the  
page address (A8 through A16) for each subsequent valid  
write cycle to the part during this operation must be the same  
as the initial page address.  
I/O  
DP  
TB  
5
4
3
2
1
0
Reserved  
Toggle Bit  
DATA Polling  
FIGURE 1. STATUS BIT ASSIGNMENT  
DATA Polling (I/O7)  
The X28C010/X28HT010 features DATA Polling as a  
method to indicate to the host system that the byte write or  
page write cycle has completed. DATA Polling allows a  
simple bit test operation to determine the status of the  
X28C010/X28HT010, eliminating additional interrupt inputs  
or external hardware. During the internal programming cycle,  
any attempt to read the last byte written will produce the  
complement of that data on I/O7 (i.e., write data = 0xxx xxxx,  
read data = 1xxx xxxx). Once the programming cycle is  
complete, I/O7 will reflect true data. Note: If the  
The page write mode can be initiated during any write  
operation. Following the initial byte write cycle, the host can  
write an additional one to two hundred fifty six bytes in the  
same manner as the first byte was written. Each successive  
byte load cycle, started by the WE HIGH to LOW transition,  
must begin within 100µs of the falling edge of the preceding  
WE. If a subsequent WE HIGH to LOW transition is not  
detected within 100µs, the internal automatic programming  
cycle will commence. There is no page write window  
limitation. Effectively the page write window is infinitely wide,  
so long as the host continues to access the device within the  
byte load cycle time of 100µs.  
X28C010/X28HT010 is in the protected state, and an illegal  
write operation is attempted, DATA Polling will not operate.  
Toggle Bit (I/O6)  
Write Operation Status Bits  
The X28C010/X28HT010 also provides another method for  
determining when the internal write cycle is complete. During  
the internal programming cycle, I/O6 will toggle from HIGH to  
LOW and LOW to HIGH on subsequent attempts to read the  
device. When the internal cycle is complete the toggling will  
cease and the device will be accessible for additional read or  
write operations.  
The X28C010/X28HT010 provides the user two write  
operation status bits. These can be used to optimize a  
system write cycle time. The status bits are mapped onto the  
I/O bus as shown in Figure 1.  
DATA Polling I/O7  
Last  
Write  
WE  
CE  
OE  
V
IH  
V
OH  
HIGH Z  
I/O  
7
V
OL  
X28C010  
Ready  
A -A  
A
A
A
A
A
A
A
n
0
14  
n
n
n
n
n
n
FIGURE 2. DATA POLLING BUS SEQUENCE  
FN8105.1  
February 12, 2007  
4
X28C010, X28HT010  
DATA Polling can effectively halve the time for writing to the  
X28C010/X28HT010. The timing diagram in Figure 2  
illustrates the sequence of events on the bus. The software  
flow diagram in Figure 3 illustrates one method of  
implementing the routine.  
Write Data  
No  
Writes  
Complete?  
Yes  
Save Last Data  
and Address  
Read Last  
Address  
IO  
7
No  
Compare?  
Yes  
X28C010  
Ready  
FIGURE 3. DATA POLLING SOFTWARE FLOW  
The Toggle Bit I/O6  
Last  
Write  
WE  
CE  
OE  
V
OH  
HIGH Z  
I/O  
6
*
*
V
OL  
X28C010  
Ready  
* Beginning and ending state of I/O will vary  
6
FIGURE 4. TOGGLE BIT BUS SEQUENCE  
FN8105.1  
February 12, 2007  
5
X28C010, X28HT010  
Software Data Protection  
The X28C010/X28HT010 offers a software controlled data  
protection feature. The X28C010/X28HT010 is shipped from  
Intersil with the software data protection NOT ENABLED:  
that is the device will be in the standard operating mode. In  
this mode data should be protected during power-up/-down  
operations through the use of external circuits. The host  
would then have open read and write access of the device  
once VCC was stable.  
Last Write  
Load Accum  
From Addr N  
Compare  
Accum with  
Addr N  
The X28C010/X28HT010 can be automatically protected  
during power-up and power-down without the need for  
external circuits by employing the software data protection  
feature. The internal software data protection circuit is  
enabled after the first write operation utilizing the software  
algorithm. This circuit is nonvolatile and will remain set for  
the life of the device unless the reset command is issued.  
No  
Compare  
Ok?  
Once the software protection is enabled, the  
X28C010/X28HT010 is also protected from inadvertent and  
accidental writes in the powered-up state. That is, the  
software algorithm must be issued prior to writing additional  
data to the device.  
Yes  
Ready  
FIGURE 5. TOGGLE BIT SOFTWARE FLOW  
Software Algorithm  
Selecting the software data protection mode requires the  
host system to precede data write operations by a series of  
three write operations to three specific addresses. Refer to  
Figures 6 and 7 for the sequence. The three byte sequence  
opens the page write window enabling the host to write from  
one to two hundred fifty-six bytes of data. Once the page  
load cycle has been completed, the device will automatically  
be returned to the data protected state.  
The Toggle Bit can eliminate the software housekeeping  
chore of saving and fetching the last address and data  
written to a device in order to implement DATA Polling. This  
can be especially helpful in an array comprised of multiple  
X28C010/X28HT010 memories that is frequently updated.  
Toggle Bit Polling can also provide a method for status  
checking in multiprocessor applications. The timing diagram  
in Figure 4 illustrates the sequence of events on the bus.  
The software flow diagram in Figure 5 illustrates a method  
for polling the Toggle Bit.  
Hardware Data Protection  
The X28C010/X28HT010 provides three hardware features  
that protect nonvolatile data from inadvertent writes.  
• Noise Protection—A WE pulse less than 10ns will not  
initiate a write cycle.  
• Default VCC Sense—All functions are inhibited when VCC  
is 3.5V.  
• Write inhibit—Holding either OE LOW, WE HIGH, or CE  
HIGH will prevent an inadvertent write cycle during power-  
up and power-down, maintaining data integrity.  
FN8105.1  
February 12, 2007  
6
X28C010, X28HT010  
Software Data Protection  
V
CC  
0V  
(V  
)
CC  
Data  
Addr  
AA  
5555  
55  
2AAA  
A0  
5555  
Write  
Protected  
t
WC  
Writes  
Ok  
CE  
t  
Byte  
or  
Page  
BLC MAX  
WE  
FIGURE 6. TIMING SEQUENCE—BYTE OR PAGE WRITE  
Regardless of whether the device has previously been  
protected or not, once the software data protection algorithm  
is used and data has been written, the X28C010/X28HT010  
will automatically disable further writes unless another  
command is issued to cancel it. If no further commands are  
issued the X28C010/X28HT010 will be write protected  
during power-down and after any subsequent power-up. The  
state of A15 and A16 while executing the algorithm is don’t  
care.  
Write Data AA  
to Address  
5555  
Write Data 55  
to Address  
2AAA  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
Write Data A0  
to Address  
5555  
Write Data XX  
to Any  
Address  
Optional  
Byte/Page  
Load Operation  
Write Last  
Byte  
Last Address  
After t  
WC  
Re-Enters Data  
Protected State  
FIGURE 7. WRITE SEQUENCE FOR SOFTWARE DATA  
PROTECTION  
FN8105.1  
February 12, 2007  
7
X28C010, X28HT010  
Resetting Software Data Protection  
V
CC  
Data  
Addr  
AA  
5555  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
Standard  
Operating  
Mode  
t  
WC  
CE  
WE  
FIGURE 8. RESET SOFTWARE DATA PROTECTION TIMING SEQUENCE  
System Considerations  
Write Data AA  
to Address  
5555  
Because the X28C010/X28HT010 is frequently used in large  
memory arrays, it is provided with a two line control  
architecture for both read and write operations. Proper  
usage can provide the lowest possible power dissipation and  
eliminate the possibility of contention where multiple I/O pins  
share the same bus.  
Write Data 55  
to Address  
2AAA  
To gain the most benefit, it is recommended that CE be  
decoded from the address bus and be used as the primary  
device selection input. Both OE and WE would then be  
common among all devices in the array. For a read operation  
this assures that all deselected devices are in their standby  
mode and that only the selected device(s) is outputting data  
on the bus.  
Write Data80  
to Address  
5555  
Write Data AA  
to Address  
5555  
Because the X28C010/X28HT010 has two power modes,  
standby and active, proper decoupling of the memory array  
is of prime concern. Enabling CE will cause transient current  
spikes. The magnitude of these spikes is dependent on the  
output capacitive loading of the I/Os. Therefore, the larger  
the array sharing a common bus, the larger the transient  
spikes. The voltage peaks associated with the current  
transients can be suppressed by the proper selection and  
placement of decoupling capacitors. As a minimum, it is  
recommended that a 0.1µF high frequency ceramic  
capacitor be used between VCC and VSS at each device.  
Depending on the size of the array, the value of the capacitor  
may have to be larger.  
Write Data 55  
to Address  
2AAA  
Write Data 20  
to Address  
5555  
FIGURE 9. SOFTWARE SEQUENCE TO DEACTIVATE  
SOFTWARE DATA PROTECTION  
In addition, it is recommended that a 4.7µF electrolytic bulk  
capacitor be placed between VCC and VSS for each eight  
devices employed in the array. This bulk capacitor is  
employed to overcome the voltage droop caused by the  
inductive effects of the PC board traces.  
In the event the user wants to deactivate the software data  
protection feature for testing or reprogramming in an  
EEPROM programmer, the following six step algorithm will  
reset the internal protection circuit. After tWC, the  
X28C010/X28HT010 will be in standard operating mode.  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
FN8105.1  
February 12, 2007  
8
X28C010, X28HT010  
Active Supply Current vs. Ambient Temperature  
18  
16  
14  
12  
10  
V
= 5V  
CC  
-55  
-10  
+35  
+80  
+125  
Ambient Temperature (°C)  
Standby Supply Current vs. Ambient Temperature  
0.3  
V
= 5V  
CC  
0.25  
0.2  
0.15  
0.1  
0.05  
-55  
-10  
+35  
+80  
+125  
Ambient Temperature (°C)  
ICC (RD) by Temperature Over Frequency  
60  
5.0 V  
CC  
50  
40  
30  
20  
10  
-55°C  
+25°C  
+125°C  
0
3
6
9
12  
15  
Frequency (MHz)  
FN8105.1  
February 12, 2007  
9
X28C010, X28HT010  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Temperature under bias  
Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C tp +85°C  
Military . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5V ±10%  
High Temperature . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +175°C  
X28C010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +85°C  
X28C010I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
X28C010M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
X28HT010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +175°C  
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Voltage on any pin with respect to V . . . . . . . . . . . . . . -1V to +7V  
SS  
D.C. output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Lead temperature  
(soldering, 10 seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+300°C  
CAUTION: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; functional operation of  
the device at these or any other conditions (above those indicated in the operational sections of this specification) is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
DC Electrical Specifications Over the recommended operating conditions, unless otherwise specified.  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
V
Current (Active) (TTL Inputs)  
CE = OE = V , WE = V , All I/O’s = Open,  
50  
mA  
CC  
CC  
IL IH  
Address Inputs = 0.4V/2.4V Levels @ f = 5MHz  
I
I
V
V
Current (Standby) (TTL Inputs) CE = V , OE = V , All I/O’s = Open, Other Inputs = V  
3
mA  
µA  
SB1  
SB2  
CC  
CC  
IH  
IL  
IH  
Current (Standby) (CMOS  
CE = V  
- 0.3V, OE = V , All I/O’s = Open,  
500  
CC  
IL  
Inputs)  
Other Inputs = V  
CC  
I
Input Leakage Current  
V
V
V
V
= V to V  
SS CC  
10  
20  
µA  
µA  
µA  
µA  
V
LI  
IN  
= V to V  
SS  
(Note 2)  
CC  
IN  
I
Output Leakage Current  
= V to V , CE = V  
SS CC IH  
10  
LO  
OUT  
OUT  
= V to V , CE = V (Note 2)  
SS CC IH  
20  
V
(Note 1) Input LOW Voltage  
(Note 1) Input HIGH Voltage  
-1  
-1  
0.8  
0.6  
lL  
(Note 2)  
V
V
2
V
V
+ 1  
V
IH  
CC  
CC  
(Note 2)  
2.2  
+ 1  
V
V
Output LOW Voltage  
Output HIGH Voltage  
Back Bias Current  
I
I
I
I
= 2.1mA  
0.4  
V
OL  
OH  
BB  
OL  
OL  
OH  
OH  
= 1mA (Note 2)  
= -400µA  
0.5  
V
V
2.4  
2.6  
V
= -400µA  
V
I
V
= -3V ±10% (Note 2)  
200  
µA  
BB  
NOTE:  
1. VIL min. and VIH max. are for reference only and are not tested.  
2. X28HT010W  
Power-Up Timing  
SYMBOL  
PARAMETER  
Power-up to Read operation  
Power-up to Write operation  
MAX  
100  
5
UNIT  
t
(Note 3)  
(Note 3)  
µs  
PUR  
t
ms  
PUW  
Capacitance  
T
= +25°C, f = 1MHz, V  
= 5V  
A
CC  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MAX  
10  
UNIT  
C
(Note 3)  
(Note 3)  
Input/Output capacitance  
Input capacitance  
V
= 0V  
= 0V  
pF  
pF  
I/O  
I/O  
C
V
10  
IN  
IN  
NOTE:  
3. This parameter is periodically sampled and not 100% tested.  
FN8105.1  
February 12, 2007  
10  
X28C010, X28HT010  
Endurance and Data Retention  
PARAMETER  
MIN  
10,000  
100,000  
100  
MAX  
UNIT  
Endurance  
Cycles per byte  
Cycles per page  
Years  
Endurance  
Data Retention  
Symbol Table  
A.C. Conditions of Test  
Input pulse levels  
0V to 3V  
10ns  
WAVEFORM  
INPUTS  
OUTPUTS  
Input rise and fall times  
Input and output timing levels  
Must be  
steady  
Will be  
steady  
1.5V  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
Mode Selection  
CE  
OE  
WE  
MODE  
Read  
Write  
I/O  
POWER  
Active  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
L
L
H
D
OUT  
L
H
L
D
Active  
IN  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
H
X
X
Standby and  
Write Inhibit  
High Z  
Standby  
N/A  
Center Line  
is High  
Impedance  
X
X
L
X
H
Write Inhibit  
Write Inhibit  
X
Equivalent A.C. Load Circuit  
5V  
1.92kΩ  
Output  
1.37kΩ  
100pF  
AC Electrical Specifications Over the recommended operating conditions, unless otherwise specified.  
X28C010-20,  
X28C010-12  
X28C010-15  
X28HT010W  
X28C010-25  
SYMBOL  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNIT  
READ CYCLE LIMITS  
t
Read cycle time  
120  
150  
200  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
t
Chip enable access time  
Address access time  
120  
120  
50  
150  
150  
50  
200  
200  
50  
250  
250  
50  
CE  
t
AA  
t
Output enable access time  
CE LOW to active output  
OE  
t
(Note 4)  
0
0
0
0
0
0
0
0
LZ  
t
(Note 4) OE LOW to active output  
(Note 4) CE HIGH to high Z output  
OLZ  
t
50  
50  
50  
50  
50  
50  
50  
50  
HZ  
t
(Note 4) OE HIGH to high Z output  
OHZ  
t
Output hold from address change  
0
0
0
0
OH  
FN8105.1  
February 12, 2007  
11  
X28C010, X28HT010  
Read Cycle  
Address  
CE  
t
RC  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OHZ  
OLZ  
t
t
t
t
HZ  
LZ  
OH  
HIGH Z  
Data I/O  
Data Valid  
Data Valid  
AA  
NOTE:  
4. tLZ min.,tHZ, tOLZ min., and tOHZ are periodically sampled and not 100% tested. tHZ max. and tOHZ max. are measured, with CL = 5pF, from the point  
when CE or OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
Write Cycle Limits  
SYMBOL  
(Note 5) Write cycle time  
PARAMETER  
MIN  
MAX  
UNIT  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
µs  
t
10  
WC  
t
Address setup time  
Address hold time  
Write setup time  
Write hold time  
CE pulse width  
OE HIGH setup time  
OE HIGH hold time  
WE pulse width  
WE HIGH recovery  
Data valid  
0
50  
0
AS  
AH  
CS  
CH  
t
t
t
0
t
100  
10  
10  
100  
100  
CW  
t
OES  
OEH  
t
t
WP  
t
WPH  
t
1
DV  
DS  
DH  
t
Data setup  
50  
0
t
Data hold  
t
Delay to next write  
Byte load cycle  
10  
0.2  
DW  
t
100  
BLC  
FN8105.1  
February 12, 2007  
12  
X28C010, X28HT010  
WE Controlled Write Cycle  
t
WC  
Address  
t
t
AH  
AS  
t
t
CS  
CH  
CE  
OE  
t
t
OEH  
OES  
t
WP  
WE  
t
WPH  
t
DV  
Data In  
Data Valid  
t
t
DH  
DS  
Data Out  
HIGH Z  
NOTE:  
5. tWC is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum time the device  
requires to complete internal write operation.  
CE Controlled Write Cycle  
t
WC  
Address  
CE  
t
t
AH  
AS  
t
CW  
t
WPH  
t
OES  
OE  
t
OEH  
t
t
t
CS  
CH  
WE  
t
DV  
Data Valid  
Data In  
t
DS  
DH  
HIGH Z  
Data Out  
FN8105.1  
February 12, 2007  
13  
X28C010, X28HT010  
Page Write Cycle  
(Note 5)  
OE  
CE  
t
t
BLC  
WP  
WE  
t
WPH  
(Note 7)  
Address*  
Last Byte  
Byte n+2  
I/O  
Byte 0  
Byte 1  
Byte 2  
Byte n  
Byte n+1  
t
WC  
*For each successive write within the page write operation, A -A should be the same or  
16  
8
writes to an unknown address could occur.  
NOTES:  
6. Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE HIGH to fetch  
data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively performing a polling operation.  
7. The timings shown above are unique to page write operations. Individual byte load operations within the page write must conform to either the  
CE or WE controlled write cycle timing.  
DATA Polling Timing Diagram (Note 8)  
Address  
CE  
A
A
A
n
n
n
WE  
t
t
OEH  
OES  
OE  
t
DW  
= X  
D
= X  
D
= X  
D
OUT  
I/O  
7
IN  
OUT  
t
WC  
FN8105.1  
February 12, 2007  
14  
X28C010, X28HT010  
Toggle Bit Timing Diagram  
CE  
WE  
t
OES  
t
OEH  
OE  
t
DW  
HIGH Z  
I/O  
*
6
*
t
WC  
* I/O beginning and ending state will vary.  
6
NOTE:  
8. Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
FN8105.1  
February 12, 2007  
15  
X28C010, X28HT010  
Ceramic Dual-In-Line Frit Seal Packages (CERDIP)  
c1 LEAD FINISH  
F32.6 MIL-STD-1835 GDIP1-T32 (D-16, CONFIGURATION A)  
32 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE  
-D-  
E
-A-  
INCHES  
MIN  
MILLIMETERS  
BASE  
(c)  
METAL  
SYMBOL  
MAX  
0.232  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
1.690  
0.610  
MIN  
-
MAX  
5.92  
NOTES  
b1  
A
b
-
-
M
M
(b)  
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
0.66  
2
-B-  
b1  
b2  
b3  
c
0.58  
3
SECTION A-A  
bbb  
C A - B  
D
D
S
S
S
1.65  
-
1.14  
4
BASE  
Q
PLANE  
0.46  
2
A
-C-  
SEATING  
PLANE  
c1  
D
0.38  
3
L
α
42.95  
15.49  
5
S1  
b2  
eA  
A A  
e
E
0.500  
12.70  
5
b
C A - B  
eA/2  
aaa M C A - B S D S  
c
e
0.100 BSC  
2.54 BSC  
-
eA  
eA/2  
L
0.600 BSC  
0.300 BSC  
15.24 BSC  
7.62 BSC  
-
ccc  
D
S
M
S
-
NOTES:  
0.125  
0.200  
0.060  
-
3.18  
5.08  
1.52  
-
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
Q
0.015  
0.38  
6
S1  
0.005  
0.13  
7
90°  
105°  
0.015  
0.030  
0.010  
0.0015  
90°  
105°  
0.38  
0.76  
0.25  
0.038  
-
α
aaa  
bbb  
ccc  
M
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
-
-
-
-
-
-
-
-
-
-
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
-
2, 3  
8
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b2.  
N
32  
32  
Rev. 0 8/06  
5. This dimension allows for off-center lid, meniscus, and glass  
overrun.  
6. Dimension Q shall be measured from the seating plane to the  
base plane.  
7. Measure dimension S1 at all four corners.  
8. N is the maximum number of terminal positions.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling dimension: INCH.  
FN8105.1  
February 12, 2007  
16  
X28C010, X28HT010  
Packaging Information  
32-Lead Ceramic Flat Pack Type F  
1.228 (31.19)  
1.000 (25.40)  
Pin 1 Index  
0.019 (0.48)  
0.015 (0.38)  
1
32  
0.050 (1.27) BSC  
0.830 (21.08) Max.  
0.045 (1.14) Max.  
0.005 (0.13) Min.  
0.440  
0.430 (10.93)  
0.120 (3.05)  
0.090 (2.29)  
0.007 (0.18)  
0.004 (0.10)  
0.370 (9.40)  
0.270 (6.86)  
0.347 (8.82)  
0.330 (8.38)  
0.026 (0.66)  
Min.  
0.030 (0.76)  
Min.  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
FN8105.1  
February 12, 2007  
17  
X28C010, X28HT010  
Packaging Information  
32-Pad Stretched Ceramic Leadless Chip Carrier Package Type N  
0.300 BSC  
0.035 x 45° Ref.  
Detail A  
0.085 ± 0.010  
Pin 1  
0.005/0.015  
0.006/0.022  
0.025 ± 0.003  
Detail A  
0.400 BSC  
0.050 ± 0.005  
0.020 (1.02) x 45° Ref.  
0.050 BSC  
Typ. (3) Plcs.  
0.450 ± 0.008  
0.458 Max.  
0.060/0.120  
0.700 ± 0.010  
0.708 Max.  
Pin #1 Index Corner  
NOTES:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: ±1% NLT±0.005 (0.127)  
FN8105.1  
February 12, 2007  
18  
X28C010, X28HT010  
Packaging Information  
32-Lead Ceramic Small Outline Gull Wing Package Type R  
0.060 Nom.  
See Detail “A”  
For Lead  
Information  
0.020 Min.  
0.165 Typ.  
0.340  
0.015 R Typ.  
±0.007  
0.015 R  
Typ.  
0.035 Typ.  
0.035 Min.  
Detail “A”  
0.050"  
Typical  
0.019  
0.015  
0.050"  
Typical  
0.560"  
Typical  
0.830  
Max.  
0.750  
±0.005  
0.030" Typical  
32 Places  
0.050  
FOOTPRINT  
0.440 Max.  
0.560 Nom.  
NOTES:  
1. ALL DIMENSIONS IN INCHES  
2. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN 0.004 INCHES  
FN8105.1  
February 12, 2007  
19  
X28C010, X28HT010  
Packaging Information  
36 Lead Ceramic Pin Grid Array Package  
Package Code G36.760x760A  
15  
17  
16  
19  
18  
21  
20  
22  
23  
25  
27  
29  
32  
33  
A
A
0.008 (0.20)  
0.050 (1.27)  
13  
12  
10  
8
14  
11  
9
24  
26  
28  
30  
31  
NOTE:Leads 5, 14,23, & 32  
7
Typ. 0.100 (2.54)  
All Leads  
6
5
2
3
36  
1
34  
35  
Typ. 0.180 (.010)  
(4.57 ± .25)  
4 Corners  
4
Typ. 0.180 (.010)  
(4.57 ± .25)  
4 Corners  
0.120 (3.05)  
0.100 (2.54)  
0.072 (1.83)  
0.062 (1.57)  
Pin 1 Index  
0.770 (19.56)  
0.750 (19.05)  
SQ  
0.020 (0.51)  
0.016 (0.41)  
A
A
0.185 (4.70)  
0.175 (4.45)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8105.1  
February 12, 2007  
20  

相关型号:

X28C16D

EEPROM, 2KX8, 300ns, Parallel, CMOS, CDIP24,
XICOR

X28C16D-25

EEPROM, 2KX8, 250ns, Parallel, CMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X28C16DI

EEPROM, 2KX8, 300ns, Parallel, CMOS, CDIP24,
XICOR

X28C16DI-20

EEPROM, 2KX8, 200ns, Parallel, CMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X28C16DI-25

EEPROM, 2KX8, 250ns, Parallel, CMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X28C16DM

EEPROM, 2KX8, 300ns, Parallel, CMOS, CDIP24,
XICOR

X28C16DM-15

EEPROM, 2KX8, 150ns, Parallel, CMOS, CDIP24, HERMETIC SEALED, CERDIP-24
XICOR

X28C16E

EEPROM, 2KX8, 300ns, Parallel, CMOS, CQCC32,
XICOR

X28C16E-12

EEPROM, 2KX8, 120ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
XICOR

X28C16E-15

EEPROM, 2KX8, 150ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
XICOR

X28C16E-25

EEPROM, 2KX8, 250ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
XICOR

X28C16EI-20

EEPROM, 2KX8, 200ns, Parallel, CMOS, CQCC32, CERAMIC, LCC-32
XICOR