X28C512JI-15 [INTERSIL]

5V, Byte Alterable EEPROM; 5V ,字节EEPROM可变
X28C512JI-15
型号: X28C512JI-15
厂家: Intersil    Intersil
描述:

5V, Byte Alterable EEPROM
5V ,字节EEPROM可变

内存集成电路 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总21页 (文件大小:465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X28C512, X28C513  
®
Data Sheet  
June 7, 2006  
FN8106.2  
5V, Byte Alterable EEPROM  
Features  
The X28C512, X28C513 are 64K x 8 EEPROM, fabricated  
with Intersil’s proprietary, high performance, floating gate  
CMOS technology. Like all Intersil programmable nonvolatile  
memories, the X28C512, X28C513 are 5V only devices. The  
X28C512, X28C513 feature the JEDEC approved pin out for  
byte wide memories, compatible with industry standard  
EPROMS.  
• Access Time: 90ns  
• Simple Byte and Page Write  
- Single 5V supply  
• No external high voltages or V control circuits  
PP  
- Self-timed  
• No erase before write  
• No complex programming algorithms  
• No overerase problem  
The X28C512, X28C513 support a 128-byte page write  
operation, effectively providing a 39µs/byte write cycle and  
enabling the entire memory to be written in less than 2.5  
seconds. The X28C512, X28C513 also feature DATA Polling  
and Toggle Bit Polling, system software support schemes  
used to indicate the early completion of a write cycle. In  
addition, the X28C512, X28C513 support the software data  
protection option.  
• Low Power CMOS  
- Active: 50mA  
- Standby: 500µA  
• Software Data Protection  
- Protects data against system level inadvertent writes  
• High Speed Page Write Capability  
• Highly Reliable Direct Write Cell  
- Endurance: 100,000 write cycles  
- Data retention: 100 years  
- Early end of write detection  
- DATA polling  
- Toggle bit polling  
• Two PLCC and LCC Pinouts  
- X28C512  
• X28C010 EPROM pin compatible  
- X28C513  
• Compatible with lower density EEPROMs  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2005, 2006. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
X28C512, X28C513  
Block Diagram  
512Kbit  
EEPROM  
Array  
X Buffers  
Latches and  
Decoder  
A -A  
7
15  
I/O Buffers  
and Latches  
Y Buffers  
Latches and  
Decoder  
A -A  
0
6
I/O -I/O  
0
7
Data Inputs/Outputs  
CE  
Control  
Logic and  
Timing  
OE  
WE  
V
CC  
SS  
V
Ordering Information  
ACCESS TIME  
PART NUMBER  
X28C512D  
PART MARKING  
X28C512D  
(ns)  
TEMP RANGE (°C)  
0 to +70  
PACKAGE  
32 Ld CERDIP  
-
X28C512DM  
X28C512DM  
-55 to +125  
0 to +70  
32 Ld CERDIP  
32 Ld PLCC  
X28C512J  
X28C512J  
X28C513EM  
X28C513EM  
-55 to +125  
0 to +70  
32 Ld LCC  
X28C512D-12  
X28C512D-12  
X28C512DI-12  
X28C512DMB-12  
X28C512FMB-12  
X28C512J-12  
X28C512J-12 Z  
X28C512JI-12  
X28C512JI-12 Z  
X28C512JM-12  
X28C512KM-12  
X28C512PI-12  
X28C512RMB-12  
X28C513EM-12  
X28C513EMB-12  
X28C513J-12  
X28C513J-12 Z  
X28C513JI-12  
X28C513JI-12 Z  
X28C513JM-12  
120  
32 Ld CERDIP  
32 Ld CERDIP  
32 Ld CERDIP  
32 Ld Flat Pack  
32 Ld PLCC  
X28C512DI-12  
-40 to +85  
Mil-STD-883  
Mil-STD-883  
0 to +70  
X28C512DMB-12  
X28C512FMB-12  
X28C512J-12*  
X28C512JZ-12* (See Note)  
X28C512JI-12  
0 to +70  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
-40 to +85  
-40 to +85  
-55 to +125  
-55 to +125  
-40 to +85  
Mil-STD-883  
-55 to +125  
Mil-STD-883  
0 to +70  
X28C512JIZ-12* (See Note)  
X28C512JM-12  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
X28C512KM-12  
X28C512PI-12  
36 Ld CPGA  
32 Ld PDIP  
X28C512RMB-12  
X28C513EM-12  
X28C513EMB-12  
X28C513J-12*  
32 Ld Flat Pack  
32 Ld LCC  
32 Ld LCC  
32 Ld PLCC  
X28C513JZ-12* (Note)  
X28C513JI-12*  
0 to +70  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
-40 to +85  
-40 to +85  
-55 to +125  
X28C513JIZ-12* (Note)  
X28C513JM-12  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
FN8106.2  
June 7, 2006  
2
X28C512, X28C513  
Ordering Information (Continued)  
ACCESS TIME  
PART NUMBER  
PART MARKING  
X28C512D-15  
(ns)  
TEMP RANGE (°C)  
0 to +70  
PACKAGE  
32 Ld CERDIP  
X28C512D-15  
150  
X28C512DI-15  
X28C512DI-15  
X28C512DMB-15  
X28C512J-15  
-40 to +85  
Mil-STD-883  
0 to +70  
32 Ld CERDIP  
32 Ld CERDIP  
32 Ld PLCC  
X28C512DMB-15  
X28C512J-15*  
X28C512JZ-15* (See Note)  
X28C512JI-15*  
X28C512J-15 Z  
X28C512JI-15  
0 to +70  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
-40 to +85  
-40 to +85  
-55 to +125  
-55 to +125  
Mil-STD-883  
0 to +70  
X28C512JIZ-15* (See Note)  
X28C512JM-15  
X28C512JI-15 Z  
X28C512JM-15  
X28C513EM-15  
X28C513EMB-15  
X28C513J-15  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
X28C513EM-15  
32 Ld LCC  
X28C513EMB-15  
X28C513J-15*  
32 Ld LCC  
32 Ld PLCC  
X28C513JZ-15* (Note)  
X28C513JI-15  
X28C513J-15 Z  
X28C513JI-15  
0 to +70  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
-40 to +85  
-40 to +85  
-55 to +125  
Mil-STD-883  
-55 to +125  
-40 to +85  
-55 to +125  
-40 to +85  
-55 to +125  
Mil-STD-883  
0 to +70  
X28C513JIZ-15* (Note)  
X28C513JM-15  
X28C513JI-15 Z  
X28C513JM-15  
X28C512DMB-20  
X28C512JM-20  
X28C512KI-20  
X28C512KM-20  
X28C513EI-20  
X28C513EM-20  
X28C513EMB-20  
X28C513J-20  
32 Ld PLCC (Pb-free)  
32 Ld PLCC  
X28C512DMB-20  
X28C512JM-20  
200  
32 Ld CERDIP  
32 Ld PLCC  
X28C512KI-20  
36 Ld CPGA  
X28C512KM-20  
36 Ld CPGA  
X28C513EI-20  
32 Ld LCC  
X28C513EM-20  
32 Ld LCC  
X28C513EMB-20  
X28C513J-20T1  
X28C512EM-25  
32 Ld LCC  
32 Ld PLCC Tape and Reel  
32 Ld LCC  
X28C512EM-25  
X28C512JM-25  
X28C512KM-25  
X28C512KMB-25  
X28C513EM-25  
X28C513EMB-25  
250  
-55 to +125  
-55 to +125  
-55 to +125  
Mil-STD-883  
-55 to +125  
Mil-STD-883  
X28C512JM-25  
32 Ld PLCC  
X28C512KM-25  
36 Ld CPGA  
X28C512KMB-25  
X28C513EM-25  
36 Ld CPGA  
32 Ld LCC  
X28C513EMB-25  
32 Ld LCC  
*Add "T1" suffix for tape and reel.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish,  
which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow  
temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN8106.2  
June 7, 2006  
3
X28C512, X28C513  
Pinouts  
PLCC/LCC  
Plastic DIP  
CERDIP  
FLAT Pack  
SOIC (R)  
30  
29  
4
3
2
32 31  
A
A
A
5
A
14  
7
6
5
1
A
28  
6
7
13  
PGA  
A
27  
26  
8
A
A
A
8
9
4
3
9
I/O  
15  
I/O  
17  
I/O  
I/O  
21  
I/O  
22  
0
2
1
3
5
4
6
7
X28C512  
(Top View)  
NC  
NC  
V
1
32  
A
25  
24  
23  
22  
CC  
11  
19  
A
A
10  
11  
OE  
2
1
2
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
WE  
NC  
CE  
24  
A
13  
A
I/O  
16  
V
SS  
18  
I/O  
20  
I/O  
23  
1
0
A
10  
14  
A
3
A
12  
13  
CE  
I/O  
15  
0
OE  
26  
A
A
A
10  
25  
I/O  
2
3
0
7
15 16 17 18 19 20  
4
A
A
14  
12  
21  
12  
11  
14  
A
5
A
7
13  
A
A
A
A
9
28  
4
5
11  
Bottom  
View  
10  
9
7
27  
A
8
A
6
6
A
A
A
A
13  
30  
6
7
8
A
5
7
A
9
29  
8
A
4
8
A
11  
A
NC  
V
NC  
34  
NC  
32  
X28C512  
A
A
14  
31  
15  
CC  
12  
A
3
OE  
6
5
4
2
36  
9
30  
29  
A
2
A
NC  
NC  
NC  
1
NC  
33  
10  
11  
12  
13  
14  
15  
16  
WE  
35  
10  
4
3
2
32 31  
A
5
A
8
A
9
6
5
4
3
1
A
1
CE  
I/O  
A
A
28  
6
7
A
27  
26  
11  
A
0
5
A
A
NC  
OE  
8
9
3
2
X28C513  
(Top View)  
I/O  
I/O  
I/O  
I/O  
I/O  
0
25  
24  
23  
22  
4
3
2
1
A
A
A
10  
11  
10  
1
0
I/O  
1
CE  
I/O  
I/O  
2
NC  
I/O  
12  
13  
7
I/O  
0
6
15 16 17 18 19 20  
V
SS  
21  
14  
Pin Descriptions  
Pin Names  
Addresses (A0-A15  
)
SYMBOL  
DESCRIPTION  
Address Inputs  
Data Input/Output  
Write Enable  
Chip Enable  
Output Enable  
+5V  
The Address inputs select an 8-bit memory location during a  
read or write operation.  
A -A  
0
15  
I/O -I/O  
0
7
Chip Enable (CE)  
WE  
CE  
OE  
The Chip Enable input must be LOW to enable all read/write  
operations. When CE is HIGH, power consumption is  
reduced.  
Output Enable (OE)  
V
CC  
The Output Enable input controls the data output buffers and  
is used to initiate read operations.  
V
Ground  
SS  
NC  
No Connect  
Data In/Data Out (I/O -I/O )  
0
7
Data is written to or read from the X28C512, X28C513  
through the I/O pins.  
Write Enable (WE)  
The Write Enable input controls the writing of data to the  
X28C512, X28C513.  
FN8106.2  
June 7, 2006  
4
X28C512, X28C513  
DATA Polling (I/O )  
Device Operation  
7
The X28C512, X28C513 feature DATA polling as a method  
to indicate to the host system that the byte write or page  
write cycle has completed. DATA Polling allows a simple bit  
test operation to determine the status of the X28C512,  
X28C513, eliminating additional interrupt inputs or external  
hardware. During the internal programming cycle, any  
attempt to read the last byte written will produce the  
Read  
Read operations are initiated by both OE and CE LOW. The  
read operation is terminated by either CE or OE returning  
HIGH. This two line control architecture eliminates bus  
contention in a system environment. The data bus will be in  
a high impedance state when either OE or CE is HIGH.  
complement of that data on I/O (i.e. write data = 0xxx xxxx,  
read data = 1xxx xxxx). Once the programming cycle is  
7
Write  
Write operations are initiated when both CE and WE are  
LOW and OE is HIGH. The X28C512, X28C513 support  
both a CE and WE controlled write cycle. That is, the  
address is latched by the falling edge of either CE or WE,  
whichever occurs last. Similarly, the data is latched internally  
by the rising edge of either CE or WE, whichever occurs first.  
A byte write operation, once initiated, will automatically  
continue to completion, typically within 5ms.  
complete, I/O will reflect true data.  
7
Toggle Bit (I/O )  
6
The X28C512, X28C513 also provide another method for  
determining when the internal write cycle is complete. During  
the internal programming cycle, I/O will toggle from HIGH to  
6
LOW and LOW to HIGH on subsequent attempts to read the  
device. When the internal cycle is complete, the toggling will  
cease, and the device will be accessible for additional read  
or write operations.  
Page Write Operation  
The page write feature of the X28C512, X28C513 allows the  
entire memory to be written in 2.5 seconds. Page write  
allows two to one hundred twenty-eight bytes of data to be  
consecutively written to the X28C512, X28C513, prior to the  
commencement of the internal programming cycle. The host  
can fetch data from another device within the system during  
a page write operation (change the source address), but the  
page address (A through A ) for each subsequent valid  
7
15  
write cycle to the part during this operation must be the same  
as the initial page address.  
The page write mode can be initiated during any write  
operation. Following the initial byte write cycle, the host can  
write an additional one to one hundred twenty-seven bytes in  
the same manner as the first byte was written. Each  
successive byte load cycle, started by the WE HIGH to LOW  
transition, must begin within 100µs of the falling edge of the  
preceding WE. If a subsequent WE HIGH to LOW transition  
is not detected within 100µs, the internal automatic  
programming cycle will commence. There is no page write  
window limitation. Effectively, the page write window is  
infinitely wide, so long as the host continues to access the  
device within the byte load cycle time of 100µs.  
Write Operation Status Bits  
The X28C512, X28C513 provide the user two write  
operation status bits. These can be used to optimize a  
system write cycle time. The status bits are mapped onto the  
I/O bus as shown in Figure 1.  
I/O  
DP  
TB  
5
4
3
2
1
0
Reserved  
Toggle Bit  
DATA Polling  
FIGURE 1. STATUS BIT ASSIGNMENT  
FN8106.2  
June 7, 2006  
5
X28C512, X28C513  
DATA Polling I/O  
7
Last  
Write  
WE  
CE  
OE  
V
IH  
V
OH  
HIGH Z  
I/O  
7
V
OL  
X28C512, X28C513  
Ready  
A -A  
A
A
A
A
A
A
A
n
0
15  
n
n
n
n
n
n
FIGURE 2A. DATA POLLING BUS SEQUENCE  
DATA Polling can effectively halve the time for writing to the  
X28C512, X28C513. The timing diagram in Figure 2A  
illustrates the sequence of events on the bus. The software  
flow diagram in Figure 2B illustrates one method of  
implementing the routine.  
Write Data  
No  
Writes  
Complete?  
Yes  
Save Last Data  
and Address  
Read Last  
Address  
IO  
7
No  
Compare?  
Yes  
Ready  
FIGURE 2B. DATA POLLING SOFTWARE FLOW  
FN8106.2  
June 7, 2006  
6
X28C512, X28C513  
The Toggle Bit I/O  
6
Last  
Write  
WE  
CE  
OE  
V
OH  
HIGH Z  
I/O  
6
*
*
V
OL  
X28C512, X28C513  
Ready  
* Beginning and ending state of I/O will vary.  
6
FIGURE 3A. TOGGLE BIT BUS SEQUENCE  
Hardware Data Protection  
The X28C512, X28C513 provide three hardware features  
that protect nonvolatile data from inadvertent writes.  
Last Write  
- Noise Protection—A WE pulse typically less than 10ns  
will not initiate a write cycle.  
- Default V  
Sense—All write functions are inhibited  
CC  
is 3.6V.  
Load Accum  
From Addr N  
when V  
CC  
- Write Inhibit—Holding either OE LOW, WE HIGH, or CE  
HIGH will prevent an inadvertent write cycle during  
power-up and power-down, maintaining data integrity.  
Write cycle timing specifications must be observed  
concurrently.  
Compare  
Accum with  
Addr N  
Software Data Protection  
The X28C512, X28C513 offer a software controlled data  
protection feature. The X28C512, X28C513 are shipped  
from Intersil with the software data protection NOT  
ENABLED; that is, the device will be in the standard  
operating mode. In this mode data should be protected  
during power-up/-down operations through the use of  
external circuits. The host would then have open read and  
No  
Compare  
Ok?  
Yes  
X28C512  
Ready  
write access of the device once V  
was stable.  
CC  
The X28C512, X28C513 can be automatically protected  
during power-up and power-down without the need for  
external circuits by employing the software data protection  
feature. The internal software data protection circuit is  
enabled after the first write operation utilizing the software  
algorithm. This circuit is nonvolatile and will remain set for  
the life of the device unless the reset command is issued.  
FIGURE 3B. TOGGLE BIT SOFTWARE FLOW  
The Toggle Bit can eliminate the chore of saving and  
fetching the last address and data in order to implement  
DATA Polling. This can be especially helpful in an array  
comprised of multiple X28C512, X28C513 memories that  
are frequently updated. Toggle Bit Polling can also provide a  
method for status checking in multiprocessor applications.  
The timing diagram in Figure 3A illustrates the sequence of  
events on the bus. The software flow diagram in Figure 3B  
illustrates a method for polling the Toggle Bit.  
Once the software protection is enabled, the X28C512,  
X28C513 are also protected from inadvertent and accidental  
writes in the powered-up state. That is, the software  
algorithm must be issued prior to writing additional data to  
the device. Note: The data in the three-byte enable  
sequence is not written to the memory array.  
FN8106.2  
June 7, 2006  
7
X28C512, X28C513  
Software Data Protection  
V
CC  
0V  
(V  
)
CC  
Data  
Addr  
AAA  
5555  
55  
2AAA  
A0  
5555  
Writes  
ok  
t
Write  
Protected  
WC  
CE  
t  
Byte  
or  
Page  
BLC MAX  
WE  
Note: All other timings and control pins are per page write timing requirements  
FIGURE 4A. TIMING SEQUENCE—SOFTWARE DATA PROTECT ENABLE SEQUENCE FOLLOWED BY BYTE OR PAGE WRITE  
Software Algorithm  
Selecting the software data protection mode requires the  
host system to precede data write operations by a series of  
three write operations to three specific addresses. Refer to  
Figures 4A and 4B for the sequence. The three byte  
Write Data AA  
to Address  
5555  
sequence opens the page write window, enabling the host to  
write from one to one hundred twenty-eight bytes of data.  
Once the page load cycle has been completed, the device  
will automatically be returned to the data protected state.  
Write Data 55  
to Address  
2AAA  
Regardless of whether the device has previously been  
protected or not, once the software data protected algorithm  
is used and data has been written, the X28C512, X28C513  
will automatically disable further writes, unless another  
command is issued to cancel it. If no further commands are  
issued the X28C512, X28C513 will be write-protected during  
power-down and after any subsequent power-up. The state  
Write Data 80  
to Address  
5555  
of A while executing the algorithm is “don’t care”.  
15  
Write Data XX  
to any  
Address  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
Optional  
Byte/Page  
Load Operation  
Write Last  
Byte to  
Last Address  
After t  
WC  
Re-Enters Data  
Protected State  
FIGURE 4B. WRITE SEQUENCE FOR SOFTWARE DATA  
PROTECTION  
FN8106.2  
June 7, 2006  
8
X28C512, X28C513  
Resetting Software Data Protection  
V
CC  
Data  
Addr  
AAA  
5555  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
Standard  
Operating  
Mode  
t  
WC  
CE  
WE  
Note: All other timings and control pins are per page write timing requirements  
FIGURE 5A. Reset Software Data Protection Timing Sequence  
System Considerations  
Write Data AA  
to Address  
5555  
Because the X28C512, X28C513 are frequently used in  
large memory arrays, it is provided with a two-line control  
architecture for both read and write operations. Proper  
usage can provide the lowest possible power dissipation and  
eliminate the possibility of contention where multiple I/O pins  
share the same bus.  
Write Data 55  
to Address  
2AAA  
To gain the most benefit, it is recommended that CE be  
decoded from the address bus and be used as the primary  
device selection input. Both OE and WE would then be  
common among all devices in the array. For a read operation  
this assures that all deselected devices are in their standby  
mode and that only the selected device(s) is/are outputting  
data on the bus.  
Write Data A0  
to Address  
5555  
Write Data AA  
to Address  
5555  
Because the X28C512, X28C513 have two power modes,  
(standby and active), proper decoupling of the memory array  
is of prime concern. Enabling CE will cause transient current  
spikes. The magnitude of these spikes is dependent on the  
output capacitive loading of the I/Os. Therefore, the larger  
the array sharing a common bus, the larger the transient  
spikes. The voltage peaks associated with the current  
transients can be suppressed by the proper selection and  
placement of decoupling capacitors. As a minimum, it is  
recommended that a 0.1µF high frequency ceramic  
Write Data 55  
to Address  
2AAA  
Write Data 20  
to Address  
5555  
capacitor be used between V  
and V at each device.  
CC  
SS  
Depending on the size of the array, the value of the capacitor  
may have to be larger.  
FIGURE 5B. SOFTWARE SEQUENCE TO DEACTIVATE  
SOFTWARE DATA PROTECTION  
In addition, it is recommended that a 4.7µF electrolytic bulk  
In the event the user wants to deactivate the software data  
protection feature for testing or reprogramming in an  
EEPROM programmer, the following six step algorithm will  
capacitor be placed between V  
and V for each 8  
CC  
SS  
devices employed in the array. This bulk capacitor is  
employed to overcome the voltage droop caused by the  
inductive effects of the PC board traces.  
reset the internal protection circuit. After t , the X28C512,  
WC  
X28C513 will be in standard operating mode.  
Note: Once initiated, the sequence of write operations  
should not be interrupted.  
FN8106.2  
June 7, 2006  
9
X28C512, X28C513  
Active Supply Current vs Ambient Temperature  
I
(RD) by Temperature Over Frequency  
CC  
70  
14  
5.0 V  
V
= 5V  
CC  
CC  
13  
12  
11  
10  
9
60  
50  
40  
30  
20  
10  
-55°C  
+25°C  
+125°C  
8
-55  
-10  
+35  
+80  
+125  
Ambient Temperature (°C)  
3
6
9
12  
15  
0
Frequency (MHz)  
Standby Supply Current vs Ambient Temperature  
0.24  
V
= 5V  
CC  
0.22  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
-10  
+35  
+80  
+125  
-55  
Ambient Temperature (°C)  
FN8106.2  
June 7, 2006  
10  
X28C512, X28C513  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Temperature under bias  
Temperature Range  
X28C512, X28C513 . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +85°C  
X28C512I/513I . . . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
X28C512M/513M . . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +135°C  
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Industrial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
Military . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C  
Supply Voltage Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5V ±10%  
Voltage on any pin with respect to V . . . . . . . . . . . . . . -1V to +7V  
SS  
D.C. output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
Lead temperature (soldering, 10s). . . . . . . . . . . . . . . . . . . . . .300°C  
CAUTION: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only; functional  
operation of the device (at these or any other conditions above those listed in the operational sections of this specification) is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
DC Electrical Specifications Over recommended operating conditions, unless otherwise specified.  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
V
current (active) (TTL inputs)  
CE = OE = V , WE = V , All I/O’s = open, address  
50  
mA  
CC  
CC  
IL IH  
inputs = 0.4V/2.4V Levels @ f = 5MHz  
I
I
V
V
current (standby) (TTL inputs)  
current (standby) (CMOS inputs)  
CE = V , OE = VIL, All I/O’s = open, other inputs = V  
3
mA  
µA  
SB1  
SB2  
CC  
CC  
IH  
IH  
CE = V  
- 0.3V, OE = VIL, All I/O’s = Open, Other Inputs  
500  
CC  
= V  
IH  
= V to V  
CC  
I
Input leakage current  
Output leakage current  
Input LOW voltage  
V
V
10  
10  
µA  
µA  
V
LI  
IN  
SS  
I
= V to V , CE = V  
SS CC IH  
LO  
OUT  
V
-1  
2
0.8  
lL  
(Note 1)  
V
Input HIGH voltage  
V
+ 1  
CC  
V
IH  
(Note 1)  
V
Output LOW voltage  
Output HIGH voltage  
I
I
= 2.1mA  
= -400µA  
0.4  
V
V
OL  
OL  
V
2.4  
OH  
OH  
NOTE:  
1. V min. and V max. are for reference only and are not tested.  
IL IH  
Power-Up Timing  
SYMBOL  
PARAMETER  
Power-up to read operation  
Power-up to write operation  
MAX  
100  
5
UNIT  
µs  
t
(Note 2)  
(Note 2)  
PUR  
t
ms  
PUW  
Capacitance  
T
= +25°C, f = 1MHz, V  
= 5V  
A
CC  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MAX  
10  
UNIT  
C
(Note 2)  
(Note 2)  
Input/output capacitance  
Input capacitance  
V
= 0V  
= 0V  
pF  
pF  
I/O  
I/O  
C
V
10  
IN  
IN  
Endurance and Data Retention  
PARAMETER  
MIN  
10,000  
100,000  
100  
MAX  
UNIT  
Endurance  
Cycles per byte  
Cycles per page  
Years  
Endurance  
Data retention  
NOTE:  
2. This parameter is periodically sampled and not 100% tested.  
FN8106.2  
June 7, 2006  
11  
X28C512, X28C513  
Equivalent A.C. Load Circuit  
A.C. Conditions of Test  
Input pulse levels  
0V to 3V  
10ns  
5V  
Input rise and fall times  
Input and output timing levels  
1.5V  
1.92kΩ  
Mode Selection  
Output  
CE  
L
OE  
L
WE  
H
MODE  
I/O  
POWER  
1.37KΩ  
100pF  
Read  
D
Active  
OUT  
Write  
D
Active  
L
H
L
IN  
Standbyandwrite  
inhibit  
High Z  
Standby  
H
X
X
Symbol Table  
Write inhibit  
Write inhibit  
X
X
L
X
H
WAVEFORM  
INPUTS  
OUTPUTS  
X
Must be  
steady  
Will be  
steady  
May change  
from LOW  
to HIGH  
Will change  
from LOW  
to HIGH  
May change  
from HIGH  
to LOW  
Will change  
from HIGH  
to LOW  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
N/A  
Center Line  
is High  
Impedance  
FN8106.2  
June 7, 2006  
12  
X28C512, X28C513  
AC Electrical Specifications Over the recommended operating conditions, unless otherwise specified.  
X28C512-90  
X28C513-90  
X28C512-12  
X28C513-12  
X28C512-15  
X28C513-15  
X28C512-20  
X28C513-20  
X28C512-25  
X28C513-25  
SYMBOL  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX UNIT  
READ CYCLE LIMITS  
t
Read cycle time  
90  
120  
150  
200  
250  
ns  
ns  
ns  
ns  
ns  
RC  
t
Chip enable access time  
Address access time  
90  
90  
40  
120  
120  
50  
150  
150  
50  
200  
200  
50  
250  
250  
50  
CE  
t
AA  
OE  
t
Output enable access time  
CE LOW to active output  
t
0
0
0
0
0
0
0
0
0
0
LZ  
(Note 3)  
t
OE LOW to active output  
ns  
ns  
ns  
ns  
OLZ  
(Note 3)  
t
CE HIGH to high Z output  
OE HIGH to high Z output  
Output hold from address change  
40  
40  
50  
50  
50  
50  
50  
50  
50  
50  
HZ  
(Note 3)  
t
OHZ  
(Note 3)  
t
0
0
0
0
0
OH  
Read Cycle  
t
RC  
Address  
CE  
t
CE  
t
OE  
OE  
V
IH  
WE  
t
t
OHZ  
OLZ  
t
t
t
HZ  
LZ  
OH  
AA  
HIGH Z  
Data I/O  
Data Valid  
Data Valid  
t
NOTE:  
3. t min., t , t  
LZ HZ OLZ  
min., and t  
OHZ  
are periodically sampled and not 100% tested. t max. and t max. are measured, with C = 5pF from the  
HZ OHZ L  
point when CE or OE return HIGH (whichever occurs first) to the time when the outputs are no longer driven.  
FN8106.2  
June 7, 2006  
13  
X28C512, X28C513  
Write Cycle Limits  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
µs  
µs  
t
(Note 4) Write cycle time  
10  
WC  
t
Address setup time  
Address hold time  
Write setup time  
Write hold time  
0
50  
0
AS  
AH  
CS  
CH  
t
t
t
0
t
CE pulse width  
100  
10  
10  
100  
100  
CW  
t
OE HIGH setup time  
OE HIGH hold time  
WE pulse width  
WE High recovery  
Data valid  
OES  
OEH  
t
t
WP  
t
WPH  
t
1
DV  
DS  
DH  
t
Data setup  
50  
0
t
Data hold  
t
Delay to next write  
Byte load cycle  
10  
0.2  
DW  
t
100  
BLC  
WE Controlled Write Cycle  
t
WC  
Address  
t
t
AH  
AS  
t
t
CS  
CH  
CE  
OE  
t
t
OEH  
OES  
t
WP  
WE  
t
DV  
Data In  
Data Valid  
t
t
DH  
DS  
HIGH Z  
Data Out  
NOTE:  
4. t  
is the minimum cycle time to be allowed from the system perspective unless polling techniques are used. It is the maximum time the device  
WC  
requires to complete the internal write operation.  
FN8106.2  
June 7, 2006  
14  
X28C512, X28C513  
CE Controlled Write Cycle  
t
WC  
Address  
CE  
t
t
AH  
AS  
t
CW  
t
WPH  
t
OES  
OE  
t
OEH  
t
t
t
CS  
CH  
WE  
t
DV  
Data Valid  
Data In  
t
DS  
DH  
HIGH Z  
Data Out  
Page Write Cycle  
OE  
(Note 5)  
CE  
t
t
BLC  
WP  
WE  
t
WPH  
Address*  
(Note 6)  
Last Byte  
Byte n+2  
I/O  
Byte 0  
Byte 1  
Byte 2  
Byte n  
Byte n+1  
t
WC  
*For each successive write within the page write operation, A -A should be the same or  
15  
7
writes to an unknown address could occur.  
NOTES:  
5. Between successive byte writes within a page write operation, OE can be strobed LOW: e.g. this can be done with CE and WE HIGH to fetch  
data from another memory device within the system for the next write; or with WE HIGH and CE LOW effectively performing a polling operation.  
6. The timings shown above are unique to page write operations. Individual byte load operations within the page write must conform to either the  
CE or WE controlled write cycle timing.  
FN8106.2  
June 7, 2006  
15  
X28C512, X28C513  
DATA Polling Timing Diagram (Note 7)  
Address  
CE  
A
A
A
n
n
n
WE  
t
t
OEH  
OES  
OE  
t
DW  
D
= X  
D
= X  
D
OUT  
= X  
I/O  
7
IN  
OUT  
t
WC  
Toggle Bit Timing Diagram  
CE  
WE  
t
OES  
t
OEH  
OE  
t
DW  
HIGH Z  
I/O  
*
6
*
t
WC  
*Starting and ending state will vary, depending upon actual t  
WC  
.
NOTE:  
7. Polling operations are by definition read cycles and are therefore subject to read cycle timings.  
FN8106.2  
June 7, 2006  
16  
X28C512, X28C513  
Packaging Information  
32-Lead Hermetic Dual In-Line Package Type D  
1.690 (42.95)  
Max.  
0.610 (15.49)  
0.500 (12.70)  
Pin 1  
0.005 (0.13) Min.  
0.100 (2.54) Max.  
Seating  
Plane  
0.232 (5.90) Max.  
0.060 (1.52)  
0.015 (0.38)  
0.150 (3.81) Min.  
0.200 (5.08)  
0.125 (3.18)  
0.065 (1.65)  
0.023 (0.58)  
0.014 (0.36)  
Typ. 0.018 (0.46)  
0.033 (0.84)  
Typ. 0.055 (1.40)  
0.110 (2.79)  
0.090 (2.29)  
Typ. 0.100 (2.54)  
0.620 (15.75)  
0.590 (14.99)  
Typ. 0.614 (15.60)  
0°  
15°  
0.015 (0.38)  
0.008 (0.20)  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
FN8106.2  
June 7, 2006  
17  
X28C512, X28C513  
Packaging Information  
32-Pad Ceramic Leadless Chip Carrier Package Type E  
0.300 (7.62)  
BSC  
0.150 (3.81) BSC  
0.015 (0.38)  
0.003 (0.08)  
0.020 (0.51) x 45° Ref.  
0.095 (2.41)  
Pin 1  
0.075 (1.91)  
0.022 (0.56)  
DIA.  
0.006 (0.15)  
0.055 (1.39)  
0.045 (1.14)  
0.200 (5.08)  
BSC  
0.015 (0.38)  
Min.  
TYP. (4) PLCS.  
0.028 (0.71)  
0.022 (0.56)  
(32) Plcs.  
0.040 (1.02) x 45° Ref.  
Typ. (3) Plcs.  
0.050 (1.27) BSC  
0.088 (2.24)  
0.050 (1.27)  
0.458 (11.63)  
0.442 (11.22)  
0.458 (11.63)  
--  
0.120 (3.05)  
0.060 (1.52)  
0.558 (14.17)  
--  
0.560 (14.22)  
0.540 (13.71)  
0.400 (10.16)  
BSC  
Pin 1 Index Corner  
NOTE:  
1. ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
2. TOLERANCE: ±1% NLT ±0.005 (0.127)  
FN8106.2  
June 7, 2006  
18  
X28C512, X28C513  
Packaging Information  
32-Lead Ceramic Flat Pack Type F  
1.228 (31.19)  
1.000 (25.40)  
Pin 1 Index  
0.019 (0.48)  
0.015 (0.38)  
1
32  
0.050 (1.27) BSC  
0.830 (21.08) Max.  
0.045 (1.14) Max.  
0.005 (0.13) Min.  
0.440 (11.18)  
0.430 (10.93)  
0.120 (3.05)  
0.090 (2.29)  
0.007 (0.18)  
0.004 (0.10)  
0.370 (9.40)  
0.270 (6.86)  
0.026 (0.66)  
Min.  
0.347 (8.82)  
0.330 (8.38)  
0.030 (0.76)  
Min.  
NOTE: ALL DIMENSIONS IN INCHES (IN PARENTHESES IN MILLIMETERS)  
FN8106.2  
June 7, 2006  
19  
X28C512, X28C513  
Plastic Leaded Chip Carrier Packages (PLCC)  
0.042 (1.07)  
0.056 (1.42)  
N32.45x55 (JEDEC MS-016AE ISSUE A)  
PIN (1)  
IDENTIFIER  
0.004 (0.10)  
C
32 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE  
0.042 (1.07)  
0.048 (1.22)  
0.050 (1.27) TP  
ND  
0.025 (0.64)  
0.045 (1.14)  
INCHES  
MILLIMETERS  
R
C
L
SYMBOL  
MIN  
MAX  
MIN  
3.18  
MAX  
3.55  
NOTES  
A
A1  
D
0.125  
0.060  
0.485  
0.447  
0.188  
0.585  
0.547  
0.238  
0.140  
0.095  
0.495  
0.453  
0.223  
0.595  
0.553  
0.273  
-
1.53  
2.41  
-
D2/E2  
D2/E2  
12.32  
11.36  
4.78  
12.57  
11.50  
5.66  
-
D1  
D2  
E
3
C
L
E1  
E
4, 5  
14.86  
13.90  
6.05  
15.11  
14.04  
6.93  
-
NE  
E1  
E2  
N
3
VIEW “A”  
4, 5  
28  
7
28  
7
6
0.015 (0.38)  
MIN  
ND  
NE  
7
7
A1  
A
D1  
D
9
9
SEATING  
PLANE  
Rev. 0 7/98  
0.020 (0.51) MAX  
3 PLCS  
-C-  
NOTES:  
0.026 (0.66)  
0.032 (0.81)  
1. Controlling dimension: INCH. Converted millimeter dimen-  
sions are not necessarily exact.  
0.050 (1.27)  
MIN  
2. Dimensions and tolerancing per ANSI Y14.5M-1982.  
3. Dimensions D1 and E1 do not include mold protrusions. Al-  
lowable mold protrusion is 0.010 inch (0.25mm) per side.  
Dimensions D1 and E1 include mold mismatch and are mea-  
sured at the extreme material condition at the body parting  
line.  
0.013 (0.33)  
0.021 (0.53)  
0.025 (0.64)  
MIN  
(0.12)  
0.005  
M
A S - B S D S  
-C-  
4. To be measured at seating plane  
contact point.  
5. Centerline to be determined where center leads exit plastic  
body.  
VIEW “A” TYP.  
6. “N” is the number of terminal positions.  
7. ND denotes the number of leads on the two shorts sides of the  
package, one of which contains pin #1. NE denotes the num-  
ber of leads on the two long sides of the package.  
FN8106.2  
June 7, 2006  
20  
X28C512, X28C513  
G36.760x760A  
36 LEAD CERAMIC PIN GRID ARRAY PACKAGE  
Ceramic Pin Grid Array Package (CPGA)  
15  
14  
11  
9
17  
16  
19  
18  
21  
20  
22  
23  
25  
27  
29  
32  
33  
A
0.008 (0.20)  
13  
12  
10  
8
24  
26  
0.050 (1.27)  
A
28  
30  
31  
NOTE:Leads 5, 14,23, & 32  
7
Typ. 0.100 (2.54)  
All Leads  
6
5
2
3
36  
1
34  
35  
Typ. 0.180 (.010)  
(4.57 ± .25)  
4 Corners  
4
Typ. 0.180 (.010)  
(4.57 ± .25)  
4 Corners  
0.120 (3.05)  
0.100 (2.54)  
0.072 (1.83)  
0.062 (1.57)  
Pin 1 Index  
0.770 (19.56)  
0.750 (19.05)  
SQ  
0.020 (0.51)  
0.016 (0.41)  
A
A
0.185 (4.70)  
0.175 (4.45)  
NOTE: All dimensions in inches (in parentheses in millimeters).  
Rev. 0 12/05  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8106.2  
June 7, 2006  
21  

相关型号:

X28C512JI-15C7168

64KX8 EEPROM 5V, 150ns, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X28C512JI-15C7517

64KX8 EEPROM 5V, 150ns, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X28C512JI-15C7871

64KX8 EEPROM 5V, 150ns, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X28C512JI-15T1

5V, Byte Alterable EEPROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
INTERSIL

X28C512JI-15T1C7168

64KX8 EEPROM 5V, 150ns, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X28C512JI-15T2C7345

64KX8 EEPROM 5V, 150ns, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
RENESAS

X28C512JI-20

5 Volt, Byte Alterable E2PROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

X28C512JI-20T1

EEPROM, 64KX8, 200ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C512JI-25

5 Volt, Byte Alterable E2PROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C512JI-25T1

EEPROM, 64KX8, 250ns, Parallel, CMOS, PQCC32, PLASTIC, LCC-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR

X28C512JI-90

5 Volt, Byte Alterable E2PROM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
XICOR