X9400WS24IZ-2.7 [INTERSIL]

Quad Digitally Controlled Potentiometers; 四通道数字电位器
X9400WS24IZ-2.7
型号: X9400WS24IZ-2.7
厂家: Intersil    Intersil
描述:

Quad Digitally Controlled Potentiometers
四通道数字电位器

电位器
文件: 总19页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
X9400  
®
Low Noise/Low Power/SPI Bus  
Data Sheet  
July 28, 2006  
FN8189.3  
DESCRIPTION  
Quad Digitally Controlled Potentiometers  
(XDCP™)  
The X9400 integrates four digitally controlled  
potentiometers (XDCPs) on a monolithic CMOS  
integrated circuit.  
FEATURES  
• Four potentiometers per package  
• 64 resistor taps  
The digitally controlled potentiometer is implemented  
using 63 resistive elements in a series array. Between  
each element are tap points connected to the wiper  
terminal through switches. The position of the wiper on  
the array is controlled by the user through the SPI  
serial bus interface. Each potentiometer has  
associated with it a volatile Wiper Counter Register  
(WCR) and four nonvolatile Data Registers (DR0-3)  
that can be directly written to and read by the user.  
The contents of the WCR controls the position of the  
wiper on the resistor array through the switches.  
Power-up recalls the contents of DR0 to the WCR.  
• SPI serial interface for write, read, and transfer  
operations of the potentiometer  
• Wiper resistance, 40typical at 5V.  
• Four non-volatile data registers for each  
potentiometer  
• Non-volatile storage of multiple wiper position  
• Power-on recall. Loads saved wiper position on  
power-up.  
• Standby current < 1µA max  
• System V : 2.7V to 5.5V operation  
CC  
+
• Analog V /V : -5V to +5V  
• 10k, 2.5kend to end resistance  
• 100 yr. data retention  
• Endurance: 100,000 data changes per bit per  
register  
The XDCP can be used as a three-terminal  
potentiometer or as a two-terminal variable resistor in  
a wide variety of applications including control,  
parameter adjustments, and signal processing.  
• Low power CMOS  
• 24 Ld SOIC and 24 Ld TSSOP  
• Pb-free plus anneal available (RoHS compliant)  
BLOCK DIAGRAM  
V
V
CC  
SS  
Pot 0  
R0 R1  
R2 R3  
V
/R  
H0 H0  
R0 R1  
R2 R3  
V+  
V-  
Wiper  
Counter  
Register  
(WCR)  
Wiper  
Counter  
Register  
(WCR)  
V
/R  
H2 H2  
Resistor  
Array  
Pot 2  
V
/R  
L0 L0  
HOLD  
V
/R  
L2 L2  
CS  
SCK  
SO  
SI  
V
/R  
W0 W0  
V
/R  
W2 W2  
Interface  
and  
Control  
8
Circuitry  
A0  
A1  
V
/R  
W1 W1  
Data  
V
/R  
W3 W3  
WP  
R0 R1  
R2 R3  
R0 R1  
R2 R3  
V
/R  
Wiper  
Counter  
Register  
(WCR)  
H1 H1  
V
/R  
Resistor  
Array  
Pot 1  
Wiper  
Counter  
Register  
(WCR)  
H3 H3  
Resistor  
Array  
Pot 3  
V
/R  
L1 L1  
V
/R  
L3 L3  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
XDCP is a trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2005-2006. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
X9400  
Ordering Information  
POTENTIOMETER TEMPERATURE  
PART  
MARKING  
V
LIMITS  
(V)  
ORGANIZATION  
RANGE  
(°C)  
CC  
PART NUMBER  
(k)  
PACKAGE  
PKG. DWG. #  
M24.3  
X9400WS24*  
X9400WS  
5 ±10%  
10  
0 to +70  
0 to +70  
24 Ld SOIC (300 mil)  
X9400WS24ZT1  
(Note)  
X9400WS Z  
24 Ld SOIC (300 mil) (Pb-free)  
Tape and Reel  
M24.3  
X9400WS24I*  
X9400WS I  
-40 to +85  
-40 to +85  
24 Ld SOIC (300 mil)  
M24.3  
M24.3  
X9400WS24IZ*  
(Note)  
X9400WS ZI  
24 Ld SOIC (300 mil) (Pb-free)  
X9400WV24*  
X9400WV24I*  
X9400WV  
0 to +70  
-40 to +85  
-40 to +85  
24 Ld TSSOP (4.4mm)  
MDP0044  
MDP0044  
MDP0044  
X9400WV I  
X9400WV ZI  
24 Ld TSSOP (4.4mm)  
X9400WV24IZ*  
(Note)  
24 Ld TSSOP (4.4mm) (Pb-free)  
X9400WV24Z*  
(Note)  
X9400WV Z  
0 to +70  
24 Ld TSSOP (4.4mm) (Pb-free)  
MDP0044  
X9400YS24*  
X9400YS24I*  
X9400YV24*  
X9400YV24I*  
X9400YS  
2.5  
0 to +70  
-40 to +85  
0 to +70  
24 Ld SOIC (300 mil)  
M24.3  
X9400YS I  
X9400YV  
24 Ld SOIC (300 mil)  
M24.3  
24 Ld TSSOP (4.4mm)  
24 Ld TSSOP (4.4mm)  
24 Ld TSSOP (4.4mm) (Pb-free)  
MDP0044  
MDP0044  
MDP0044  
X9400YV I  
X9400YV ZI  
-40 to +85  
-40 to +85  
X9400YV24IZ*  
(Note)  
X9400YV24Z*  
(Note)  
X9400YV Z  
0 to +70  
24 Ld TSSOP (4.4mm) (Pb-free)  
MDP0044  
X9400WS24-2.7*  
X9400WS24I-2.7*  
X9400WS F  
X9400WS G  
2.7 to 5.5  
10  
0 to +70  
-40 to +85  
-40 to +85  
24 Ld SOIC (300 mil)  
M24.3  
M24.3  
M24.3  
24 Ld SOIC (300 mil)  
X9400WS24IZ-2.7* X9400WS ZG  
(Note)  
24 Ld SOIC (300 mil) (Pb-free)  
X9400WV24-2.7*  
X9400WV24I-2.7*  
X9400WV F  
X9400WV G  
0 to +70  
-40 to +85  
-40 to +85  
24 Ld TSSOP (4.4mm)  
MDP0044  
MDP0044  
MDP0044  
24 Ld TSSOP (4.4mm)  
X9400WV24IZ-2.7* X9400WV ZG  
(Note)  
24 Ld TSSOP (4.4mm) (Pb-free)  
X9400WV24Z-2.7* X9400WV ZF  
(Note)  
0 to +70  
24 Ld TSSOP (4.4mm) (Pb-free)  
MDP0044  
X9400YS24-2.7*  
X9400YS24I-2.7*  
X9400YV24-2.7*  
X9400YV24I-2.7*  
X9400YS F  
X9400YS G  
X9400YV F  
X9400YV G  
2.5  
0 to +70  
-40 to +85  
0 to +70  
24 Ld SOIC (300 mil)  
M24.3  
24 Ld SOIC (300 mil)  
M24.3  
24 Ld TSSOP (4.4mm)  
24 Ld TSSOP (4.4mm)  
24 Ld TSSOP (4.4mm) (Pb-free)  
MDP0044  
MDP0044  
MDP0044  
-40 to +85  
-40 to +85  
X9400YV24IZ-2.7* X9400YV ZG  
(Note)  
X9400YV24Z-2.7*  
(Note)  
X9400YV ZF  
0 to +70  
24 Ld TSSOP (4.4mm) (Pb-free)  
MDP0044  
*Add "T1" suffix for tape and reel.  
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate  
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN8189.3  
July 28, 2006  
2
X9400  
PIN DESCRIPTIONS  
Host Interface Pins  
Serial Output (SO)  
be brought LOW while SCK is LOW. To resume  
communication, HOLD is brought HIGH, again while  
SCK is LOW. If the pause feature is not used, HOLD  
should be held HIGH at all times.  
SO is a push/pull serial data output pin. During a read  
cycle, data is shifted out on this pin. Data is clocked  
out by the falling edge of the serial clock.  
Device Address (A - A )  
0
1
The address inputs are used to set the least significant  
2 bits of the 8-bit slave address. A match in the slave  
address serial data stream must be made with the  
address input in order to initiate communication with  
the X9400. A maximum of 4 devices may occupy the  
SPI serial bus.  
Serial Input  
SI is the serial data input pin. All opcodes, byte  
addresses and data to be written to the pots and pot  
registers are input on this pin. Data is latched by the  
rising edge of the serial clock.  
Potentiometer Pins  
Serial Clock (SCK)  
V /R (V /R - V /R ), V /R (V /R  
H0 H0 H3 H3 L0 L0  
L3 L3  
-
H
H
L
L
The SCK input is used to clock data into and out of the  
X9400.  
V
/R )  
The V /R and V /R inputs are equivalent to the  
H
H
L
L
terminal connections on either end of a mechanical  
potentiometer.  
Chip Select (CS)  
When CS is HIGH, the X9400 is deselected and the  
SO pin is at high impedance, and (unless an internal  
write cycle is underway) the device will be in the  
standby state. CS LOW enables the X9400, placing it  
in the active power mode. It should be noted that after  
a power-up, a HIGH to LOW transition on CS is  
required prior to the start of any operation.  
V /R (V /R  
W0 W0  
The wiper outputs are equivalent to the wiper output of  
a mechanical potentiometer.  
- V /R )  
W3 W3  
W
W
Hardware Write Protect Input (WP)  
The WP pin when LOW prevents nonvolatile writes to  
the Data Registers.  
Hold (HOLD)  
HOLD is used in conjunction with the CS pin to select  
the device. Once the part is selected and a serial  
sequence is underway, HOLD may be used to pause  
the serial communication with the controller without  
resetting the serial sequence. To pause, HOLD must  
Analog Supplies (V+, V-)  
The analog Supplies V+, V- are the supply voltages for  
the XDCP analog section.  
PIN CONFIGURATION  
SOIC  
TSSOP  
V+  
V
V
WP  
SI  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CC  
/R  
V
/R  
CS  
V
A
L3 L3  
L0 L0  
1
/R  
V
V
A
/R  
V
/R  
3
V
/R  
W0 W0  
H3 H3  
3
H0 H0  
/R  
L1 L1  
/R  
V
V
V
V
/R  
/R  
V
4
H1 H1  
H0 H0  
W3 W3  
4
W0 W0  
CS  
V
/R  
W1 W1  
/R  
5
5
L0 L0  
0
V
SO  
SS  
WP  
6
6
CC  
X9400  
X9400  
SI  
V-  
HOLD  
SCK  
7
V+  
V
7
V
/R  
A
1
/R  
W2 W2  
8
8
L3 L3  
V
V
/R  
V
/R  
H2 H2  
V
/R  
9
V
V
/R  
9
L2 L2  
L1 L1  
H3 H3  
V
/R  
/R  
/R  
10  
L2 L2  
H2 H2  
10  
V
/R  
W3 W3  
H1 H1  
V
/R  
A
14  
13  
SCK  
14  
13  
V
/R  
W2 W2  
11  
12  
0
11  
12  
W1 W1  
V
HOLD  
V-  
SS  
SO  
FN8189.3  
July 28, 2006  
3
X9400  
PIN NAMES  
Symbol  
Wiper Counter Register (WCR)  
The X9400 contains four Wiper Counter Registers,  
one for each XDCP potentiometer. The WCR is  
equivalent to a serial-in, parallel-out register/counter  
with its outputs decoded to select one of sixty-four  
switches along its resistor array. The contents of the  
WCR can be altered in four ways: it may be written  
directly by the host via the write Wiper Counter  
Register instruction (serial load); it may be written  
indirectly by transferring the contents of one of four  
associated data registers via the XFR Data Register or  
global XFR data register instructions (parallel load); it  
can be modified one step at a time by the  
increment/decrement instruction. Finally, it is loaded  
with the contents of its Data Register zero (DR0) upon  
power-up.  
Description  
Serial Clock  
SCK  
SI, SO  
Serial Data  
A - A  
Device Address  
0
1
V
/R - V /R  
H0 H0 H3 H3  
,
Potentiometer Pins (terminal  
equivalent)  
V /R - V /R  
L0 L0 L3 L3  
V
/R  
- V /R  
Potentiometer Pins (wiper  
equivalent)  
W0 W0 W1 W1  
WP  
Hardware Write Protection  
System Supply Voltage  
System Ground  
V
V
CC  
SS  
NC  
No Connection  
The Wiper Counter Register is a volatile register; that  
is, its contents are lost when the X9400 is powered-  
down. Although the register is automatically loaded  
with the value in DR0 upon power-up, this may be  
different from the value present at power-down.  
DEVICE DESCRIPTION  
The X9400 is highly integrated microcircuit  
incorporating four resistor arrays and their associated  
registers and counters and the serial interface logic  
providing direct communication between the host and  
the XDCP potentiometers.  
a
Data Registers  
Each potentiometer has four 6-bit nonvolatile Data  
Registers. These can be read or written directly by the  
host. Data can also be transferred between any of the  
four Data Registers and the associated Wiper Counter  
Register. All operations changing data in one of the  
data registers is a nonvolatile operation and will take a  
maximum of 10ms.  
Serial Interface  
The X9400 supports the SPI interface hardware  
conventions. The device is accessed via the SI input  
with data clocked in on the rising SCK. CS must be  
LOW and the HOLD and WP pins must be HIGH  
during the entire operation.  
The SO and SI pins can be connected together, since  
they have three state outputs. This can help to reduce  
system pin count.  
If the application does not require storage of multiple  
settings for the potentiometer, the Data Registers can  
be used as regular memory locations for system  
parameters or user preference data.  
Array Description  
Data Register Detail  
The X9400 is comprised of four resistor arrays. Each  
array contains 63 discrete resistive segments that are  
connected in series. The physical ends of each array  
are equivalent to the fixed terminals of a mechanical  
(MSB)  
D5  
(LSB)  
D0  
D4  
NV  
D3  
NV  
D2  
NV  
D1  
NV  
NV  
NV  
potentiometer (V /R and V /R inputs).  
H
H
L
L
At both ends of each array and between each resistor  
segment is a CMOS switch connected to the wiper  
(V /R ) output. Within each individual array only one  
W
W
switch may be turned on at a time.  
These switches are controlled by a wiper counter  
register (WCR). The six bits of the WCR are decoded  
to select, and enable, one of sixty-four switches.  
FN8189.3  
July 28, 2006  
4
X9400  
Figure 1. Detailed Potentiometer Block Diagram  
(One of Four Arrays)  
Serial Data Path  
Serial  
Bus  
Input  
V /R  
H H  
From Interface  
Circuitry  
C
o
u
n
t
Register 0  
Register 2  
Register 1  
8
6
Parallel  
Bus  
Input  
e
r
Wiper  
D
e
c
o
d
e
Register 3  
Counter  
Register  
(WCR)  
INC/DEC  
Logic  
If WCR = 00[H] then V /R = V /R  
W
W
L
L
UP/DN  
UP/DN  
If WCR = 3F[H] then V /R = V /R  
H
W
W
H
V /R  
Modified SCL  
L
L
CLK  
V
/R  
W
W
Write in Process  
continue the command sequence. The A - A inputs  
0 1  
can be actively driven by CMOS input signals or tied to  
or V  
The contents of the Data Registers are saved to  
nonvolatile memory when the CS pin goes from LOW  
to HIGH after a complete write sequence is received  
by the device. The progress of this internal write  
operation can be monitored by a write in process bit  
(WIP). The WIP bit is read with a read status  
command.  
V
.
SS  
CC  
The remaining two bits in the slave byte must be set to 0.  
Figure 2. Identification Byte Format  
Device Type  
Identifier  
INSTRUCTIONS  
0
1
0
1
0
0
A1  
A0  
Identification (ID) Byte  
The first byte sent to the X9400 from the host,  
following a CS going HIGH to LOW, is called the  
Identification byte. The most significant four bits of the  
slave address are a device type identifier, for the  
X9400 this is fixed as 0101[B] (refer to Figure 2).  
Device Address  
Instruction Byte  
The next byte sent to the X9400 contains the  
instruction and register pointer information. The four  
most significant bits are the instruction. The next four  
bits point to one of the four pots and, when applicable,  
they point to one of four associated registers. The  
format is shown below in Figure 3.  
The two least significant bits in the ID byte select one  
of four devices on the bus. The physical device  
address is defined by the state of the A - A input  
0
1
pins. The X9400 compares the serial data stream with  
the address input state; a successful compare of both  
address bits is required for the X9400 to successfully  
FN8189.3  
July 28, 2006  
5
X9400  
Figure 3. Instruction Byte Format  
Five instructions require a three-byte sequence to  
complete. These instructions transfer data between the  
host and the X9400; either between the host and one of  
the data registers or directly between the host and the  
Wiper Counter Register. These instructions are:  
Register  
Select  
I3  
I2  
I1  
I0  
R1 R0  
P1  
P0  
– Read Wiper Counter Register—read the current  
wiper position of the selected pot,  
Pot Select  
Instructions  
– Write Wiper Counter Register—change current  
wiper position of the selected pot,  
The four high order bits of the instruction byte specify  
the operation. The next two bits (R and R ) select  
– Read Data Register—read the contents of the  
selected data register;  
1
0
one of the four registers that is to be acted upon when  
a register oriented instruction is issued. The last two  
bits (P and P ) selects which one of the four  
– Write Data Register—write a new value to the  
selected data register.  
1
0
potentiometers is to be affected by the instruction.  
– Read Status—This command returns the contents  
of the WIP bit which indicates if the internal write  
cycle is in progress.  
Four of the ten instructions are two bytes in length and  
end with the transmission of the instruction byte.  
These instructions are:  
The sequence of these operations is shown in Figure 5  
and Figure 6.  
– XFR Data Register to Wiper Counter Register—This  
transfers the contents of one specified Data Register  
to the associated Wiper Counter Register.  
The final command is Increment/Decrement. It is  
different from the other commands, because it’s length  
is indeterminate. Once the command is issued, the  
master can clock the selected wiper up and/or down in  
one resistor segment steps; thereby, providing a fine  
tuning capability to the host. For each SCK clock pulse  
– XFR Wiper Counter Register to Data Register —  
This transfers the contents of the specified Wiper  
Counter Register to the specified associated Data  
Register.  
(t  
) while SI is HIGH, the selected wiper will move  
one resistor segment towards the V /R terminal.  
HIGH  
– Global XFR Data Register to Wiper Counter Register  
—This transfers the contents of all specified Data  
Registers to the associated Wiper Counter Registers.  
H
H
Similarly, for each SCK clock pulse while SI is LOW, the  
selected wiper will move one resistor segment towards  
– Global XFR Wiper Counter Register to Data Register  
—This transfers the contents of all Wiper Counter  
Registers to the specified associated Data Registers.  
the V /R terminal. A detailed illustration of the  
L
L
sequence and timing for this operation are shown in  
Figure 7 and Figure 8.  
The basic sequence of the two byte instructions is  
illustrated in Figure 4. These two-byte instructions  
exchange data between the WCR and one of the data  
registers. A transfer from a Data Register to a WCR is  
essentially a write to a static RAM, with the static RAM  
controlling the wiper position. The response of the  
wiper to this action will be delayed by t  
. A transfer  
WRL  
from the WCR (current wiper position), to a data  
register is a write to nonvolatile memory and takes a  
minimum of t  
to complete. The transfer can occur  
WR  
between one of the four potentiometers and one of its  
associated registers; or it may occur globally, where the  
transfer occurs between all potentiometers and one  
associated register.  
FN8189.3  
July 28, 2006  
6
X9400  
Figure 4. Two-Byte Instruction Sequence  
CS  
SCK  
SI  
0
1
0
1
0
0
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
Figure 5. Three-Byte Instruction Sequence (Write)  
CS  
SCK  
SI  
0
0
0
1
0
1
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
0
0
D5 D4 D3 D2 D1 D0  
Figure 6. Three-Byte Instruction Sequence (Read)  
CS  
SCK  
SI  
Don’t Care  
0
0
0
1
0
1
A1 A0  
I3 I2  
I1 I0 R1 R0 P1 P0  
S0  
0
0
D5 D4 D3 D2 D1 D0  
Figure 7. Increment/Decrement Instruction Sequence  
CS  
SCK  
SI  
P1  
0
1
0
1
0
0
A1 A0  
I3 I2  
I1 I0  
0
0
P0  
I
I
D
E
C
1
I
D
E
C
n
N
C
1
N
C
2
N
C
n
FN8189.3  
July 28, 2006  
7
X9400  
Figure 8. Increment/Decrement Timing Limits  
t
WRID  
SCK  
SI  
Voltage Out  
V
/R  
W
W
INC/DEC CMD Issued  
Table 1. Instruction Set  
Instruction Set  
Instruction  
Read Wiper Counter Register  
I
1
I
0
I
I
1
R
0
R
0
P
P
P
Operation  
Read the contents of the Wiper Counter Register  
pointed to by P - P  
3
2
1
0
1
0
1
0
0
1
1
0
0
P
1
0
1
0
Write Wiper Counter Register  
Read Data Register  
1
1
1
1
0
0
1
1
0
1
0
1
0
0
P
P
P
P
P
P
P
P
Write new value to the Wiper Counter Register  
pointed to by P - P  
1
1
1
1
0
0
0
0
1
0
R
R
Read the contents of the Data Register pointed to  
by P - P and R - R  
1
1
1
0
0
0
1
0
1
0
Write Data Register  
R
R
R
R
Write new value to the Data Register pointed to by  
P - P and R - R  
1
0
1
0
XFR Data Register to Wiper  
Counter Register  
Transfer the contents of the Data Register pointed to  
by R - R to the Wiper Counter Register pointed to by  
1
0
P - P  
1
0
XFR Wiper Counter Register  
to Data Register  
1
0
1
1
0
0
1
0
0
0
1
0
R
R
R
R
R
R
P
P
Transfer the contents of the Wiper Counter  
Register pointed to by P - P to the Register  
1
1
1
0
0
0
1
0
1
0
pointed to by R - R  
1
0
Global XFR Data Register to  
Wiper Counter Register  
0
0
Transfer the contents of the Data Registers pointed  
to by R - R of all four pots to their respective Wiper  
1
0
Counter Register  
Global XFR Wiper Counter  
Register to Data Register  
0
0
Transfer the contents of all Wiper Counter  
Registers to their respective data Registers  
pointed to by R - R of all four pots  
1
0
Increment/Decrement Wiper  
Counter Register  
0
0
0
1
1
0
0
1
0
0
P
P
Enable Increment/decrement of the Wiper Counter  
Register pointed to by P - P  
1
0
1
0
Read Status (WIP bit)  
0
0
0
1
Read the status of the internal write cycle, by  
checking the WIP bit.  
FN8189.3  
July 28, 2006  
8
X9400  
Instruction Format  
Notes: (1) “A1 ~ A0”: stands for the device addresses sent by the master.  
(2) WPx refers to wiper position data in the Counter Register  
(3) “I”: stands for the increment operation, SI held HIGH during active SCK phase (high).  
(4) “D”: stands for the decrement operation, SI held LOW during active SCK phase (high).  
Read Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
wiper position  
(sent by X9400 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W  
0 P P P P P P  
A A  
P
1
P
0
0
1
0
1
0
0
1
0
0
1
0
0
0
0
1
0
5
4 3 2 1 0  
Write Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
addresses  
Data Byte  
(sent by Host on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
W W W W W W  
0 P P P P P P  
A A  
P
1
P
0
0
1
0
1
0
0
1
0
1
0
0
0
1
0
5
4 3 2 1 0  
Read Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
opcode addresses  
Data Byte  
(sent by X9400 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W W W W W W  
0 0 P P P P P P  
A A  
R
1
R
0
P
1
P
0
0
1
0
1
0
0
1
0
1
1
1
0
5
4 3 2 1 0  
Write Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
opcode addresses  
Data Byte  
(sent by host on SI)  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
W W W W W W  
0 P P P P P P  
A A  
1
R
1
R
0
P
1
P
0
0
1
0
1
0
0
1
1
0
0
0
0
5
4 3 2 1 0  
Transfer Data Register (DR) to Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
opcode addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
A A  
1
R
1
R
0
P
1
P
0
0
1
0
1
0
0
1 1 0 1  
0
Transfer Wiper Counter Register (WCR) to Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction DR and WCR  
opcode addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
A A  
1
R
1
R
0
P
1
P
0
0
1
0
1
0
0
1 1 1 0  
0
FN8189.3  
July 28, 2006  
9
X9400  
Increment/Decrement Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
WCR  
increment/decrement  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
addresses (sent by master on SDA)  
A A  
1
P P I/ I/  
1 0 D D  
I/ I/  
D D  
0
1
0
1
0
0
0
0
1
0
X X  
.
.
.
.
0
Global Transfer Data Register (DR) to Wiper Counter Register (WCR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
DR  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
A
1
A
0
R R  
1 0  
0
1
0
1
0
0
0
0
0
1
0 0  
Global Transfer Wiper Counter Register (WCR) to Data Register (DR)  
device type  
identifier  
device  
addresses  
instruction  
opcode  
DR  
addresses  
CS  
Falling  
Edge  
CS  
Rising  
Edge  
HIGH-VOLTAGE  
WRITE CYCLE  
A A  
1
R R  
1 0  
0
1
0
1
0
0
1
0
0
0
0 0  
0
Read Status  
device type  
identifier  
device  
addresses  
instruction  
opcode  
wiper  
addresses  
Data Byte  
(sent by X9400 on SO)  
CS  
CS  
Falling  
Edge  
Rising  
Edge  
W
I
P
A A  
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
1
0
FN8189.3  
July 28, 2006  
10  
X9400  
ABSOLUTE MAXIMUM RATINGS  
COMMENT  
Temperature under bias.................... -65°C to +135°C  
Storage temperature ......................... -65°C to +150°C  
Voltage on SCK, SCL or any address  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device (at these or any other conditions above those  
listed in the operational sections of this specification)  
is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
input with respect to V ......................... -1V to +7V  
SS  
Voltage on V+ (referenced to V )........................10V  
SS  
Voltage on V- (referenced to V )........................-10V  
SS  
(V+) - (V-) ..............................................................12V  
Any V ....................................................................V+  
H
Any V ......................................................................V-  
L
Lead temperature (soldering, 10 seconds)........ 300°C  
I
(10 seconds)................................................±12mA  
W
RECOMMENDED OPERATING CONDITIONS  
Temp  
Commercial  
Industrial  
Min.  
0°C  
-40°C  
Max.  
+70°C  
+85°C  
Device  
X9400  
Supply Voltage (V ) Limits  
CC  
5V ± 10%  
2.7V to 5.5V  
X9400-2.7  
ANALOG CHARACTERISTICS (Over recommended operating conditions unless otherwise stated.)  
Limits  
Symbol  
R
Parameter  
End to end resistance  
Power rating  
Min.  
Typ.  
Max.  
±20  
50  
Unit  
%
Test Conditions  
TOTAL  
mW  
mA  
25°C, each pot  
I
Wiper current  
±6  
W
R
Wiper resistance  
150  
40  
250  
Wiper Current = ± 1mA,  
= 3V  
W
V
CC  
Wiper Current = ± 1mA,  
= 5V  
100  
V
CC  
Vv+  
Vv-  
Voltage on V+ Pin  
Voltage on V- Pin  
X9400  
+4.5  
+2.7  
-5.5  
-5.5  
V-  
+5.5  
+5.5  
-4.5  
-2.7  
V+  
V
X9400-2.7  
X9400  
V
X9400-2.7  
V
Voltage on any V /R or V /R Pin  
V
dBV  
%
TERM  
H
H
L
L
Noise  
-120  
1.6  
Ref: 1kHz  
Resolution  
(1)  
(3)  
Absolute linearity  
Relative linearity  
-1  
+1  
MI  
R
R
- R  
w(n)(expected)  
w(n)(actual)  
(2)  
(3)  
MI  
-0.2  
+0.2  
- [R  
]
w(n + 1)  
w(n) + MI  
Temperature coefficient of R  
Ratiometric temp. coefficient  
Potentiometer capacitances  
±300  
ppm/°C  
ppm/°C  
pF  
TOTAL  
±20  
10  
C /C /C  
10/10/25  
0.1  
See Spice Macromodel  
H
L
W
I
R , R , R leakage current  
µA  
V
= V to V . Device is in  
SS CC  
AL  
H
L
W
IN  
stand-by mode.  
Notes: (1) Absolute linearity is utilized to determine actual wiper voltage versus expected voltage as determined by wiper position when  
used as a potentiometer.  
(2) Relative linearity is utilized to determine the actual change in voltage between two successive tap positions when used as a  
potentiometer. It is a measure of the error in step size.  
(3) MI = RTOT/63 or (R - R )/63, single pot  
H
L
FN8189.3  
July 28, 2006  
11  
X9400  
D.C. OPERATING CHARACTERISTICS (Over the recommended operating conditions unless otherwise specified.)  
Limits  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
I
V
V
supply current (Active)  
400  
µA  
f = 2MHz, SO = Open,  
SCK  
CC1  
CC  
CC  
Other Inputs = V  
SS  
I
supplycurrent(Nonvolatile  
1
mA  
f
= 2MHz, SO = Open,  
CC2  
SCK  
Other Inputs = V  
Write)  
SS  
I
V
current (standby)  
1
µA  
µA  
µA  
V
SCK = SI = V , Addr. = V  
SS SS  
SB  
CC  
I
Input leakage current  
Output leakage current  
Input HIGH voltage  
Input LOW voltage  
Output LOW voltage  
10  
10  
V
V
= V to V  
SS CC  
LI  
IN  
I
= V to V  
SS CC  
LO  
OUT  
V
V
x 0.7  
V
+ 0.5  
CC  
IH  
CC  
V
-0.5  
V
x 0.1  
V
IL  
CC  
0.4  
V
V
I
= 3mA  
OL  
OL  
ENDURANCE AND DATA RETENTION  
Parameter  
Minimum endurance  
Data retention  
Min.  
Unit  
100,000  
100  
Data changes per bit per register  
years  
CAPACITANCE  
Symbol  
Test  
Max.  
Unit  
pF  
Test Conditions  
= 0V  
(4)  
C
Output capacitance (SO)  
8
6
V
OUT  
OUT  
V = 0V  
IN  
(4)  
C
Input capacitance (A0, A1, SI, and SCK)  
pF  
IN  
POWER-UP TIMING  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(5)  
t
Power-up to initiation of read operation  
Power-up to initiation of write operation  
1
5
ms  
ms  
PUR  
(5)  
t
PUW  
(4)  
t
V
V Power-up ramp  
CC  
0.2  
50  
V/msec  
R
CC  
POWER-UP REQUIREMENTS (Power-up sequencing  
EQUIVALENT A.C. LOAD CIRCUIT  
can affect correct recall of the wiper registers)  
5V  
The preferred power-on sequence is as follows: First  
V
, then the potentiometer pins, R , R , and R .  
CC  
H
L
W
1533Ω  
Voltage should not be applied to the potentiometer  
pins before V+ or V- is applied. The V ramp rate  
CC  
specifi-cation should be met, and any glitches or slope  
changes in the V line should be held to <100mV if  
SDA Output  
CC  
powers down, it should be held below  
100pF  
possible. If V  
CC  
0.1V for more than 1 second before powering up again  
in order for proper wiper register recall. Also, V  
CC  
should not reverse polarity by more than 0.5V. Recall  
of wiper position will not be complete until V , V+  
CC  
and V-reach their final value.  
FN8189.3  
July 28, 2006  
12  
X9400  
A.C. TEST CONDITIONS  
SYMBOL TABLE  
Input pulse levels  
V
x 0.1 to V  
x 0.5  
x 0.9  
CC  
CC  
10ns  
WAVEFORM  
INPUTS  
OUTPUTS  
Input rise and fall times  
Input and output timing level  
V
CC  
Must be  
steady  
Will be  
steady  
Notes: (4) This parameter is periodically sampled and not 100% tested  
(5) t and t are the delays required from the time the  
May change  
from Low to  
High  
Will change  
from Low to  
High  
PUR PUW  
third (last) power supply (V , V+ or V-) is stable until the  
CC  
specific instruction can be issued. These parameters are  
periodically sampled and not 100% tested.  
May change  
from High to  
Low  
Will change  
from High to  
Low  
SPICE Macro Model  
Don’t Care:  
Changes  
Allowed  
Changing:  
State Not  
Known  
R
TOTAL  
N/A  
Center Line  
is High  
Impedance  
R
R
L
H
C
L
C
H
C
W
10pF  
10pF  
25pF  
R
W
AC TIMING  
Symbol  
Parameter  
Min.  
Max.  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
f
SSI/SPI clock frequency  
SSI/SPI clock cycle time  
SSI/SPI clock high time  
SSI/SPI clock low time  
Lead time  
2.0  
SCK  
t
500  
200  
200  
250  
250  
50  
CYC  
t
WH  
t
WL  
t
LEAD  
t
Lag time  
LAG  
t
SI, SCK, HOLD and CS input setup time  
SI, SCK, HOLD and CS input hold time  
SI, SCK, HOLD and CS input rise time  
SI, SCK, HOLD and CS input fall time  
SO output disable time  
SU  
t
50  
H
t
2
RI  
t
2
FI  
t
0
0
500  
100  
DIS  
t
SO output valid time  
V
t
SO output hold time  
HO  
RO  
t
SO output rise time  
50  
50  
t
SO output fall time  
FO  
t
HOLD time  
400  
100  
100  
HOLD  
t
HOLD setup time  
HSU  
t
HOLD hold time  
HH  
t
HOLD low to output in High Z  
HOLD high to output in Low Z  
100  
100  
20  
HZ  
t
LZ  
T
Noise suppression time constant at SI, SCK, HOLD and CS inputs  
CS deselect time  
I
t
2
0
0
CS  
WPASU  
t
WP, A0 and A1 setup time  
t
WP, A0 and A1 hold time  
WPAH  
FN8189.3  
July 28, 2006  
13  
X9400  
HIGH-VOLTAGE WRITE CYCLE TIMING  
Symbol  
Parameter  
Typ.  
Max.  
Unit  
t
High-voltage write cycle time (store instructions)  
5
10  
ms  
WR  
XDCP TIMING  
Symbol  
Parameter  
Min. Max. Unit  
t
Wiper response time after the third (last) power supply is stable  
Wiper response time after instruction issued (all load instructions)  
10  
10  
µs  
µs  
ns  
WRPO  
t
WRL  
t
Wiper response time from an active SCL/SCK edge (increment/decrement instruction)  
450  
WRID  
TIMING DIAGRAMS  
Input Timing  
t
CS  
CS  
t
t
t
LAG  
LEAD  
t
CYC  
SCK  
...  
WH  
t
t
FI  
t
RI  
t
t
WL  
SU  
H
...  
MSB  
LSB  
SI  
High Impedance  
SO  
Output Timing  
CS  
SCK  
SO  
...  
...  
t
t
t
DIS  
V
HO  
MSB  
LSB  
ADDR  
SI  
FN8189.3  
July 28, 2006  
14  
X9400  
Hold Timing  
CS  
t
t
HH  
HSU  
SCK  
SO  
...  
t
t
FO  
RO  
t
t
LZ  
HZ  
SI  
t
HOLD  
HOLD  
XDCP Timing (for All Load Instructions)  
CS  
SCK  
...  
...  
t
WRL  
MSB  
LSB  
SI  
V
/R  
W
W
High Impedance  
SO  
XDCP Timing (for Increment/Decrement Instruction)  
CS  
SCK  
...  
t
WRID  
...  
V
/R  
W
W
...  
ADDR  
Inc/Dec  
SI  
Inc/Dec  
High Impedance  
SO  
FN8189.3  
July 28, 2006  
15  
X9400  
Write Protect and Device Address Pins Timing  
(Any Instruction)  
CS  
t
t
WPAH  
WPASU  
WP  
A0  
A1  
APPLICATIONS INFORMATION  
Basic Configurations of Electronic Potentiometers  
+V  
R
V
R
V
/R  
W
W
I
Three terminal Potentiometer;  
Variable voltage divider  
Two terminal Variable Resistor;  
Variable current  
Application Circuits  
Noninverting Amplifier  
Voltage Regulator  
V
+
S
V
V
V (REG)  
O
317  
O
IN  
R
1
R
2
I
adj  
R
R
1
2
V
= (1+R /R )V  
V
(REG) = 1.25V (1+R /R )+I  
R
adj 2  
O
2
1
S
O
2
1
Offset Voltage Adjustment  
Comparator with Hysteresis  
R
R
2
1
V
+
S
V
V
S
O
100kΩ  
+
V
O
TL072  
R
R
1
2
10kΩ  
10kΩ  
+12V  
V
V
= {R /(R +R )} V (max)  
1 1 2 O  
UL  
LL  
10kΩ  
-12V  
= {R /(R +R )} V (min)  
1
1
2
O
FN8189.3  
July 28, 2006  
16  
X9400  
Application Circuits (continued)  
Attenuator  
Filter  
C
V
+
S
R
V
R
1
2
O
R
V
O
V
+
S
R
3
R
2
R
4
All R = 10kΩ  
S
R
1
G
= 1 + R /R  
2 1  
V
= G V  
S
O
O
fc = 1/(2πRC)  
-1/2 G +1/2  
Inverting Amplifier  
Equivalent L-R Circuit  
R
R
2
1
V
S
R
2
C
1
+
V
+
S
V
O
R
R
1
Z
IN  
V
= G V  
S
O
G = - R /R  
2
1
3
Z
= R + s R (R + R ) C = R + s Leq  
2 2 1 3 1 2  
IN  
(R + R ) >> R  
1
3
2
Function Generator  
C
R
R
1
2
+
+
R
R
}
}
A
B
frequency R , R , C  
1
2
amplitude R , R  
A
B
FN8189.3  
July 28, 2006  
17  
X9400  
Small Outline Plastic Packages (SOIC)  
M24.3 (JEDEC MS-013-AD ISSUE C)  
N
24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
MAX  
2.65  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.020  
-
0.30  
-
1
2
3
L
0.51  
9
SEATING PLANE  
A
0.0091  
0.5985  
0.2914  
0.0125  
0.32  
-
-A-  
0.6141 15.20  
15.60  
7.60  
3
h x 45°  
D
0.2992  
7.40  
4
-C-  
0.05 BSC  
1.27 BSC  
-
α
H
h
0.394  
0.010  
0.016  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
24  
24  
7
0°  
8°  
0°  
8°  
-
NOTES:  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 4/06  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm  
(0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
FN8189.3  
July 28, 2006  
18  
X9400  
Thin Shrink Small Outline Package Family (TSSOP)  
MDP0044  
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY  
0.25 M C A B  
D
A
(N/2)+1  
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE  
N
A
A1  
A2  
b
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
5.00  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
6.50  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
7.80  
6.40  
4.40  
0.65  
0.60  
1.00  
1.20  
0.10  
0.90  
0.25  
0.15  
9.70  
6.40  
4.40  
0.65  
0.60  
1.00  
Max  
±0.05  
PIN #1 I.D.  
E
E1  
±0.05  
+0.05/-0.06  
+0.05/-0.06  
±0.10  
c
0.20 C B A  
2X  
1
(N/2)  
D
N/2 LEAD TIPS  
B
E
Basic  
TOP VIEW  
E1  
e
±0.10  
Basic  
L
±0.15  
0.05  
H
e
L1  
Reference  
Rev. E 12/02  
C
NOTES:  
SEATING  
PLANE  
1. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusions or gate burrs shall not exceed  
0.15mm per side.  
0.10 M C A B  
b
0.10 C  
N LEADS  
SIDE VIEW  
2. Dimension “E1” does not include interlead flash or protrusions.  
Interlead flash and protrusions shall not exceed 0.25mm per  
side.  
3. Dimensions “D” and “E1” are measured at dAtum Plane H.  
SEE DETAIL “X”  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
c
END VIEW  
L1  
A2  
A
GAUGE  
PLANE  
0.25  
L
A1  
0° - 8°  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8189.3  
July 28, 2006  
19  

相关型号:

X9400WS24IZ-2.7T1

Quad Digitally Controlled Potentiometers (XDCP&trade;); SOIC24, TSSOP24; Temp Range: -40&deg; to 85&deg;C
RENESAS

X9400WS24IZT1

Quad Digitally Controlled Potentiometers (XDCP&trade;); SOIC24, TSSOP24; Temp Range: -40&deg; to 85&deg;C
RENESAS

X9400WS24M

Digital Potentiometer
ETC

X9400WS24M-2.7

Digital Potentiometer
ETC

X9400WS24T1

Digital Potentiometer, 4 Func, 10000ohm, 3-wire Serial Control Interface, 64 Positions, CMOS, PDSO24, PLASTIC, SOIC-24
RENESAS

X9400WS24ZT1

Quad Digitally Controlled Potentiometers
INTERSIL

X9400WS24ZT1

Quad Digitally Controlled Potentiometers (XDCP&trade;); SOIC24, TSSOP24; Temp Range: See Datasheet
RENESAS

X9400WV24

Low Noise/Low Power/SPI Bus
INTERSIL

X9400WV24

QUAD 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, PLASTIC, TSSOP-24
RENESAS

X9400WV24-2.7

Low Noise/Low Power/SPI Bus
INTERSIL

X9400WV24-2.7

QUAD 10K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO24, 4.40 MM, TSSOP-24
RENESAS

X9400WV24-2.7T1

Digital Potentiometer, 4 Func, 10000ohm, 3-wire Serial Control Interface, 64 Positions, CMOS, PDSO24, PLASTIC, TSSOP-24
RENESAS