IR2132PBF [INFINEON]

3-PHASE BRIDGE DRIVER; 3相桥式驱动器
IR2132PBF
型号: IR2132PBF
厂家: Infineon    Infineon
描述:

3-PHASE BRIDGE DRIVER
3相桥式驱动器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总26页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet No. PD60019 Rev.P  
IR2130/IR2132(J)(S)&(PbF)  
3-PHASE BRIDGE DRIVER  
Product Summary  
Features  
Floating channel designed for bootstrap operation  
V
600V max.  
200 mA / 420 mA  
10 - 20V  
OFFSET  
Fully operational to +600V  
Tolerant to negative transient voltage  
dV/dt immune  
I +/-  
O
Gate drive supply range from 10 to 20V  
Undervoltage lockout for all channels  
Over-current shutdown turns off all six drivers  
Independent half-bridge drivers  
Matched propagation delay for all channels  
2.5V logic compatible  
V
OUT  
t
(typ.)  
675 & 425 ns  
on/off  
Deadtime (typ.) 2.5 µs (IR2130)  
0.8 µs (IR2132)  
Outputs out of phase with inputs  
Cross-conduction prevention logic  
Also available LEAD-FREE  
Packages  
Description  
The IR2130/IR2132(J)(S) is a high voltage, high speed  
power MOSFET and IGBT driver with three indepen-  
dent high and low side referenced output channels. Pro-  
prietary HVIC technology enables ruggedized  
monolithic construction. Logic inputs are compatible with  
CMOS or LSTTL outputs, down to 2.5V logic. A  
ground-referenced operational amplifier provides  
analog feedback of bridge current via an external cur-  
rent sense resistor. A current trip function which termi-  
nates all six outputs is also derived from this resistor.  
An open drain FAULT signal indicates if an over-cur-  
28-Lead SOIC  
28-Lead PDIP  
44-Lead PLCC w/o 12 Leads  
rent or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed  
for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The  
floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration  
which operate up to 600 volts.  
Typical Connection  
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer  
to our Application Notes and DesignTips for proper circuit board layout.  
www.irf.com  
1
IR2130/IR2132(J)(S)&(PbF)  
Absolute Maximum Ratings  
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-  
eters are absolute voltages referenced to V . The Thermal Resistance and Power Dissipation ratings are measured  
S0  
under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
V
High Side Floating Supply Voltage  
High Side Floating Offset Voltage  
High Side Floating Output Voltage  
Low Side and Logic Fixed Supply Voltage  
Logic Ground  
-0.3  
625  
B1,2,3  
V
- 25  
V
+ 0.3  
S1,2,3  
B1,2,3  
S1,2,3  
B1,2,3  
V
V
- 0.3  
V
+ 0.3  
HO1,2,3  
B1,2,3  
V
-0.3  
- 25  
25  
CC  
V
V
V
V
+ 0.3  
SS  
LO1,2,3  
CC  
CC  
CC  
V
Low Side Output Voltage  
-0.3  
+ 0.3  
V
HIN1,2,3 LIN1,2,3  
V
Logic Input Voltage (  
,
& ITRIP)  
V
SS  
- 0.3  
(V + 15) or  
SS  
IN  
(V + 0.3)  
CC  
whichever is  
lower  
V
Output Voltage  
V
- 0.3  
- 0.3  
- 0.3  
V
CC  
V
CC  
V
CC  
+ 0.3  
+ 0.3  
+ 0.3  
FAULT  
FLT  
SS  
SS  
V
CAO  
Operational Amplifier Output Voltage  
V
V
Operational Amplifier Inverting Input Voltage  
Allowable Offset Supply Voltage Transient  
Package Power Dissipation @ TA +25°C  
V
SS  
CA-  
dV /dt  
50  
V/ns  
W
S
P
(28 Lead DIP)  
(28 Lead SOIC)  
(44 Lead PLCC)  
(28 Lead DIP)  
-55  
1.5  
1.6  
2.0  
83  
D
Rth  
Thermal Resistance, Junction to Ambient  
JA  
(28 Lead SOIC)  
(44 Lead PLCC)  
78  
°C/W  
°C  
63  
T
T
Junction Temperature  
150  
150  
300  
J
Storage Temperature  
S
T
Lead Temperature (Soldering, 10 seconds)  
L
Recommended Operating Conditions  
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the  
recommended conditions. All voltage parameters are absolute voltages referenced to V . The V offset rating is tested  
S0  
S
with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.  
Symbol  
Definition  
Min.  
Max.  
Units  
V
V
High Side Floating Supply Voltage  
High Side Floating Offset Voltage  
High Side Floating Output Voltage  
Low Side and Logic Fixed Supply Voltage  
Logic Ground  
V
+ 10  
Note 1  
V
+ 20  
600  
B1,2,3  
S1,2,3  
S1,2,3  
S1,2,3  
V
V
V
B1,2,3  
HO1,2,3  
S1,2,3  
V
10  
20  
CC  
V
-5  
0
5
SS  
LO1,2,3  
V
Low Side Output Voltage  
V
CC  
V
HIN1,2,3 LIN1,2,3  
V
Logic Input Voltage (  
,
& ITRIP)  
V
V
V
V
V
+ 5  
SS  
IN  
SS  
SS  
SS  
SS  
V
FLT  
Output Voltage  
FAULT  
Operational Amplifier Output Voltage  
V
CC  
V
V
V
+ 5  
+ 5  
CAO  
SS  
SS  
V
Operational Amplifier Inverting Input Voltage  
Ambient Temperature  
CA-  
T
-40  
125  
°C  
A
Note 1: Logic operational for V of (V - 5V) to (V + 600V). Logic state held for V of (V - 5V) to (V - V ).  
S
S0  
S0  
S
S0  
S0  
BS  
(Please refer to the Design Tip DT97-3 for more details).  
Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode.  
2
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
Dynamic Electrical Characteristics  
V
BIAS  
(V , V  
CC BS1,2,3  
) = 15V, V  
= V , C = 1000 pF and T = 25°C unless otherwise specified. The dynamic  
S0,1,2,3  
SS  
L
A
electrical characteristics are defined in Figures 3 through 5.  
Symbol  
Definition  
Figure Min. Typ. Max. Units Test Conditions  
t
t
Turn-On Propagation Delay  
Turn-Off Propagation Delay  
Turn-On Rise Time  
11  
12  
13  
14  
15  
16  
17  
18  
18  
19  
20  
500  
300  
675  
425  
80  
850  
550  
125  
55  
920  
on  
off  
V
= 0 & 5V  
IN  
t
r
t
f
V
= 0 to 600V  
S1,2,3  
Turn-Off Fall Time  
ITRIP to Output Shutdown Prop. Delay  
ITRIP Blanking Time  
400  
35  
t
660  
400  
590  
310  
9.0  
2.5  
0.8  
6.2  
3.2  
V
, V  
= 0 & 5V  
= 1V  
itrip  
IN  
IN  
IN  
ITRIP  
ns  
t
V
bl  
flt  
ITRIP  
t
ITRIP to FAULT Indication Delay  
Input Filter Time (All Six Inputs)  
LIN1,2,3 to FAULT Clear Time  
335  
845  
V
V
, V  
= 0 & 5V  
ITRIP  
t
t
V
IN  
= 0 & 5V  
flt,in  
fltclr  
6.0  
1.3  
0.4  
4.4  
2.4  
12.0  
3.7  
1.2  
, V  
= 0 & 5V  
ITRIP  
DT  
Deadtime  
(IR2130)  
(IR2132)  
µs  
V
IN  
= 0 & 5V  
SR+  
SR-  
Operational Amplifier Slew Rate (+)  
Operational Amplifier Slew Rate (-)  
V/µs  
NOTE: For high side PWM, HIN pulse width must be ≥ 1.5µsec  
Static Electrical Characteristics  
V
(V , V ) = 15V, V = V and T = 25°C unless otherwise specified. The V , V and I parameters  
BIAS CC BS1,2,3 S0,1,2,3 SS A IN TH IN  
are referenced to V and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The V and I parameters  
SS  
O
O
are referenced to V  
and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
S0,1,2,3  
Symbol  
Definition  
Figure Min. Typ. Max. Units Test Conditions  
V
Logic “0” Input Voltage (OUT = LO)  
Logic “1” Input Voltage (OUT = HI)  
ITRIP Input Positive Going Threshold  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
2.2  
IH  
V
V
0.8  
580  
100  
100  
50  
IL  
V
400  
490  
IT,TH+  
V
OH  
High Level Output Voltage, V  
- VO  
V
V
= 0V, I = 0A  
O
mV  
BIAS  
IN  
IN  
V
Low Level Output Voltage, VO  
Offset Supply Leakage Current  
= 5V, I = 0A  
O
OL  
LK  
I
15  
V = V = 600V  
B S  
µA  
I
Quiescent V Supply Current  
30  
V
= 0V or 5V  
= 0V or 5V  
QBS  
QCC  
BS  
IN  
IN  
I
Quiescent V Supply Current  
3.0  
450  
225  
75  
4.0  
650  
400  
150  
100  
9.2  
mA  
V
CC  
I
Logic “1” Input Bias Current (OUT = HI)  
Logic “0” Input Bias Current (OUT = LO)  
“High” ITRIP Bias Current  
V
= 0V  
= 5V  
IN+  
IN  
IN  
I
IN-  
V
µA  
I
ITRIP = 5V  
ITRIP = 0V  
ITRIP+  
I
V
Low” ITRIP Bias Current  
7.5  
8.35  
nA  
ITRIP-  
V
BS  
Supply Undervoltage Positive Going  
BSUV+  
Threshold  
Supply Undervoltage Negative Going  
Threshold  
V Supply Undervoltage Positive Going  
CC  
Threshold  
V Supply Undervoltage Negative Going  
CC  
V
V
BS  
34  
35  
36  
37  
7.1  
8.3  
8.0  
7.95  
9.0  
8.7  
55  
8.8  
9.7  
9.4  
75  
BSUV-  
V
V
CCUV+  
V
CCUV-  
Threshold  
Low On-Resistance  
R
on,FLT  
FAULT  
www.irf.com  
3
IR2130/IR2132(J)(S)&(PbF)  
Static Electrical Characteristics -- Continued  
V (V , V ) = 15V, V = V and T = 25°C unless otherwise specified. The V , V and I parameters  
BIAS CC BS1,2,3 S0,1,2,3 SS A IN TH IN  
are referenced to V and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3. The V and I parameters  
SS  
O
O
are referenced to V  
and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.  
S0,1,2,3  
Symbol  
Definition  
Figure Min. Typ. Max. Units Test Conditions  
I
O+  
Output High Short Circuit Pulsed Current  
38  
200  
250  
V = 0V, V = 0V  
O IN  
PW 10 µs  
mA  
I
O-  
Output Low Short Circuit Pulsed Current  
39  
420  
500  
V
= 15V, V = 5V  
O
IN  
PW 10 µs  
V
Operational Amplifer Input Offset Voltage  
CA- Input Bais Current  
40  
41  
42  
43  
60  
55  
80  
75  
30  
4.0  
mV  
nA  
V
= V  
= 0.2V  
CA-  
OS  
S0  
I
V
= 2.5V  
CA-  
CA-  
CMRR  
PSRR  
Op. Amp. Common Mode Rejection Ratio  
Op. Amp. Power Supply Rejection Ratio  
V =V =0.1V & 5V  
S0 CA-  
V
= V  
= 0.2V  
CA-  
dB  
S0  
V
CC  
= 10V & 20V  
V
Op. Amp. High Level Output Voltage  
Op. Amp. Low Level Output Voltage  
Op. Amp. Output Source Current  
44  
45  
46  
5.0  
2.3  
5.2  
4.0  
5.4  
20  
V
V
= 0V, V = 1V  
S0  
OH,AMP  
CA-  
CA-  
CA-  
V
mV  
V
= 1V, V = 0V  
S0  
OL,AMP  
I
V
V
V
V
= 0V, V = 1V  
S0  
SRC,AMP  
V
CAO  
= 4V  
I
Op. Amp. Output Sink Current  
47  
48  
49  
1.0  
2.1  
4.5  
3.2  
= 1V, V = 0V  
S0  
SRC,AMP  
CA-  
CA-  
CA-  
mA  
V
CAO  
= 2V  
I
Operational Amplifier Output High Short  
Circuit Current  
6.5  
5.2  
= 0V, V = 5V  
S0  
O+,AMP  
V
CAO  
= 0V  
I
Operational Amplifier Output Low Short  
Circuit Current  
= 5V, V = 0V  
S0  
O-,AMP  
V
CAO  
= 5V  
Lead Assignments  
28 Lead PDIP  
44 Lead PLCC w/o 12 Leads  
IR2130J / IR2132J  
Part Number  
28 Lead SOIC (Wide Body)  
IR2130 / IR2132  
IR2130S / IR2132S  
4
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
Functional Block Diagram  
Lead Definitions  
Symbol Description  
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase  
LIN1,2,3 Logic inputs for low side gate driver output (LO1,2,3), out of phase  
FAULT  
Indicates over-current or undervoltage lockout (low side) has occurred, negative logic  
Low side and logic fixed supply  
V
CC  
ITRIP  
CAO  
CA-  
Input for over-current shutdown  
Output of current amplifier  
Negative input of current amplifier  
Logic ground  
V
V
SS  
High side floating supplies  
B1,2,3  
HO1,2,3 High side gate drive outputs  
High side floating supply returns  
LO1,2,3 Low side gate drive outputs  
Low side return and positive input of current amplifier  
V
S1,2,3  
V
S0  
www.irf.com  
5
IR2130/IR2132(J)(S)&(PbF)  
HIN1,2,3  
LIN1,2,3  
ITRIP  
<50 V/ns  
FAULT  
HO1,2,3  
LO1,2,3  
Figure 1. Input/Output Timing Diagram  
Figure 2. Floating Supply Voltage Transient Test Circuit  
HIN1,2,3  
LIN1,2,3  
HIN1,2,3  
50%  
50%  
50%  
50%  
LIN1,2,3  
LO1,2,3  
t
r
t
t
f
t
off  
on  
90%  
90%  
50%  
DT  
50%  
DT  
HO1,2,3  
HO1,2,3  
LO1,2,3  
10%  
10%  
Figure 3. Deadtime Waveform Definitions  
Figure 4. Input/Output Switching Time Waveform  
Definitions  
6
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
50%  
LIN1,2,3  
50%  
ITRIP  
FAULT  
50%  
50%  
LO1,2,3  
50%  
t
t
fltclr  
flt  
t
itrip  
Figure 5. Overcurrent Shutdown Switching Time  
Waveform Definitions  
tin,fil  
tin,fil  
U
HIN/LIN  
on  
on off  
low  
on off  
high  
off  
HO/LO  
Figure 5.5 Input Filter Function  
VCC  
V
+
-
S0  
CAO  
CA-  
V
SS  
V
SS  
Figure 6. Diagnostic Feedback Operational Amplifier Circuit  
www.irf.com  
7
IR2130/IR2132(J)(S)&(PbF)  
15V  
VCC  
15V  
VCC  
3V  
V
+
S0  
+
-
CA-  
CAO  
CAO  
0V  
CA-  
-
VS0  
VSS  
50 pF  
VSS  
+
20k  
0.2V  
T1  
T2  
1k  
3V  
0V  
90%  
10%  
V  
V
CAO  
21  
- 0.2V  
V
=
OS  
V  
V  
SR+ =  
SR- =  
T2  
T1  
Figure 7. Operational Amplifier Slew Rate  
Measurement  
Figure 8. Operational Amplifier Input Offset Voltage  
Measurement  
VCC  
V
S0  
15V  
+
CAO  
VCC  
CA-  
-
-
VSS  
CA-  
CAO  
+
+
V
S0  
20k  
V
SS  
0.2V  
1k  
Measure V  
at V = 0.1V  
S0  
CAO1  
V
at V = 5V  
CAO2  
S0  
Measure V  
V
at V  
at V  
= 10V  
= 20V  
CAO1  
CAO2  
CC  
CC  
(V  
CAO1  
-0.1V) - (V  
-5V)  
CAO2  
(dB)  
CMRR = -20 LOG  
*
V
- V  
4.9V  
CAO1  
CAO2  
PSRR = -20 LOG  
*
(10V) (21)  
Figure 9. Operational Amplifier Common Mode  
Rejection Ratio Measurements  
Figure 10. Operational Amplifier Power Supply  
Rejection Ratio Measurements  
8
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
1.50  
1.20  
0.90  
0.60  
0.30  
0.00  
1.50  
1.20  
Max.  
Typ.  
Min.  
Max.  
0.90  
Typ.  
0.60  
Min.  
0.30  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 11A. Turn-On Time vs. Temperature  
Figure 11B. Turn-On Time vs. Supply Voltage  
1.00  
0.80  
1.50  
1.20  
Max  
Typ.  
0.90  
0.60  
0.30  
0.00  
0.60  
Max.  
Typ.  
0.40  
Min.  
0.20  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
0
1
2
3
4
5
6
Temperature (°C)  
Input Voltage (V)  
Figure 11C. Turn-On Time vs. Voltage  
Figure 12A. Turn-Off Time vs. Temperature  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
1.50  
1.20  
0.90  
0.60  
0.30  
0.00  
Max.  
Typ.  
Min.  
Max  
Typ  
Min.  
0
1
2
3
4
5
6
10  
12  
14  
16  
18  
20  
Input Voltage (V)  
V
BIAS Supply Voltage (V)  
Figure 12C. Turn-Off Time vs. Input Voltage  
Figure 12B. Turn-Off Time vs. Supply Voltage  
www.irf.com  
9
IR2130/IR2132(J)(S)&(PbF)  
250  
200  
150  
250  
200  
150  
100  
50  
Max.  
Typ.  
Max.  
100  
Typ.  
50  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 13A. Turn-On Rise Time vs. Temperature  
Figure 13B. Turn-On Rise Time vs. Voltage  
125  
125  
100  
75  
50  
25  
0
100  
75  
50  
25  
0
Max.  
Typ.  
Max.  
Typ.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 14A. Turn-Off Fall Time vs. Temperature  
Figure 14B. Turn-Off Fall Time vs. Voltage  
1.50  
1.50  
1.20  
0.90  
0.60  
0.30  
0.00  
1.20  
0.90  
0.60  
0.30  
0.00  
Max.  
Typ.  
Min.  
Max.  
Typ.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 15A. ITRIP to Output Shutdown Time vs.  
Temperature  
Figure 15B. ITRIP to Output Shutdown Time vs. Voltage  
10  
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
1.50  
1.20  
0.90  
0.60  
0.30  
0.00  
1.50  
1.20  
Max.  
Typ.  
Min.  
Max.  
0.90  
Typ.  
0.60  
Min.  
0.30  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 16A. ITRIP to FAULT Indication Time vs.  
Temperature  
Figure 16B. ITRIP to FAULT Indication Time vs. Voltage  
25.0  
25.0  
20.0  
20.0  
15.0  
Max.  
15.0  
Max.  
Typ.  
Typ.  
10.0  
10.0  
Min.  
5.0  
Min.  
5.0  
0.0  
0.0  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
VCC Supply Voltage (V)  
Temperature (°C)  
Figure 17A. LIN1,2,3 to FAULT Clear Time vs.  
Temperature  
Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage  
7.50  
6.00  
7.50  
6.00  
Max.  
4.50  
Max.  
4.50  
Typ.  
3.00  
Typ.  
3.00  
Min.  
Min.  
1.50  
1.50  
0.00  
0.00  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
V
BIAS Supply Voltage (V)  
Temperature (°C)  
Figure 18A. Deadtime vs. Temperature (IR2130)  
Figure 18B. Deadtime vs. Voltage (IR2130)  
www.irf.com  
11  
IR2130/IR2132(J)(S)&(PbF)  
2.50  
2.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
1.50  
Max.  
Max.  
Typ.  
1.00  
Typ.  
Min.  
Min.  
0.50  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 18C. Deadtime vs. Temperature (IR2132)  
Figure 18D. Deadtime vs. Voltage (IR2132)  
10.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
8.0  
Typ.  
6.0  
Typ.  
Min.  
Min.  
4.0  
2.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 19A. Amplifier Slew Rate (+) vs. Temperature  
Figure 19B. Amplifier Slew Rate (+) vs. Voltage  
5.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
4.00  
Typ.  
Typ.  
Min.  
3.00  
Min.  
2.00  
1.00  
0.00  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
VCC Supply Voltage (V)  
Temperature (°C)  
Figure 20A. Amplifier Slew Rate (-) vs. Temperature  
Figure 20B. Amplifier Slew Rate (-) vs. Voltage  
12  
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
5.00  
4.00  
3.00  
Min.  
Min.  
2.00  
1.00  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 21A. Logic “0” Input Threshold vs. Temperature  
Figure 20B. Logic “0” Input Threshold vs. Voltage  
5.00  
5.00  
4.00  
3.00  
2.00  
4.00  
3.00  
2.00  
1.00  
0.00  
Max.  
1.00 Max.  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 22A. Logic “1” Input Threshold vs. Temperature  
Figure 22B. Logic “1” Input Threshold vs. Voltage  
750  
750  
Max.  
600  
Max.  
600  
Typ.  
Typ.  
450  
Min.  
450  
Min.  
300  
150  
0
300  
150  
0
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
VCC Supply Voltage (V)  
Temperature (°C)  
Figure 23A. ITRIP Input Positive Going Threshold  
vs. Temperature  
Figure 23B. ITRIP Input Positive Going Threshold  
vs. Voltage  
www.irf.com  
13  
IR2130/IR2132(J)(S)&(PbF)  
1.00  
0.80  
0.60  
0.40  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.20  
Max.  
Max.  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 24A. High Level Output vs. Temperature  
Figure 24B. High Level Output vs. Voltage  
1.00  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
0.80  
0.60  
0.40  
0.20  
Max.  
Max.  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
BIAS Supply Voltage (V)  
Figure 25A. Low Level Output vs. Temperature  
Figure 25B. Low Level Output vs. Voltage  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
Max.  
Max.  
0
0
100  
200  
300  
400  
500  
600  
-50  
-25  
0
25  
50  
75  
100  
125  
V
B Boost Voltage (V)  
Temperature (°C)  
Figure 26A. Offset Supply Leakage Current  
vs. Temperature  
Figure 26B. Offset Supply Leakage Current vs. Voltage  
14  
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
Max.  
Typ.  
Max.  
20  
Typ.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
BS Floating Supply Voltage (V)  
Figure 27A. V  
Supply Current vs. Temperature  
Figure 27B. V  
Supply Current vs. Voltage  
BS  
BS  
10.0  
8.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
6.0  
4.0  
Max.  
Max.  
Typ.  
Typ.  
2.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 28A. V  
Supply Current vs. Temperature  
Figure 28B. V  
Supply Current vs. Voltage  
CC  
CC  
1.25  
1.25  
1.00  
0.75  
1.00  
0.75  
0.50  
0.25  
0.00  
0.50  
Max.  
Max.  
Typ.  
Typ.  
0.25  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 29A. Logic “1” Input Current vs. Temperature  
Figure 29A. Logic “1” Input Current vs. Voltage  
www.irf.com  
15  
IR2130/IR2132(J)(S)&(PbF)  
1.25  
1.00  
0.75  
0.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
Max.  
Max.  
Typ.  
0.25  
Typ.  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 30A. Logic “0” Input Current vs. Temperature  
Figure 30B. Logic “0” Input Current vs. Voltage  
500  
400  
300  
500  
400  
300  
200  
Max.  
200  
Max.  
100  
Typ.  
100  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 31A. “High” ITRIP Current vs. Temperature  
Figure 31B. “High” ITRIP Current vs. Voltage  
250  
500  
200  
150  
100  
50  
400  
300  
200  
100  
0
Max.  
Max.  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 32A. “Low” ITRIP Current vs. Temperature  
Figure 32B. “Low” ITRIP Current vs. Voltage  
16  
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
11.0  
10.0  
11.0  
10.0  
9.0  
Max.  
Typ.  
Min.  
9.0  
Max.  
8.0  
Typ.  
8.0  
Min.  
7.0  
7.0  
6.0  
6.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 33. V  
Undervoltage (+) vs. Temperature  
Figure 34. V  
Undervoltage (-) vs. Temperature  
BS  
BS  
11.0  
11.0  
10.0  
Max.  
10.0  
Max.  
Typ.  
9.0  
9.0  
Typ.  
Min.  
8.0  
Min.  
8.0  
7.0  
6.0  
7.0  
6.0  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
Temperature (°C)  
Figure 35. V  
Undervoltage (+) vs. Temperature  
Figure 36. V  
Undervoltage (-) vs. Temperature  
CC  
CC  
250  
200  
150  
100  
250  
200  
150  
Max.  
100  
Typ.  
Max.  
50  
50  
Typ.  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 37A. FAULT Low On Resistance vs.  
Temperature  
Figure 37B. FAULT Low On Resistance vs. Voltage  
www.irf.com  
17  
IR2130/IR2132(J)(S)&(PbF)  
500  
400  
500  
400  
300  
200  
100  
0
Typ.  
300  
Min.  
200  
Typ.  
Min.  
100  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 38A. Output Source Current vs. Temperature  
Figure 38B. Output Source Current vs. Voltage  
750  
750  
625  
500  
375  
250  
125  
0
Typ.  
600  
Min.  
450  
Typ.  
Min.  
300  
150  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VBIAS Supply Voltage (V)  
Figure 39A. Output Sink Current vs. Temperature  
Figure 39B. Output Sink Current vs. Voltage  
50  
50  
40  
40  
30  
20  
10  
0
Max.  
30  
Max.  
20  
10  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 40A. Amplifier Input Offset vs. Temperature  
Figure 40B. Amplifier Input Offset vs. Voltage  
18  
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
10.0  
8.0  
6.0  
Max.  
Max.  
4.0  
2.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 41A. CA- Input Current vs. Temperature  
Figure 41B. CA- Input Current vs. Voltage  
100  
100  
80  
60  
40  
20  
0
Typ.  
Min.  
Typ.  
Min.  
80  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 42A. Amplifier CMRR vs. Temperature  
Figure 42B. Amplifier CMRR vs. Voltage  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
Typ.  
Min.  
Typ.  
Min.  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 43A. Amplifier PSRR vs. Temperature  
Figure 43B. Amplifier PSRR vs. Voltage  
www.irf.com  
19  
IR2130/IR2132(J)(S)&(PbF)  
6.00  
5.70  
6.00  
5.70  
5.40  
5.10  
4.80  
4.50  
Max.  
Typ.  
Min.  
5.40  
Max.  
Typ.  
5.10  
Min.  
4.80  
4.50  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 44A. Amplifier High Level Output vs.  
Temperature  
Figure 44B. Amplifier High Level Output vs. Voltage  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
Max.  
Max.  
20  
0
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 45A. Amplifier Low Level Output vs.  
Temperature  
Figure 45B. Amplifier Low Level Output vs. Voltage  
10.0  
10.0  
8.0  
6.0  
4.0  
8.0  
6.0  
4.0  
2.0  
0.0  
Typ.  
Min.  
Typ.  
2.0  
Min.  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 46A. Amplifier Output Source Current vs.  
Temperature  
Figure 46B. Amplifier Output Source Current vs.  
Voltage  
20  
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
5.00  
4.00  
3.00  
Typ.  
Min.  
2.00  
Typ.  
Min.  
1.00  
0.00  
10  
12  
14  
16  
18  
20  
-50  
-25  
0
25  
50  
75  
100  
125  
VCC Supply Voltage (V)  
Temperature (°C)  
Figure 47A. Amplifier Output Sink Current vs.  
Temperature  
Figure 47B. Amplifier Output Sink Current vs. Voltage  
15.0  
15.0  
12.0  
9.0  
6.0  
3.0  
0.0  
12.0  
9.0  
Max.  
Typ.  
6.0  
Max.  
3.0  
Typ.  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
V
CC Supply Voltage (V)  
Figure 48A. Amplifier Output High Short Circuit  
Current vs. Temperature  
Figure 48B. Amplifier Output High Short Circuit  
Current vs. Voltage  
15.0  
12.0  
9.0  
15.0  
12.0  
9.0  
Max.  
6.0  
6.0  
Typ.  
3.0  
Max.  
3.0  
Typ.  
0.0  
0.0  
-50  
-25  
0
25  
50  
75  
100  
125  
10  
12  
14  
16  
18  
20  
Temperature (°C)  
VCC Supply Voltage (V)  
Figure 49A. Amplifier Output Low Short Circuit Current  
vs. Temperature  
Figure 49B. Amplifier Output Low Short Circuit Current  
vs. Voltage  
www.irf.com  
21  
IR2130/IR2132(J)(S)&(PbF)  
0.0  
-3.0  
Typ.  
-6.0  
-9.0  
-12.0  
-15.0  
10  
12  
14  
16  
18  
20  
V
BS Floating Supply Voltage (V)  
Figure 50. Maximum VS Negative Offset vs. V Supply Voltage  
BS  
50  
45  
40  
35  
30  
25  
20  
50  
480V  
320V  
480V  
45  
40  
320V  
35  
160V  
160V  
0V  
30  
0V  
25  
20  
1E+2  
1E+3  
1E+4  
1E+5  
1E+2  
1E+3  
1E+4  
1E+5  
Frequency (Hz)  
Frequency (Hz)  
Figure 51. IR2130/IR2132 T vs. Frequency (IRF820)  
Figure 52. IR2130/IR2132 T vs. Frequency (IRF830)  
J
J
R
GATE  
= 33, V  
= 15V  
R
GATE  
= 20, V = 15V  
CC  
CC  
100  
80  
140  
120  
100  
80  
480V  
320V  
60  
160V  
0V  
480V  
320V  
60  
40  
160V  
0V  
40  
20  
20  
1E+2  
1E+3  
1E+4  
1E+5  
1E+2  
1E+3  
1E+4  
1E+5  
Frequency (Hz)  
Frequency (Hz)  
Figure 53. IR2130/IR2132 T vs. Frequency (IRF840)  
Figure 54. IR2130/IR2132 T vs. Frequency (IRF450)  
J
J
R
GATE  
= 15, V  
= 15V  
R
GATE  
= 10, V  
= 15V  
CC  
CC  
22  
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
120  
110  
120  
110  
100  
90  
100  
90  
80  
80  
70  
70  
60  
60  
50  
50  
40  
30  
480V  
480V  
320V  
160V  
0V  
40  
320V  
160  
0V  
30  
20  
20  
1E+2  
1E+3  
1E+4  
Frequency (Hz)  
1E+5  
1E+2  
1E+3  
1E+4  
1E+5  
Frequency (Hz)  
Figure 55. IR2130J/IR2132J  
vs. Frequency (IRGPC20KD2)  
Figure 56. IR2130J/IR2132J  
T vs. Frequency (IRGPC30KD2)  
J
T
J
R
GATE  
= 33, V  
= 15V  
R
GATE  
= 20, V  
= 15V  
CC  
CC  
120  
120  
110  
100  
90  
480V  
110  
100  
90  
80  
70  
60  
50  
320V  
80  
70  
60  
160V  
0V  
480V  
50  
40  
30  
320V  
160V  
0V  
40  
30  
20  
20  
1E+2  
1E+3  
1E+4  
1E+5  
1E+2  
1E+3  
1E+4  
1E+5  
Frequency (Hz)  
Frequency (Hz)  
Figure 57. IR2130J/IR2132J  
T vs. Frequency (IRGPC40KD2)  
Figure 58. IR2130J/IR2132J  
vs. Frequency (IRGPC50KD2)  
J
T
J
R
GATE  
= 15, V  
= 15V  
R
GATE  
= 10, V  
= 15V  
CC  
CC  
www.irf.com  
23  
IR2130/IR2132(J)(S)&(PbF)  
Case outlines  
01-6011  
01-3024 02 (MS-011AB)  
28-Lead PDIP (wide body)  
01-6013  
01-304002 (MS-013AE)  
28-Lead SOIC (wide body)  
24  
www.irf.com  
IR2130/IR2132(J)(S)&(PbF)  
Case outline  
NOTES  
01-6009 00  
01-3004 02(mod.) (MS-018AC)  
44-Lead PLCC w/o 12 leads  
www.irf.com  
25  
IR2130/IR2132(J)(S)&(PbF)  
LEADFREE PART MARKING INFORMATION  
Part number  
Date code  
IRxxxxxx  
YWW?  
IR logo  
?XXXX  
Pin 1  
Identifier  
Lot Code  
(Prod mode - 4 digit SPN code)  
?
MARKING CODE  
P
Lead Free Released  
Non-Lead Free  
Released  
Assembly site code  
Per SCOP 200-002  
ORDER INFORMATION  
Basic Part (Non-Lead Free)  
Leadfree Part  
28-Lead PDIP IR2130 order IR2130  
28-Lead SOIC IR2130S order IR2130S  
28-Lead PDIP IR2132 order IR2132  
28-Lead SOIC IR2132S order IR2132S  
44-Lead PLCC IR2130J order IR2130J  
44-Lead PLCC IR2132J order IR2132J  
28-Lead PDIP IR2130 order IR2130PbF  
28-Lead SOIC IR2130S order IR2130SPbF  
28-Lead PDIP IR2132 order IR2132PbF  
28-Lead SOIC IR2132S order IR2132SPbF  
44-Lead PLCC IR2130J order IR2130JPbF  
44-Lead PLCC IR2132J order IR2132JPbF  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105  
This product has been qualified per industrial level  
Data and specifications subject to change without notice. 4/2/2004  
26  
www.irf.com  

相关型号:

IR2132S

3-PHASE BRIDGE DRIVER
INFINEON

IR2132SPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR2132STR

Half Bridge Based MOSFET Driver, 0.5A, BICMOS, PDSO28, MS-013AE, SOIC-28
INFINEON

IR2132STRPBF

Half Bridge Based MOSFET Driver, 0.5A, BICMOS, PDSO28, MS-013AE, SOIC-28
INFINEON

IR2133

3-PHASE BRIDGE DRIVER
INFINEON

IR2133J

3-PHASE BRIDGE DRIVER
INFINEON

IR2133JPBF

暂无描述
INFINEON

IR2133JSPBF

3-PHASE BRIDGE DRIVER
INFINEON

IR2133JTRPBF

暂无描述
INFINEON

IR2133PBF

3-PHASE BRIDGE DRIVER
INFINEON

IR2133S

3-PHASE BRIDGE DRIVER
INFINEON

IR2133SPBF

Half Bridge Based MOSFET Driver, 0.5A, CMOS, PDSO28, LEAD FREE, MS-013AE, SOIC-28
INFINEON