AS7C331MNTD32A-167BI [ISSI]

ZBT SRAM, 1MX32, 7.5ns, CMOS, PBGA165, BGA-165;
AS7C331MNTD32A-167BI
型号: AS7C331MNTD32A-167BI
厂家: INTEGRATED SILICON SOLUTION, INC    INTEGRATED SILICON SOLUTION, INC
描述:

ZBT SRAM, 1MX32, 7.5ns, CMOS, PBGA165, BGA-165

静态存储器
文件: 总22页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 2004  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
3.3V 1M × 32/36 SRAM with NTDTM  
Features  
• Asynchronous output enable control  
• Organization: 1,048,576 words × 32 or 36 bits  
• NTD™1 architecture for efficient bus operation  
• Fast clock speeds to 200 MHz in LVTTL/LVCMOS  
• Fast clock to data access: 3.1/3.4/3.8 ns  
• Fast OE access time: 3.1/3.4/3.8 ns  
• Available in 100-pin TQFP and 165-ball BGA packages  
• Byte write enables  
• Clock enable for operation hold  
• Multiple chip enables for easy expansion  
• 3.3V core power supply  
• Fully synchronous operation  
• Flow-through or pipelined mode  
• 2.5V or 3.3V I/O operation with separate VDDQ  
• Self-timed write cycles  
• Interleaved or linear burst modes  
• Snooze mode for standby operation  
• Boundary scan using IEEE 1149.1 JTAG function  
1. NTD™ is a trademark of Alliance Semiconductor Corporation. All trade-  
marks mentioned in this document are the property of their respective owners.  
Logic block diagram  
20  
20  
Q
A[19:0]  
D
Address  
register  
Burst logic  
CLK  
D
Q
CE0  
CE1  
CE2  
Write delay  
addr. registers  
20  
CLK  
R/W  
BWa  
Control  
logic  
CLK  
BWb  
BWc  
BWd  
ADV / LD  
FT  
1M x 32/36  
SRAM  
LBO  
ZZ  
CLK  
Array  
32/36  
32/36  
DQ[a,b,c,d]  
Data  
Input  
Register  
D
Q
32/36  
32/36  
CLK  
32/36  
CLK  
CEN  
CLK  
Output  
Register  
OE  
32/36  
OE  
DQ[a,b,c,d]  
Selection guide  
-200  
5
-167  
6
-133  
7.5  
Units  
ns  
Minimum cycle time  
Maximum pipelined clock frequency  
Maximum pipelined clock access time  
Maximum operating current  
200  
3.1  
400  
120  
70  
167  
3.4  
350  
110  
70  
133  
3.8  
MHz  
ns  
325  
100  
70  
mA  
mA  
mA  
Maximum standby current  
Maximum CMOS standby current (DC)  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 1 of 22  
Copyright © Alliance Semiconductor. All rights reserved.  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
Pin and ball assignment  
100-pin TQFP - top view  
1
2
3
4
5
6
7
8
9
NC/DQPc  
DQc0  
DQPb/NC  
DQb7  
DQb6  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DQc1  
V
V
DDQ  
DDQ  
V
V
SSQ  
SSQ  
DQc2  
DQc3  
DQc4  
DQc5  
DQb5  
DQb4  
DQb3  
DQb2  
V
V
10  
11  
12  
SSQ  
SSQ  
V
V
DDQ  
DDQ  
DQc6  
DQc7  
FT  
DQb1  
DQb0  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
V
SS  
TQFP 14 x 20mm  
V
NC  
DD  
NC  
V
DD  
V
ZZ  
DQa7  
DQa6  
SS  
DQd0  
DQd1  
V
V
DDQ  
DDQ  
V
V
SSQ  
SSQ  
DQd2  
DQd3  
DQd4  
DQd5  
DQa5  
DQa4  
DQa3  
DQa2  
V
V
V
SSQ  
SSQ  
DDQ  
V
27  
28  
29  
30  
DDQ  
DQd6  
DQd7  
NC/DQPd  
DQa1  
DQa0  
DQPa/NC  
Note: For pins 1, 30, 51, and 80, NC applies to the x32 configuration.  
DQPn applies to the x36 configuration.  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 2 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
165-ball BGA - top view for 1M X 36  
1
2
3
4
5
6
7
8
9
10  
11  
NC  
A
CE0  
BWc  
BWb  
CE2  
CEN  
ADV/LD  
A
A
NC  
A
B
C
D
E
F
NC  
DQPc  
DQc  
DQc  
DQc  
DQc  
FT  
A
CE1  
BWd  
BWa  
CLK  
R/W  
OE  
A
A
NC  
DQPb  
DQb  
DQb  
DQb  
DQb  
ZZ  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DQc  
DQc  
DQc  
DQc  
NC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DQb  
DQb  
DQb  
DQb  
NC  
G
H
J
NC  
NC  
DQd  
DQd  
DQd  
DQd  
DQPd  
NC  
DQd  
DQd  
DQd  
DQd  
NC  
V
V
DQa  
DQa  
DQa  
DQa  
NC  
DQa  
DQa  
DQa  
DQa  
DQPa  
NC  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
K
L
M
N
P
V
NC  
TDI  
NC  
NC  
V
SS  
DDQ  
SS  
DDQ  
1
NC  
A
A
A
A1  
TDO  
TCK  
A
A
A
A
1
LBO  
A
A
TMS  
A0  
A
A
A
R
1 A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is  
desired.  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 3 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
Functional description  
The AS7C331MNTD32A/36A family is a high performance CMOS 32 Mbit synchronous Static Random Access Memory (SRAM)  
organized as 1,048,576 words × 32 or 36 bits and incorporates a LATE LATE Write.  
This variation of the 32Mb+ synchronous SRAM uses the No Turnaround Delay (NTD) architecture, featuring an enhanced write  
operation that improves bandwidth over pipelined burst devices. In a normal pipelined burst device, the write data, command, and address  
are all applied to the device on the same clock edge. If a read command follows this write command, the system must wait for two 'dead'  
cycles for valid data to become available. These dead cycles can significantly reduce overall bandwidth for applications requiring random  
access or read-modify-write operations.  
NTDdevices use the memory bus more efficiently by introducing a write latency which matches the two-cycle pipelined or one-cycle  
flow-through read latency. Write data is applied two cycles after the write command and address, allowing the read pipeline to clear. With  
NTD, write and read operations can be used in any order without producing dead bus cycles.  
Assert R/W low to perform write cycles. Byte write enable controls write access to specific bytes, or can be tied low for full 32/36 bit writes.  
Write enable signals, along with the write address, are registered on a rising edge of the clock. Write data is applied to the device two clock  
cycles later. Unlike some asynchronous SRAMs, output enable OE does not need to be toggled for write operations; it can be tied low for  
normal operations. Outputs go to a high impedance state when the device is de-selected by any of the three chip enable inputs. In pipelined  
mode, a two cycle deselect latency allows pending read or write operations to be completed.  
Use the ADV (burst advance) input to perform burst read, write and deselect operations. When ADV is high, external addresses, chip select, R/W  
pins are ignored, and internal address counters increment in the count sequence specified by the LBO control. Any device operations, including  
burst, can be stalled using the CEN=1, the clock enable input.  
The AS7C331MNTD32A/36A operates with a 3.3V ± 5% power supply for the device core (VDD). DQ circuits use a separate power supply  
(VDDQ) that operates across 3.3V or 2.5V ranges. These devices are available in a 100-pin TQFP and 165-ball BGA packages.  
Capacitance  
Parameter  
Symbol  
Test conditions  
V = 0V  
Min  
Max  
Unit  
pF  
Input capacitance  
I/O capacitance  
C
-
-
5
7
IN  
in  
C
V = V = 0V  
pF  
I/O  
in  
out  
TQFP and BGA thermal resistance  
Description  
Conditions  
Symbol  
θJA  
Typical  
40  
Units  
°C/W  
°C/W  
1–layer  
4–layer  
Thermal resistance  
(junction to ambient)1  
Test conditions follow standard test methods  
and procedures for measuring thermal  
impedance, per EIA/JESD51  
θJA  
22  
Thermal resistance  
(junction to top of case)1  
θJC  
8
°C/W  
1 This parameter is sampled  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 4 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
Signal descriptions  
Signal  
CLK  
I/O Properties Description  
I
I
I
CLOCK Clock. All inputs except OE, FT, LBO, and ZZ are synchronous to this clock.  
CEN  
SYNC  
SYNC  
SYNC  
Clock enable. When de-asserted high, the clock input signal is masked.  
Address. Sampled when all chip enables are active and ADV/LD is asserted.  
Data. Driven as output when the chip is enabled and OE is active.  
A, A0, A1  
DQ[a,b,c,d] I/O  
CE0, CE1,  
CE2  
Synchronous chip enables. Sampled at the rising edge of CLK, when ADV/LD is asserted.  
Are ignored when ADV/LD is high.  
I
SYNC  
Advance or Load. When sampled high, the internal burst address counter will increment in  
the order defined by the LBO input value. (refer to table on page 2) When low, a new  
address is loaded.  
ADV/LD  
R/W  
I
I
SYNC  
A high during LOAD initiates a READ operation. A low during LOAD initiates a WRITE  
operation. Is ignored when ADV/LD is high.  
SYNC  
SYNC  
Byte write enables. Used to control write on individual bytes. Sampled along with WRITE  
command and BURST WRITE.  
BW[a,b,c,d]  
OE  
I
I
I
ASYNC Asynchronous output enable. I/O pins are not driven when OE is inactive.  
Selects Burst mode. When tied to VDD or left floating, device follows interleaved Burst order. When  
STATIC  
LBO  
driven Low, device follows linear Burst order. This signal is internally pulled High.  
Selects Pipeline or Flow-through mode. When tied to VDD or left floating, enables Pipeline mode.  
STATIC  
FT  
I
When driven Low, enables single register Flow-through mode. This signal is internally pulled High.  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. (BGA  
TDO  
TDI  
O
I
SYNC  
only)  
SYNC  
Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK. (BGA only)  
This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
(BGA only)  
TMS  
I
SYNC  
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. (BGA  
only)  
TCK  
O
SYNC  
ZZ  
I
-
ASYNC Snooze. Places device in low power mode; data is retained. Connect to GND if unused.  
No connects.  
NC  
-
4/26/04, V 1.2  
Alliance Semiconductor  
P. 5 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
Burst order  
Interleaved burst order LBO = 1  
A1 A0 A1 A0 A1 A0 A1 A0  
Linear burst order LBO = 0  
A1 A0 A1 A0 A1 A0 A1 A0  
Starting address  
First increment  
0 0  
0 1  
0 1  
0 0  
1 1  
1 0  
1 0  
1 1  
0 0  
0 1  
1 1  
1 0  
0 1  
0 0  
Starting Address  
First increment  
0 0  
0 1  
0 1  
1 0  
1 1  
0 0  
1 0  
1 1  
0 0  
0 1  
1 1  
0 0  
0 1  
1 0  
Second increment 1 0  
Third increment 1 1  
Second increment 1 0  
Third increment  
1 1  
Synchronous truth table[5,6,7,8,9]  
Address  
CE0 CE1 CE2 ADV/LD R/W  
BWn  
X
OE CEN source  
CLK  
Operation  
DQ  
High-Z  
High-Z  
High-Z  
High-Z  
Q
Notes  
H
X
X
X
L
X
X
L
X
H
X
X
L
L
L
L
H
L
H
L
H
L
H
L
X
X
X
X
H
X
H
X
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
NA  
NA  
NA  
NA  
L to H  
L to H  
L to H  
L to H  
DESELECT Cycle  
DESELECT Cycle  
DESELECT Cycle  
X
X
X
H
X
H
X
H
X
H
X
CONTINUE DESELECT Cycle  
READ Cycle (Begin Burst)  
READ Cycle (Continue Burst)  
1
X
External L to H  
Next L to H  
X
L
X
L
X
L
Q
1,10  
2
X
H
H
X
X
X
External L to H NOP/DUMMY READ (Begin Burst) High-Z  
X
L
X
L
X
Next L to H DUMMY READ (Continue Burst) High-Z 1,2,10  
L
External L to H  
WRITE CYCLE (Begin Burst)  
D
D
3
X
L
X
L
X
L
L
Next L to H WRITE CYCLE (Continue Burst)  
1,3,10  
H
External L to H NOP/WRITE ABORT (Begin Burst) High-Z 2,3  
1,2,3,  
X
X
X
H
X
H
X
X
L
Next L to H WRITE ABORT (Continue Burst)  
High-Z  
10  
X
X
X
X
X
X
H
Current L to H  
INHIBIT CLOCK  
-
4
Key: X = Don’t Care, H = HIGH, L = LOW. BWn = H means all byte write signals (BWa, BWb, BWc, and BWd) are HIGH. BWn = L means one or  
more byte write signals are LOW.  
Notes:  
1 CONTINUE BURST cycles, whether READ or WRITE, use the same control inputs. The type of cycle performed (READ or WRITE) is chose in the initial  
BEGIN BURST cycle. A CONINUE DESELECT cycle can only be entered if a DESELECT CYCLE is executed first.  
2 DUMMY READ and WRITE ABORT cycles can be considered NOPs because the device performs no external operation. A WRITE ABORT means a  
WRITE command is given, but no operation is performed.  
3 OE may be wired LOW to minimize the number of control signal to the SRAM. The device will automatically turn off the output drivers during a WRITE  
cycle. OE may be used when the bus turn-on and turn-off times do not meet an application’s requirements.  
4 If an INHIBIT CLOCK command occurs during a READ operation, the DQ bus will remain active (Low-Z). If it occurs during a WRITE cycle, the bus will  
remain in High-Z. No WRITE operations will be performed during the INHIBIT CLOCK cycle.  
5 BWa enables WRITEs to byte “a” (DQa pins/balls); BWb enables WRITEs to byte “b” (DQb pins/balls); BWc enables WRITEs to byte “c” (DQc pins/  
balls); BWd enables WRITEs to byte “d” (DQd pins/balls).  
6 All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.  
7 Wait states are inserted by setting CEN HIGH.  
8 This device contains circuitry that will ensure that the outputs will be in High-Z during power-up.  
9 The device incorporates a 2-bit burst counter. Address wraps to the initial address every fourth BURST CYCLE.  
10 The address counter is incremented for all CONTINUE BURST cycles.  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 6 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
State diagram for NTD SRAM  
Burst  
Read  
Burst  
Read  
Read  
Burst  
Read  
Dsel  
Dsel  
Burst  
Burst  
Write  
Burst  
Write  
Burst  
Write  
Write  
Absolute maximum ratings  
Parameter  
Power supply voltage relative to GND  
Input voltage relative to GND (input pins)  
Input voltage relative to GND (I/O pins)  
Power dissipation  
Symbol  
Min  
Max  
+4.6  
Unit  
V
VDD, VDDQ  
VIN  
–0.5  
–0.5  
–0.5  
VDD + 0.5  
VDDQ + 0.5  
1.8  
V
VIN  
V
Pd  
W
Short circuit output current  
IOUT  
20  
mA  
oC  
oC  
oC  
Storage temperature (TQFP)  
Storage temperature (BGA)  
Tstg (TQFP)  
Tstg (BGA)  
Tbias  
–65  
–65  
–65  
+150  
+125  
Temperature under bias  
+135  
Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only, and functional  
operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to  
absolute maximum rating conditions may affect reliability.  
Recommended operating conditions at 3.3V I/O  
Parameter  
Supply voltage for inputs  
Supply voltage for I/O  
Ground supply  
Symbol  
VDD  
Min  
3.135  
3.135  
0
Nominal  
Max  
3.465  
3.465  
0
Unit  
V
3.3  
3.3  
0
VDDQ  
Vss  
V
V
Recommended operating conditions at 2.5V I/O  
Parameter  
Supply voltage for inputs  
Supply voltage for I/O  
Ground supply  
Symbol  
Min  
3.135  
2.375  
0
Nominal  
Max  
3.465  
2.625  
0
Unit  
V
VDD  
VDDQ  
Vss  
3.3  
2.5  
0
V
V
4/26/04, V 1.2  
Alliance Semiconductor  
P. 7 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
DC electrical characteristics for 3.3V I/O operation  
Parameter  
Input leakage current1  
Output leakage current  
Sym  
|ILI|  
Conditions  
VDD = Max, OV < VIN < VDD  
OE VIH, VDD = Max, OV < VOUT < VDDQ  
Address and control pins  
I/O pins  
Min  
-2  
Max  
Unit  
µA  
2
|ILO  
|
-2  
2
VDD+0.3  
VDDQ+0.3  
0.8  
µA  
2
Input high (logic 1) voltage  
Input low (logic 0) voltage  
VIH  
V
V
2
Address and control pins  
I/O pins  
-0.3*  
-0.5*  
2.4  
VIL  
0.8  
Output high voltage  
Output low voltage  
VOH  
VOL  
IOH = –4 mA, VDDQ = 3.135V  
IOL = 8 mA, VDDQ = 3.465V  
V
V
0.4  
1 FT, LBO, and ZZ pins and the 165 BGA JTAG pins (TMS, TDI, and TCK) have an internal pull-up or pull-down, and input leakage = ±10 µA.  
DC electrical characteristics for 2.5V I/O operation  
Parameter  
Input leakage current  
Output leakage current  
Sym  
|ILI|  
Conditions  
VDD = Max, OV < VIN < VDD  
OE VIH, VDD = Max, OV < VOUT < VDDQ  
Address and control pins  
I/O pins  
Min  
-2  
Max  
Unit  
2
µA  
µA  
V
|ILO  
|
-2  
2
VDD+0.3  
VDDQ+0.3  
0.7  
1.7  
1.7  
-0.3*  
-0.3*  
1.7  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
VIH  
V
Address and control pins  
I/O pins  
V
VIL  
0.7  
V
Output high voltage  
Output low voltage  
VOH  
VOL  
IOH = –4 mA, VDDQ = 2.375V  
IOL = 8 mA, VDDQ = 2.625V  
V
0.7  
V
*VIL min = -1.5 for pulse width less than 0.2 X tCYC  
IDD operating conditions and maximum limits  
Parameter  
Sym  
Test conditions  
-200  
-167  
-133  
Unit  
Operating power supply  
current (pipelined mode)  
I
400  
350  
325  
mA  
1
CC  
CE = V , CE = V , CE = V ,  
0
IL  
1
IH  
2
IL  
Operating power supply  
I
f = f  
I
= 0 mA  
CC  
max, out  
2
current (flow-through  
325  
280  
260  
mA  
(FT)  
mode)  
I
Deselected, f = f  
ZZ < V  
IL  
120  
70  
110  
70  
100  
70  
SB  
max,  
Deselected, f = 0, ZZ < 0.2V  
I
SB1  
Standby power supply  
current  
all V 0.2V or V - 0.2V  
IN  
DD  
mA  
Deselected, f = f  
,
Max  
I
ZZ V - 0.2V,  
60  
60  
60  
SB2  
DD  
all V V or V  
IN  
IL  
IH  
1 I given with no output loading. I increases with faster cycle times and greater output loading.  
CC  
CC  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 8 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
Timing characteristics over operating range  
-200  
-167  
-133  
1
Parameter  
Sym  
Unit Notes  
Min  
Max  
200  
Min  
Max  
167  
Min  
Max  
Clock frequency  
F
t
133 MHz  
MAX  
CYC  
Cycle time (pipelined mode)  
Cycle time (flow-through mode)  
Clock access time (pipelined mode)  
Clock access time (flow-through mode)  
Output enable low to data valid  
Clock high to output low Z  
5
6
7.5  
12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
7.5  
8.5  
CYCF  
t
3.1  
6.5  
3.1  
3.4  
7.5  
3.4  
3.8  
10  
3.8  
CD  
t
CDF  
t
OE  
t
0
0
0
2,3,4  
2
LZC  
Data output invalid from clock high (pipelined mode)  
t
1.5  
3.0  
0
1.5  
3.0  
0
1.5  
3.0  
0
OH  
Data Output invalid from clock high (flow-through mode) t  
2
OHF  
Output enable low to output low Z  
Output enable high to output high Z  
Clock high to output high Z  
Output enable high to invalid output  
Clock high pulse width  
t
2,3,4  
2,3,4  
2,3,4  
LZOE  
HZOE  
t
3.0  
3.0  
3.4  
3.4  
3.8  
3.8  
t
HZC  
t
0
0
0
OHOE  
t
2.0  
2.0  
1.4  
1.4  
1.4  
1.4  
0.4  
0.4  
0.4  
0.4  
1.4  
0.4  
1.4  
0.4  
2.4  
2.3  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
1.5  
0.5  
1.5  
0.5  
2.4  
2.4  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
0.5  
0.5  
1.5  
0.5  
1.5  
0.5  
5
5
CH  
Clock low pulse width  
t
t
t
CL  
AS  
DS  
Address and Control setup to clock high  
Data setup to clock high  
6
6
Write setup to clock high  
t
6, 7  
6, 8  
6
WS  
Chip select setup to clock high  
Address hold from clock high  
Data hold from clock high  
t
CSS  
t
AH  
DH  
WH  
t
6
Write hold from clock high  
Chip select hold from clock high  
Clock enable setup to clock high  
Clock enable hold from clock high  
ADV setup to clock high  
t
6, 7  
6, 8  
6
t
CSH  
t
CENS  
CENH  
ADVS  
ADVH  
t
t
6
6
ADV hold from clock high  
t
6
1 See “Notes” on page 19  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 9 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
IEEE 1149.1 serial boundary scan (JTAG)  
The SRAM incorporates a serial boundary scan test access port (TAP). The port operates in accordance with IEEE Standard  
1149.1-1990. The SRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID  
register.  
Disabling the JTAG feature  
If the JTAG function is not being implemented, TCK should be grounded to avoid mid-level input. At power-up, the device  
will come up in a reset state which will not interfere with the operation of the device.  
TAP controller state diagram  
TAP controller block diagram  
TEST-LOGIC  
RESET  
1
0
0
1
SELECT  
DR-SCAN  
1
1
SELECT  
IR-SCAN  
RUN-TEST/  
IDLE  
Bypass Register  
0
Selection  
Circuitry  
Selection  
Circuitry  
2
1 0  
0
0
Instruction Register  
TDI  
TDO  
1
1
.
. .  
2
3130 29  
1 0  
CAPTURE-DR  
0
CAPTURE-IR  
0
Identification Register  
.
. . . .  
2
x
1 0  
1
Boundary Scan Register  
SHIFT-DR  
1
0
SHIFT-IR  
1
0
1
1
EXIT1-IR  
0
EXIT1-DR  
0
TCK  
TMS  
TAP Controller  
PAUSE-IR  
1
PAUSE-DR  
1
0
0
1
x = 75  
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-IR  
UPDATE-DR  
1
0
1
0
Note: The 0 or 1 next to each state represents the value of TMS at the rising edge of TCK.  
Test access port (TAP)  
Test clock (TCK)  
The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Test mode select (TMS)  
The TAP controller receives commands from TMS input. It is sampled on the rising edge of TCK. You can leave this pin/ball  
unconnected if the TAP is not used. The pin/ball is pulled up internally, resulting in a logic high level.  
Test data-in (TDI)  
The TDI pin/ball serially inputs information into the registers and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information on  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 10 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
loading the instruction register, see the TAP Controller State Diagram. TDI is internally pulled up and can be unconnected if  
the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register.  
Test data-out (TDO)  
The TDO output pin/ball serially clocks data-out from the registers. The output is active depending upon the current state of  
the TAP state machine. The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of  
any register. (See the TAP Controller State Diagram.)  
Performing a TAP RESET  
You can perform a RESET by forcing TMS high (V ) for five rising edges of TCK. This RESET does not affect the  
DD  
operation of the SRAM and can be performed while the SRAM is operating.  
At power-up, the TAP is reset internally to ensure that TDO comes up in a high-Z state.  
TAP registers  
Registers are connected between the TDI and TDO pins/balls. They allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI pin/  
ball on the rising edge of TCK. Data is output on the TDO pin/ball on the falling edge of TCK.  
Instruction register  
You can serially load three-bit instructions into the instruction register. The register is loaded when it is placed between the  
TDI and TDO pins/balls as shown in the TAP Controller Block Diagram. The instruction register is loaded with the IDCODE  
instruction at power up and also if the controller is placed in a reset state, as described in the previous section.  
When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary “01” pattern to allow  
for fault isolation of the board-level series test data path.  
Bypass register  
To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the TDI and TDO pins/balls. This allows data to be shifted through  
the SRAM with minimal delay. The bypass register is set low (Vss) when the BYPASS instruction is executed.  
Boundary scan register  
The boundary scan register is connected to all the input and bidirectional pins/balls on the SRAM. The chip has a 76-bit-long  
register.  
The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO pins/balls when the controller is moved to the Shift-DR state. The  
EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can be used to capture the contents of the I/O ring.  
The boundary scan order table shows the order in which the bits are connected. Each bit corresponds to one of the bumps on  
the SRAM package. The most significant bit (MSB) of the register is connected to TDI, and the least significant bit (LSB) is  
connected to TDO.  
Identification (ID) register  
The ID register has a vendor code and other information described in the Identification Register Definitions table. The ID  
register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in  
the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the  
Shift-DR state.  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 11 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
TAP instruction set  
Eight different instructions are possible with the 3-bit instruction register. All combinations are listed in the Instruction Codes  
table. One of these instructions is reserved and should not be used.  
Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI  
and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO pins/balls. To  
execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be executed whenever the instruction register is loaded with all 0s.  
EXTEST is not implemented in this SRAM TAP controller, and therefore this device is not compliant to 1149.1.  
The TAP controller does recognize an all-0 instruction. When an EXTEST instruction is loaded into the instruction register,  
the SRAM responds as if a SAMPLE/PRELOAD instruction has been loaded. There is one difference between the two  
instructions, unlike the SAMPLE/PRELOAD instruction, EXTEST places the SRAM outputs in a High-Z state.  
IDCODE  
The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test  
logic reset state. The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the identification register. It  
also places the identification register between the TDI and TDO pins/balls and allows the IDCODE to be shifted out of the  
device when the TAP controller enters the Shift-DR state.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register to be connected between the TDI and TDO pins/balls when the  
TAP controller is in a Shift-DR state. It also places all SRAM outputs into a high-Z state.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE/PRELOAD instruction is  
loaded in the Instruction Register, moving the TAP controller into the Capture-DR state loads the data in the RAM’s input and  
I/O buffers into the Boundary Scan Register. Boundary Scan Register locations are not associated with an input or I/O pin, and  
are loaded with the default state identified in the Boundary Scan Chain table at the end of this section of the datasheet.Because  
the RAM clock is independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e. in a metastable state). Although allowing the TAP to sample metastable inputs will  
not harm the device, repeatable results cannot be accepted. RAM input signals must be stabilized for long enough to meet the  
TAP’s input data capture set-up plus hold time (tCS plus tCH). The RAM’s clock inputs need not be paused for any other TAP  
operation except capturing the I/O ring contents into the boundary Scan Register. Moving the controller to Shift-DR state then  
places the boundary scan register between the TDI and TDO pins.  
BYPASS  
The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected  
together on a board. When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR  
state, the bypass register is placed between TDI and TDO.  
RESERVED  
Do not use a reserved instruction. These instructions are not implemented but are reserved for future use.  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 12 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
TAP timing diagram  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
THTH  
THTL  
TLTH  
Test Mode Select  
(TMS)  
t
t
MVTH THMX  
Test Data-In  
(TDI)  
t
TLOV  
t
t
DVTH  
THDX  
t
TLOX  
Test Data-Out  
(TDO)  
Undefined  
Don’t care  
TAP AC electrical characteristics  
o
o
For notes 1 and 2, +10 C T +110 C and +2.4V V +2.6V.  
J
DD  
Description  
Symbol  
Min Max Units  
Clock  
Clock cycle time  
Clock frequency  
Clock high time  
Clock low time  
Output Times  
tTHTH  
fTF  
tTHTL  
tTLTH  
50  
ns  
MHz  
ns  
20  
10  
20  
20  
ns  
TCK low to TDO unknown  
TCK low to TDO valid  
TDI valid to TCK high  
TCK high to TDI invalid  
Setup Times  
tTLOX  
tTLOV  
tDVTH  
tTHDX  
0
ns  
ns  
ns  
ns  
5
5
TMS setup  
tMVTH  
tCS1  
5
5
ns  
ns  
Capture setup  
Hold Times  
TMS hold  
tTHMX  
tCH1  
5
5
ns  
ns  
Capture hold  
1 tCS and tCH refer to the setup and hold time requirements of latching  
data from the boundary scan register.  
2 Test conditions are specified using the load in the figure TAP AC output  
load equivalent.  
TAP AC test conditions  
TAP AC output load equivalent  
VDDQ/2  
Input pulse levels. . . . . . . . . . . . . . . Vss to V  
DD  
Input rise and fall times. . . . . . . . . . . . . . . 1 ns  
50Ω  
Input timing reference levels. . . . . . . . . . V  
Output reference levels . . . . . . . . . . . . . . V  
Test load termination supply voltage. . . . V  
/2  
DDQ  
DDQ  
DDQ  
TDO  
/2  
/2  
20p  
Z =50  
O
4/26/04, V 1.2  
Alliance Semiconductor  
P. 13 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
3.3V VDD, TAP DC electrical characteristics and operating conditions  
o
o
(+10 C < T < +110 C and +3.135V < V < +3.465V unless otherwise noted)  
J
DD  
Description  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
Input leakage current  
Conditions  
Symbol  
VIH  
Min  
2.0  
Max  
VDD + 0.3  
0.8  
Units  
V
Notes  
1, 2  
VIL  
-0.3  
-5.0  
V
1, 2  
0V VIN VDD  
ILI  
5.0  
µA  
Outputs disabled,  
0V VIN VDDQ(DQx)  
Output leakage current  
ILO  
-5.0  
5.0  
µA  
Output low voltage  
Output low voltage  
Output high voltage  
Output high voltage  
IOLC = 100µA  
IOLT = 2mA  
VOL1  
VOL2  
VOH1  
VOH2  
0.7  
0.8  
V
V
V
V
1
1
1
1
IOHS = -100µA  
IOHT = -2mA  
2.9  
2.0  
2.5V VDD, TAP DC electrical characteristics and operating conditions  
o
o
(+10 C < T < +110 C and +2.4V < V < +2.6V unless otherwise noted)  
J
DD  
Description  
Input high (logic 1) voltage  
Input low (logic 0) voltage  
Input leakage current  
Conditions  
Symbol  
VIH  
Min  
1.7  
Max  
VDD + 0.3  
0.7  
Units  
V
Notes  
1, 2  
VIL  
-0.3  
-5.0  
V
1, 2  
0V VIN VDD  
ILI  
5.0  
µA  
Outputs disabled,  
0V VIN VDDQ(DQx)  
Output leakage current  
ILO  
-5.0  
5.0  
µA  
Output low voltage  
Output low voltage  
Output high voltage  
Output high voltage  
IOLC = 100µA  
IOLT = 2mA  
VOL1  
VOL2  
VOH1  
VOH2  
0.2  
0.7  
V
V
V
V
1
1
1
1
IOHS = -100µA  
IOHT = -2mA  
2.1  
1.7  
1. All voltage referenced to V (GND).  
SS  
t
2. Overshoot: V (AC) V + 1.5V for t KHKH/2  
IH  
DD  
t
Undershoot:V (AC) -0.5 for t KHKH/2  
IL  
Power-up: V +2.6V and V 2.4V and V 1.4V for t 200ms  
DDQ  
IH  
DD  
During normal operation, V  
must not exceed V . Control input signals (such as LD, R/W, etc.) may not have pulsed  
DD  
DDQ  
widths less than t  
(Min) or operate at frequencies exceeding f (Max).  
KF  
KHKL  
Identification register definitions  
Instruction field  
Revision number (31:28)  
Device depth (27:23)  
1M x 36  
xxxx  
Description  
Reserved for version number.  
xxxxx/xxxxx  
xxxxx/xxxxx  
xxxxxx  
Defines the depth of 1M words.  
Device width (22:18)  
Defines the width of x32 or x36 bits.  
Reserved for future use.  
Device ID (17:12)  
JEDEC ID code (11:1)  
00000110100  
1
Allows unique identification of SRAM vendor.  
Indicates the presence of an ID register.  
ID register presence indicator (0)  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 14 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
Scan register sizes  
Register name  
Instruction  
Bypass  
Bit size  
3
1
ID  
32  
Boundary scan  
x36:76  
Instruction codes  
Instruction  
Code  
Description  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
SRAM outputs to High-Z state. This instruction is not 1149.1-compliant.  
EXTEST  
IDCODE  
000  
001  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operations.  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
SRAM output drivers to a high-Z state.  
SAMPLE Z  
RESERVED  
010  
101  
100  
Do not use. This instruction is reserved for future use.  
SAMPLE/  
PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operations.  
BYPASS  
111, 011, 110  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 15 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
165-ball BGA boundary scan order (x36)  
Bit #s  
1
Signal Name  
NC  
Ball ID  
6N  
Bit #s  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
Signal Name  
CLK  
CE2  
BWa  
BWb  
BWc  
BWd  
CE1  
CE0  
A
Ball ID  
6B  
6A  
5B  
5A  
4A  
4B  
3B  
3A  
2A  
2B  
1B  
1A  
1C  
1D  
1E  
1F  
2
A
8P  
3
A
8R  
4
A
9R  
5
A
9P  
6
A
10P  
10R  
11R  
11P  
11H  
11N  
11M  
11L  
11K  
11J  
7
A
8
A
9
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
ZZ  
A
DQPa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQPb  
NC  
NC  
NC  
DQPc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQPd  
A
10M  
10L  
10K  
10J  
1G  
2D  
2E  
2F  
11G  
11F  
11E  
11D  
10G  
10F  
10E  
10D  
11C  
11A  
11B  
10A  
10B  
9A  
2G  
1J  
1K  
1L  
1M  
2J  
2K  
2L  
2M  
1N  
2R  
1R  
3P  
NC  
A
A
LBO  
A
A
A
9B  
A
3R  
4R  
4P  
ADV/LD  
OE  
8A  
A
8B  
A
CEN  
R/W  
7A  
A1  
6P  
7B  
A0  
6R  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 16 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
Key to switching waveforms  
Rising input  
Falling input  
Undefined/don’t care  
Timing waveform of read/write cycle  
tCH tCL  
tCYC  
CLK  
tCENS  
tCENH  
CEN  
CE1  
tCSS  
tCSH  
CE0, CE2  
tADVS  
tADVH  
ADV/LD  
tWS  
tWH  
R/W  
tWS  
tWH  
BWn  
tAS  
tAH  
A3  
A4  
A5  
A6  
A7  
A1  
A2  
ADDRESS  
tCD  
tLZC  
tDS tDH  
tOH  
tOE  
tHZC  
D/Q  
pipelined  
D(A5)  
Q(A6)  
D(A1)  
D(A2)  
Q(A3)  
Q(A4)  
Q(A4Ý01)  
D(A2Ý01)  
tHZOE  
tLZOE  
OE  
D/Q  
flow-through  
Q(A4Ý01)  
D(A5)  
Q(A6)  
Q(A7)  
D(A1)  
D(A2)  
D(A2Ý01)  
Q(A3)  
Q(A4)  
BURST  
READ  
Q(A4Ý01)  
READ  
Q(A3)  
DSEL  
WRITE  
D(A2)  
BURST  
WRITE  
D(A2Ý01)  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
READ  
Q(A4)  
WRITE  
D(A1)  
Command  
Note: Ý = XOR when LBO = high/no connect. Ý = ADD when LBO = low. BW[a:d] is don’t care.  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 17 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
NOP, stall and deselect cycles  
CLK  
CEN  
CE1  
CE0, CE2  
ADV/LD  
R/W  
BWn  
A1  
A2  
A3  
Address  
Q(A1Ý01)  
Q(A1Ý  
10)  
D(A2)  
Q(A1)  
DQ  
pipelined  
Q(A1Ý01)  
Q(A1Ý10)  
Q(A1)  
D(A2)  
DQ  
flow-through  
Command  
BURST  
NOP  
WRITE  
BURST  
READ  
Q(A1)  
STALL  
DSEL  
BURST  
Q(A1 01  
BURST  
Q(A1 10  
BURST WRITE  
DSEL D(A2)  
NOP  
Ý
)
Ý
)
D(A2Ý10)  
D(A2Ý0)  
D(A3)  
Note: Ý = XOR when LBO = high/no connect; Ý = ADD when LBO = low. OE is low.  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 18 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
AC test conditions  
• Output load: For tLZC, tLZOE, tHZOE, and tHZC, see Figure C. For all others, see Figure B.  
• Input pulse level: GND to 3V. See Figure A.  
Thevenin equivalent:  
• Input rise and fall time (measured at 0.3V and 2.7V): 2 ns. See Figure A.  
• Input and output timing reference levels: 1.5V.  
+3.3V for 3.3V I/O;  
/+2.5V for 2.5V I/O  
319/1667Ω  
50  
DOUT  
353 /1538  
7
+
3.0V  
VL = 1.5V  
for 3.3V I/O;  
= VDDQ/2  
DOUT  
5 pF*  
GND  
90%  
10%  
GND  
Figure A: Input waveform  
90%  
30 pF*  
10%  
*including scope  
and jig capacitance  
for 2.5V I/O  
Figure B: Output load (A)  
Figure C: Output load(B)  
Notes  
1) For test conditions, see “AC test conditions”, Figures A, B, and C  
2) This parameter measured with output load condition in Figure C.  
3) This parameter is sampled, but not 100% tested.  
4) tHZOE is less than tLZOE, and tHZC is less than tLZC at any given temperature and voltage.  
5) tCH is measured high above VIH, and tCL is measured low below VIL  
6) This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK. All other synchronous inputs must  
meet the setup and hold times with stable logic levels for all rising edges of CLK when chip is enabled.  
7) Write refers to R/  
W
and BW[a,b,c,d]  
.
8) Chip select refers to CE0  
,
CE1, and CE2.  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 19 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
Package dimensions  
100-pin quad flat pack (TQFP)  
TQFP  
Hd  
D
Min  
0.05  
1.35  
0.22  
0.09  
Max  
0.15  
1.45  
0.38  
0.20  
A1  
A2  
b
b
e
c
D
13.90 14.10  
19.90 20.10  
0.65 nominal  
15.90 16.10  
21.90 22.10  
He  
E
E
e
Hd  
He  
L
0.45  
1.00 nominal  
0° 7°  
0.75  
L1  
α
α
Dimensions in millimeters  
c
L1  
L
A1 A2  
165-ball BGA (ball grid array)  
Top  
Bottom  
A1 corner index area  
1 2 3 4 5 6 7 8 9 10 11  
11 10 9 8 7 6 5 4 3 2 1  
A
B
C
A
B
C
A
B
D
E
F
D
E
F
All measurements are in mm.  
G
H
J
K
L
M
N
P
R
G
H
J
K
L
M
N
P
R
Min  
Typ  
1.00  
Max  
17.10  
15.10  
A
B
C
D
E
F
16.90  
14.90  
17.00  
14.00  
15.00  
10.00  
0.26  
C
1.00  
15.00±0.10  
A
0.35  
1.26  
0.45  
0.40  
0.45  
1.46  
0.55  
G
H
I
D
10.00  
E
1.36  
15.00±0.10  
D
0.50  
0.20 Z  
G
0.12 Z  
H
F
/ 0.50±0.05  
Ø
Ø
M Z X Y  
M Z  
Detail of Solder Ball  
Side View  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 20 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
Ordering information  
Package & Width  
–200 MHz  
–167 MHz  
–133 MHz  
AS7C331MNTD32A-200TQC  
AS7C331MNTD32A-200TQI  
AS7C331MNTD36A-200TQC  
AS7C331MNTD36A-200TQI  
AS7C331MNTD32A-200BC  
AS7C331MNTD32A-200BI  
AS7C331MNTD36A-200BC  
AS7C331MNTD36A-200BI  
AS7C331MNTD32A-167TQC  
AS7C331MNTD32A-167TQI  
AS7C331MNTD36A-167TQC  
AS7C331MNTD36A-167TQI  
AS7C331MNTD32A-167BC  
AS7C331MNTD32A-167BI  
AS7C331MNTD36A-167BC  
AS7C331MNTD36A-167BI  
AS7C331MNTD32A-133TQC  
AS7C331MNTD32A-133TQI  
AS7C331MNTD36A-133TQC  
AS7C331MNTD36A-133TQI  
AS7C331MNTD32A-133BC  
AS7C331MNTD32A-133BI  
AS7C331MNTD36A-133BC  
AS7C331MNTD36A-133BI  
TQFP x32  
TQFP x36  
BGA x32  
BGA x36  
Note:  
Add suffix ‘N’ to the above part number for Lead Free Parts (Ex. AS7C331MNTD32A-200TQCN)  
Part numbering guide  
AS7C  
33  
1M  
NTD  
32/36  
A
–XXX  
TQ or B  
C/I  
X
1
2
3
4
5
6
7
8
9
10  
1. Alliance Semiconductor SRAM prefix  
2. Operating voltage: 33 = 3.3V  
3. Organization: 1M = 1M  
4. NTD= No Turn-Around Delay. Pipelined/flow-through mode (each device works in both modes)  
5. Organization: 32 = x 32, 36 = x 36  
6. Production version: A = first production version  
7. Clock speed (MHz)  
8. Package type: TQ = TQFP; B = BGA  
9. Operating temperature: C = commercial (0° C to 70° C); I = industrial (-40° C to 85° C)  
10. N = Lead Free Part  
4/26/04, V 1.2  
Alliance Semiconductor  
P. 21 of 22  
AS7C331MNTD32A  
AS7C331MNTD36A  
®
®
Alliance Semiconductor Corporation  
2575, Augustine Drive,  
Santa Clara, CA 95054  
Tel: 408 - 855 - 4900  
Copyright © Alliance Semiconductor  
All Rights Reserved  
Part Number: AS7C331MNTD32A /  
AS7C331MNTD36A  
Fax: 408 - 855 - 4999  
www.alsc.com  
Document Version: V 1.2  
© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered  
trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make  
changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document.  
The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this  
data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The  
information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate  
as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application  
or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including  
liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express  
agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according  
to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask  
works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical  
components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the  
inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify  
Alliance against all claims arising from such use.  

相关型号:

AS7C331MNTD32A-167BIN

ZBT SRAM, 1MX32, 7.5ns, CMOS, PBGA165, LEAD FREE, BGA-165
ISSI

AS7C331MNTD32A-167TQC

ZBT SRAM, 1MX32, 7.5ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
ISSI

AS7C331MNTD32A-167TQCN

ZBT SRAM, 1MX32, 7.5ns, CMOS, PQFP100, 14 X 20 MM, LEAD FREE, TQFP-100
ISSI

AS7C331MNTD32A-167TQI

ZBT SRAM, 1MX32, 7.5ns, CMOS, PQFP100, 14 X 20 MM, TQFP-100
ISSI

AS7C331MNTD32A-167TQIN

ZBT SRAM, 1MX32, 7.5ns, CMOS, PQFP100, 14 X 20 MM, LEAD FREE, TQFP-100
ISSI

AS7C331MNTD32A-200TQC

3.3V 1M x 32/36 Pipelined SRAM with NTD
ALSC

AS7C331MNTD32A-200TQCN

3.3V 1M x 32/36 Pipelined SRAM with NTD
ALSC

AS7C331MNTD32A-200TQI

3.3V 1M x 32/36 Pipelined SRAM with NTD
ALSC

AS7C331MNTD32A-200TQIN

3.3V 1M x 32/36 Pipelined SRAM with NTD
ALSC

AS7C331MNTD36A-133TQC

3.3V 1M x 32/36 Pipelined SRAM with NTD
ALSC

AS7C331MNTD36A-133TQCN

3.3V 1M x 32/36 Pipelined SRAM with NTD
ALSC

AS7C331MNTD36A-133TQI

3.3V 1M x 32/36 Pipelined SRAM with NTD
ALSC