IS31LT3172-GRLS4-TR [ISSI]

LED Driver;
IS31LT3172-GRLS4-TR
型号: IS31LT3172-GRLS4-TR
厂家: INTEGRATED SILICON SOLUTION, INC    INTEGRATED SILICON SOLUTION, INC
描述:

LED Driver

驱动 接口集成电路
文件: 总19页 (文件大小:465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IS31LT3172/73  
10-TO-200MA CONSTANT-CURRENT LED DRIVER  
July 2016  
GENERAL DESCRIPTION  
FEATURES  
The IS31LT3172 and IS31LT3173 are adjustable  
linear current devices with excellent temperature  
stability. A single resistor is all that is required to set  
the operating current from 10mA to 200mA. The  
devices can operate from an input voltage from 2.5V  
to 42V with a minimal voltage headroom of 1V  
(typical). Designed with a low dropout voltage; the  
device can drive LED strings close to the supply  
voltage without switch capacitors or inductors.  
Low-side current sink  
- Current preset to 10mA  
- Adjustable from 10mA to 200mA with external  
resistor selection  
Wide input voltage range from  
- 2.5V to 42V (IS31LT3173)  
- 5V to 42V (IS31LT3172)  
with a low dropout of typical 1V  
Up to 10kHz PWM input (IS31LT3173 only)  
Protection features:  
The IS31LT3172/73 simplifies designs by  
providing a stable current without the additional  
requirement of input or output capacitors,  
inductors, FETs or diodes. The complete constant  
current driver requires only a current set resistor  
and a small PCB area making designs both  
efficient and cost effective.  
- 0.26%/K negative temperature coefficient at  
high temp for thermal protection  
Up to 1.8W power dissipation in a small SOP-8-  
EP package  
RoHS compliant (Pb-free) package  
The EN pin (3) of the IS31LT3172 can be tied to  
Vbat or BCM PWM signal for high side dimming.  
The EN Pin (3) of the IS31LT3173 can function as  
the PWM signal input used for low side dimming.  
APPLICATIONS  
Architectural LED lighting  
As a current sink it is ideal for LED lighting  
applications or current limiter for power supplies.  
Channel letters for advertising, LED strips for  
decorative lighting  
Retail lighting in fridge, freezer case and  
vending machines  
The device is provided in a lead (Pb) free, SOP-8-EP  
package.  
Emergency lighting (e.g. steps lighting, exit way  
sign etc.)  
TYPICAL APPLICATION CIRCUIT  
Figure 1 Typical Application Circuit  
Integrated Silicon Solution, Inc. – www.issi.com  
Rev. C, 07/01/2016  
1
IS31LT3172/73  
PIN CONFIGURATION  
Package  
Pin Configuration (Top View)  
SOP-8-EP  
PIN DESCRIPTION  
No.  
Pin  
Description  
1, 2  
3
OUT  
Current sink.  
EN  
Enable pin (PWM input IS31LT3173 only).  
Optional current adjust.  
Ground.  
4
REXT  
GND  
5
6 ~ 8  
NC  
Floating or connect to GND.  
Connect to GND.  
Thermal Pad  
Integrated Silicon Solution, Inc. – www.issi.com  
2
Rev. C, 07/01/2016  
IS31LT3172/73  
ORDERING INFORMATION  
Industrial Range: -40°C to +125°C  
Order Part No.  
Package  
QTY/Reel  
IS31LT3172-GRLS4-TR  
IS31LT3173-GRLS4-TR  
SOP-8-EP, Lead-free  
2500  
Copyright © 2016 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any  
time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are  
advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.  
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the  
product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not  
authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:  
a.) the risk of injury or damage has been minimized;  
b.) the user assume all such risks; and  
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances  
Integrated Silicon Solution, Inc. – www.issi.com  
3
Rev. C, 07/01/2016  
IS31LT3172/73  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Maximum enable voltage, VEN(MAX) only for IS31LT3172-GRLS4-TR  
45V  
V
EN(MAX) only for IS31LT3173-GRLS4-TR  
6V  
Maximum output current, IOUT(MAX)  
Maximum output voltage, VOUT(MAX)  
Reverse voltage between all terminals, VR  
Power dissipation, PD(MAX) (Note 2)  
Maximum junction temperature, TJMAX  
Storage temperature range, TSTG  
Operating temperature range, TA  
ESD (HBM) IS31LT3172-GRLS4-TR  
ESD (HBM) IS31LT3173-GRLS4-TR  
ESD (CDM)  
200mA  
45V  
0.5V  
1.8W  
150°C  
-65°C ~ +150°C  
-40°C ~ +125°C  
±2kV  
±1.5kV  
±500V  
Note 1:  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Note 2:  
Detail information please refer to package thermal de-rating curve on Page 14.  
THERMAL CHARACTERISTICS  
Characteristic  
Test Conditions  
Value  
Package Thermal Resistance On 4-layer PCB based on JEDEC standard  
55.4°C/W  
(Junction to Ambient), RθJA  
at 1W, TA=25°C  
Package Thermal Resistance  
(Junction to Pad), RθJP  
2.24°C/W  
ELECTRICAL CHARACTERISTICS  
”  
This symbol in the table means these parameters are for IS31LT3172-GRLS4-TR.  
” This symbol in the table means these parameters are for IS31LT3173-GRLS4-TR.  
Test condition is TA = TJ = 25°C, unless otherwise specified. (Note 3)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max. Unit  
VBD_OUT OUT pin breakdown voltage VEN= 0V  
VEN= 24V  
42  
V
0.35  
0.35  
106  
IEN  
Enable current  
Ma  
VEN= 3.3V  
RINT  
Internal resistor  
IRINT = 10Ma  
VOUT = 1.4V, VEN = 24V, REXT  
OPEN  
9
9
10  
10  
11  
Ma  
11  
VOUT = 1.4V, VEN = 3.3V, REXT  
OPEN  
Output current  
VOUT > 2.0V, VEN = 24V, REXT  
= 10  
105  
105  
10  
10  
118  
118  
130  
Ma  
130  
IOUT  
VOUT > 2.0V, VEN = 3.3V, REXT  
= 10Ω  
VOUT > 2.0V, VEN = 24V  
VOUT > 2.0V, VEN = 3.3V  
200  
Ma  
200  
Output current Range  
(Note 4, 5)  
Integrated Silicon Solution, Inc. – www.issi.com  
4
Rev. C, 07/01/2016  
IS31LT3172/73  
DC CHARACTERISTICS WITH STABILIZED LED LOAD  
”  
This symbol in the table means these parameters are for IS31LT3172-GRLS4-TR.  
” This symbol in the table means these parameters are for IS31LT3173-GRLS4-TR.  
Test condition is TA = TJ = 25°C, unless otherwise specified. (Note 3)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max. Unit  
5
42  
V
Sufficient supply voltage on EN  
pin  
VS  
2.5  
5.5  
Lowest sufficient headroom  
voltage on OUT pin  
VHR  
IOUT = 100Ma  
1
1.2  
V
VOUT > 2.0V, VEN = 24V,  
REXT = 10Ω  
-0.26  
-0.26  
1.9  
Output current change versus  
ambient temp change  
%/K  
VOUT > 2.0V, VEN = 3.3V,  
REXT = 10Ω  
IOUT/IOUT  
(Note 4)  
VOUT > 2.0V, VEN = 24V,  
R
EXT = 10Ω  
VOUT > 2.0V, VEN = 3.3V,  
EXT = 10Ω  
Output current change versus  
Vout  
%/V  
1.9  
R
Note 3:  
Production testing of the device is performed at 25°C. Functional operation of the device and parameters specified over -40°C to +125°C  
temperature range, are guaranteed by design and characterization.  
Note 4:  
Guaranteed by design.  
Note 5:  
The maximum output current is dependent on the PCB board design, air flow, ambient temperature and power dissipation in the device.  
Please refer to the package thermal de-rating curve on Page 14 for more detail information.  
Integrated Silicon Solution, Inc. – www.issi.com  
5
Rev. C, 07/01/2016  
IS31LT3172/73  
FUNCTIONAL BLOCK DIAGRAM  
IS31LT3172  
IS31LT3173  
Integrated Silicon Solution, Inc. – www.issi.com  
6
Rev. C, 07/01/2016  
IS31LT3172/73  
TYPICAL PERFORMANCE CHARACTERISTICS  
IS31LT3172  
15  
80  
60  
V
EN = 42V  
V
EN = 42V  
T = 125°C  
A
TA = 25°C  
REXT = 20  
REXT Open  
12.5  
10  
TA = 85°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 125°C  
40  
7.5  
5
TA = -40°C  
20  
0
2.5  
0
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
14  
14  
Output Voltage (V)  
Output Voltage (V)  
Figure 2 IOUT vs. VOUT  
Figure 3 IOUT vs. VOUT  
200  
150  
100  
200  
V
R
EN = 42V  
EXT = 7.5Ω  
V
R
EN = 42V  
EXT = 10Ω  
T = 85°C  
A
T
A
= 25°C  
180  
160  
T = 25°C  
A
T = 85°C  
A
140  
120  
100  
80  
T = 125°C  
A
T
A
= -40°C  
TA = 125°C  
T
A
= -40°C  
60  
50  
0
40  
20  
0
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
Output Voltage (V)  
Output Voltage (V)  
Figure 5 IOUT vs. VOUT  
Figure 4 IOUT vs. VOUT  
300  
250  
200  
150  
100  
50  
300  
250  
V
R
EN = 3.3V  
EXT = 5.6Ω  
V
EN = 42V  
= 25°C  
TA  
T
A
= 85°C  
T = 25°C  
A
R
EXT = 5.6  
200  
150  
100  
R
EXT = 7.5Ω  
TA  
= -40°C  
TA = 125°C  
R
EXT = 10Ω  
R
EXT = 20Ω  
50  
0
R
EXT Open  
2
0
0
4
6
8
10  
12  
14  
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
Output Voltage (V)  
Output Voltage (V)  
Figure 7 IOUT vs. VOUT  
Figure 6 IOUT vs. VOUT  
Integrated Silicon Solution, Inc. – www.issi.com  
7
Rev. C, 07/01/2016  
IS31LT3172/73  
300  
20  
16  
12  
8
V
f
EN = 5V  
PWM = 100Hz@1% Duty Cycle  
= 25°C  
VOUT = 2V  
REXT Open  
TA  
250  
200  
150  
100  
50  
R
EXT = 5.6  
R
EXT = 7.5Ω  
TA = 85°C  
TA = 25°C  
R
EXT = 10Ω  
TA = 125°C  
TA = -40°C  
R
EXT= 20Ω  
4
0
R
EXT Open  
2
0
0
5
5
4
6
8
10  
12  
14  
42  
42  
5
15  
25  
35  
42  
Output Voltage (V)  
V
EN (V)  
Figure 8 IOUT vs. VOUT  
Figure 9 IOUT vs. VEN  
80  
60  
40  
150  
120  
V
OUT = 2V  
V
OUT = 2V  
T = 85°C  
A
TA = 85°C  
T = 125°C  
A
R
EXT = 20  
REXT = 10  
T = 25°C  
A
T = 25°C  
A
T = 125°C  
A
T = -40°C  
A
T = -40°C  
A
90  
60  
20  
0
30  
0
15  
25  
35  
5
15  
25  
EN (V)  
35  
42  
V
EN (V)  
V
Figure 10 IOUT vs. VEN  
Figure 11 IOUT vs. VEN  
200  
175  
150  
125  
100  
75  
300  
250  
200  
150  
100  
V
OUT = 2V  
VOUT = 2V  
TA = 85°C  
TA = 125°C  
R
EXT = 7.5Ω  
R
EXT = 5.6  
T = 85°C  
A
T
A
= 125°C  
T
A
= 25°C  
T = 25°C  
A
TA = -40°C  
TA  
= -40°C  
50  
50  
0
25  
0
15  
25  
EN (V)  
35  
2.5  
3
3.5  
4
4.5  
5
V
V
EN (V)  
Figure 12 IOUT vs. VEN  
Figure 13 IOUT vs. VEN  
Integrated Silicon Solution, Inc. – www.issi.com  
8
Rev. C, 07/01/2016  
IS31LT3172/73  
300  
250  
200  
V
OUT = 2V  
V
V
EN = 42V  
OUT = 2V  
TA  
= 25°C  
250  
200  
150  
100  
REXT = 5.6  
REXT = 7.5Ω  
150  
100  
R
EXT = 10Ω  
R
EXT = 20Ω  
50  
0
50  
0
R
EXT Open  
10  
1
10  
100  
1000  
5
15  
20  
25  
30  
35  
40 42  
REXT ()  
VEN (V)  
Figure 15 IOUT vs. REXT  
Figure 14 IOUT vs. VEN  
500  
400  
300  
200  
I
R
OUT = 0A  
EXT Open  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = 125°C  
100  
0
0
5
10  
15  
20  
25  
30  
35  
40 42  
V
EN (V)  
Figure 16 IEN vs. VEN  
Integrated Silicon Solution, Inc. – www.issi.com  
9
Rev. C, 07/01/2016  
IS31LT3172/73  
IS31LT3173  
30  
80  
60  
V
EN = 3.3V  
TA = 25°C  
V
EN = 3.3V  
T = 85°C  
A
REXT = 20Ω  
REXT Open  
25  
20  
15  
10  
TA  
= 125°C  
T
A
= -40°C  
40  
T
A
= 85°C  
TA = 25°C  
20  
0
T = 125°C  
A
T = -40°C  
A
5
0
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
14  
14  
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
14  
14  
14  
Output Voltage (V)  
Output Voltage (V)  
Figure 18 IOUT vs. VOUT  
Figure 17 IOUT vs. VOUT  
150  
100  
50  
180  
160  
V
R
EN = 3.3V  
EXT = 7.5Ω  
VEN = 3.3V  
T
A
= 25°C  
T
A
= 25°C  
T
A
= 85°C  
T = 85°C  
A
REXT = 10Ω  
140  
120  
100  
80  
T
A
= 125°C  
T
A
= 125°C  
T
A
= -40°C  
TA  
= -40°C  
60  
40  
20  
0
0
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
Output Voltage (V)  
Output Voltage (V)  
Figure 19 IOUT vs. VOUT  
Figure 20 IOUT vs. VOUT  
350  
300  
300  
250  
200  
150  
100  
VEN = 3.3V  
V
EN = 3.3V  
= 25°C  
REXT = 5.6Ω  
REXT = 5.6  
TA  
TA = 85°C  
250  
200  
150  
100  
R
EXT = 7.5Ω  
TA = 25°C  
R
EXT = 10Ω  
T = 125°C  
A
TA = -40°C  
R
EXT = 20Ω  
50  
0
50  
0
R
EXT Open  
0.5  
2
3.5  
5
6.5  
8
9.5  
11  
12.5  
0
2
4
6
8
10  
12  
Output Voltage (V)  
Output Voltage (V)  
Figure 21 IOUT vs. VOUT  
Figure 22 IOUT vs. VOUT  
Integrated Silicon Solution, Inc. – www.issi.com  
10  
Rev. C, 07/01/2016  
IS31LT3172/73  
300  
20  
16  
12  
8
V
f
EN = 5V  
PWM = 100Hz@1% Duty Cycle  
= 25°C  
VOUT = 2V  
REXT Open  
TA  
250  
200  
150  
100  
R
EXT = 5.6Ω  
R
EXT = 7.5Ω  
T
A
= 85°C  
TA = 25°C  
R
EXT = 10Ω  
TA = 125°C  
TA = -40°C  
R
EXT= 20Ω  
4
0
50  
0
R
EXT Open  
0
2
4
6
8
10  
12  
14  
2.5  
2.5  
2.5  
3
3.5  
4
4.5  
5
5
5
Output Voltage (V)  
V
EN (V)  
Figure 24 IOUT vs. VEN  
Figure 23 IOUT vs. VOUT  
80  
60  
40  
150  
120  
V
R
OUT = 2V  
EXT = 20  
V
OUT = 2V  
TA  
= 85°C  
T
A
= 125°C  
T = 85°C  
A
TA = 25°C  
REXT = 10  
T = 25°C  
A
T = 125°C  
A
T = -40°C  
A
T = -40°C  
A
90  
60  
20  
0
30  
0
2.5  
3
3.5  
4
4.5  
5
3
3.5  
4
4.5  
V
EN (V)  
V
EN (V)  
Figure 26 IOUT vs. VEN  
Figure 25 IOUT vs. VEN  
300  
250  
200  
150  
100  
200  
175  
150  
125  
100  
75  
VOUT = 2V  
V
R
OUT = 2V  
EXT = 7.5  
TA = 85°C  
TA = 125°C  
T = 85°C  
A
R
EXT = 5.6  
T
A
= 125°C  
T = 25°C  
A
TA = 25°C  
TA = -40°C  
T = -40°C  
A
50  
50  
0
25  
0
3
3.5  
4
4.5  
2.5  
3
3.5  
4
4.5  
5
V
EN (V)  
V
EN (V)  
Figure 28 IOUT vs. VEN  
Figure 27 IOUT vs. VEN  
Integrated Silicon Solution, Inc. – www.issi.com  
11  
Rev. C, 07/01/2016  
IS31LT3172/73  
250  
200  
300  
VOUT = 2V  
V
V
EN = 3.3V  
OUT = 2V  
TA  
= 25°C  
250  
200  
150  
100  
R
EXT = 5.6Ω  
R
EXT = 7.5Ω  
150  
100  
REXT = 10Ω  
REXT = 20Ω  
50  
0
50  
0
REXT Open  
2.5  
3
3.5  
4
4.5  
5
1
10  
100  
REXT ()  
V
EN (V)  
Figure 29 IOUT vs. VEN  
Figure 30 IOUT vs. REXT  
500  
400  
300  
200  
V
V
OUT = 3V, 3 LEDs  
EN = 5V, 100Hz, 50% Duty Cycle  
I
R
OUT = 0A  
EXT Open  
REXT = 10  
T
J
= -40°C  
TA = -40°C  
T
A
= 25°C  
V
EN  
2V/Div  
TA = 85°C  
TA = 125°C  
100  
0
I
OUT  
50mA/Div  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (400ns/Div)  
VEN (V)  
Figure 31 IEN vs. VEN  
Figure 32 VEN vs. IOUT Delay and Rising Edge  
V
OUT = 3V, 3 LEDs  
V
V
OUT = 3V, 3 LEDs  
EN = 5V, 100Hz, 50% Duty Cycle  
VEN = 5V, 100Hz, 50% Duty Cycle  
R
EXT = 10  
REXT = 10Ω  
TJ  
= 25°C  
T
J
= 125°C  
V
EN  
V
EN  
2V/Div  
2V/Div  
I
OUT  
I
OUT  
50mA/Div  
50mA/Div  
Time (200ns/Div)  
Figure 33 VEN vs. IOUT Delay and Rising Edge  
Time (400ns/Div)  
Figure 34 VEN vs. IOUT Delay and Rising Edge  
Integrated Silicon Solution, Inc. – www.issi.com  
12  
Rev. C, 07/01/2016  
IS31LT3172/73  
VOUT = 3V, 3 LEDs  
VOUT = 3V, 3 LEDs  
VEN = 5V, 100Hz, 50% Duty Cycle  
VEN = 5V, 100Hz, 50% Duty Cycle  
REXT = 10  
R
EXT = 10Ω  
TJ  
= -40°C  
TJ  
= 25°C  
V
EN  
V
EN  
2V/Div  
2V/Div  
I
OUT  
I
OUT  
50mA/Div  
50mA/Div  
Time (100ns/Div)  
Time (100ns/Div)  
Figure 35 VEN vs. IOUT Delay and Falling Edge  
Figure 36 VEN vs. IOUT Delay and Falling Edge  
VOUT = 3V, 3 LEDs  
VEN = 5V, 100Hz, 50% Duty Cycle  
REXT = 10Ω  
TJ  
= 125°C  
V
EN  
2V/Div  
I
OUT  
50mA/Div  
Time (100ns/Div)  
Figure 37 VEN vs. IOUT Delay and Falling Edge  
Integrated Silicon Solution, Inc. – www.issi.com  
13  
Rev. C, 07/01/2016  
IS31LT3172/73  
APPLICATIONS INFORMATION  
IS31LT3172/73 provides an easy constant current  
source solution for LED lighting applications. It uses  
an external resistor to adjust the LED current from  
10Ma to 200Ma. The LED current can be determined  
by the external resistor REXT as Equation (1):  
When operating the chip at high ambient  
temperatures, or when driving maximum load  
current, care must be taken to avoid exceeding the  
package power dissipation limits. Exceeding the  
package dissipation will cause the device to enter  
thermal protection mode. The maximum package  
power dissipation can be calculated using the  
following Equation (2):  
10mA106  
(1)  
REXT  
ISET 10mA  
TJ (MAX ) TA  
Where ISET is in Ma.  
(2)  
PD(MAX )  
JA  
Paralleling a low tolerance resistor REXT with the  
internal resistor RINT will improve the overall  
accuracy of the current sense resistance. The  
resulting output current will vary slightly lower due to  
the negative temperature coefficient (NTC) resulting  
from the self heating of the IS31LT3172/73.  
Where TJ(MAX) is the maximum junction temperature,  
TA is the ambient temperature, and θJA is the junction  
to ambient thermal resistance; a metric for the  
relative thermal performance of a package.  
The recommended maximum operating junction  
temperature, TJ(MAX), is 125°C and so the maximum  
ambient temperature is determined by the package  
parameter; θJA. The θJA for the IS31LT3172/73 SOP-  
8-EP package is 55.4°C/W.  
HIGH INPUT VOLTAGE APPLICATION  
When driving a long string of LEDs whose total  
forward voltage drop exceeds the IS31LT3172  
V
BD_OUT limit of 42V, it is possible to stack several  
LEDs (such as 2 LEDs) between the EN pin and the  
OUT pins, and so the voltage on the EN pin is higher  
than 5V. The remaining string of LEDs can then be  
placed between power supply +VS and EN pin,  
(Figure 38). The number of LEDs required to stack  
at EN pin will depend on the LED’s forward voltage  
drop (VF) and the +VS value.  
Therefore the maximum power dissipation at TA =  
25°C is:  
125C 25C  
55.4C /W  
PD(MAX )  
1.8W  
The actual power dissipation PD is:  
(3)  
PD VOUT IOUT VEN IEN  
To ensure the performance, the die temperature (TJ)  
of the IS31LT3172/73 should not exceed 125°C. The  
graph below gives details for the package power  
derating.  
2.5  
SOP-8-EP  
2
1.5  
1
Figure 38 High Input Voltage Application Circuit  
Note: when operating the IS31LT3172 at voltages  
exceeding the device operating limits, care needs to  
be taken to keep the EN pin and OUT pin voltage  
below 42V.  
0.5  
0
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
THERMAL PROTECTION AND DISSIPATION  
Temperature (°C)  
The IS31LT3172/73 implements thermal foldback  
protection to reduce the LED current when the  
package’s thermal dissipation is exceeded and  
prevent “thermal runaway”. The thermal foldback  
implements a negative temperature coefficient  
(NTC) of -0.26%/K.  
Figure 39 PD vs. TA (SOP-8-EP)  
The thermal resistance is achieved by mounting the  
IS31LT3172/73 on a standard FR4 double-sided  
printed circuit board (PCB) with a copper area of a  
few square inches on each side of the board under  
Integrated Silicon Solution, Inc. – www.issi.com  
14  
Rev. C, 07/01/2016  
IS31LT3172/73  
the IS31LT3172/73. Multiple thermal vias, as shown  
in Figure 40, help to conduct the heat from the  
exposed pad of the IS31LT3172/73 to the copper on  
each side of the board. The thermal resistance can  
be reduced by using a metal substrate or by adding  
a heatsink.  
Figure 40 Board Via Layout For Thermal Dissipation  
Integrated Silicon Solution, Inc. – www.issi.com  
15  
Rev. C, 07/01/2016  
IS31LT3172/73  
CLASSIFICATION REFLOW PROFILES  
Profile Feature  
Pb-Free Assembly  
Preheat & Soak  
150°C  
Temperature min (Tsmin)  
200°C  
Temperature max (Tsmax)  
60-120 seconds  
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate (Tsmax to Tp)  
Liquidous temperature (TL)  
Time at liquidous (Tl)  
3°C/second max.  
217°C  
60-150 seconds  
Max 260°C  
Peak package body temperature (Tp)*  
Time (tp)** within 5°C of the specified  
classification temperature (Tc)  
Average ramp-down rate (Tp to Tsmax)  
Time 25°C to peak temperature  
Max 30 seconds  
6°C/second max.  
8 minutes max.  
Figure 41 Classification Profile  
Integrated Silicon Solution, Inc. – www.issi.com  
16  
Rev. C, 07/01/2016  
IS31LT3172/73  
PACKAGE INFORMATION  
SOP-8-EP  
Integrated Silicon Solution, Inc. – www.issi.com  
17  
Rev. C, 07/01/2016  
IS31LT3172/73  
RECOMMENDED LAND PATTERN  
Note:  
1. Land pattern complies to IPC-7351.  
2. All dimensions in MM.  
3. This document (including dimensions, notes & specs) is a recommendation based on typical circuit board manufacturing parameters. Since  
land pattern design depends on many factors unknown (eg. User’s board manufacturing specs), user must determine suitability for use.  
Integrated Silicon Solution, Inc. – www.issi.com  
18  
Rev. C, 07/01/2016  
IS31LT3172/73  
REVISION HISTORY  
Revision  
Detail Information  
Date  
A
B
Initial release  
2016.03.01  
2016.05.04  
Update EC table  
Add Package Thermal Resistance (Junction to Pad), RθJP in THERMAL  
CHARACTERISTICS  
C
2016.07.01  
Integrated Silicon Solution, Inc. – www.issi.com  
19  
Rev. C, 07/01/2016  

相关型号:

IS31LT3173

10-TO-200MA CONSTANT-CURRENT LED DRIVER
ISSI

IS31LT3350

40V LED DRIVER WITH INTERNAL SWITCH
ISSI

IS31LT3350-V1SDLS2-TR

40V LED DRIVER WITH INTERNAL SWITCH
ISSI

IS31LT3350-V1STLS2-TR

40V LED DRIVER WITH INTERNAL SWITCH
ISSI

IS31LT3350-V2SDLS2-TR

LED Driver, 10-Segment, PDSO5, LEAD FREE, SOT-89, 5 PIN
ISSI

IS31LT3350-V2STLS2-TR

40V LED DRIVER WITH INTERNAL SWITCH
ISSI

IS31LT3352

40V LED DRIVER WITH TEMPERATURE COMPENSATION
ISSI

IS31LT3352-V1GRLS2-TR

LED Driver, 10-Segment, PDSO8, LEAD FREE, SOP-8
ISSI
ISSI

IS31LT3354

40V LED DRIVER WITH EXTERNAL SWITCH
ISSI

IS31LT3354-STLS2-TR

LED Driver, 10-Segment, PDSO5, LEAD FREE, SOT-23, 5 PIN
ISSI

IS31LT3360

40V/1.2A LED DRIVER WITH INTERNAL SWITCH
ISSI