IS43R16320E-5TLI-TR [ISSI]

IC DRAM 512M PARALLEL 200MHZ;
IS43R16320E-5TLI-TR
型号: IS43R16320E-5TLI-TR
厂家: INTEGRATED SILICON SOLUTION, INC    INTEGRATED SILICON SOLUTION, INC
描述:

IC DRAM 512M PARALLEL 200MHZ

动态存储器
文件: 总34页 (文件大小:770K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
16Mx32, 32Mx16, 64Mx8  
512Mb DDR SDRAM  
JANUARY 2020  
FEATURES  
DEVICE OVERVIEW  
• VDD and VDDQ: 2.5V 0.2V ꢀ(5ꢁ (-6  
• VDD and VDDQ: 2.5V 0.1V ꢀ(ꢂ6  
• SSTL_2 compatible I/O  
• Double(data rate architecture; two data transfers  
per clock cycle  
• Bidirectionalꢁ data strobe ꢀDQS6 is transmitted/  
received with dataꢁ to be used in capturing data  
at the receiver  
• DQS is edge(aligned with data for READs and  
centre(aligned with data for WRITEs  
ISSI’s 512(Mbit DDR SDRAM achieves high speed data  
transfer using pipeline architecture and two data word  
accesses per clock cycle. The 53-ꢁ870ꢁ912(bit memory  
array is internally organized as four banks of 128Mb to  
allow concurrent operations. The pipeline allows Read  
and Write burst accesses to be virtually continuousꢁ with  
the option to concatenate or truncate the bursts. The  
programmable features of burst lengthꢁ burst sequence  
and CAS latency enable further advantages. The device  
is available in 8(bitꢁ 1-(bit and 32(bit data word size  
Input data is registered on the I/O pins on both edges  
of Data Strobe signalꢀs6ꢁ while output data is referenced  
to both edges of Data Strobe and both edges of CLK.  
Commands are registered on the positive edges of CLK.  
• Differential clock inputs ꢀCK and CK6  
• DLL aligns DQ and DQS transitions with CK  
transitions  
• Commands entered on each positive CK edge;  
data and data mask referenced to both edges of  
DQS  
An Auto Refresh mode is providedꢁ along with a Self  
Refresh mode. All I/Os are SSTL_2 compatible.  
ADDRESS TABLE  
• Four internal banks for concurrent operation  
• Data Mask for write data. DM masks write data  
at both rising and falling edges of data strobe  
• Burst Length: 2ꢁ ꢂ and 8  
Parameter  
16M x 32  
32M x 16  
64M x 8  
Configuration  
ꢂM x 32 x ꢂ  
banks  
8M x 1- x ꢂ  
banks  
1-M x 8 x ꢂ  
banks  
• Burst Type: Sequential and Interleave mode  
• Programmable CAS latency: 2ꢁ 2.5 and 3  
• Auto Refresh and Self Refresh Modes  
• Concurrent Auto Precharge Supported  
• TRAS Lockout supported ꢀtRAP = tRCD6  
Bank Address Pins  
BA0ꢁ BA1  
BA0ꢁ BA1  
A10/AP  
BA0ꢁ BA1  
A10/AP  
Autoprecharge Pins A8/AP  
Row Address  
8KꢀA0 – A126 8KꢀA0 – A126 8KꢀA0 – A126  
Column Address  
512ꢀA0 – A7ꢁ 1KꢀA0 – A96  
A96  
2KꢀA0 – A9ꢁ  
A116  
Refresh Count  
Com./Ind./A1  
A2  
OPTIONS  
8K / -ꢂms  
8K / 1-ms  
8K / -ꢂms  
8K / 1-ms  
8K / -ꢂms  
8K / 1-ms  
• Configurationꢀs6: 1-Mx32ꢁ 32Mx1-ꢁ -ꢂMx8  
• Packageꢀs6:  
1ꢂꢂ Ball BGA ꢀx326  
--(pin TSOP(II ꢀx8ꢁ x1-6 and -0 Ball BGA ꢀx8ꢁ x1-6  
• Lead(free package  
KEY TIMING PARAMETERS  
Speed Grade  
-4  
-5  
-6  
Units  
x8, x16  
Temperature Range:  
only  
Commercial ꢀ0°C to +70°C6  
Industrial ꢀ(ꢂ0°C to +85°C6  
Automotiveꢁ A1 ꢀ(ꢂ0°C to +85°C6  
Automotiveꢁ A2 ꢀ(ꢂ0°C to +105°C6  
FCk Max CL = 3  
FCk Max CL = 2.5  
FCk Max CL = 2  
250  
1-7  
133  
200  
1-7  
133  
1-7  
1-7  
133  
MHz  
MHz  
MHz  
Copyright © 2020 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without  
notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest  
version of this device specification before relying on any published information and before placing orders for products.  
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reason-  
ably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications  
unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:  
a.) the risk of injury or damage has been minimized;  
b.) the user assume all such risks; and  
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances  
Integrated Silicon Solution, Inc.  
1
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
FUNCTIONAL BLOCK DIAGRAM (x32)  
CK  
CK  
CKE  
CS  
RAS  
CAS  
WE  
COMMAND  
DECODER  
DM0-DM3  
I/O 0-31  
4
DATA IN  
BUFFER  
&
CLOCK  
GENERATOR  
32  
32  
REFRESH  
CONTROLLER  
DQS0-DQS3  
Mode Registers and  
Ext. Mode Registers  
4
V
DD/VDDQ  
ss/Vss  
SELF  
DATA OUT  
BUFFER  
REFRESH  
V
Q
A12  
A11  
A10  
A9  
CONTROLLER  
15  
32  
32  
A8  
A7  
A6  
REFRESH  
COUNTER  
2
A5  
A4  
A3  
A2  
8192  
8192  
13  
MEMORY CELL  
ARRAY  
8192  
8192  
13  
A1  
BANK 0  
ROW  
A0  
ROW  
ADDRESS  
LATCH  
BA0  
BA1  
ADDRESS  
BUFFER  
13  
13  
13  
SENSE AMP I/O GATE  
2
512  
(x 32)  
COLUMN  
ADDRESS LATCH  
BANK CONTROL LOGIC  
9
BURST COUNTER  
COLUMN DECODER  
COLUMN  
ADDRESS BUFFER  
9
2
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
FUNCTIONAL BLOCK DIAGRAM (x16)  
CK  
CK  
CKE  
CS  
RAS  
CAS  
WE  
COMMAND  
DECODER  
LDM, UDM  
I/O 0-15  
2
DATA IN  
BUFFER  
&
CLOCK  
GENERATOR  
16  
16  
REFRESH  
CONTROLLER  
LDQS, UDQS  
Mode Registers and  
Ext. Mode Registers  
2
VDD/VDDQ  
Vss/VssQ  
SELF  
DATA OUT  
BUFFER  
REFRESH  
A12  
A11  
A10  
A9  
CONTROLLER  
15  
16  
16  
A8  
A7  
A6  
REFRESH  
COUNTER  
2
A5  
A4  
A3  
A2  
8192  
8192  
13  
MEMORY CELL  
ARRAY  
8192  
8192  
13  
A1  
BANK 0  
ROW  
A0  
ROW  
ADDRESS  
LATCH  
BA0  
BA1  
ADDRESS  
BUFFER  
13  
13  
13  
SENSE AMP I/O GATE  
2
1024  
(x 16)  
COLUMN  
ADDRESS LATCH  
BANK CONTROL LOGIC  
10  
BURST COUNTER  
COLUMN DECODER  
COLUMN  
ADDRESS BUFFER  
10  
Integrated Silicon Solution, Inc.  
3
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
PIN CONFIGURATIONS  
66 pin TSOP - Type II for x8  
V
DD  
1
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSS  
DQ0  
2
DQ7  
V
DD  
Q
3
VSSQ  
NC  
DQ1  
4
NC  
DQ6  
5
V
SS  
Q
6
VDDQ  
NC  
DQ2  
7
NC  
DQ5  
8
V
DD  
Q
9
VSSQ  
NC  
DQ3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
NC  
DQ4  
V
SS  
Q
VDDQ  
NC  
NC  
DDQ  
NC  
NC  
NC  
NC  
V
V
SSQ  
DQS  
NC  
VDD  
NC  
VREF  
VSS  
DM  
CK  
NC  
WE  
CAS  
RAS  
CS  
CK  
CKE  
NC  
NC  
A12  
A11  
A9  
BA0  
BA1  
A10/AP  
A0  
A8  
A7  
A1  
A6  
A2  
A5  
A3  
A4  
VDD  
VSS  
PIN DESCRIPTION: x8  
A0(A12  
A0(A9ꢁ A11  
BA0ꢁ BA1  
DQ0 – DQ7  
CKꢁ CK  
CKE  
Row Address Input  
Column Address Input  
Bank Select Address  
Data I/O  
DM  
Data Write Mask  
DQS  
VDD  
VDDQ  
VSS  
Data Strobe  
Power  
Power Supply for I/O Pins  
Ground  
System Clock Input  
Clock Enable  
VSSQ  
VREF  
NC  
Ground for I/O Pins  
SSTL_2 reference voltage  
No Connection  
CS  
Chip Select  
CAS  
Column Address Strobe  
Command  
RAS  
WE  
Row Address Strobe  
Command  
Write Enable  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
PIN CONFIGURATION  
Package Code B: 60-ball FBGA (top view) for x8  
ꢀ8mm x 13mm Body0.8mm Ball Pitch6  
Top View  
ꢀBalls seen through the Package6  
: Ball Existing  
1
2
3
7
8
9
: Depopulated Ball  
Top View  
(See the balls through the Package)  
VSSQ DQ7  
VSS  
VDD  
DQ0 VDDQ  
A
B
C
D
1
2 3 4 5 6 7 8 9  
NC  
NC  
VDDQ DQ6  
VSSQ DQ5  
DQ1 VSSQ  
DQ2 VDDQ  
NC  
NC  
NC  
NC  
A
B
C
D
E
F
NC  
VDDQ DQ4  
DQ3 VSSQ  
DQS  
NC  
VSSQ  
NC  
NC  
VDDQ  
VDD  
CAS  
CS  
E
F
VREF  
DM  
NC  
VSS  
CK  
CKE  
A9  
WE  
RAS  
BA1  
CK  
A12  
A11  
A8  
G
H
J
G
H
J
BA0  
K
L
A7  
A0 A10/AP  
K
A6  
A4  
A5  
A2  
A1  
A3  
L
M
VSS  
VDD  
M
BGA Package Ball Pattern  
Top View  
x8 Device Ball Pattern  
PIN DESCRIPTION: x8  
A0(A12  
A0(A9ꢁ A11  
BA0ꢁ BA1  
DQ0 – DQ7  
CKꢁ CK  
CKE  
Row Address Input  
DQS  
Data Strobe  
Power  
Column Address Input  
Bank Select Address  
Data I/O  
VDD  
VDDQ  
VSS  
Power Supply for I/O Pins  
Ground  
System Clock Input  
Clock Enable  
VSSQ  
VREF  
NC  
Ground for I/O Pins  
SSTL_2 reference voltage  
No Connection  
CS  
Chip Select  
CAS  
Column Address Strobe  
Command  
RAS  
WE  
DM  
Row Address Strobe Command  
Write Enable  
Data Write Mask  
Integrated Silicon Solution, Inc.  
5
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
PIN CONFIGURATIONS  
66 pin TSOP - Type II for x16  
V
DD  
1
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSS  
DQ0  
2
DQ15  
V
DD  
Q
3
VSSQ  
DQ1  
DQ2  
4
DQ14  
DQ13  
5
V
SS  
Q
6
VDDQ  
DQ3  
DQ4  
7
DQ12  
DQ11  
8
V
DD  
Q
9
VSSQ  
DQ5  
DQ6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
DQ10  
DQ9  
V
SS  
Q
VDDQ  
DQ7  
NC  
DQ8  
NC  
V
DDQ  
LDQS  
NC  
VSSQ  
UDQS  
NC  
VDD  
NC  
VREF  
VSS  
UDM  
CK  
LDM  
WE  
CAS  
RAS  
CS  
CK  
CKE  
NC  
NC  
A12  
A11  
A9  
BA0  
BA1  
A10/AP  
A0  
A8  
A7  
A1  
A6  
A2  
A5  
A3  
A4  
VDD  
VSS  
PIN DESCRIPTION: x16  
A0(A12  
Row Address Input  
Column Address Input  
Bank Select Address  
Data I/O  
LDMꢁ UDM  
Data Write Mask  
A0(A9  
LDQSꢁ UDQS  
VDD  
Data Strobe  
BA0ꢁ BA1  
DQ0 – DQ15  
CKꢁ CK  
CKE  
Power  
VDDQ  
VSS  
Power Supply for I/O Pins  
Ground  
System Clock Input  
Clock Enable  
VSSQ  
VREF  
NC  
Ground for I/O Pins  
SSTL_2 reference voltage  
No Connection  
CS  
Chip Select  
CAS  
Column Address Strobe  
Command  
RAS  
WE  
Row Address Strobe  
Command  
Write Enable  
-
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
PIN CONFIGURATION  
Package Code B: 60-ball FBGA (top view) for x16  
ꢀ8mm x 13mm Body0.8mm Ball Pitch6  
Top View  
ꢀBalls seen through the Package6  
: Ball Existing  
1
2
3
7
8
9
: Depopulated Ball  
Top View  
(See the balls through the Package)  
VSSQ DQ15  
VSS  
VDD  
DQ0 VDDQ  
A
B
C
D
1
2 3 6 7 8 9  
4 5  
DQ14 VDDQ DQ13  
DQ12 VSSQ DQ11  
DQ2 VSSQ DQ1  
DQ4 VDDQ DQ3  
A
B
C
D
E
F
DQ10 VDDQ DQ9  
DQ6 VSSQ DQ5  
LDQS VDDQ DQ7  
DQ8 VSSQ UDQS  
VREF  
E
F
NC  
VSS  
UDM  
CK  
LDM  
WE  
VDD  
CAS  
CS  
CK  
A12  
A11  
A8  
G
H
J
G
H
J
RAS  
BA1  
CKE  
A9  
BA0  
K
L
A7  
A0 A10/AP  
K
A6  
A4  
A5  
A2  
A1  
A3  
L
M
VSS  
VDD  
M
BGA Package Ball Pattern  
Top View  
x16 Device Ball Pattern  
PIN DESCRIPTION: x16  
A0(A12  
A0(A9  
Row Address Input  
LDQSꢁ UDQS  
Data Strobe  
Power  
Column Address Input  
Bank Select Address  
Data I/O  
VDD  
VDDQ  
VSS  
BA0ꢁ BA1  
DQ0 – DQ15  
CKꢁ CK  
CKE  
Power Supply for I/O Pins  
Ground  
System Clock Input  
Clock Enable  
VSSQ  
VREF  
NC  
Ground for I/O Pins  
SSTL_2 reference voltage  
No Connection  
CS  
Chip Select  
CAS  
Column Address Strobe  
Command  
RAS  
Row Address Strobe Command  
Write Enable  
WE  
LDMꢁ UDM  
Data Write Mask  
Integrated Silicon Solution, Inc.  
7
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
PIN CONFIGURATION  
Package Code B: 144-ball FBGA (top view)  
ꢀ12mm x 12mm Body0.8mm Ball Pitch6  
Top View ꢀBalls seen through the package6  
1 2 3 4 5 6 7 8 9 10 11 12  
A
B
C
D
E
F
DQ28 VSSQ DM3 DQS3  
VDDQ NC VDDQ DQ27  
VSSQ VSSQ DQ26 DQ25  
VSS VDD VDDQ DQ24  
VSSQ VDDQ DQ15 DQ14  
VSSQ VDDQ DQ13 DQ12  
DQ2 DQ0 DQ31 DQ29  
DQ1 VDDQ VDDQ DQ30  
VSSQ VDD VDD VSSQ  
VSSQ VSS VSS VSSQ  
VSS VSS VSS VSS  
VSS VSS VSS VSS  
VSS VSS VSS VSS  
VSS VSS VSS VSS  
VSS VSS VSS VSS  
A10 VDD VDD A12  
DQS0 DM0 VSSQ DQ3  
DQ4 VDDQ NC VDDQ  
DQ6 DQ5 VSSQ VSSQ  
DQ7 VDDQ VDD VSS  
DQ17 DQ16 VDDQ VSSQ  
DQ19 DQ18 VDDQ VSSQ  
G
H
J
VSSQ NC  
DM1 DQS1  
DQS2 DM2  
NC VSSQ  
VSSQ VDDQ DQ11 DQ10  
VSSQ VDDQ DQ9 DQ8  
DQ21 DQ20 VDDQ VSSQ  
DQ22 DQ23 VDDQ VSSQ  
K
L
VSS VDD  
NC  
NC  
NC  
CAS  
RAS  
CS  
WE VDD VSS  
CK  
A2  
A1  
A9  
A4  
A5  
A6  
NC  
A7  
CK  
A8  
NC  
NC  
NC  
BA1  
A0  
A11  
A3  
M
CKE VREF  
BA0  
Note: Vss balls inside the dotted box are optional for purposes of thermal dissipation.  
PIN DESCRIPTION: for x32  
A0(A12  
A0(A7ꢁ A9  
BA0ꢁ BA1  
DQ0 – DQ31  
CKꢁ CK  
CKE  
Row Address Input  
Column Address Input  
Bank Select Address  
Data I/O  
WE  
Write Enable  
DM0(DM3  
DQS0(DQS3  
VDD  
Data Write Mask  
Data Strobe  
Power  
System Clock Input  
Clock Enable  
VDDQ  
VREF  
VSS  
Power Supply for I/O Pins  
SSTL_2 reference voltage  
Ground  
CS  
Chip Select  
CAS  
Column Address Strobe  
Command  
VSSQ  
NC  
Ground for I/O Pins  
No Connection  
RAS  
Row Address Strobe  
Command  
8
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
PIN FUNCTIONAL DESCRIPTIONS  
Symbol  
Type Description  
CKꢁ CK  
Input Clock: CK and CK are differential clock inputs. All address and control input signals are sampled  
on the crossing of the positive edge of CK and negative edge of CK. Input and output data is  
referenced to the crossing of CK and CK ꢀboth directions of crossing6. Internal clock signals are  
derived from CK/ CK.  
CKE  
Input Clock Enable: CKE HIGH activatesꢁ and CKE LOW deactivates internal clock signalsꢁ and device  
input buffers and output drivers. Taking CKE LOW provides PRECHARGE POWER(DOWN and  
SELF REFRESH operation ꢀall banks idle6ꢁ or ACTIVE POWERDOWN ꢀrow ACTIVE in any  
bank6. CKE is synchronous for all functions except for SELF REFRESH EXITwhich is achieved  
asynchronously. Input buffersꢁ excluding CKꢁ CK and CKEꢁ are disabled during power(down and  
self refresh mode which are contrived for low standby power consumption.  
CS  
Input Chip Select: CS enables ꢀregistered LOW6 and disables ꢀregistered HIGH6 the command  
decoder. All commands are masked when CS is registered HIGH. CS provides for external bank  
selection on systems with multiple banks. CS is considered part of the command code.  
Input Command Inputs: RASCAS and WE ꢀalong with CS6 define the command being entered.  
RASCASꢁ  
WE  
DM: x8;  
LDMꢁ UDM:  
x1-;  
Input Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is  
sampled HIGH along with that input data during a WRITE access. DM is sampled on both edges  
of DQS. Although DM pins are input(onlythe DM loading matches the DQ and DQS loading.  
DM0(DM3:  
x32  
For x1- devicesꢁ LDM corresponds to the data on DQ0(DQ7ꢁ UDM corresponds to the data on  
DQ8(DQ15.  
For x32 devicesꢁ DM0 corresponds to the data on DQ0(DQ7ꢁ DM1 corresponds to the data on  
DQ8(DQ15ꢁ DM2 corresponds to the data on DQ1-(DQ23ꢁ and DM3 corresponds to the data on  
DQ2ꢂ(DQ31.  
BA0ꢁ BA1  
A [12:0]  
Input Input Bank Address Inputs: BA0 and BA1 define to which bank an ACTIVEꢁ READꢁ WRITE or  
PRECHARGE command is being applied.  
Input Address Inputs: provide the row address for ACTIVE commandsꢁ and the column address and  
AUTO PRECHARGE bit for READ / WRITE commandsꢁ to select one location out of the memory  
array in the respective bank. The address inputs also provide the opcode during a MODE  
REGISTER SET command.  
DQ:  
DQ0(DQ7: x8;  
DQ0(DQ15:  
x1-  
I/O  
Data Bus: Input / Output  
DQ0(DQ31:  
x32  
DQS: x8:  
I/O  
Data Strobe: Output with read dataꢁ input with write data. Edge(aligned with read dataꢁ centered  
with write data. Used to capture write data.  
LDQSꢁ UDQS  
x1-:  
DQS0(DQS3:  
x32  
For x1- deviceꢁ LDQS corresponds to the data on DQ0(DQ7ꢁ UDQS corresponds to the data on  
DQ8(DQ15.  
For x32 deviceꢁ DQS0 corresponds to the data on DQ0(DQ7ꢁ DQS1 corresponds to the data on  
DQ8(DQ15ꢁ DQS2 corresponds to the data on DQ1-(DQ23ꢁ and DQS3 corresponds to the data  
on DQ2ꢂ(DQ31.  
NC  
((  
No Connect: Should be left unconnected.  
VREF  
VDDQ  
VSSQ  
VDD  
Supply SSTL_2 reference voltage.  
Supply I/O Power Supply.  
Supply I/O Ground.  
Supply Power Supply.  
Supply Ground.  
VSS  
Integrated Silicon Solution, Inc.  
9
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
COMMANDS TRUTH TABLES  
All commands ꢀaddress and control signals6 are registered on the positive edge of clock ꢀcrossing of CK going high  
and CK going low6. Truth Table shows basic timing parameters for all commands.  
TRUTH TABLE - COMMANDS  
NAME (FUNCTION)  
CS  
H
L
RAS CAS WE  
BA  
X
AP  
X
Address Notes  
DESELECT ꢀNOP6  
X
H
L
X
H
H
L
X
H
H
H
X
X
2
2
NO OPERATION ꢀNOP6  
ACTIVE ꢀselect bank and activate row6  
X
X
L
Valid  
Valid  
X
Row  
Column  
READ ꢀselect bank and column and start read  
burst6  
L
H
L
READ with AP ꢀread burst with Auto Precharge6  
L
L
H
H
L
L
H
L
Valid  
Valid  
H
L
Column  
Column  
3
3
WRITE ꢀselect bank and column and start write  
burst6  
WRITE with AP ꢀwrite burst with Auto  
Precharge6  
L
H
L
L
Valid  
H
Column  
BURST TERMINATE  
L
L
H
L
H
H
L
L
X
X
L
X
X
5
PRECHARGE ꢀdeactivate row in selected  
bank6  
Valid  
PRECHARGE ALL ꢀdeactivate rows in all  
banks6  
L
L
H
L
X
H
X
X
X
5
AUTO REFRESH or enter SELF REFRESH  
MODE REGISTER SET  
L
L
L
L
L
L
H
L
X
-ꢁ7ꢁ8  
9
Valid  
Op(code  
Notes:  
1. All states and sequences not shown are illegal or reserved.  
2. DESELECT and NOP are functionally interchangeable.  
3. Autoprecharge is non(persistent. AP High enables Auto Prechargeꢁ while AP Low disables Autoprecharge. Concurrent Auto(  
precharge is supported.  
ꢂ. Burst Terminate applies to only Read bursts with Auto Precharge disabled. This command is undefined and should not be  
used for Read with Auto Precharge enabledꢁ and for Write bursts.  
5. If AP is Lowꢁ bank address determines which bank is to be precharged. If AP is Highꢁ all banks are precharged and BA0(  
BA1are don’t care.  
-. This command is AUTO REFRESH if CKE is Highꢁ and SELF REFRESH if CKE is low.  
7. All address inputs and I/O are ‘don't care’ except for CKE. Internal refresh counters control bank and row addressing.  
8. All banks must be precharged before issuing an AUTO(REFRESH or SELF REFRESH command.  
9. BA0 and BA1 value select between MRS and EMRS.  
10. CKE is HIGH for all commands shown except SELF REFRESH.  
ADDRESSING  
TRUTH TABLE - DM Operations  
x32  
x16  
x8  
FUNCTION  
Write Enable  
Write Inhibit  
DM  
L
DQ  
Valid  
X
Auto Precharge ꢀAP6  
Row Address ꢀRA6  
A8  
A10  
A10  
A0(A12 A0(A12 A0(A12  
H
Column Address ꢀCA6 A0(A7ꢁ  
A9  
A0(A9  
A0(A9ꢁ  
A11  
Note: Used to mask write dataꢁ provided coincident with the  
corresponding data.  
10  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
TRUTH TABLE - CKE  
CKE n-1 CKE n Current State  
COMMAND n  
ACTION n  
NOTES  
L
L
L
L
Power Down  
Self Refresh  
Power Down  
Self Refresh  
All Banks Idle  
Bankꢀs6 Active  
All Banks Idle  
X
Maintain Power Down  
Maintain Self Refresh  
Exit Power Down  
X
L
H
H
L
NOP or DESELECT  
NOP or DESELECT  
NOP or DESELECT  
NOP or DESELECT  
AUTO REFRESH  
-
L
Exit Self Refresh  
-ꢁ 7  
-
H
H
H
H
Precharge Power Down Entry  
Active Power Down Entry  
Self Refresh entry  
L
-
L
H
See Truth Tables ( Commands  
Notes:  
1. CKEn is the logic state of CKE at clock edge n; CKEn(1 was the state of CKE at the previous clock edge.  
2. Current state is the state of DDR immediately prior to clock edge n.  
3. COMMANDn is the command registered at clock edge nꢁ and ACTIONn is the result of COMMANDn.  
ꢂ. All states and sequences not shown are illegal or reserved.  
5. CKE must not go LOW during a Read or Writeꢁ and must stay HIGH until after tRPSt or twRꢁ respectively.  
-. DESELECT and NOP are functionally interchangeable.  
7. NOPs or Deselects must be issued for at least tSnR after Self(Refresh exit before any other command. After DLL Resetꢁ at  
least txSRD must elapse before any Read commands occur.  
Basic Timing Parameters for Commands  
tCK  
tCH  
tCL  
CK  
CK  
tIS tIH  
Valid  
Input  
Valid  
Valid  
= Don't Care  
NOTE: Input = A0 - An, BA0, BA1, CKE, CS, RAS, CAS, WE;  
An = Address bus MSB  
Integrated Silicon Solution, Inc.  
11  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
SIMPLIFIED STATE DIAGRAM  
Power  
Applied  
Power  
On  
Precharge  
PREALL  
Self  
Refresh  
REFS  
REFSX  
MRS  
EMRS  
MRS  
REFA  
Auto  
Refresh  
Idle  
CKEL  
CKEH  
Active  
Power  
Down  
ACT  
Precharge  
Power  
Down  
CKEH  
CKEL  
Burst Stop  
Row  
Active  
Read  
Write  
Write  
Read  
Write A  
Read A  
Read  
Read  
Write  
Read A  
Write A  
Read  
A
PRE  
Write  
Read  
A
A
PRE  
PRE  
Precharge  
PREALL  
PRE  
Automatic Sequence  
Command Sequence  
PREALL = Precharge All Banks  
CKEL = Enter Power Down  
MRS = Mode Register Set  
CKEH = Exit Power Down  
REFS = Enter Self Refresh  
Write A = Write with Autoprecharge  
REFSX = Exit Self Refresh  
Read A = Read with Autoprecharge  
REFA = Auto Refresh  
EMRS = Extended Mode Register Set  
ACT = Active  
PRE = Precharge  
12  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
FUNCTIONAL DESCRIPTION  
The DDR SDRAM is a high speed CMOSꢁ dynamic random(access memory internally configured as a quad(bank  
DRAM. The 512Mb devices contains: 53-ꢁ870ꢁ912 bits.  
The DDR SDRAM uses double data rate architecture to achieve high speed operation. The double data rate  
architecture is essentially a 2n prefetch architecture with an interface designed to transfer two data words per clock  
cycle at the I/O pins. A single read or write access for the DDR SDRAM effectively consists of a single 2n(bit wideꢁ  
one clock cycle data transfer at the internal DRAM core and two corresponding n(bit wideꢁ one(half(clock(cycle  
data transfers at the I/O pins. Read and write accesses to the DDR SDRAM are burst oriented; accesses start at a  
selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin  
with the registration of an ACTIVE commandꢁ which is then followed by a READ or WRITE command. The address  
bits registered coincident with the ACTIVE command are used to select the bank and the row to be accessed. The  
address bits registered coincident with the READ or WRITE command are used to select the bank and the starting  
column location for the burst access.  
Prior to normal operationꢁ the DDR SDRAM must be initialized. The following section provides detailed information  
covering device initializationꢁ register definitionꢁ command description and device operation  
INITIALIZATION  
DDR SDRAMs must be powered up and initialized in a predefined manner. Operations procedures other than those  
specified may result in undefined operation. If there is any interruption to the device powerꢁ the initialization routine  
should be followed. The steps to be followed for device initialization are listed below. The Initialization Flow diagram  
and the Initialization Flow sequence are shown in the following figures.  
The Mode Register and Extended Mode Register do not have default values. If they are not programmed during the  
initialization sequenceꢁ it may lead to unspecified operation. The clock stop feature is not available until the device has  
been properly initialized from Step 1 through 13.  
• Step 1: Apply VDD before or at the same time as VDDQ.  
• Step 2: CKE must maintain LVCMOS Low until VREF is stable. Apply VDDQ before applying VTT and VREF.  
• Step 3: There must be at least 200 μs of valid clocks before any command may be given to the DRAM. During this  
time NOP or DESELECT commands must be issued on the command bus and CKE should be brought HIGH.  
• Step ꢂ: Issue a PRECHARGE ALL command.  
• Step 5: Provide NOPs or DESELECT commands for at least tRP time.  
• Step -: Issue EMRS command  
• Step 7: Issue MRS commandꢁ load the base mode register and to reset the DLL. Set the desired operating modes.  
• Step 8: Provide NOPs or DESELECT commands for at least tMRD time.  
• Step 9: Issue a PRECHARGE ALL command  
• Step 10: Issue 2 or more AUTO REFRESH cycles  
• Step 11: Issue MRS command with the reset DLL bit deactivated to program operating parameters without resetting  
the DLL  
• Step 12: Provide NOP or DESELECT commands for at least tMRD time.  
• Step 13: The DRAM has been properly initialized and is ready for any valid command.  
Integrated Silicon Solution, Inc.  
13  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
Initialization Waveform Sequence  
VDD  
tVDT0  
VDDQ  
VTT  
(system1)  
VREF  
t
CK  
t
tCL  
CH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CK  
CK  
( (  
) )  
( (  
) )  
( (  
( (  
) )  
( (  
) )  
( (  
) )  
) )  
tIS tIH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
LVCMOS LOW LEVEL  
CKE  
((  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
)
)
t
tIH  
IS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
NOP  
PRE  
EMRS  
MRS  
PRE  
AR  
AR  
MRS  
ACT  
COMMAND  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
DM  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
( (  
) )  
)
)
tIS tIH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CODE  
CODE  
CODE  
CODE  
CODE  
RA  
( (  
) )  
( (  
( (  
) )  
Address  
AP4  
( (  
) )  
( (  
) )  
( (  
) )  
)
)
t
IS  
tIH  
ALL BANKS  
( (  
) )  
( (  
) )  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CODE  
RA  
BA  
( (  
) )  
( (  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
) )  
tIS tIH  
tIS tIH  
t
tIH  
IS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BA0=H,  
BA1=L  
BA0=L,  
BA1=L  
BA0=L,  
BA1=L  
BA0, BA1  
( (  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
)
)
High-- Z  
((  
((  
((  
((  
((  
((  
DQS  
)
)
)
)
)
)
)
)
)
)
)
)
High-- Z  
((  
)
((  
((  
((  
((  
((  
DQ  
)
)
)
)
)
)
)
)
)
)
)
T = 200 µs  
tMRD2  
tMRD2  
tRP  
tRFC  
tRFC  
tMRD2  
Power--up:  
VDD and  
CLK stable  
Extended  
Mode  
Register  
Set  
200 cycles of CK**  
Load  
Mode  
Register  
(with A8= L)  
Load  
Mode  
Register,  
Reset DLL  
(with A8 = H)  
DON’T CARE  
Notes:  
1. VTT is not applied directly to the deviceꢁ however tVTD must be greater than or equal to zero to avoid device latch((up.  
2. tMRD is required before any command can be appliedꢁ and 200 cycles of CK are required before any executable command  
can be applied  
3. The two Auto Refresh commands may be moved to follow the first MRS but precede the second PRECHARGE ALL com(  
mand.  
ꢂ. AP is A8 for x32ꢁ and A10 for x8/x1-. Address is A0 to A12 except AP.  
1ꢂ  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
MODE REGISTER (MR) DEFINITION  
The Mode Register is used to define the specific mode of operation of the DDR SDRAM. This definition includes  
the definition of a burst lengthꢁ a burst typeꢁ and a CAS latency. The Mode Register is programmed via the MODE  
REGISTER SET command ꢀwith BA0=0 and BA1=06 and will retain the stored information until it is reprogrammedꢁ  
or the device loses power. Mode Register bits A0(A2 specify the burst lengthꢁ A3 the type of burst ꢀsequential or  
interleave6ꢁ Aꢂ(A- the CAS latencyand A8 DLL reset. A logic 0 should be programmed to all the undefined addresses  
bits to ensure future compatibility. The Mode Register must be loaded when all banks are idle and no bursts are in  
progressꢁ and the controller must wait the specified time tMRD before initiating any subsequent operation. Violating  
either of these requirements will result in unspecified operation. Reserved states should not be usedꢁ as unknown  
operation or incompatibility with future versions may result  
MODE REGISTER  
Address Bus ꢀAx6  
BA1 BA0 A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Mode Reg. ꢀEx6  
A2 A1 A0 Burst Length  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
2
4
8
Reserved  
Reserved  
Reserved  
Reserved  
A3 Burst Type  
0
1
Sequential  
Interleave  
A6 A5 A4 CAS Latency  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
2
A12 A11 A10 A9 A8 A7 DLL  
3
0
0
0
0
0
0
0
0
0
1
0
0
Normal operation  
Reset DLL  
Reserved  
Reserved  
2.5  
Reserved  
BA1 BA0 Mode Register Definition  
0
0
1
1
0
1
0
1
Program Mode Register  
Program Extended Mode Register  
Reserved  
Notes:  
1. A logic 0 should be programmed to all unused / undefined  
address bits to ensure future compatibility.  
Reserved  
Integrated Silicon Solution, Inc.  
15  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
BURST LENGTH  
Read and write accesses to the DDR SDRAM are burst orientedꢁ with the burst length being set and the burst order  
as in Burst Definition. The burst length determines the maximum number of column locations that can be accessed for  
a given READ or WRITE command. Burst lengths of 2ꢁ ꢂꢁ or 8 locations are available for both the sequential and the  
interleaved burst types.  
BURST DEFINITION  
Burst  
Starting Column Address  
Order of Accesses Within a Burst  
Length  
Type = Sequential  
Type = Interleaved  
A 0  
0
2
0(1  
1(0  
0(1  
1(0  
1
A 1  
0
A 0  
0
0(1(2(3  
1(2(3(0  
2(3(0(1  
3(0(1(2  
0(1(2(3  
1(0(3(2  
2(3(0(1  
3(2(1(0  
0
1
1
0
1
1
A 2  
0
A 1  
0
A 0  
0
0(1(2(3(ꢂ(5(-(7  
1(2(3(ꢂ(5(-(7(0  
2(3(ꢂ(5(-(7(0(1  
3(ꢂ(5(-(7(0(1(2  
ꢂ(5(-(7(0(1(2(3  
5(-(7(0(1(2(3(ꢂ  
-(7(0(1(2(3(ꢂ(5  
7(0(1(2(3(ꢂ(5(-  
0(1(2(3(ꢂ(5(-(7  
1(0(3(2(5(ꢂ(7(-  
2(3(0(1(-(7(ꢂ(5  
3(2(1(0(7(-(5(ꢂ  
ꢂ(5(-(7(0(1(2(3  
5(ꢂ(7(-(1(0(3(2  
-(7(ꢂ(5(2(3(0(1  
7(-(5(ꢂ(3(2(1(0  
0
0
1
0
1
0
8
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Notes:  
1. For a burst length of twoꢁ A1(An selects the two data element block; A0 selects the first access within the block.  
2. For a burst length of fourꢁ A2(An selects the four data element block; A0(A1 selects the first access within the block.  
3. For a burst length of eightꢁ A3(An selects the eight data element block; A0(A2 selects the first access within the block.  
ꢂ. Whenever a boundary of the block is reached within a given sequenceꢁ the following access wraps within the block.  
1-  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
When a READ or WRITE command is issuedꢁ a block of columns equal to the burst length is effectively selected. All  
accesses for that burst take place within the blockꢁ meaning that the burst will wrap within the block if a boundary is  
reached.  
The block is uniquely selected by A1(An when the burst length is set to twoꢁ by A2(An when the burst length is set  
to ꢂꢁ by A3(An when the burst length is set to 8. An is the most significant column address bitꢁ which depends if the  
device is x8ꢁ x1- or x32. The programmed burst length applies to both read and write bursts.  
BURST TYPE  
Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the  
burst type and is selected via bit A3.  
The ordering of accesses within a burst is determined by the burst lengthꢁ the burst type and the starting column  
address.  
READ LATENCY  
The READ latencyor CAS latencyis the delay between the registration of a READ command and the availability of  
the first piece of output data.  
If a READ command is registered at a clock edge n and the latency is 3 clocksꢁ the first data element will be valid at  
n + 2tCK + tAC. If a READ command is registered at a clock edge n and the latency is 2 clocksꢁ the first data element  
will be valid at n + tCK + tAC.  
OPERATING MODE  
The normal operating mode is selected by issuing a Mode Register Set command with bits A7 to A12 each set to  
zeroꢁ and bits A0 to A- set to the desired values. A DLL reset is initiated by issuing a Mode Register Set command  
with bits A7 and A9 to A12 each set to zeroꢁ bit A8 set to oneꢁ and bits A0 to A- set to the desired values. A Mode  
Register Set command issued to reset the DLL must always be followed by a Mode Register Set command to select  
normal operating mode ꢀA8=06.  
All other combinations of values for A7 to A12 are reserved for future use and/or test modes. Test modes and reserved  
states should not be used because unknown operation or incompatibility with future versions may result.  
Integrated Silicon Solution, Inc.  
17  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
CAS LATENCIES  
18  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
EXTENDED MODE REGISTER (EMR) DEFINITION  
The Extended Mode Register controls functions beyond those controlled by the Mode Register; these additional  
functions include DLL enable/disableꢁ and output drive strength selection. The Extended Mode Register is  
programmed via the MODE REGISTER SET command ꢀwith BA1=0 and BA0=16 and will retain the stored information  
until it is reprogrammedꢁ or the device loses power. The Extended Mode Register must be loaded when all banks  
are idle and no bursts are in progressꢁ and the controller must wait the specified time tMRD before initiating any  
subsequent operation. Violating either of these requirements will result in unspecified operation. Reserved states  
should not be usedꢁ as unknown operation or incompatibility with future versions may result.  
DLL Enable/Disable  
The DLL must be enabled for normal operation. DLL enable is required during power(up initializationꢁ and upon  
returning to normal operation after having disabled the DLL for the purpose of debug or evaluation ꢀupon exiting Self  
Refresh Modeꢁ the DLL is enabled automatically6. Any time the DLL is enabled a DLL Reset must follow and 200 clock  
cycles must occur before any executable command can be issued.  
OUTPUT DRIVE STRENGTH (DS)  
The normal drive strength for all outputs is specified to be SSTL_2ꢁ Class II. This DRAM also supports a reduced  
driver strength optionꢁ intended for lighter load and/or point(to(point environments. I((V curves for the normal drive  
strength and weak drive strength are included in this datasheet.  
EXTENDED MODE REGISTER  
Address Bus ꢀAx6  
BA1 BA0 A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Ext. Mode Reg. ꢀEx6  
Reservedꢀ16  
A0 DLL  
0
1
Enable  
Disable  
A1 Drive Strength  
0
1
Normal  
Reduced  
BA1 BA0 Mode Register Definition  
NOTES:  
0
0
1
1
0
1
0
1
Program Mode Register  
Program Extended Mode Register  
Reserved  
1. A logic 0 should be programmed to all unused/undefined ad(  
dress bits to ensure future compatibility  
Reserved  
Integrated Silicon Solution, Inc.  
19  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
Absolute Maximum Rating  
Parameter  
Symbol  
Vinꢁ Vout  
VDDꢁ VDDq  
TStg  
Value  
(1.0 ~ 3.-  
(1.0 ~ 3.-  
(55 ~ +150  
1.5  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VDD & VDDQ supply relative to VSS  
Storage temperature  
V
oC  
Power dissipation  
PD  
W
Short circuit current  
IoS  
50  
mA  
Note:  
Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.  
Functional operation should be restricted to recommend operation condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability  
AC/DC Electrical Characteristics and Operating Conditions  
Recommended operating conditions ꢀVoltage referenced to VSS=0V; TA=0 to 70oC for Commercialꢁ TA = (ꢂ0oC to +85oC for Industrial and A1ꢁ  
TA = (ꢂ0oC to +105oC for A26  
Parameter  
Symbol  
Min  
Max  
Unit  
V
Note  
Supply voltage ꢀwith a nominal VDD of 2.5V for (5ꢁ (-6  
Supply voltage ꢀwith a nominal VDD of 2.5V for (ꢂ6  
I/O Supply voltage ꢀwith a nominal VDD of 2.5V for (5ꢁ (-6  
I/O Supply voltage ꢀwith a nominal VDD of 2.5V for (ꢂ6  
I/O Reference voltage  
VDD  
2.3  
2.7  
VDD  
2.ꢂ  
2.-  
V
V
V
DDq  
DDq  
2.3  
2.7  
V
2.ꢂ  
2.-  
V
V
Ref  
tt  
DC  
0.ꢂ9*VDDQ  
0.51*VDDQ  
V
1
2
I/O Termination voltage ꢀsystem6  
V
VREF(0.0ꢂ  
VREF+0.0ꢂ  
V
Input logic high voltage  
V
ih  
(
)
VREF+0.15  
VDDQ+0.3  
V
Input logic low voltage  
V
il  
DC  
6
(0.3  
(0.3  
0.3-  
0.71  
(2  
VREF(0.15  
V
Input Voltage Levelꢁ CLK and CLK inputs  
Input Differential Voltageꢁ CLK and CLK inputs  
V(I Matching: Pullup to Pulldown Current Ratio  
Input leakage current  
Vin  
DC  
6
6
VDDQ+0.3  
V
ViD  
(
DC  
VDDQ+0.-  
V
3
V
iꢀRatio6  
1.ꢂ  
2
I
l
uA  
uA  
mA  
mA  
mA  
mA  
Output leakage current  
I
oz  
oh  
ol  
ohR  
olR  
(5  
5
Output High Current ꢀNormal strength driver6 ; VOUT = VTT + 0.8ꢂV  
Output High Current ꢀNormal strength driver6 ; VOUT = VTT ( 0.8ꢂV  
Output High Current ꢀHalf strength driver6; VOUT = VTT + 0.ꢂ5V  
Output High Current ꢀHalf strength driver6; VOUT = VTT ( 0.ꢂ5V  
Ambient Operating Temperature  
I
(1-.8  
1-.8  
(9  
I
I
I
9
Commercial  
T
TA  
TA  
TA  
A
0
+70  
+85  
+85  
oC  
oC  
oC  
oC  
Industrial  
A1  
(ꢂ0  
(ꢂ0  
(ꢂ0  
A2  
+105  
Note :  
1. VREF is expected to be equal to 0.5*VDDQ of the transmitting deviceꢁ and to track variations in the dc level of same. Peak(to  
peak noise on VREF may not exceed +/(2% of the dc value.  
2. VTT is not applied directly to the device. VTT is a system supply for signal termination resistorsꢁ is expected to be set equal to  
VREFand must track variations in the DC level of VREF  
3. VID is the magnitude of the difference between the input level on CLK and the input level on CLK.  
ꢂ. The ratio of the pullup current to the pulldown current is specified for the same temperature and voltageꢁ over the entire tem(  
perature and voltage rangeꢁ for device drain to source voltages from 0.25V to 1.0V. For a given outputꢁ it represents the maxi(  
mum difference between pullup and pulldown drivers due to process variation. The full variation in the ratio of the maximum to  
minimum pullup and pulldown current will not exceed 1.7 for device drain to source voltages from 0.1 to 1.0.  
20  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
CAPACITANCE CHARACTERISTICS  
ꢀVDD = VDDq = 2.5V + 0.2Vunless otherwise noted6  
Symbol Parameter  
Test Condition  
Limits  
Units  
Min Max  
CIꢀA6  
CIꢀC6  
CIꢀK6  
CI/O  
Input Capacitanceꢁ address pin  
Input Capacitanceꢁ control pin  
Input Capacitanceꢁ CLK pin  
VI=1.25v  
1.3  
1.3  
1.3  
2
3
3
3
5
pF  
pF  
pF  
pF  
f=100MHz  
VI=25mVrms  
I/O Capacitanceꢁ I/Oꢁ DQSꢁ DM pin  
Notes:  
1. This parameter is characterized.  
2. Conditions: Frequency = 100MHz; VoutꢀDC6 = VDD/2; Voutꢀpeak(to(peak6 = 0.2V; VRef = Vss.  
THERMAL RESISTANCE  
Package  
Subtrate  
Theta-ja  
Theta-ja  
Theta-ja  
Theta-jc  
Units  
(Airflow = 0m/s)  
(Airflow = 1m/s)  
(Airflow = 2m/s)  
TSOP2ꢀ--6  
BGAꢀ-06  
ꢂ(layer  
ꢂ(layer  
ꢂ(layer  
55.8  
3-.1  
TBD  
ꢂ9.ꢂ  
30.7  
TBD  
ꢂ-.0  
29.3  
TBD  
8.1  
ꢂ.9  
C/W  
C/W  
C/W  
BGAꢀ1ꢂꢂ6  
TBD  
Integrated Silicon Solution, Inc.  
21  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
IDD Specification Parameters and Test Conditions: x8, x16  
ꢀVDD = VDDq = 2.5V 0.2V ꢀ(5ꢁ (-6ꢁ VDD = VDDq = 2.5V 0.1V ꢀ(ꢂ6ꢁ Vss = VssQ = 0VOutput Openꢁ unless otherwise noted6  
Symbol Parameter/ Test Condition  
-4  
-5  
-6  
Units  
IDD0  
Operating current for one bank active(precharge; tRC = tRCꢀmin6;  
1ꢂ5 130 110  
mA  
tCK = tCKꢀmin6; DQꢁ DM and DQS inputs changing once per clock  
cycle; address and control inputs changing once every two clock  
cycles; CS = high between valid commands.  
IDD1  
IDD2P  
IDD2F  
IDD3P  
IDD3N  
Operating current for one bank operation; one bank openꢁ BL = ꢂꢁ  
tRC = tRCꢀmin6ꢁ tCK = tCKꢀmin6ꢁ Iout=0mAꢁ Address and control  
inputs changing once per clock cycle.  
1-0 1ꢂ0 120  
mA  
mA  
mA  
mA  
mA  
Precharge power(down standby current; all banks idle; power(down  
mode; CKE VILꢀmax6; tCK = tCKꢀmin6; VIN = VREF for DQꢁ DQS and  
DM  
ꢂ0  
35  
90  
35  
90  
35  
75  
35  
75  
Precharge floating standby current; CS VIHꢀmin6; all banks idle; CKE 110  
VIHꢀmin6; tCK = tCKꢀmin6; address and other control inputs changing  
once per clock cycle; VIN = VREF for DQꢁ DQS and DM  
Active power(down standby current; one bank active; power(down  
mode; CKE VILꢀmax6; tCK = tCKꢀmin6; VIN = VREF for DQꢁ DQS and  
DM  
ꢂ0  
Active standby current; CS VIHꢀmin6; CKE VIHꢀmin6; one bank  
active; tRC = tRASꢀmax6; tCK = tCKꢀmin6; DQꢁ DQS and DM inputs  
changing twice per clock cycle; address and other control inputs  
changing once per clock cycle  
110  
IDDꢂR  
Operating current for burst read; burst length = 2; reads; continuous  
burst; one bank active; address and control inputs changing once per  
clock cycle; tCK = tCKꢀmin6; 50% of data changing on every transfer;  
lOUT = 0mA  
280 230 200  
300 2-0 220  
180 170 170  
mA  
mA  
IDDꢂW Operating current for burst write; burst length = 2; writes; continuous  
burst; one bank active address and control inputs changing once per  
clock cycle; tCK = tCKꢀmin6; DQꢁ DM and DQS inputs changing twice  
per clock cycleꢁ 50% of input data changing at every transfer  
IDD5  
IDD-  
IDD7  
Auto refresh current; tRC = tRFCꢀmin6;  
Self refresh current; CKE 0.2V;  
mA  
mA  
mA  
-
-
-
Operating current for four bank operation; four bank interleaving  
READs ꢀBL=ꢂ6 with auto precharge; tRC = tRCꢀmin6ꢁ tCK = tCKꢀmin6;  
Address and control inputs change only during ACTIVEꢁ READꢁ or  
WRITE commands  
330 310 2-0  
22  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
IDD Specification Parameters and Test Conditions: x32  
ꢀVDD = VDDq = 2.5V 0.2VVss = VssQ = 0VOutput Openꢁ unless otherwise noted6  
Symbol Parameter/ Test Condition  
-5  
-6 Units  
IDD0  
Operating current for one bank active(precharge; tRC = tRCꢀmin6;  
tCK = tCKꢀmin6; DQꢁ DM and DQS inputs changing once per clock  
cycle; address and control inputs changing once every two clock  
cycles; CS = high between valid commands.  
1ꢂ0 120  
mA  
IDD1  
IDD2P  
IDD2F  
IDD3P  
IDD3N  
Operating current for one bank operation; one bank openꢁ BL = ꢂꢁ  
tRC = tRCꢀmin6ꢁ tCK = tCKꢀmin6ꢁ Iout=0mAꢁ Address and control  
inputs changing once per clock cycle.  
170 150  
mA  
mA  
mA  
mA  
mA  
Precharge power(down standby current; all banks idle; power(down  
mode; CKE VILꢀmax6; tCK = tCKꢀmin6; VIN = VREF for DQꢁ DQS and  
DM  
35  
90  
35  
90  
35  
75  
35  
75  
Precharge floating standby current; CS VIHꢀmin6; all banks idle; CKE  
VIHꢀmin6; tCK = tCKꢀmin6; address and other control inputs changing  
once per clock cycle; VIN = VREF for DQꢁ DQS and DM  
Active power(down standby current; one bank active; power(down  
mode; CKE VILꢀmax6; tCK = tCKꢀmin6; VIN = VREF for DQꢁ DQS and  
DM  
Active standby current; CS VIHꢀmin6; CKE VIHꢀmin6; one bank  
active; tRC = tRASꢀmax6; tCK = tCKꢀmin6; DQꢁ DQS and DM inputs  
changing twice per clock cycle; address and other control inputs  
changing once per clock cycle  
IDDꢂR  
Operating current for burst read; burst length = 2; reads; continuous  
burst; one bank active; address and control inputs changing once per  
clock cycle; tCK = tCKꢀmin6; 50% of data changing on every transfer;  
lOUT = 0mA  
300 250  
320 270  
180 180  
mA  
mA  
IDDꢂW Operating current for burst write; burst length = 2; writes; continuous  
burst; one bank active address and control inputs changing once per  
clock cycle; tCK = tCKꢀmin6; DQꢁ DM and DQS inputs changing twice  
per clock cycleꢁ 50% of input data changing at every transfer  
IDD5  
IDD-  
IDD7  
Auto refresh current; tRC = tRFCꢀmin6;  
Self refresh current; CKE 0.2V;  
mA  
mA  
mA  
-
-
Operating current for four bank operation; four bank interleaving  
READs ꢀBL=ꢂ6 with auto precharge; tRC = tRCꢀmin6ꢁ tCK = tCKꢀmin6;  
Address and control inputs change only during ACTIVEꢁ READꢁ or  
WRITE commands  
380 320  
Integrated Silicon Solution, Inc.  
23  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
AC TIMING REQUIREMENTS  
Absolute Specifications ꢀVDDꢁ VDDQ = +2.5 V 0.1 V6  
PARAMETER  
SYMBOL  
-4  
UNITS  
MIN  
(0.7  
(0.-  
0.ꢂ5  
0.ꢂ5  
min  
MAX  
0.7  
DQ output access time for CLKꢁ/CLK  
DQS output access time for CLKꢁ/CLK  
CLK high(level width  
tAC  
ns  
ns  
tDQSCK  
tCH  
0.-  
0.55  
0.55  
tCK  
tCK  
ns  
CLK low(level width  
tCL  
CLK half period  
tHP  
ꢀtCLꢁtCH6  
CLK cycle time CL=3  
CL=2.5  
tCKꢀ36  
tCKꢀ2.56  
tCKꢀ26  
tDH  
8
12  
12  
ns  
ns  
ns  
ns  
ns  
ns  
-
CL=2  
7.5  
0.ꢂ  
0.ꢂ  
2.2  
DQ and DM input hold time  
DQ and DM input setup time  
tDS  
Control & Address input pulse width ꢀfor each  
input6  
tIPW  
DQ and DM input pulse width ꢀfor each input6  
DQ & DQS high(impedance time from CLKꢁ/CLK  
DQ & DQS low((impedance time from CLKꢁ/CLK  
tDIPW  
tHZ  
1.75  
ns  
ns  
ns  
ns  
0.7  
tLZ  
(0.7  
DQS((DQ Skewꢁ DQS to last DQ validꢁ per groupꢁ tDQSQ  
per access  
0.ꢂ  
DQ/DQS output hold time from DQS  
Data Hold Skew Factor  
tQH  
tHP(tQHS  
0.5  
1.28  
ns  
tQHS  
ns  
Write command to first DQS latching transition  
DQS input high pulse width  
tDQSS  
tDQSH  
tDQSL  
tDSS  
0.72  
0.35  
0.35  
0.2  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
DQS input low pulse width  
DQS falling edge to CLK setup time  
DQS falling edge hold time from CLK  
MODE REGISTER SET command cycle time  
Write preamble setup time  
tDSH  
0.2  
tMRD  
tWPRES  
tWPST  
tWPRE  
tIHF  
2
0
Write postamble  
0.ꢂ  
0.-  
Write preamble  
0.25  
0.-  
Address and Control input hold time ꢀfast slew  
rate6  
Address and Control input setup time ꢀfast slew  
rate6  
tISF  
tIH  
0.-  
0.7  
0.7  
(–  
ns  
ns  
ns  
Address and Control input hold time ꢀslow slew  
rate6  
Address and Control input setup time ꢀslow slew  
rate6  
tIS  
Read preamble  
tRPRE  
tRPST  
tRAS  
0.9  
0.ꢂ  
ꢂ0  
1.1  
0.-  
tCK  
tCK  
ns  
Read postamble  
ACTIVE to PRECHARGE command  
70ꢁ000  
2ꢂ  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
AC TIMING REQUIREMENTS  
Absolute Specifications ꢀVDDꢁ VDDQ = +2.5 V 0.1 V6  
PARAMETER  
SYMBOL  
-4  
UNITS  
MIN  
MAX  
ACTIVE to ACTIVE/Auto Refresh command  
period  
tRC  
55  
ns  
Auto Refresh to Active/Auto  
tRFC  
tRCD  
tRP  
70  
15  
15  
15  
10  
15  
ns  
ns  
ACTIVE to READ or WRITE delay  
PRECHARGE command period  
ns  
Active to Autoprecharge Delay  
tRAP  
tRRD  
tWR  
ns  
ACTIVE bank A to ACTIVE bank B command  
Write recovery time  
ns  
ns  
Auto Precharge write recovery + precharge time  
Internal Write to Read Command Delay  
Exit self refresh to non(READ  
tDAL  
tWR+tRP  
tCK  
tCK  
ns  
tWTR  
tXSNR  
tXSRD  
tREFI  
2
70  
200  
Exit self refresh to READ command  
Average Periodic Refresh Interval TA 85oC  
tCK  
µs  
7.8  
Integrated Silicon Solution, Inc.  
25  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
AC TIMING REQUIREMENTS  
Absolute Specifications ꢀVDDꢁ VDDQ = +2.5 V 0.2 V6  
PARAMETER  
SYMBOL  
-5  
-6  
UNITS  
MIN  
(0.7  
(0.-  
0.ꢂ5  
0.ꢂ5  
min  
MAX  
0.7  
MIN  
(0.7  
(0.-  
0.ꢂ5  
0.ꢂ5  
min  
MAX  
0.7  
DQ output access time for CLKꢁ/CLK  
DQS output access time for CLKꢁ/CLK  
CLK high(level width  
tAC  
ns  
ns  
tDQSCK  
tCH  
0.-  
0.-  
0.55  
0.55  
0.55  
0.55  
tCK  
tCK  
ns  
CLK low(level width  
tCL  
CLK half period  
tHP  
ꢀtCLꢁtCH6  
ꢀtCLꢁtCH6  
CLK cycle time CL=3  
CL=2.5  
tCKꢀ36  
tCKꢀ2.56  
tCKꢀ26  
tDH  
5
8
12  
12  
-
12  
12  
12  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
CL=2  
7.5  
0.ꢂ  
0.ꢂ  
2.2  
7.5  
0.ꢂ5  
0.ꢂ5  
2.2  
DQ and DM input hold time  
DQ and DM input setup time  
tDS  
Control & Address input pulse width ꢀfor each  
input6  
tIPW  
DQ and DM input pulse width ꢀfor each input6  
DQ & DQS high(impedance time from CLKꢁ/CLK  
DQ & DQS low((impedance time from CLKꢁ/CLK  
tDIPW  
tHZ  
1.75  
1.75  
0.7  
ns  
ns  
ns  
ns  
0.7  
tLZ  
(0.7  
(0.7  
DQS((DQ Skewꢁ DQS to last DQ validꢁ per groupꢁ tDQSQ  
per access  
0.ꢂ  
0.ꢂ5  
DQ/DQS output hold time from DQS  
tQH  
tHP(tQHS  
tHP(  
ns  
tQHS  
Data Hold Skew Factor  
tQHS  
0.5  
1.28  
0.55  
1.28  
ns  
Write command to first DQS latching transition  
DQS input high pulse width  
DQS input low pulse width  
tDQSS  
tDQSH  
tDQSL  
tDSS  
0.72  
0.35  
0.35  
0.2  
0.2  
2
0.75  
0.35  
0.35  
0.2  
0.2  
2
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
ns  
DQS falling edge to CLK setup time  
DQS falling edge hold time from CLK  
MODE REGISTER SET command cycle time  
Write preamble setup time  
tDSH  
tMRD  
tWPRES  
tWPST  
tWPRE  
tIHF  
0
0
Write postamble  
0.ꢂ  
0.25  
0.-  
0.-  
0.ꢂ  
0.25  
0.75  
0.-  
Write preamble  
Address and Control input hold time ꢀfast slew  
rate6  
Address and Control input setup time ꢀfast slew  
rate6  
tISF  
tIH  
0.-  
0.7  
0.7  
0.75  
0.8  
(–  
ns  
ns  
ns  
Address and Control input hold time ꢀslow slew  
rate6  
Address and Control input setup time ꢀslow slew  
rate6  
tIS  
0.8  
Read preamble  
tRPRE  
tRPST  
tRAS  
0.9  
0.ꢂ  
ꢂ0  
1.1  
0.-  
0.9  
0.ꢂ  
ꢂ2  
1.1  
0.-  
tCK  
tCK  
ns  
Read postamble  
ACTIVE to PRECHARGE command  
70ꢁ000  
120ꢁ000  
2-  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
AC TIMING REQUIREMENTS  
Absolute Specifications ꢀVDDꢁ VDDQ = +2.5 V 0.2 V6  
PARAMETER  
SYMBOL  
-5  
-6  
UNITS  
MIN  
MAX  
MIN  
MAX  
ACTIVE to ACTIVE/Auto Refresh command  
period  
tRC  
55  
-0  
ns  
Auto Refresh to Active/Auto  
tRFC  
tRCD  
tRP  
70  
15  
15  
15  
10  
15  
72  
18  
18  
18  
12  
15  
ns  
ns  
ACTIVE to READ or WRITE delay  
PRECHARGE command period  
ns  
Active to Autoprecharge Delay  
tRAP  
tRRD  
tWR  
ns  
ACTIVE bank A to ACTIVE bank B command  
Write recovery time  
ns  
ns  
Auto Precharge write recovery + precharge time  
Internal Write to Read Command Delay  
Exit self refresh to non(READ  
tDAL  
tWR+tRP  
tWR+tRP  
tCK  
tCK  
ns  
tWTR  
tXSNR  
tXSRD  
tREFI  
tREFI  
2
70  
200  
2
70  
200  
Exit self refresh to READ command  
Average Periodic Refresh Interval TA 85 ºC  
tCK  
µs  
7.8  
1.9  
7.8  
1.9  
Average Periodic Refresh Interval TA > 85 ºCꢁ  
A2 only  
µs  
Output Load Condition  
VREF  
DQS  
V
TT=VREF  
DQ  
50  
VREF  
V
OUT  
Zo=50  
V
REF  
30pF  
OutputTiming  
Measurement  
ReferencePoint  
Integrated Silicon Solution, Inc.  
27  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
AC Input Operating Conditions  
(VDD = VDDQ = 2.5 0.2VVSS= VSSQ= 0Voutput openꢁ unless otherwise noted.6  
Parameter/Condition  
Symbol  
VIHꢀAC6  
VILꢀAC6  
VIDꢀAC6  
VIXꢀAC6  
VREFꢀAC6  
Min  
VREF+0.310  
Max  
(
VREF(0.310  
VDDQ+0.-  
Units  
Input high ꢀlogic 16 voltageꢁ DQꢁ DQSꢁ and DM signals  
Input low ꢀlogic 06 voltageꢁ DQꢁ DQSꢁ and DM signals  
Input Differential Voltageꢁ CK and CK inputs  
Input Crossing Point Voltageꢁ CK and CK inputs  
I/O reference voltage  
V
V
V
V
V
(
0.7  
0.5*VDDQ(0.2 0.5+VDDQ+0.2  
0.ꢂ9 * VDDQ 0.51 * VDDQ  
Notes  
1. All voltages referenced to Vss.  
2. Tests for AC timingꢁ IDDꢁ and electricalꢁ AC and DC characteristicsꢁ may be conducted at nominal reference/supply voltage levelsꢁ but the  
related specifications and device operation are guaranteed for the full voltage range specified.  
3. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5V in the test environmentꢁ but input timing is still referenced to VREF ꢀor to the  
crossing point for CK//CK6ꢁ and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The  
minimum slew rate for the input signals is 1V/ns in the range between VILꢀAC6 and VIHꢀAC6.  
ꢂ. The AC and DC input level specifications are as defined in the SSTL_2 Standard ꢀi.e. the receiver will effectively switch as a result of the signal  
crossing the AC input levelꢁ and will remain in that state as long as the signal does not ring back above ꢀbelow6 the DC input LOW ꢀHIGH6  
level.  
5. VREF is expected to be equal to 0.5*VddQ of the transmitting deviceꢁ and to track variations in the DC level of the same. Peak(to(peak noise on  
VREF may not exceed +2% of the DC value.  
-. VTT is not applied directly to the device. VTT is a system supply for signal termination resistorsꢁ is expected to be set equal to VREFand must  
track variations in the DC level of VREF.  
7. VID is the magnitude of the difference between the input level on CLK and the input level on /CLK.  
8. The value of VIX is expected to equal 0.5*VddQ of the transmitting device and must track variations in the DC level of the same.  
9. IDD specifications are tested after the device is properly initialized.  
10. The CLK//CLK input reference level ꢀfor timing referenced to CLK//CLK6 is the point at which CLK and /CLK cross; the input reference level for  
signals other than CLK//CLKꢁ is VREF.  
11. Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF stabilizesꢁ CKE< 0.3VddQ is recognized as  
LOW.  
12. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referenced to a specific  
voltage levelꢁ but specify when the device output is no longer driving ꢀHZ6ꢁ or begins driving ꢀLZ6.  
13. The maximum limit for tWPRES is not a device limit. The device will operate with a greater value for this parameterꢁ but system performance  
ꢀbus turnaround6 will degrade accordingly.  
1ꢂ. The specific requirement is that DQS be valid ꢀHIGHꢁ LOWꢁ or at some point on a valid transition6 on or before this CLK edge. A valid transition  
is defined as monotonicꢁ and meeting the input slew rate specifications of the device. When no writes were previously in progress on the busꢁ  
DQS will be transitioning from High(Z to logic LOW. If a previous write was in progressꢁ DQS could be HIGHꢁ LOWꢁ or transitioning from HIGH  
to LOW at this timeꢁ depending on tDQSS.  
15. A maximum of eight AUTO REFRESH commands can be posted to any given DDR SDRAM device.  
1-. tXPRD should be 200 tCLK in the condition of the unstable CLK operation during the power down mode.  
17. For command/address and CK & /CK slew rate > 1.0V/ns.  
18. For slew rates less than 1V/ns and greater than or equal to 0.5V/ns. If the slew rate is less than 0.5V/nsꢁ timing must be derated: tiS has an  
additional 50ps per each 100mV/ns reduction in slew rate from the 500 mV/ns. tIH has nothing added. If the slew rate exceeds ꢂ.5V/nsꢁ func(  
tionality is uncertain. For operation at 1--mHz or fasterꢁ slew rates must be greater than or equal to 0.5 V/ns.  
19. To maintain a valid levelꢁ the transitioning edge of the input must:  
a. Sustain a constant slew rate from the current AC level through to the target AC levelꢁ VILꢀAC6 or VIHꢀAC6.  
b. Reach at least the target AC level.  
c. After the AC target level is reachedꢁ continue to maintain at least the target DC levelꢁ VILꢀDC6 or VIHꢀDC6  
20. VIH overshoot: VIHmax = VDDQ + 1.5V for a pulse width 3nsꢁ and the pulse width can not be greater than 1/3 of the cycle rate. VIL  
undershoot: VIL undershoot: VILꢁ min = (1.5V for a pulse width 3nsꢁ and the pulse width can not be greater than 1/3 of the cycle rate.  
21. Min ꢀtCLꢁtCH6 refers to the smaller of the actual clock low time and the actual clock high time as provided to the device.  
22. For A2 temperature grade with TA > 85°C: IDD2FIDD3N and IDD7 are derated to 10% above these values; IDD2P and IDD- are derated  
to 20% above these values.  
28  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
OUTPUT SLEW RATE CHARACTERISTICS  
Slew Rate Characteristic  
Typical Range  
(V/ns)  
Min  
(V/ns) (V/ns)  
Max  
Pullup Slew Rate  
1.2(2.5  
1.2(2.5  
0.7  
0.7  
5.0  
5.0  
Pulldown Slew Rate  
AC OVERSHOOT/UNDERSHOOT SPECIFICATION FOR ADDRESS AND CONTROL PINS  
Parameter  
Peak amplitude allowed for overshoot  
Peak amplitude allowed for undershoot  
Area between the overshoot signal and VDD must be less than or equal to ꢀsee figure below6  
Area between the undershoot signal and GND must be less than or equal to ꢀsee figure below6  
Max  
Units  
V
V
V(ns  
V(ns  
1.5  
1.5  
ꢂ.5  
ꢂ.5  
+5  
+4  
Max. amplitude = 1.5 V  
Overshoot  
+3  
V
DD  
+2  
+1  
0
Volts  
(V)  
Ground  
-1  
-2  
-3  
Undershoot  
Max. area = 4.5 V-ns  
0
1
2
3
4
5
6
Time (ns)  
Address and Control AC Overshoot and Undershoot Definition  
OVERSHOOT/UNDERSHOOT SPECIFICATION FOR DATA, STROBE, AND MASK PINS  
Parameter  
Peak amplitude allowed for overshoot  
Peak amplitude allowed for undershoot  
Area between the overshoot signal and VDD must be less than or equal to ꢀsee figure below6  
Area between the undershoot signal and GND must be less than or equal to ꢀsee figure below6  
Max  
1.2  
1.2  
2.ꢂ  
2.ꢂ  
Units  
V
V
V(ns  
V(ns  
+5  
+4  
Max. amplitude = 1.2 V  
Overshoot  
+3  
V
DD  
+2  
+1  
0
Volts  
(V)  
Ground  
-1  
-2  
-3  
Undershoot  
Max. area = 2.4 V--ns  
0
1
2
3
4
5
6
Time (ns)  
DQ/DM/DQS AC Overshoot and Undershoot Definition  
Integrated Silicon Solution, Inc.  
29  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
64Mx8 ORDERING INFORMATION - VDD = 2.5V/2.6V  
Commercial Range: 0°C to +70°C  
Frequency Speed (ns)  
Order Part No.  
Package  
250 MHz  
200 MHz  
1-- MHz  
5
-
ISꢂ3R8-ꢂ00E(ꢂBL  
ISꢂ3R8-ꢂ00E(ꢂTL  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
ISꢂ3R8-ꢂ00E(5BL  
ISꢂ3R8-ꢂ00E(5TL  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
ISꢂ3R8-ꢂ00E(-BL  
ISꢂ3R8-ꢂ00E(-TL  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
Industrial Range: -40°C to +85°C  
Frequency Speed (ns)  
Order Part No.  
Package  
200 MHz  
5
ISꢂ3R8-ꢂ00E(5BLI  
ISꢂ3R8-ꢂ00E(5TLI  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
1-- MHz  
-
ISꢂ3R8-ꢂ00E(-BLI  
ISꢂ3R8-ꢂ00E(-TLI  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
32Mx16 ORDERING INFORMATION - VDD = 2.5V/2.6V  
Commercial Range: 0°C to +70°C  
Frequency Speed (ns)  
Order Part No.  
Package  
250 MHz  
200 MHz  
1-- MHz  
5
-
ISꢂ3R1-320E(ꢂBL  
ISꢂ3R1-320E(ꢂTL  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
ISꢂ3R1-320E(5BL  
ISꢂ3R1-320E(5TL  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
ISꢂ3R1-320E(-BL  
ISꢂ3R1-320E(-TL  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
Industrial Range: -40°C to +85°C  
Frequency Speed (ns)  
Order Part No.  
Package  
200 MHz  
5
ISꢂ3R1-320E(5BLI  
ISꢂ3R1-320E(5TLI  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
1-- MHz  
-
ISꢂ3R1-320E(-BLI  
ISꢂ3R1-320E(-TLI  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
Automotive (A1) Range: -40°C to +85°C  
Frequency Speed (ns)  
1-- MHz  
Order Part No.  
Package  
-
ISꢂ-R1-320E(-BLA1  
ISꢂ-R1-320E(-TLA1  
-0(ball BGAꢁ Lead(free  
--(pin TSOP(IIꢁ Lead(free  
30  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
16Mx32 ORDERING INFORMATION - VDD = 2.5V/2.6V  
Commercial Range: 0°C to +70°C  
Frequency Speed (ns)  
Order Part No.  
Package  
200 MHz  
1-- MHz  
5
-
ISꢂ3R321-0E(5BL  
ISꢂ3R321-0E(-BL  
1ꢂꢂ(ball BGAꢁ Lead(free  
1ꢂꢂ(ball BGAꢁ Lead(free  
Industrial Range: -40°C to +85°C  
Frequency Speed (ns)  
Order Part No.  
Package  
200 MHz  
1-- MHz  
5
-
ISꢂ3R321-0E(5BLI  
ISꢂ3R321-0E(-BLI  
1ꢂꢂ(ball BGAꢁ Lead(free  
1ꢂꢂ(ball BGAꢁ Lead(free  
Automotive (A1) Range: -40°C to +85°C  
Frequency Speed (ns)  
1-- MHz  
Order Part No.  
Package  
-
ISꢂ-R321-0E(-BLA1  
1ꢂꢂ(ball BGAꢁ Lead(free  
Integrated Silicon Solution, Inc.  
31  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
32  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
Mini Ball Grid Array  
Package Code: B (60-Ball) 8mm x 13mm  
Integrated Silicon Solution, Inc.  
33  
Rev. B  
01/13/2020  
IS43R86400E  
IS43/46R16320E, IS43/46R32160E  
3ꢂ  
Integrated Silicon Solution, Inc.  
Rev. B  
01/13/2020  

相关型号:

IS43R16320E-6BI

IC DRAM 512M PARALLEL 60TFBGA
ISSI

IS43R16320E-6BI-TR

IC DRAM 512M PARALLEL 60TFBGA
ISSI

IS43R16320E-6BL

IC DRAM 512M PARALLEL 166MHZ
ISSI

IS43R16320E-6BL-TR

IC DRAM 512M PARALLEL 166MHZ
ISSI

IS43R16320E-6BLI

IC DRAM 512M PARALLEL 166MHZ
ISSI

IS43R16320E-6TLI-TR

IC DRAM 512M PARALLEL 166MHZ
ISSI

IS43R16400B

Four internal banks for concurrent operation
ISSI

IS43R16800A-6

8Meg x 16 128-MBIT DDR SDRAM
ISSI

IS43R16800A-6T

8Meg x 16 128-MBIT DDR SDRAM
ISSI

IS43R16800A-6TL

8Meg x 16 128-MBIT DDR SDRAM
ISSI

IS43R16800A1

8Meg x 16 128-MBIT DDR SDRAM
ISSI

IS43R16800A1-5TL

8Meg x 16 128-MBIT DDR SDRAM
ISSI