IXDD415 [IXYS]

Dual 15 Ampere Low-Side Ultrafast MOSFET Driver; 双15安培低端超快MOSFET驱动器
IXDD415
型号: IXDD415
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

Dual 15 Ampere Low-Side Ultrafast MOSFET Driver
双15安培低端超快MOSFET驱动器

驱动器
文件: 总8页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDD415SI  
Dual 15 Ampere Low-Side Ultrafast MOSFET Driver  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-UpProtected  
• High Peak Output Current: Dual 15A Peak  
• Wide Operating Range: 8V to 30V  
• Rise And Fall Times of <3ns  
• Minimum Pulse Width Of 6ns  
• Ability to Disable Output under Faults  
• High Capacitive Load  
Drive Capability: 4nF in <5ns  
• Matched Rise And Fall Times  
• 32ns Input To Output Delay Time  
• LowOutputImpedance  
The IXDD415 is a dual CMOS high speed high current gate  
driver specifically designed to drive MOSFETs in Class D and E  
HF RF applications, as well as other applications requiring  
ultrafast rise and fall times or short minimum pulse widths.  
Each output of the IXDD415 can source and sink 15A of peak  
current while producing voltage rise and fall times of less than  
3ns. The outputs of the IXDD415 may be paralleled, producing a  
single output of up to 30A with comparable rise and fall times.  
The input of the driver is compatible with TTL or CMOS and is  
fully immune to latch up over the entire operating range.  
Designed with small internal delays, cross conduction/current  
shoot-throughisvirtuallyeliminatedintheIXDD415. Itsfeatures  
and wide safety margin in operating voltage and power make  
theIXDD415unmatchedinperformanceandvalue.  
• LowSupplyCurrent  
The IXDD415 has two enable inputs, ENA and ENB. These  
enable inputs can be used to independently disable either of the  
outputs, OUTA or OUTB, for added flexibility. Additionally, the  
IXDD415 incorporates a unique ability to disable the output  
under fault conditions. When a logical low is forced into the  
Enable inputs, both final output stage MOSFETs (NMOS and  
PMOS) are turned off. As a result, the output of the IXDD415  
enters a tristate mode and achieves a Soft Turn-Off of the  
MOSFET when a short circuit is detected. This helps prevent  
damage that could occur to the MOSFET if it were to be  
switchedoffabruptlyduetoadv/dtover-voltagetransient.  
Applications  
• DrivingRFMOSFETs  
• Class D or E Switching Amplifier Drivers  
• Multi MHz Switch Mode Power Supplies (SMPS)  
• PulseGenerators  
• AcousticTransducerDrivers  
• PulsedLaserDiodeDrivers  
• DCtoDCConverters  
• PulseTransformerDriver  
The IXDD415 is available in a 28 pin SO package (IXDD415SI),  
incorporatingDEI'spatented(1) RFlayouttechniquestominimize  
stray lead inductances for optimum switching performance.  
(1)  
DEI U.S. Patent #4,891,686  
Figure 1 - Functional Diagram  
Vcc (1, 2)  
Vcc (3, 4)  
INA (7)  
ENA (6)  
OUTA (22, 23, 24)  
200k  
GND (25, 26)  
Vcc (11, 12)  
GND (27, 28)  
Vcc (13, 14)  
INB (8)  
ENB (9)  
OUTB (19, 20, 21)  
GND (17, 18)  
200k  
GND (15, 16)  
Copyright © IXYS CORPORATION 2001 Patent Pending  
First Release  
IXDD415SI  
Absolute Maximum Ratings (Note 1)  
Operating Ratings  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
All Other Pins  
30V  
-0.3V to V  
Maximum Junction Temperature  
o
150 C  
o
+ 0.3V  
CC  
Operating Temperature Range  
o
-40 C to 85 C  
Power Dissipation  
o
Thermal Impedance (Junction To Case)  
28 Pin SOIC (SI) (θJC)  
1W  
TAMBIENT 25 C  
o
0.75 C/W  
o
12W  
T
CASE 25 C  
Derating Factors (to Ambient)  
o
28-Pin SOIC  
0.1W/ C  
Storage Temperature  
o
o
-65 C to 150 C  
Soldering Lead Temperature  
(10 seconds maximum)  
o
300 C  
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC, 4.5V VCC 25V .  
All voltage measurements with respect to GND. IXDD415 configured as described in Test Conditions.  
S ym bol  
VIH  
Param eter  
Test Conditions  
M in  
Typ  
M ax  
U nits  
H igh input voltage  
Low input voltage  
Input voltage range  
Input current  
3.5  
V
V
VIL  
0.8  
VIN  
-5  
VCC + 0.3  
V
IIN  
-10  
10  
0V VIN VC C  
µA  
VO H  
VO L  
R O H  
H igh output voltage  
Low output voltage  
VCC - 0.025  
V
V
0.025  
1.2  
O utput resistance  
@ O utput H igh  
O utput resistance  
@ O utput Low  
IO UT = 10m A, VCC = 15V  
IO UT = 10m A, VCC = 15V  
VCC = 15V, each output  
0.8  
0.8  
15  
R O L  
IPEAK  
IDC  
1.2  
A
A
Peak output current  
C ontinuous output  
current  
2
VEN  
Enable voltage range  
-0.3  
Vcc + 0.3  
V
V
VENH  
VENL  
fM AX  
H igh En input voltage  
Low En input voltage  
M axim um frequency  
2/3 Vcc  
1/3 Vcc  
45  
V
C L=1.0nF Vcc=15V, m ax CW frequency  
lim ited by package pow er dissipation  
C L=1nF Vcc=15V VO H=2V to 12V  
C L=4nF Vcc=15V VO H=2V to 12V  
C L=1nF Vcc=15V VO H=2V to 12V  
C L=4nF Vcc=15V VO H=2V to 12V  
C L=4nF Vcc=15V  
M H z  
(1)  
tR  
R ise tim e  
2.5  
4.5  
2.0  
3.5  
32  
ns  
ns  
ns  
ns  
ns  
(1)  
tF  
Fall tim e  
tO NDLY  
tO FFDLY  
PW min  
tENO L  
tENO H  
tDOLD  
tDOHD  
O n-tim e propagation  
38  
35  
(1)  
delay  
O ff-tim e propagation  
C L=4nF Vcc=15V  
29  
ns  
(1)  
delay  
M inim um pulse width  
FW H M C L=1nF  
+3V to +3V C L=1nF  
Vcc=15V  
5.0  
7.0  
ns  
ns  
ns  
Enable to output low  
delay tim e  
Enable to output high  
delay tim e  
D isable to output low  
D isable delay tim e  
D isable to output high  
D isable delay tim e  
Power supply voltage  
80  
170  
30  
Vcc=15V  
Vcc=15V  
Vcc=15V  
8
ns  
ns  
ns  
V
30  
VCC  
ICC  
15  
30  
Power supply current  
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
10  
10  
m A  
µA  
µA  
(1) Refer to Figures 2a and 2b  
Specifications Subject To Change Without Notice  
2
IXDD415SI  
Pin Configurations And Package Outline  
NOTE: Bottom-side heat sinking metalization is connected to ground  
Pin Description  
P IN #  
S Y M B O L  
F U N C T IO N  
D E S C R IP T IO N  
P ositive pow er-supply voltage input. T his pin provides pow er  
to the entire chip. T he range for this voltage is from 8V to  
30V .  
1-4  
11-14  
V C C  
S up ply V oltag e  
7
6
IN A  
Input  
Input signal-T T L or C M O S com patible.  
T he system enable pin. T his pin, w hen driven low , disables  
the chip, forcing high im pedance state to the output.  
D river O utput. F or application purposes, this pin is  
connected to the G ate of a M O S F E T . In som e applications,  
a low -im pedance series resistor m ay be required betw een  
this output and the M O S F E T G ate.  
E N A  
E na ble  
O utput  
22-24  
O U T A  
8
9
IN B  
Input  
Input signal-T T L or C M O S com patible.  
T he system enable pin. T his pin, w hen driven low , disables  
the chip, forcing high im pedance state to the output.  
D river O utput. F or application purposes, this pin is  
connected to the G ate of a M O S F E T . In som e applications,  
a low -im pedance series resistor m ay be required betw een  
this output and the M O S F E T G ate.  
T he system ground pins. Internally connected to all circuitry,  
these pins provide ground reference for the entire chip. All of  
these pins should be connected to  
ground plane for optim um perform ance.  
E N B  
E na ble  
19-21  
O U T B  
G N D  
O utput  
G round  
5,10  
15-18  
25-28  
a low noise analog  
Note 1: Operating the device beyond parameters with listed “Absolute Maximum Ratings” may cause permanent  
damage to the device. Typical values indicate conditions for which the device is intended to be functional, but do not  
guarantee specific performance limits. The guaranteed specifications apply only for the test conditions listed.  
Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD procedures  
when handling and assembling this component.  
Ordering Information  
Part Number Package Type Temp. Range Grade  
IXDD415SI  
28-Pin SOIC  
Industrial  
-40°C to +85°C  
3
IXDD415SI  
Typical Performance Characteristics  
Figure 2a - Characteristics Test Diagram  
Figure 2b - Timing Diagram  
5V  
90%  
INPUT  
2.5V  
10%  
0V  
PWMIN  
t
OFFDLY  
t
ONDLY  
tR  
t
F
VIN  
Vcc  
90%  
OUTPUT  
10%  
0V  
Rise Time vs. Load Capacitance  
Fig. 3  
5
Fig. 4  
5
Fall Time vs. Load Capacitance  
VCC = 15V, VOH = 12V To 2V  
V = 15V, VOH = 2V To 12V  
CC  
4
3
2
1
4
3
2
1
0
0
0
0
1k  
2k  
3k  
4k  
1k  
2k  
3k  
4k  
Load Capacitance (pF)  
Load Capacitance (pF)  
Fig. 5  
Supply Current vs. Frequency  
Vcc=15V  
Fig. 6  
Supply Current vs. Load Capacitance  
Vcc=15V  
4000  
4000  
3000  
2000  
1000  
0
4 nF  
3000  
2000  
1000  
0
2 nF  
1 nF  
25 MHz  
C = 0  
L
20 MHz  
15 MHz  
10 MHz  
5 MHz  
1 MHz  
5
10  
15  
20  
25  
0k  
1k  
2k  
3k  
4k  
Frequency (MHz)  
Load Capacitance (pF)  
4
IXDD415SI  
Fig. 7  
Propagation Delay vs. Supply Voltage  
C=4nF V =5V@100kHz  
Fig. 8  
Propagation Delay vs. Input Voltage  
L
IN  
C=4nF VCC=15V  
L
50  
50  
tONDLY  
40  
30  
20  
10  
40  
30  
20  
10  
tONDLY  
tOFFDLY  
tOFFDLY  
0
8
0
2
10  
12  
14  
16  
18  
4
6
8
10  
12  
Supply Voltage (V)  
Input Voltage (V)  
Fig. 9  
Propagation Delay vs. Junction Temperature  
C=4nF, V =15V  
L
CC  
50  
45  
40  
35  
30  
25  
20  
15  
10  
tONDLY  
tOFFDLY  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Typical Output Waveforms  
Unless otherwise noted, all waveforms are taken driving a 1nF load, 1MHz repetition frequency, VCC=15V, Case Temperature = 25°C  
Figure 10  
2.2ns Rise Time  
Figure 11  
<6ns Minimum Pulse Width  
5
IXDD415SI  
Figure 12 500KHz CW Repetition Frequency  
Figure 13 50MHz Burst Repetition Frequency  
Figure 14 - High Frequency Gate Drive Circuit  
6
IXDD415SI  
APPLICATIONS INFORMATION  
High Frequency Gate Drive Circuit  
returning current that need to be considered: Path #1 is  
betweentheIXDD415anditsload. Path#2isbetweenthe  
IXDD415 and its power supply. Path #3 is between the  
IXDD415andwhateverlogicisdrivingit. Allthreeofthese  
paths should be as low in resistance and inductance as  
possible, and thus as short as practical.  
The circuit diagram in figure 14 is a circuit diagram for a  
veryhighswitchingspeed, highfrequencygatedriver  
circuit using the IXDD415SI. This is the circuit used in  
theEVDD415EvaluationBoard,andiscapableofdriving  
a MOSFET at up to the maximum operating limits of the  
IXDD415. Thecircuit'sveryhighswitchingspeedand  
high frequency operation dictates the close attention to  
several important issues with respect to circuit design.  
The three key elements are circuit loop inductance, Vcc  
bypassingandgrounding.  
Output Lead Inductance  
Ofequalimportancetosupplybypassingandgroundingare  
issues related to the output lead inductance. Every effort  
should be made to keep the leads between the driver and  
its load as short and wide as possible, and treated as  
coplanar transmission lines.  
Circuit Loop Inductance  
Referring to Figure 14, the Vcc to Vcc ground current  
path defines the loop which will generate the inductive  
term. This loop must be kept as short as possible. The  
output leads (pins 24, 23, 22, 21, 20, and 19) must be  
no further than 0.375 inches (9.5mm) from the gate of  
the MOSFET. Furthermore the output ground leads (pins  
25, 26, 27 and 28 on one end of the IC and pins 15, 16,  
17, and 18 on the other end of the IC) must provide a  
balancedsymmetriccoplanargroundreturnforoptimum  
Inconfigurationswheretheoptimumconfigurationofcircuit  
layout and bypassing cannot be used, a series resistance  
ofafewOhmsinthegateleadmaybenecessarytoprevent  
ringing.  
Heat Sinking  
For high power operation, the bottom side metalized heat  
sink pad should be epoxied to the circuit board ground  
plane, or attached to an appropriate heat sink, using  
thermallyconductiveepoxy.Theheatsinktabisconnected  
operation.  
VccBypassing  
toground.  
In order for the circuit to turn the MOSFET on properly,  
the IXDD415 must be able to draw up to 15A of current  
per output channel from the Vcc power supply in 2-6ns  
(depending upon the input capacitance of the MOSFET  
being driven). This means that there must be very low  
impedancebetweenthedriverandthepowersupply.  
The most common method of achieving this low  
impedance is to bypass the power supply at the driver  
with a capacitance value that is at least two orders of  
magnitude larger than the load capacitance. Usually,  
this is achieved by placing two or three different types of  
bypassing capacitors, with complementary impedance  
curves, very close to the driver itself. (These capacitors  
should be carefully selected, low inductance, low  
resistance,high-pulsecurrent-servicecapacitors). Care  
should be taken to keep the lengths of the leads  
between these bypass capacitors and the IXDD415 to an  
absoluteminimum.  
Figure 15: IXDD415SI Bottom Side  
Heat Sinking Metalization  
Thebypassingshouldbecomprisedofseveralvaluesof  
chip capacitors symmetrically placed on ether side of  
the IC. Recommended values are .01uF, .47uF chips  
and at least two 4.7uF tantalums.  
Grounding  
In order for the design to turn the load off properly, the  
IXDD415 must be able to drain this 15A of current into an  
adequate grounding system. There are three paths for  
7
IXDD415SI  
TTL to High Voltage CMOS Level Translation  
The enable (EN) input to the IXDD415 is a high voltage  
CMOS logic level input where the EN input threshold is ½ VCC,  
and may not be compatible with 5V CMOS or TTL input levels.  
The IXDD415 EN input was intentionally designed for  
enhanced noise immunity with the high voltage CMOS logic  
levels. In a typical gate driver application, VCC =15V and the  
EN input threshold at 7.5V, a 5V CMOS logical high input  
applied to this typical IXDD415 application’s EN input will be  
misinterpreted as a logical low, and may cause undesirable  
or unexpected results. The note below is for optional  
adaptation of TTL or 5V CMOS levels.  
Figure 16 - TTL to High Voltage CMOS Level Translator  
CC  
(From Gate Driver  
Power Supply)  
R3  
10K  
High Voltage  
EN  
V
DD  
(From Logic  
CMOS  
3.3K  
R1  
Output  
Power Supply)  
Q1  
2N3904  
(To IXDD415  
EN Input)  
3.3K R2  
The circuit in Figure 16 alleviates this potential logic level  
misinterpretation by translating a TTL or 5V CMOS logic input  
to high voltage CMOS logic levels needed by the IXDD415 EN  
input. From the figure, VCC is the gate driver power supply,  
typically set between 8V to 20V, and VDD is the logic power  
supply, typically between 3.3V to 5.5V. Resistors R1 and R2  
form a voltage divider network so that the Q1 base is posi-  
tioned at the midpoint of the expected TTL logic transition  
levels.  
or  
TTL  
Input)  
A TTL or 5V CMOS logic low, VTTLLOW=~<0.8V, input applied to  
the Q1 emitter will drive it on. This causes the level translator  
output, the Q1 collector output to settle to VCESATQ1  
+
VTTLLOW=<~2V, which is sufficiently low to be correctly  
interpreted as a high voltage CMOS logic low (<1/3VCC=5V for  
VCC =15V given in the IXDD415 data sheet.)  
A TTL high, VTTLHIGH=>~2.4V, or a 5V CMOS high,  
V5VCMOSHIGH=~>3.5V, applied to the EN input of the circuit in  
Figure 16 will cause Q1 to be biased off. This results in Q1  
collector being pulled up by R3 to VCC=15V, and provides a  
high voltage CMOS logic high output. The high voltage CMOS  
logical EN output applied to the IXDD415 EN input will enable  
it, allowing the gate driver to fully function as a 15 Ampere  
output driver.  
The total component cost of the circuit in Figure 16 is less  
than $0.10 if purchased in quantities >1K pieces. It is  
recommended that the physical placement of the level  
translator circuit be placed close to the source of the TTL or  
CMOS logic circuits to maximize noise rejection.  
Directed Energy, Inc.  
An IXYS Company  
2401 Research Blvd. Ste. 108, Ft. Collins, CO 80526  
Tel: 970-493-1901; Fax: 970-493-1903  
e-mail: deiinfo@directedenergy.com  
www.directedenergy.com  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
www.ixys.com  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
Doc #9200-0233 R2  
8

相关型号:

IXDD415SI

Dual 15 Ampere Low-Side Ultrafast MOSFET Driver
IXYS

IXDD430

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDD430CI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDD430MCI

Buffer/Inverter Based MOSFET Driver, 30A, PSFM5, TO-220, 5 PIN
IXYS

IXDD430YI

30 Amp Low-Side Ultrafast MOSFET / IGBT Driver
IXYS

IXDD504

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD504D2

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD504D2R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD504D2T

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD504D2T/R

Buffer/Inverter Based MOSFET Driver, 4A, CMOS, 4 X 5 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, DFN-8
IXYS

IXDD504PI

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS

IXDD504SIA

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers with Enable for fast, controlled shutdown
IXYS