IXDF502PI [IXYS]

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers; 2安培双低侧超快MOSFET驱动器
IXDF502PI
型号: IXDF502PI
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
2安培双低侧超快MOSFET驱动器

驱动器
文件: 总12页 (文件大小:409K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDF502 / IXDI502 / IXDN502  
2 Ampere Dual Low-Side Ultrafast MOSFET Drivers  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-Up Protected up to 2 Amps  
• High 2A Peak Output Current  
• Wide Operating Range: 4.5V to 30V  
-55°Cto+125°CExtendedOperating  
Temperature  
TheIXDF502,IXDI502andIXDN502eachconsistoftwo2-  
AmpCMOShighspeedMOSFETGateDriversfordriving  
the latest IXYS MOSFETs & IGBTs. Each of the Dual  
Outputs can source and sink 2 Amps of Peak Current while  
producing voltage rise and fall times of less than 15ns. The  
input of each Driver is TTL or CMOS compatible and is  
virtually immune to latch up. Patented* design innovations  
eliminate cross conduction and current "shoot-through".  
Improvedspeedanddrivecapabilitiesarefurtherenhanced  
by very quick & matched rise and fall times.  
• High Capacitive Load  
DriveCapability:1000pFin<10ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
• LowSupplyCurrent  
• TwoDriversinSingleChip  
TheIXDF502isconfiguredwithoneGateDriverInverting  
plusoneGateDriverNon-Inverting.TheIXDI502isconfig-  
uredasaDualInvertingGateDriver, andtheIXDN502is  
configuredasaDualNon-InvertingGateDriver.  
Applications  
• DrivingMOSFETsandIGBTs  
• MotorControls  
• LineDrivers  
• PulseGenerators  
TheIXDF502,IXDI502andIXDN502areeachavailablein  
the 8-Pin P-DIP (PI) package, the 8-Pin SOIC (SIA) pack-  
age, and the 6-Lead DFN (D1) package, (which occupies  
less than 65% of the board area of the 8-Pin SOIC).  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
• PowerChargePumps  
*United States Patent 6,917,227  
Ordering Information  
Part Number  
Description  
Package  
Type  
PackingStyle  
Pack Configuration  
Qty  
50  
IXDF502PI  
IXDF502SIA  
2ALowSideGateDriver I.C. 8-PinPDIP  
2ALowSideGateDriver I.C. 8-PinSOIC  
Tube  
Tube  
Dual, withone  
94  
Driver Inverting  
andoneDriver  
Non-Inverting  
IXDF502SIAT/R 2ALowSideGateDriver I.C. 8-PinSOIC 13” TapeandReel 2500  
IXDF502D1 56  
IXDF502D1T/R 2ALowSideGateDriver I.C. 6-LeadDFN 13” TapeandReel 2500  
2ALowSideGateDriver I.C. 6-LeadDFN 2” x 2” WafflePack  
IXDI502PI  
IXDI502SIA  
2ALowSideGateDriver I.C. 8-PinPDIP  
2ALowSideGateDriver I.C. 8-PinSOIC  
IXDI502SIAT/R 2ALowSideGateDriver I.C. 8-PinSOIC  
Tube  
Tube  
50  
94  
Dual, withboth  
Drivers  
Inverting  
13” TapeandReel 2500  
IXDI502D1  
2ALowSideGateDriver I.C. 6-LeadDFN 2” x 2” WafflePack 56  
2ALowSideGateDriver I.C. 6-LeadDFN 13” TapeandReel 2500  
2ALowSideGateDriver I.C. 8-PinPDIP  
2ALowSideGateDriver I.C. 8-PinSOIC  
IXDI502D1T/R  
IXDN502PI  
IXDN502SIA  
Tube  
Tube  
50  
94  
Dual, withboth  
DriversNon-  
Inverting  
IXDN502SIAT/R 2ALowSideGateDriver I.C. 8-PinSOIC 13” TapeandReel 2500  
IXDN502D1 56  
IXDN502D1T/R 2ALowSideGateDriver I.C. 6-LeadDFN 13” TapeandReel 2500  
2ALowSideGateDriver I.C. 6-LeadDFN 2” x 2” WafflePack  
NOTE: All parts are lead-free and RoHS Compliant  
DS99573B(03/10)  
Copyright © 2007 IXYS CORPORATION All rights reserved  
First Release  
IXDF502 / IXDI502 / IXDN502  
Figure 1 - IXDF502 Inverting + Non-Inverting 2A Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
IN A  
OUT A  
*
N
P
N
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT B  
IN B  
*
GND  
Figure 2 - IXDI502 Dual Inverting 2A Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
IN A  
OUT A  
*
N
P
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT B  
IN B  
*
N
GND  
Figure 3 - IXDN502 Dual 2A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
IN A  
OUT A  
N
P
ANTI-CROSS  
CONDUCTION  
CIRCUIT *  
OUT B  
IN B  
N
GND  
* United States Patent 6,917,227  
2
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDF502 / IXDI502 / IXDN502  
Operating Ratings (2)  
Absolute Maximum Ratings (1)  
Parameter  
Supply Voltage  
AllOtherPins  
Value  
35V  
-0.3 V to VCC + 0.3V  
150 °C  
Parameter  
Value  
4.5V to 30V  
-55 °C to 125°C  
Operating Supply Voltage  
OperatingTemperatureRange  
PackageThermalResistance*  
JunctionTemperature  
StorageTemperature  
LeadTemperature(10Sec)  
-65 °C to 150 °C  
300°C  
8-PinPDIP  
(PI)  
θJ-A (typ) 125°C/W  
8-PinSOIC  
6-LeadDFN  
6-LeadDFN  
6-LeadDFN  
(SIA)  
(D1)  
(D1)  
(D1)  
θJ-A(typ) 200°C/W  
θJ-A(typ) 125-200°C/W  
θJ-C(max) 3.3°C/W  
θJ-S(typ) 7.3°C/W  
Electrical Characteristics @ TA = 25 oC (3)  
Unless otherwise noted, 4.5V VCC 30V .  
All voltage measurements with respect to GND. IXD_502 configured as described in Test Conditions. All specifications are for one channel.  
(4)  
Symbol Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
3.0  
4.5V VCC 18V  
4.5V VCC 18V  
VIH  
VIL  
VIN  
IIN  
High input voltage  
0.8  
VCC + 0.3  
10  
V
Low input voltage  
Input voltage range  
Input current  
-5  
-10  
V
0V VIN VCC  
µA  
V
VCC - 0.025  
VOH  
VOL  
High output voltage  
Low output voltage  
0.025  
4
V
High state output  
resistance  
ROH  
ROL  
VCC = 15V  
2.5  
Low state output  
resistance  
VCC = 15V  
VCC = 15V  
2
2
3
A
A
IPEAK  
IDC  
Peak output current  
Continuous output current  
Rise time  
1
CLOAD =1000pF VCC =15V  
CLOAD =1000pF VCC =15V  
CLOAD =1000pF VCC =15V  
CLOAD =1000pF VCC =15V  
7.5  
6.5  
25  
20  
15  
10  
9
ns  
ns  
ns  
ns  
V
tR  
tF  
Fall time  
32  
30  
30  
tONDLY  
tOFFDLY  
VCC  
On-time propagation delay  
Off-time propagation delay  
Power supply voltage  
4.5  
VIN = 3.5V  
VIN = 0V  
VIN = +VCC  
1
0
3
15  
15  
mA  
µA  
µA  
ICC  
Power supply current  
IXYS reserves the right to change limits, test conditions, and dimensions.  
3
IXDF502 / IXDI502 / IXDN502  
Electrical Characteristics @ temperatures over -55 oC to 125 oC (3)  
Unless otherwise noted, 4.5V VCC 30V , Tj < 150oC  
All voltage measurements with respect to GND. IXD_502 configured as described in Test Conditions. All specifications are for one channel.  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3.1  
4.5V VCC 15V  
4.5V VCC 15V  
VIH  
VIL  
VIN  
IIN  
0.8  
VCC + 0.3  
10  
V
-5  
-10  
V
0V VIN VCC  
µA  
V
High output voltage  
Low output voltage  
VCC - 0.025  
VOH  
VOL  
0.025  
6
V
High state output  
resistance  
VCC = 15V  
VCC = 15V  
ROH  
ROL  
IDC  
A
Low state output  
resistance  
5
1
Continuous output  
current  
Rise time  
CLOAD =1000pF VCC=15V  
CLOAD =1000pF VCC =15V  
11  
10  
40  
ns  
ns  
ns  
tR  
tF  
Fall time  
On-time propagation  
delay  
tONDLY  
CLOAD =1000pF VCC =15V  
CLOAD =1000pF VCC =15V  
Off-time propagation  
delay  
Power supply voltage  
38  
ns  
tOFFDLY  
VCC  
4.5  
15  
30  
V
VIN = 3.5V  
VIN = 0V  
VIN = + VCC  
1
0
3
40  
40  
mA  
µA  
µA  
ICC  
Power supply current  
Notes:  
1. Operating the device beyond the parameters listed as “Absolute Maximum Ratings” may cause permanent  
damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device  
reliability.  
2. The device is not intended to be operated outside of the Operating Ratings.  
3. Electrical Characteristics provided are associated with the stated Test Conditions.  
4. Typical values are presented in order to communicate how the device is expected to perform, but not necessarily  
to highlight any specific performance limits within which the device is guaranteed to function.  
* The following notes are meant to define the conditions for the θJ-A, θJ-C and θJ-S values:  
1) TheθJ-A (typ)isdefinedasjunctiontoambient. TheθJ-A ofthestandardsingledie8-LeadPDIPand8-LeadSOICaredominatedbythe  
resistanceofthepackage,andtheIXD_5XXaretypical. Thevaluesforthesepackagesarenaturalconvectionvalueswithverticalboards  
and the values would be lower with forced convection. For the 6-Lead DFN package, the θJ-A value supposes the DFN package is  
soldered on a PCB. The θJ-A (typ) is 200 °C/W with no special provisions on the PCB, but because the center pad provides a low  
thermal resistance to the die, it is easy to reduce the θJ-A by adding connected copper pads or traces on the PCB. These can reduce  
the θJ-A (typ) to 125 °C/W easily, and potentially even lower. The θJ-A for DFN on PCB without heatsink or thermal management will  
vary significantly with size, construction, layout, materials, etc. This typical range tells the user what he is likely to get if he does no  
thermalmanagement.  
2) θJ-C (max) is defined as juction to case, where case is the large pad on the back of the DFN package. The θJ-C values are generally not  
publishedforthePDIPandSOICpackages. TheθJ-CfortheDFNpackagesareimportanttoshowthelowthermalresistancefromjunctionto  
thedieattachpadonthebackoftheDFN, --andaguardbandhasbeenaddedtobesafe.  
3) TheθJ-S (typ)isdefinedasjunctiontoheatsink,wheretheDFNpackageissolderedtoathermalsubstratethatismountedonaheatsink.  
Thevaluemustbetypicalbecausethereareavarietyofthermalsubstrates. ThisvaluewascalculatedbasedoneasilyavailableIMSinthe  
U.S.orEurope,andnotapremiumJapaneseIMS. A4mildialectricwithathermalconductivityof2.2W/mCwasassumed. Theresultwas  
given as typical, and indicates what a user would expect on a typical IMS substrate, and shows the potential low thermal resistance for the  
DFNpackage.  
4
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDF502 / IXDI502 / IXDN502  
Pin Description  
PIN  
PACKAGE  
SYMBOL  
FUNCTION  
DESCRIPTION  
2
1
SOIC, DIP  
DFN  
IN A  
A Channel Input  
A Channel Input signal-TTL or CMOS compatible.  
The system ground pin. Internally connected to all circuitry,  
this pin provides ground reference for the entire chip. This pin  
should be connected to a low noise analog ground plane for  
optimum performance.  
3
2
SOIC, DIP  
DFN  
GND  
Ground  
4
3
SOIC, DIP  
DFN  
IN B  
B Channel Input  
B Channel Input signal-TTL or CMOS compatible.  
5
4
SOIC, DIP  
DFN  
B Channel Driver output. For application purposes, this pin is  
connected via a resistor to a gate of a MOSFET/IGBT.  
OUT B  
B Channel Output  
Positive power-supply voltage input. This pin provides power  
to the entire chip. The range for this voltage is from 4.5V to  
30V.  
6
5
SOIC, DIP  
DFN  
Supply Voltage  
V
CC  
7
6
SOIC, DIP  
DFN  
A Channel Driver output. For application purposes, this pin is  
connected via a resistor to a gate of a MOSFET/IGBT.  
OUT A  
A Channel Output  
CAUTION: Follow proper ESD procedures when handling and assembling this component.  
PinConfiguration  
IXDN502  
IXDF502  
IXDI502  
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
IN A  
GND  
INB  
IN A  
GND  
INB  
IN A  
GND  
INB  
OUT B  
OUT B  
OUT B  
8 Lead PDIP (PI)  
8 Pin SOIC (
8 Lead PDIP (PI)  
8 Pin SOIC
8 Lead PDIP (PI)  
8 Pin SOIC (SI)  
(SIA)  
(SIA)  
(SIA)  
6LeadDFN(D1)  
(BottomView)  
6LeadDFN(D1)  
(BottomView)  
6LeadDFN(D1)  
(BottomView)  
6
6
IN A  
GND  
IN B  
6
5
4
OUTA IN A 1  
OUTA  
Vcc  
1
2
IN A 1  
OUTA  
Vcc  
2
5
4
GND  
5
4
2
Vcc  
GND  
IN B 3  
3
IN B  
3
OUTB  
OUTB  
OUTB  
NOTE: Solder tabs on bottoms of DFN packages are grounded  
Figure 4 - Characteristics Test Diagram  
Vcc  
1
2
3
4
8
7
6
5
NC  
NC  
In A  
Gnd  
In B  
Out A  
Vcc  
0.01uF  
10uF  
Out B  
Agilent 1147A  
Current Probe  
Agilent 1147A  
Current Probe  
1000 pF  
1000 pF  
IXYS reserves the right to change limits, test conditions, and dimensions.  
5
IXDF502 / IXDI502 / IXDN502  
Typical Performance Characteristics  
Fig. 6  
Fig. 5  
Rise Time vs. Supply Voltage  
Fall Time vs. Supply Voltage  
80  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
10000pF  
10000pF  
5400pF  
5400pF  
1000pF  
560pF  
1000pF  
560pF  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 7  
Fig. 8  
Rise / Fall Time vs. Temperature  
VSUPPLY = 15V CLOAD = 1000pF  
Rise Time vs. Capacitive Load  
90  
80  
70  
60  
50  
40  
30  
20  
10  
12  
10  
8
5V  
Rise time  
Fall time  
10V  
15V  
20V  
6
4
2
0
0
100  
1000  
10000  
-50  
0
50  
100  
150  
Load Capacitance (pF)  
Temperature (C)  
Fig. 10  
Fig. 9  
Fall Time vs. Capacitive Load  
Input Threshold Levels vs. Supply Voltage  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
5V  
2
1.5  
1
10V  
Positive going  
input  
15V  
20V  
Negative going  
0.5  
0
0
10  
20  
30  
40  
100  
1000  
10000  
Supply Voltage (V)  
Load Capacitance (pF)  
6
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDF502 / IXDI502 / IXDN502  
Fig. 12  
Fig. 11  
Propagation Delay vs. Supply Voltage  
Rising Input, CLOAD = 1000pF  
Input Threshold Levels vs. Temperature  
3
40  
35  
30  
2.5  
2
Non-Inverting  
25  
Positive going input  
Negative going input  
1.5  
1
20  
Inverting  
15  
10  
5
0.5  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
0
50  
100  
150  
Supply Voltage (V)  
Temperature (C)  
Fig. 13  
Fig. 14  
Propagation Delay vs. Supply Voltage  
Falling Input, CLOAD = 1000pF  
Propagation Delay vs. Temperature  
VSUPPLY = 15V CLOAD = 1000pF  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
Negative going input  
Positve going input  
Inverting  
Non-Inverting  
0
0
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
35  
40  
Temeprature (C)  
Supply Voltage (V)  
Quiescent current vs Temperature  
Vsupply = 15V  
Fig. 16  
Fig. 15  
Quiescent Current vs Supply Voltage  
35  
30  
25  
20  
15  
10  
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
inverting input=gnd  
non-inverting input=vcc  
inverting input=gnd  
non-inverting input=vcc  
0
0
-55  
-25  
0
25  
50  
75  
100  
125  
0V  
5V  
10V  
15V  
20V  
25V  
30V  
35V  
Temperature (C)  
Supply Voltage (V)  
7
IXDF502 / IXDI502 / IXDN502  
Fig. 18  
Fig. 17  
SupplyCurrent vs. CapacitiveLoad  
VSUPPLY =5V  
SupplyCurrent vs. Frequency  
VSUPPLY =5V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
10000pF  
2MHz  
90  
80  
70  
60  
5400pF  
50  
40  
30  
1MHz  
20  
1000pF  
10  
560pF  
100kHz  
0
100  
1000  
10000  
100  
1000  
10000  
Frequency(kHz)  
Load Capacitance(pF)  
Supply Current vs. Capacitive Load  
VSUPPLY = 10V  
Fig. 19  
Fig. 20  
SupplyCurrent vs. Frequency  
VSUPPLY = 10V  
200  
180  
160  
140  
120  
100  
80  
200  
10000pF  
2MHz  
180  
160  
140  
120  
100  
80  
5400pF  
1MHz  
60  
60  
40  
40  
1000pF  
560pF  
20  
20  
100kHz  
0
0
100  
1000  
10000  
100  
1000  
10000  
Frequency(kHz)  
Load Capacitance (pF)  
Fig. 21  
SupplyCurrent vs. CapacitiveLoad  
VSUPPLY =15V  
SupplyCurrent vs. Frequency  
VSUPPLY =15V  
Fig. 22  
300  
250  
200  
150  
100  
50  
300  
2MHz  
10000pF  
250  
200  
150  
100  
50  
5400pF  
1MHz  
1000pF  
560pF  
100kHz  
0
0
100  
1000  
10000  
100  
1000  
10000  
Load Capacitance(pF)  
Frequency(kHz)  
8
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDF502 / IXDI502 / IXDN502  
Fig. 24  
Fig. 23  
SupplyCurrent vs. CapacitiveLoad  
VSUPPLY =20V  
SupplyCurrent vs. Frequency  
VSUPPLY=20V  
400  
400  
10000pF  
2MHz  
1MHz  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
5400pF  
200  
150  
100  
1000pF  
50  
560pF  
100kHz  
0
0
100  
1000  
10000  
100  
1000  
10000  
LoadCapacitance(pF)  
Frequency(kHz)  
Fig. 25  
Fig. 26  
Output Source Current vs. Supply Voltage  
Output Sink Current vs. Supply Voltage  
7
6
5
4
3
2
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Supply Voltage (V)  
Supply Voltage (V)  
Output Sink Current vs. Temperature  
VSUPPLY = 15V  
Output Source Current vs. Temperature  
VSUPPLY = 15V  
Fig. 28  
Fig. 27  
3.5  
3
0
-0.5  
-1  
2.5  
2
-1.5  
-2  
1.5  
1
-2.5  
-3  
0.5  
0
-3.5  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (C)  
Temperature (C)  
9
IXDF502 / IXDI502 / IXDN502  
Fig. 30  
Fig. 29  
Low State Output Resistance vs. Supply Voltage  
4.5  
High State Output Resistance vs. Supply Voltage  
6
4
5
4
3
2
1
0
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
10  
Copyright © 2007 IXYS CORPORATION All rights reserved  
IXDF502 / IXDI502 / IXDN502  
Supply Bypassing, Grounding Practices And  
Output Lead inductance  
WhendesigningacircuittodriveahighspeedMOSFETutilizing  
theIXD_502,itisveryimportanttoobservecertaindesigncriteria  
inordertooptimizeperformanceofthedriver. Particularattention  
needs to be paid to Supply Bypassing, Grounding, and  
minimizing the Output Lead Inductance.  
Say,forexample,weareusingtheIXD_502tochargea1500pF  
capacitive load from 0 to 25 volts in 25ns.  
Using the formula: I = C V/t, where V=25V C=1500pF &  
t=25ns, we can determine that to charge 1500pF to 25 volts in  
25nswilltakeaconstantcurrentof1.5A.(Inreality,thecharging  
currentwon’tbeconstant,andwillpeaksomewherearound2A).  
SUPPLY BYPASSING  
In order for our design to turn the load on properly, the IXD_502  
must be able to draw this 1.5A of current from the power supply  
inthe25ns. Thismeansthattheremustbeverylowimpedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is an order of  
magnitudelargerthantheloadcapacitance. Usually,thiswould  
beachievedbyplacingtwodifferenttypesofbypassingcapacitors,  
withcomplementaryimpedancecurves, veryclosetothedriver  
itself.(Thesecapacitorsshouldbecarefullyselectedandshould  
have low inductance, low resistance and high-pulse current-  
serviceratings). Leadlengthsmayradiateathighfrequencydue  
toinductance,socareshouldbetakentokeepthelengthsofthe  
leads between these bypass capacitors and the IXD_502 to an  
absoluteminimum.  
GROUNDING  
In order for the design to turn the load off properly, the IXD_502  
must be able to drain this 1.5A of current into an adequate  
groundingsystem. Therearethreepathsforreturningcurrentthat  
need to be considered: Path #1 is between the IXD_502 and its  
load. Path#2isbetweentheIXD_502anditspowersupply. Path  
#3isbetweentheIXD_502andwhateverlogicisdrivingit. Allthree  
of these paths should be as low in resistance and inductance as  
possible, and thus as short as practical. In addition, every effort  
should be made to keep these three ground paths distinctly  
separate. Otherwise, the returning ground current from the load  
maydevelopavoltagethatwouldhaveadetrimentaleffectonthe  
logiclinedrivingtheIXD_502.  
OUTPUT LEAD INDUCTANCE  
Of equal importance to Supply Bypassing and Grounding are  
issuesrelatedtotheOutputLeadInductance.Everyeffortshould  
bemadetokeeptheleadsbetweenthedriveranditsloadasshort  
andwideaspossible. Ifthedrivermustbeplacedfartherthan0.2”  
(5mm) from the load, then the output leads should be treated as  
transmission lines. In this case, a twisted-pair should be  
considered, and the return line of each twisted pair should be  
placed as close as possible to the ground pin of the driver, and  
connected directly to the ground terminal of the load.  
11  
IXDF502 / IXDI502 / IXDN502  
A2  
b
b2  
b3  
c
D
D1  
E
E1  
e
eA  
eB  
L
E
H
B
C
D
E
e
D
H
h
A
L
A1  
M
N
e
B
h X45  
N
L
C
M
0.035 [0.90]  
0.137 [3.48]  
0.197 0.005 [5.00 0.13]  
IXYSCorporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel:408-982-0700;Fax:408-496-0670  
e-mail: sales@ixys.net  
www.ixys.com  
S0.002^ 0.000;  
o
[S0.05^ 0.00;o  
]
0.018 [0.47]  
0.100 [2.54]  
IXYSSemiconductorGmbH  
Edisonstrasse15;D-68623;Lampertheim  
Tel:+49-6206-503-0;Fax:+49-6206-503627  
e-mail:marcom@ixys.de  
12  
Copyright © 2007 IXYS CORPORATION All rights reserved  

相关型号:

IXDF502SIA

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF502SIAT/R

2 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504D1

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504D1T/R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504PI

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504SIA

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF504SIAT/R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDF602D2TR

2-Ampere Dual Low-Side Ultrafast MOSFET Drivers
CLARE

IXDF602PI

2-Ampere Dual Low-Side Ultrafast MOSFET Drivers
CLARE

IXDF602SI

2-Ampere Dual Low-Side Ultrafast MOSFET Drivers
CLARE

IXDF602SIA

2-Ampere Dual Low-Side Ultrafast MOSFET Drivers
CLARE