IXDI504 [IXYS]

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers;
IXDI504
型号: IXDI504
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers

文件: 总11页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IXDF504 / IXDI504 / IXDN504  
4 Ampere Dual Low-Side Ultrafast MOSFET Drivers  
General Description  
Features  
• Built using the advantages and compatibility  
of CMOS and IXYS HDMOSTM processes  
• Latch-Up Protected up to 4 Amps  
• High Peak Output Current: 4A Peak  
• Wide Operating Range: 4.5V to 30V  
-55°Cto+125°CExtendedOperating  
Temperature  
TheIXDF504,IXDI504andIXDN504eachconsistoftwo4-  
AmpCMOShighspeedMOSFETGateDriversfordriving  
the latest IXYS MOSFETs & IGBTs. Each of the outputs  
can source and sink 4 Amps of Peak Current while produc-  
ing voltage rise and fall times of less than 15ns. The input  
of each driver is TTL or CMOS compatible and is virtually  
immune to latch up. Patented* design innovations eliminate  
crossconductionandcurrent"shoot-through".Improved  
speedanddrivecapabilitiesarefurtherenhancedbyvery  
fast, matched rise and fall times.  
• High Capacitive Load  
DriveCapability:1800pFin<15ns  
• Matched Rise And Fall Times  
• Low Propagation Delay Time  
• LowOutputImpedance  
• LowSupplyCurrent  
• TwoDriversinSingleChip  
TheIXDF504isconfiguredwithoneGateDriverInverting+  
oneGateDriverNon-Inverting.TheIXDI504isconfiguredas  
aDualInvertingGateDriver,andtheIXDN504isconfigured  
asaDualNon-InvertingGateDriver.  
Applications  
• DrivingMOSFETsandIGBTs  
• MotorControls  
• LineDrivers  
• PulseGenerators  
TheIXDF504,IXDI504andIXDN504areeachavailablein  
the 8-Pin P-DIP (PI) package, the 8-Pin SOIC (SIA) pack-  
age, and the 6-Lead DFN (D1) package, (which occupies  
less than 65% of the board area of the 8-Pin SOIC).  
• Local Power ON/OFF Switch  
• Switch Mode Power Supplies (SMPS)  
• DCtoDCConverters  
• PulseTransformerDriver  
• Class D Switching Amplifiers  
• PowerChargePumps  
*United States Patent 6,917,227  
Ordering Information  
Package  
Type  
Pack  
Qty  
50  
94  
2500  
56  
2500  
50  
94  
2500  
56  
2500  
50  
Part Number  
Description  
Packing Style  
Tube  
Configuration  
IXDF504PI  
IXDF504SIA  
IXDF504SIAT/R 4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
6-Lead DFN  
6-Lead DFN  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
6-Lead DFN  
6-Lead DFN  
8-Pin PDIP  
8-Pin SOIC  
8-Pin SOIC  
6-Lead DFN  
6-Lead DFN  
Dual Drivers,  
one Inverting  
and one Non-  
Inverting  
Tube  
13” Tape and Reel  
2” x 2” Waffle Pack  
13” Tape and Reel  
Tube  
IXDF504D1  
IXDF504D1T/R  
IXDI504PI  
IXDI504SIA  
IXDI504SIAT/R  
IXDI504D1  
IXDI504D1T/R  
IXDN504PI  
IXDN504SIA  
4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
4A Low Side Gate Driver I.C.  
Tube  
Dual Inverting  
Drivers  
13” Tape and Reel  
2” x 2” Waffle Pack  
13” Tape and Reel  
Tube  
Dual Non-  
Inverting  
Drivers  
Tube  
94  
2500  
56  
IXDN504SIAT/R 4A Low Side Gate Driver I.C.  
IXDN504D1 4A Low Side Gate Driver I.C.  
IXDN504D1T/R 4A Low Side Gate Driver I.C.  
13” Tape and Reel  
2” x 2” Waffle Pack  
13” Tape and Reel  
2500  
NOTE: All parts are lead-free and RoHS Compliant  
DS99567A(10/07)  
Copyright © 2007 IXYS CORPORATION All rights reserved  
First Release  
IXDF504 / IXDI504 / IXDN504  
Figure 1 - IXDF504 Inverting + Non-Inverting 4A Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
IN A  
OUT A  
CONDUCTION  
CIRCUIT *  
*
N
P
N
ANTI-CROSS  
CONDUCTION  
OUT B  
IN B  
CIRCUIT *  
*
GND  
Figure 2 - IXDI504 Dual Inverting 4A Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
IN A  
OUT A  
CONDUCTION  
CIRCUIT *  
*
N
P
ANTI-CROSS  
OUT B  
IN B  
CONDUCTION  
CIRCUIT *  
*
N
GND  
Figure 3 - IXDN504 Dual 4A Non-Inverting Gate Driver Functional Block Diagram  
Vcc  
P
ANTI-CROSS  
IN A  
OUT A  
CONDUCTION  
CIRCUIT *  
*
N
P
N
ANTI-CROSS  
CONDUCTION  
IN B  
OUT B  
CIRCUIT *  
*
GND  
* United States Patent 6,917,227  
Copyright © 2007 IXYS CORPORATION All rights reserved  
2
IXDF504 / IXDI504 / IXDN504  
Operating Ratings (2)  
Absolute Maximum Ratings (1)  
Parameter  
Value  
Parameter  
Value  
Supply Voltage  
AllOtherPins(Unlessspecified  
otherwise)  
35 V  
Operating Supply Voltage  
OperatingTemperatureRange  
PackageThermalResistance*  
4.5V to 30V  
-55 °C to 125°C  
-0.3 V to VCC + 0.3V  
JunctionTemperature  
StorageTemperature  
LeadTemperature(10Sec)  
150 °C  
-65 °C to 150 °C  
300°C  
8-PinPDIP  
(PI)  
θ
(typ) 125°C/W  
8-PinSOIC  
6-LeadDFN  
6-LeadDFN  
6-LeadDFN  
(SIA)  
(D1)  
(D1)  
(D1)  
θJJ--AA(typ) 200°C/W  
θ
(typ) 125-200°C/W  
θJ-A(max) 2.1°C/W  
θJJ--CS(typ) 6.4°C/W  
Electrical Characteristics @ TA = 25 oC (3)  
Unless otherwise noted, 4.5V VCC 30V .  
All voltage measurements with respect to GND. IXD_504 configured as described in Test Conditions. All specifications are for one channel.  
(4)  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
4.5V VIN 18V  
4.5V VIN 18V  
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3
V
V
VIL  
0.8  
VCC + 0.3  
10  
VIN  
-5  
-10  
V
IIN  
0V VIN VCC  
µA  
V
VOH  
VOL  
High output voltage  
Low output voltage  
VCC - 0.025  
0.025  
2.5  
V
VCC = 18V  
ROH  
High state output resistance  
1.5  
I
OUT = 10mA  
VCC = 18V  
OUT = 10mA  
ROL  
Low state output resistance  
Peak output current  
1.2  
4
2
1
I
IPEAK  
VCC = 15V  
A
A
Limited by package  
dissipation  
IDC  
tR  
Continuous output current  
CLOAD =1000pF  
Rise time  
9
8
16  
14  
40  
ns  
ns  
ns  
VCC =18V  
CLOAD =1000pF  
tF  
Fall time  
VCC =18V  
CLOAD =1000pF  
tONDLY  
On-time propagation delay  
19  
18  
VCC =18V  
CLOAD =1000pF  
tOFFDLY  
VCC  
Off-time propagation delay  
Power supply voltage  
35  
30  
ns  
V
VCC =18V  
4.5  
18  
VCC = 18V, VIN = 0V  
VIN = 3.5V  
0.25  
10  
3
10  
µA  
mA  
mA  
ICC  
Power supply current  
VIN = VCC  
IXYS reserves the right to change limits, test conditions, and dimensions.  
3
IXDF504 / IXDI504 / IXDN504  
Electrical Characteristics @ temperatures over -55 oC to 125 oC (3)  
Unless otherwise noted, 4.5V VCC 30V , Tj < 150oC  
All voltage measurements with respect to GND. IXD_504 configured as described in Test Conditions. All specifications are for one channel.  
Symbol  
VIH  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
V
High input voltage  
Low input voltage  
Input voltage range  
Input current  
3
4.5V VCC 18V  
4.5V VCC 18V  
VIL  
0.8  
VCC + 0.3  
10  
V
VIN  
-5  
-10  
V
IIN  
0V VIN VCC  
µA  
V
VOH  
VOL  
ROH  
High output voltage  
Low output voltage  
VCC - 0.025  
0.025  
3
V
High state output  
resistance  
Low state output  
resistance  
VCC = 18V, IOUT = 10mA  
VCC = 18V, IOUT = 10mA  
ROL  
2.5  
IDC  
Continuous output current  
1
A
tR  
Rise time  
Fall time  
CLOAD =1000pF VCC =18V  
CLOAD =1000pF VCC =18V  
20  
15  
60  
50  
30  
ns  
ns  
ns  
ns  
V
tF  
tONDLY  
tOFFDLY  
VCC  
ICC  
On-time propagation delay CLOAD =1000pF VCC =18V  
Off-time propagation delay CLOAD =1000pF VCC =18V  
Power supply voltage  
4.5  
18  
Power supply current  
VCC = 18V, VIN = 0V  
VIN = 3.5V  
150  
3
150  
µA  
mA  
mA  
VIN = VCC  
Notes:  
1. Operating the device beyond the parameters listed as “Absolute Maximum Ratings” may cause permanent  
damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device  
reliability.  
2. The device is not intended to be operated outside of the Operating Ratings.  
3. Electrical Characteristics provided are associated with the stated Test Conditions.  
4. Typical values are presented in order to communicate how the device is expected to perform, but not necessarily  
to highlight any specific performance limits within which the device is guaranteed to function.  
* The following notes are meant to define the conditions for the θJ-A, θJ-C and θJ-S values:  
1) TheθJ-A (typ)isdefinedasjunctiontoambient. TheθJ-A ofthestandardsingledie8-LeadPDIPand8-LeadSOICaredominatedbythe  
resistanceofthepackage,andtheIXD_5XXaretypical. Thevaluesforthesepackagesarenaturalconvectionvalueswithverticalboards  
andthevalueswouldbelowerwithforcedconvection. Forthe6-LeadDFNpackage, theθJ-A valuesupposestheDFNpackageissoldered  
onaPCB. TheθJ-A (typ)is200°C/W with no special provisions on the PCB, but because the center pad provides a low thermal resistance  
to the die, it is easy to reduce the θJ-A by adding connected copper pads or traces on the PCB. These can reduce the θJ-A (typ) to 125 °C/W  
easily, andpotentiallyevenlower. The θJ-AforDFNonPCBwithoutheatsinkorthermalmanagementwillvarysignificantlywithsize,  
construction, layout, materials, etc. Thistypicalrangetellstheuserwhatheislikelytogetifhedoesnothermalmanagement.  
2) θJ-C (max) is defined as juction to case, where case is the large pad on the back of the DFN package. The θJ-C values are generally not  
publishedforthePDIPandSOICpackages. TheθJ-CfortheDFNpackagesareimportanttoshowthelowthermalresistancefromjunctionto  
thedieattachpadonthebackoftheDFN, --andaguardbandhasbeenaddedtobesafe.  
3) TheθJ-S (typ)isdefinedasjunctiontoheatsink,wheretheDFNpackageissolderedtoathermalsubstratethatismountedonaheatsink.  
Thevaluemustbetypicalbecausethereareavarietyofthermalsubstrates. ThisvaluewascalculatedbasedoneasilyavailableIMSinthe  
U.S.orEurope,andnotapremiumJapaneseIMS. A4mildialectricwithathermalconductivityof2.2W/mCwasassumed. Theresultwas  
given as typical, and indicates what a user would expect on a typical IMS substrate, and shows the potential low thermal resistance for the  
DFNpackage.  
Copyright © 2007 IXYS CORPORATION All rights reserved  
4
IXDF504 / IXDI504 / IXDN504  
Pin Description  
SYMBOL  
FUNCTION  
DESCRIPTION  
IN A  
A Channel Input  
Ground  
A channel input signal-TTL or CMOS compatible.  
The system ground pin. Internally connected to all circuitry, this pin provides  
ground reference for the entire device. This pin should be connected to a  
low noise analog ground plane for optimum performance.  
B channel input signal-TTL or CMOS compatible.  
GND  
IN B  
B Channel Input  
B channel driver output. For application purposes, this pin is connected via a  
resistor to the gate of a MOSFET/IGBT.  
OUT B  
B Channel Output  
Positive power-supply voltage input. This pin provides power to the entire  
device. The range for this voltage is from 4.5V to 30V.  
VCC  
Supply Voltage  
A channel criver output. For application purposes, this pin is connected via a  
resistor to the gate of a MOSFET/IGBT.  
OUT A  
A Channel Output  
CAUTION: Follow proper ESD procedures when handling and assembling this component.  
PinConfigurations  
IXDN504  
IXDF504  
IXDI504  
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
1
2
3
4
NC  
OUT A  
VS  
NC  
8
7
6
5
IN A  
GND  
INB  
IN A  
GND  
INB  
IN A  
GND  
INB  
OUT B  
OUT B  
OUT B  
8 Lead PDIP (PI)  
(SIA)  
8 Pin SOIC (
8 Lead PDIP (PI)  
8 Pin SOIC (I
8 Lead PDIP (PI)  
8 Pin SOIC (
(SIA)  
(SIA)  
6LeadDFN(D1)  
(BottomView)  
6LeadDFN(D1)  
(BottomView)  
6LeadDFN(D1)  
(BottomView)  
6
6
IN A  
GND  
IN B  
OUT A  
Vcc  
6
5
4
OUT A IN A 1  
1
IN A 1  
OUT A  
Vcc  
2
3
5
4
GND  
IN B  
2
3
2
5
4
Vcc  
GND  
IN B  
3
OUT B  
OUT B  
OUT B  
NOTE: Solder tabs on bottoms of DFN packages are grounded  
Figure 4 - Characteristics Test Diagram  
Vcc  
IXD_504  
1
8
7
6
5
NC  
NC  
2
3
4
In A  
Gnd  
In B  
Out A  
Vcc  
0.01uF  
10uF  
Out B  
Agilent 1147A  
Current Probe  
Agilent 1147A  
Current Probe  
CLOAD  
CLOAD  
IXYS reserves the right to change limits, test conditions, and dimensions.  
5
IXDF504 / IXDI504 / IXDN504  
Typical Performance Characteristics  
Fig. 5  
Fig. 6  
Rise Times vs. Supply Voltage  
Fall Times vs. Supply Voltage  
90  
80  
80  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
0
10000pF  
5400pF  
10000pF  
5400pF  
1000pF  
100pF  
1000pF  
100pF  
0
0
0
5
10  
15  
20  
25  
30  
35  
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 7  
Fig. 8  
Rise / Fall Time vs. Temperature  
SUPPLY = 15V CLOAD = 1000pF  
Rise Time vs. Capacitive Load  
V
70  
60  
50  
40  
30  
20  
10  
0
10  
9
8
7
6
5
4
3
2
1
5V  
15V  
30V  
0
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
100  
1000  
10000  
Load Capacitance (pF)  
Temperature (C)  
Fig. 9  
Fig. 10  
Fall Time vs. Capacitive Load  
Input Threshold Levels vs. Supply Voltage  
70  
2.5  
60  
50  
40  
30  
20  
10  
5V  
2
1.5  
1
Positive going input  
15V  
30V  
Negative going input  
0.5  
0
0
100  
1000  
10000  
0
5
10  
15  
20  
25  
30  
35  
Load Capacitance (pF)  
Supply Voltage (V)  
Copyright © 2007 IXYS CORPORATION All rights reserved  
6
IXDF504 / IXDI504 / IXDN504  
Propagation Delay vs. Supply Voltage  
Fig. 11  
Input Threshold Levels vs. Temperature  
Fig. 12  
Rising Input, CLOAD = 1000pF  
VSUPPLY = 15V  
3
35  
30  
25  
20  
15  
10  
5
2.5  
2
Positive going input  
Negative going input  
1.5  
1
0.5  
0
0
0
5
10  
15  
20  
25  
30  
35  
-50  
0
50  
100  
150  
Temperature (C)  
Supply Voltage (V)  
Fig. 14  
Fig. 13  
Propagation Delay vs. Temperature  
SUPPLY = 15V CLOAD = 1000pF  
Propagation Delay vs. Supply Voltage  
Falling Input, CLOAD = 1000pF  
V
45  
35  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
Negative going input  
Positve going input  
0
0
0
5
10  
15  
20  
25  
30  
35  
-50  
0
50  
100  
150  
Supply Voltage (V)  
Temeprature (C)  
Fig. 15  
Fig. 16  
Quiescent Current vs. Temperature  
Quiescent Current vs. Supply Voltage  
VSUPPLY = 15V  
V = 0V  
IN  
1000  
100  
10  
10  
1
1
0.1  
Non-inverting, Input= "0"  
Inverting Input = "1"  
0.1  
0.01  
0.01  
0
5
10  
15  
20  
25  
30  
35  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
Supply Voltage (V)  
Temperature (C)  
7
IXDF504 / IXDI504 / IXDN504  
Fig. 18  
Fig. 17  
Supply Current vs. Frequency  
Supply Current vs. Capacitive Load  
SUPPLY = 5V  
VSUPPLY = 5V  
V
100  
10  
2MHz  
1MHz  
100  
10000pF  
5400pF  
1000pF  
100pF  
10  
1
100kHz  
10kHz  
1
0.1  
0.01  
0.1  
0.01  
10  
100  
1000  
10000  
100  
1000  
10000  
Frequency (kHz)  
Load Capacitance (pF)  
Fig. 19  
Fig. 20  
Supply Current vs. Frequency  
SUPPLY = 15V  
Supply Current vs. Capacitive Load  
V
VSUPPLY = 15V  
1000  
100  
10  
1000  
100  
10  
10000pF  
5400pF  
2MHz  
1MHz  
1000pF  
100pF  
100kHz  
10kHz  
1
1
0.1  
0.1  
0.01  
0.01  
10  
100  
1000  
10000  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Fig. 22  
Fig. 21  
Supply Current vs. Capacitive Load  
Supply Current vs. Frequency  
SUPPLY = 30V  
VSUPPLY = 30V  
V
1000  
1000  
100  
10  
10000pF  
5400pF  
2MHz  
1MHz  
1000pF  
100pF  
100  
10  
1
100kHz  
10kHz  
1
0.1  
0.1  
10  
100  
1000  
10000  
100  
1000  
10000  
Load Capacitance (pF)  
Frequency (kHz)  
Copyright © 2007 IXYS CORPORATION All rights reserved  
8
IXDF504 / IXDI504 / IXDN504  
Fig. 24  
Fig. 23  
Output Source Current vs. Supply Voltage  
Output Sink Current vs. Supply Voltage  
12  
10  
8
0
-2  
-4  
-6  
6
-8  
4
-10  
-12  
-14  
2
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
Fig. 26  
Output Sink Current vs. Temperature  
VSUPPLY = 15V  
Fig. 25  
Output Source Current vs. Temperature  
VSUPPLY = 15V  
0
-1  
-2  
-3  
-4  
-5  
-6  
6
5
4
3
2
1
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (C)  
Temperature (C)  
Fig. 28  
Fig. 27 High State Output Resistance vs. Supply Voltage  
Low State Output Resistance vs. Supply Voltage  
3
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Supply Voltage (V)  
9
IXDF504 / IXDI504 / IXDN504  
Supply Bypassing, Grounding Practices And Output Lead inductance  
When designing a circuit to drive a high speed MOSFET  
utilizing the IXD_504, it is very important to observe certain  
design criteria in order to optimize performance of the driver.  
Particular attention needs to be paid to Supply Bypassing,  
Grounding, and minimizing the Output Lead Inductance.  
Say, forexample, weareusingtheIXD_504tochargea2500pF  
capacitive load from 0 to 25 volts in 25ns.  
Using the formula: IC = C (∆V/t), where V=25V C=2500pF &  
t=25ns, we can determine that to charge 2500pF to 25 volts  
in 25ns will take a constant current of 2.5A. (In reality, the  
charging current won’t be constant and will peak somewhere  
around 4A).  
SUPPLYBYPASSING  
In order for our design to turn the load on properly, the IXD_504  
must be able to draw this 2.5A of current from the power supply  
in the 25ns. This means that there must be very low impedance  
between the driver and the power supply. The most common  
method of achieving this low impedance is to bypass the power  
supply at the driver with a capacitance value that is an order of  
magnitude larger than the load capacitance. Usually, this  
would be achieved by placing two different types of bypassing  
capacitors, with complementary impedance curves, very close  
to the driver itself. (These capacitors should be carefully  
selected and should have low inductance, low resistance and  
high-pulse current-service ratings). Lead lengths may radiate  
at high frequency due to inductance, so care should be taken  
to keep the lengths of the leads between these bypass  
capacitors and the IXD_504 to an absolute minimum.  
GROUNDING  
In order for the design to turn the load off properly, the IXD_504  
must be able to drain this 2.5A of current into an adequate  
grounding system. There are three paths for returning current  
that need to be considered: Path #1 is between the IXD_504  
and its load. Path #2 is between the IXD_504 and its power  
supply. Path #3 is between the IXD_504 and whatever logic is  
driving it. All three of these paths should be as low in resistance  
and inductance as possible, and thus as short as practical. In  
addition, every effort should be made to keep these three  
ground paths distinctly separate. Otherwise, the returning  
ground current from the load may develop a voltage that would  
have a detrimental effect on the logic line driving the IXD_504.  
OUTPUTLEADINDUCTANCE  
Of equal importance to Supply Bypassing and Grounding are  
issues related to the Output Lead Inductance. Every effort  
should be made to keep the leads between the driver and its  
load as short and wide as possible. If the driver must be placed  
farther than 0.2” (5mm) from the load, then the output leads  
should be treated as transmission lines. In this case, a twisted-  
pair should be considered, and the return line of each twisted  
pair should be placed as close as possible to the ground pin  
of the driver, and connected directly to the ground terminal of the  
load.  
Copyright © 2007 IXYS CORPORATION All rights reserved  
10  
IXDF504 / IXDI504 / IXDN504  
A2  
b
b2  
b3  
c
D
D1  
E
E1  
e
eA  
eB  
L
E
H
B
C
D
E
e
H
h
L
M
N
D
A
A1  
e
B
h X 45  
N
L
C
M
0.035 [0.90]  
0.137 [3.48]  
0.197±0.005 [5.00±0.13]  
IXYS Corporation  
3540 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.net  
www.ixys.com  
S0.002^0.000;  
o
[S0.05^0.00;o  
]
0.018 [0.47]  
0.100 [2.54]  
IXYS Semiconductor GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
11  

相关型号:

IXDI504D1

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504D1T/R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504PI

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504SIA

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI504SIAT/R

4 Ampere Dual Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI509

9 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS

IXDI509D1

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDSO6, 4 X 5 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDI509D1T/R

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDSO6, 4 X 5 MM, ROHS COMPLIANT, DFN-6
IXYS

IXDI509PI

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDIP8, 0.300 INCH, ROHS COMPLIANT, MS-001BA, PLASTIC, DIP-8
IXYS

IXDI509SIA

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, MS-012AA, SOP-8
IXYS

IXDI509SIAT/R

Buffer/Inverter Based MOSFET Driver, 9A, CMOS, PDSO8, 0.150 INCH, ROHS COMPLIANT, MS-012AA, SOP-8
IXYS

IXDI514

14 Ampere Low-Side Ultrafast MOSFET Drivers
IXYS