Z86E0812PSG [IXYS]

Microcontroller, 8-Bit, OTPROM, 12MHz, CMOS, PDIP18, PLASTIC, DIP-18;
Z86E0812PSG
型号: Z86E0812PSG
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

Microcontroller, 8-Bit, OTPROM, 12MHz, CMOS, PDIP18, PLASTIC, DIP-18

可编程只读存储器 电动程控只读存储器 时钟 微控制器 光电二极管 外围集成电路 装置
文件: 总44页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY PRODUCT SPECIFICATION  
1
Z86E04/E08  
1
CMOS Z8 OTP MICROCONTROLLERS  
PRODUCT DEVICES  
Part  
Oscillator  
Type  
Operating  
VCC  
Operating  
ROM  
(KB)  
Number  
Temperature  
Package  
Z86E0412PEC  
Crystal  
Crystal  
RC  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
4.5V–5.5V  
–40°C/105°C  
0°C/70°C  
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
18-Pin DIP  
18-Pin DIP  
18-Pin DIP  
18-Pin DIP  
18-Pin SOIC  
18-Pin SOIC  
18-Pin SOIC  
18-Pin SOIC  
18-Pin DIP  
18-Pin DIP  
18-Pin DIP  
18-Pin DIP  
18-Pin SOIC  
18-Pin SOIC  
18-Pin SOIC  
18-Pin SOIC  
Z86E0412PSC1866  
Z86E0412PSC1903  
Z86E0412PEC1903  
Z86E0412SEC  
0°C/70°C  
RC  
–40°C/105°C  
–40°C/105°C  
0°C/70°C  
Crystal  
Crystal  
RC  
Z86E0412SSC1866  
Z86E0412SSC1903  
Z86E0412SEC1903  
Z86E0812PEC  
0°C/70°C  
RC  
–40°C/105°C  
–40°C/105°C  
0°C/70°C  
Crystal  
Crystal  
RC  
Z86E0812PSC1866  
Z86E0812PSC1903  
Z86E0812PEC1903  
Z86E0812SEC  
0°C/70°C  
RC  
–40°C/105°C  
–40°C/105°C  
0°C/70°C  
Crystal  
Crystal  
RC  
Z86E0812SSC1866  
Z86E0812SSC1903  
Z86E0812SEC1903  
0°C/70°C  
RC  
–40°C/105°C  
Several key product features of the extensive family of Zilog Z86E04/E08 CMOS OTP microcontrollers are presented in  
the above table. This table enables the user to identify which of the E04/E08 product variants most closely match the us-  
er’s application requirements.  
DS97Z8X1104  
P R E L I M I N A R Y  
1
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FEATURES  
14 Input/Output Lines  
Two Programmable 8-Bit Counter/Timers, Each with  
6-Bit Programmable Prescaler  
Six Vectored, Prioritized Interrupts  
(3 falling edge, 1 rising edge, 2 timers)  
WDT/ Power-On Reset (POR)  
Two Analog Comparators  
On-Chip Oscillator that Accepts XTAL, Ceramic  
Resonance, LC, RC, or External Clock  
Program Options:  
Clock-Free WDT Reset  
Low Noise  
ROM Protect  
Low-Power Consumption (50 mw typical)  
Fast Instruction Pointer (1µs @ 12 MHz)  
RAM Bytes (125)  
Auto Latch  
Watch-Dog Timer (WDT)  
EPROM/Test Mode Disable  
GENERAL DESCRIPTION  
Zilog's Z86E04/E08 Microcontrollers (MCU) are One-Time  
Programmable (OTP) members of Zilog’s single-chip Z8®  
MCU family that allow easy software development, debug,  
prototyping, and small production runs not economically  
desirable with masked ROM versions.  
Note: All Signals with an overline, “ ”, are active Low, for  
example: B/W (WORD is active Low); B/W (BYTE is active  
Low, only).  
Power connections follow conventional descriptions be-  
low:  
For applications demanding powerful I/O capabilities, the  
Z86E04/E08's dedicated input and output lines are  
grouped into three ports, and are configurable under soft-  
ware control to provide timing, status signals, or parallel  
I/O.  
Connection  
Power  
Circuit  
VCC  
Device  
VDD  
VSS  
Ground  
GND  
Two on-chip counter/timers, with a large number of user  
selectable modes, offload the system of administering  
real-time tasks such as counting/timing and I/O data com-  
munications.  
2
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
Input  
XTAL  
Vcc  
GND  
1
Machine  
Timing & Inst.  
Control  
Port 3  
Counter/  
Timers (2)  
ALU  
OTP  
FLAG  
Interrupt  
Control  
Register  
Pointer  
Two Analog  
Comparators  
Program  
Counter  
General-Purpose  
Register File  
Port 2  
Port 0  
I/O  
I/O  
(Bit Programmable)  
Figure 1. Functional Block Diagram  
DS97Z8X1104  
P R E L I M I N A R Y  
3
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
GENERAL DESCRIPTION (Continued)  
D7–0  
AD 10–0  
Z8 MCU  
AD 10–0  
Address  
MUX  
D7–0  
Data  
MUX  
EPROM  
AD 10–0  
Address  
Counter  
D7–0  
Z8  
Port 2  
3 bits  
ROM PROT  
Low Noise  
Clear Clock  
P00 P01  
PGM  
Mode Logic  
VPP  
P33  
EPM  
P32  
PGM  
P30  
OE  
P31  
CE  
XT1  
Figure 2. EPROM Programming Mode Block Diagram  
4
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
PIN DESCRIPTION  
1
1
D4  
D5  
D6  
D7  
VCC  
18  
D3  
D2  
D1  
D0  
GND  
PGM  
CLOCK  
CLEAR  
VPP  
1
P24  
P25  
P26  
P27  
VCC  
18  
P23  
P22  
P21  
P20  
GND  
P02  
P01  
P00  
P33  
NC  
CE  
OE  
XTAL2  
XTAL1  
P31  
9
10  
9
10  
EPM  
P32  
Figure 3. 18-Pin EPROM Mode Configuration  
Figure 4. 18-Pin DIP/SOIC Mode Configuration  
Table 1. 18-Pin DIP Pin Identification  
EPROM Programming Mode  
Table 2. 18-Pin DIP/SOIC Pin Identification  
Standard Mode  
Pin #  
Symbol  
Function  
Direction  
Pin #  
Symbol  
Function  
Direction  
1–4  
5
D4–D7  
VCC  
Data 4, 5, 6, 7  
Power Supply  
In/Output  
1–4  
5
P24–P27  
VCC  
Port 2, Pins 4,5,6,7  
Power Supply  
In/Output  
6
NC  
No Connection  
Chip Enable  
6
XTAL2  
XTAL1  
P31  
Crystal Osc. Clock  
Crystal Osc. Clock  
Port 3, Pin 1, AN1  
Port 3, Pin 2, AN2  
Port 3, Pin 3, REF  
Port 0, Pins 0,1,2  
Ground  
Output  
Input  
7
CE  
Input  
Input  
Input  
Input  
7
8
OE  
Output Enable  
EPROM Prog Mode  
Prog Voltage  
8
Input  
9
EPM  
VPP  
9
P32  
Input  
10  
11  
12  
13  
14  
15–18  
10  
P33  
Input  
Clear  
Clock  
PGM  
GND  
D0–D3  
Clear Clock  
Address  
Input  
Input  
Input  
11–13 P00–P02  
14 GND  
15–18 P20–P23  
In/Output  
Prog Mode  
Ground  
Port 2, Pins 0,1,2,3  
In/Output  
Data 0,1, 2, 3  
In/Output  
DS97Z8X1104  
P R E L I M I N A R Y  
5
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed under Absolute Maxi-  
mum Ratings may cause permanent damage to the de-  
vice. This is a stress rating only; functional operation of the  
device at any condition above those indicated in the oper-  
ational sections of these specifications is not implied. Ex-  
posure to absolute maximum rating conditions for an ex-  
tended period may affect device reliability. Total power  
dissipation should not exceed 462 mW for the package.  
Power dissipation is calculated as follows:  
Total Power Dissipation = VDD x [IDD–(sum of IOH)]  
+ sum of [(VDD–VOH) x IOH  
+ sum of (V0L x I0L)  
]
Parameter  
Min  
Max  
Units  
Note  
Ambient Temperature under Bias  
Storage Temperature  
–40  
–65  
–0.7  
+105  
+150  
+12  
C
C
V
Voltage on any Pin with Respect to VSS  
Voltage on VDD Pin with Respect to VSS  
Voltage on Pins 7, 8, 9, 10 with Respect to VSS  
Total Power Dissipation  
1
2
–0.3  
–0.6  
+7  
VDD+1  
1.65  
300  
V
V
W
Maximum Allowable Current out of VSS  
Maximum Allowable Current into VDD  
mA  
220  
+600  
+600  
25  
mA  
µA  
Maximum Allowable Current into an Input Pin  
Maximum Allowable Current into an Open-Drain Pin  
Maximum Allowable Output Current Sinked by Any I/O Pin  
Maximum Allowable Output Current Sourced by Any I/O Pin  
Total Maximum Output Current Sinked by a Port  
Total Maximum Output Current Sourced by a Port  
Notes:  
–600  
–600  
3
4
µA  
mA  
mA  
mA  
mA  
25  
60  
45  
1. This applies to all pins except where otherwise noted. Maximum current into pin must be ± 600 µA.  
2. There is no input protection diode from pin to VDD(not applicable to EPROM Mode).  
3. This excludes Pin 6 and Pin 7.  
4. Device pin is not at an output Low state.  
6
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
STANDARD TEST CONDITIONS  
The characteristics listed below apply for standard test  
conditions as noted. All voltages are referenced to  
Ground. Positive current flows into the referenced pin (Fig-  
ure 5).  
From Output  
Under Test  
1
150 pF  
Figure 5. Test Load Diagram  
CAPACITANCE  
TA = 25°C, VCC = GND = 0V, f = 1.0 MHz, unmeasured pins returned to GND.  
Parameter  
Min  
Max  
Input capacitance  
Output capacitance  
I/O capacitance  
0
0
0
10 pF  
20 pF  
25 pF  
DS97Z8X1104  
P R E L I M I N A R Y  
7
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
DC ELECTRICAL CHARACTERISTICS  
Standard Temperature  
TA = 0°C to +70°C  
Typical  
VCC [4]  
Sym  
Parameter  
Min  
Max  
12  
@ 25°C Units Conditions  
Notes  
VINMAX Max Input Voltage  
4.5V  
5.5V  
4.5V  
V
V
V
IIn<250 µA  
IIn<250 µA  
1
1
12  
VCH  
Clock Input High  
Voltage  
0.8 VCC VCC+0.3  
2.8  
2.8  
1.7  
1.7  
Driven by External  
Clock Generator  
5.5V  
4.5V  
5.5V  
0.8 VCC VCC+0.3  
V
V
V
Driven by External  
Clock Generator  
VCL  
Clock Input Low  
Voltage  
VSS–0.3  
VSS–0.3  
0.2 VCC  
0.2 VCC  
Driven by External  
Clock Generator  
Driven by External  
Clock Generator  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
4.5V  
5.5V  
0.7 VCC VCC+0.3  
0.7 VCC VCC+0.3  
2.8  
2.8  
V
V
4.5V  
5.5V  
VSS–0.3  
VSS–0.3  
0.2 VCC  
0.2 VCC  
1.5  
1.5  
V
V
VOH  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
VCC–0.4  
VCC–0.4  
VCC–0.4  
VCC–0.4  
4.8  
4.8  
4.8  
4.8  
0.1  
0.1  
0.1  
0.1  
0.8  
0.8  
10.0  
10.0  
2.8  
V
V
IOH = –2.0 mA  
5
5
IOH = –2.0 mA  
V
Low Noise @ IOH = –0.5 mA  
Low Noise @ IOH = –0.5 mA  
IOL = +4.0 mA  
V
VOL1  
Output Low Voltage  
Output Low Voltage  
0.8  
0.4  
V
5
5
V
IOL = +4.0 mA  
0.4  
V
Low Noise @ IOL = 1.0 mA  
Low Noise @ IOL = 1.0 mA  
IOL = +12 mA,  
0.4  
V
VOL2  
0.8  
V
5
5
0.8  
V
IOL = +12 mA,  
VOFFSET Comparator Input  
Offset Voltage  
25.0  
25.0  
3.0  
mV  
mV  
V
VLV  
VCC Low Voltage  
Auto Reset  
2.2  
@ 6 MHz Max.  
Int. CLK Freq.  
IIL  
Input Leakage  
(Input Bias Current of  
Comparator)  
4.5V  
5.5V  
–1.0  
–1.0  
1.0  
1.0  
µA VIN = 0V, VCC  
µA VIN = 0V, VCC  
IOL  
Output Leakage  
4.5V  
5.5V  
–1.0  
–1.0  
0
1.0  
1.0  
µA VIN = 0V, VCC  
µA VIN = 0V, VCC  
V
VICR  
Comparator Input  
Common Mode  
Voltage Range  
VCC –1.0  
8
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
TA = 0°C to +70°C  
Typical  
@ 25°C Units Conditions  
VCC [4]  
Sym Parameter  
Min  
Max  
Notes  
ICC  
Supply Current  
4.5V  
11.0  
6.8  
mA All Output and I/O Pins  
5,7  
1
Floating @ 2 MHz  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
11.0  
15.0  
15.0  
20.0  
20.0  
4.0  
6.8  
mA All Output and I/O Pins  
Floating @ 2 MHz  
5,7  
5,7  
5,7  
5,7  
5,7  
5,7  
8.2  
mA All Output and I/O Pins  
Floating @ 8 MHz  
8.2  
mA All Output and I/O Pins  
Floating @ 8 MHz  
12.0  
12.0  
2.5  
mA All Output and I/O Pins  
Floating @ 12 MHz  
mA All Output and I/O Pins  
Floating @ 12 MHz  
ICC1  
Standby Current  
mA HALT Mode VIN = 0V,  
VCC @ 2 MHz  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.0  
5.0  
5.0  
7.0  
7.0  
2.5  
3.0  
3.0  
4.0  
4.0  
mA HALT Mode VIN = 0V,  
VCC @ 2 MHz  
5,7  
5,7  
5,7  
5,7  
5,7  
mA HALT Mode VIN = 0V,  
VCC @ 8 MHz  
mA HALT Mode VIN = 0V,  
VCC @ 8 MHz  
mA HALT Mode VIN = 0V,  
VCC @ 12 MHz  
mA HALT Mode VIN = 0V,  
VCC @ 12 MHz  
ICC  
Supply Current  
(Low Noise Mode)  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
11.0  
11.0  
13.0  
13.0  
15.0  
15.0  
6.8  
6.8  
7.5  
7.5  
8.2  
8.2  
mA All Output and I/O Pins  
Floating @ 1 MHz  
7
7
7
7
7
7
mA All Output and I/O Pins  
Floating @ 1 MHz  
mA All Output and I/O Pins  
Floating @ 2 MHz  
mA All Output and I/O Pins  
Floating @ 2 MHz  
mA All Output and I/O Pins  
Floating @ 4 MHz  
mA All Output and I/O Pins  
Floating @ 4 MHz  
DS97Z8X1104  
P R E L I M I N A R Y  
9
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
DC ELECTRICAL CHARACTERISTICS (Continued)  
TA = 0°C to +70°C  
Typical  
VCC [4]  
Sym Parameter  
Min  
Max  
@ 25°C  
Units Conditions  
Notes  
ICC1 Standby Current  
(Low Noise Mode)  
4.5V  
4.0  
2.5  
2.5  
2.8  
2.8  
3.0  
3.0  
1.0  
1.0  
mA HALT Mode VIN = 0V,  
VCC @ 1 MHz  
7
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.0  
4.5  
mA HALT Mode VIN = 0V,  
VCC @ 1 MHz  
7
7
mA HALT Mode VIN = 0V,  
VCC @ 2 MHz  
4.5  
mA HALT Mode VIN = 0V,  
VCC @ 2 MHz  
7
5.0  
mA HALT Mode VIN = 0V,  
VCC @ 4 MHz  
7
5.0  
mA HALT Mode VIN = 0V,  
VCC @ 4 MHz  
7
ICC2 Standby Current  
10.0  
10.0  
µA  
STOP Mode VIN = 0V, VCC  
WDT is not Running  
STOP Mode VIN = 0V,VCC  
WDT is not Running  
0V < VIN < VCC  
7,8  
7,8  
µA  
IALL Auto Latch Low  
Current  
4.5V  
5.5V  
4.5V  
5.5V  
32.0  
32.0  
16  
16  
µA  
µA  
µA  
µA  
0V < VIN < VCC  
0V < VIN < VCC  
0V < VIN < VCC  
IALH Auto Latch High  
Current  
–16.0  
–16.0  
–8.0  
–8.0  
Notes:  
1. Port 2 and Port 0 only  
2. VSS = 0V = GND  
3. The device operates down to VLV of the specified frequency for VLV . The minimum operational VCC is determined on the value of  
the voltage VLV at the ambient temperature. The VLV increases as the temperature decreases.  
4. VCC = 4.5 to 5.5V, typical values measured at VCC = 5.0V.  
The VCC voltage specification of 5.5 V guarantees 5.0 V ± 0.5V with typical values measured at VCC = 5.0V.  
5. Standard Mode (not Low EMI Mode)  
6. Z86E08 only  
7. All outputs unloaded and all inputs are at VCC or VSS level.  
8. If analog comparator is selected, then the comparator inputs must be at VCC level.  
10  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
DC ELECTRICAL CHARACTERISTICS  
Extended Temperature  
1
TA = –40°C to  
+105°C  
Min Max  
Typical  
VCC [4]  
Sym  
Parameter  
@ 25°C  
Units  
Conditions  
IIN < 250 µA  
Notes  
VINMAX Max Input Voltage  
4.5V  
5.5V  
4.5V  
12.0  
12.0  
V
V
V
1
1
IIN < 250 µA  
VCH  
Clock Input High  
Voltage  
0.8 VCC VCC+0.3  
0.8 VCC VCC+0.3  
VSS–0.3 0.2 VCC  
VSS–0.3 0.2 VCC  
2.8  
2.8  
1.7  
1.7  
Driven by External  
Clock Generator  
5.5V  
4.5V  
5.5V  
V
V
V
Driven by External  
Clock Generator  
VCL  
Clock Input Low  
Voltage  
Driven by External  
Clock Generator  
Driven by External  
Clock Generator  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
4.5V  
5.5V  
4.5V  
5.5V  
0.7 VCC VCC+0.3  
2.8  
2.8  
1.5  
1.5  
4.8  
4.8  
V
V
0.7 VCC VCC+0.3  
VSS–0.3 0.2 VCC  
V
VSS–0.3 0.2 VCC  
V
VOH  
Output High Voltage 4.5V  
VCC–0.4  
VCC–0.4  
VCC–0.4  
VCC–0.4  
0.4  
V
IOH = –2.0 mA  
5
5
5.5V  
4.5V  
5.5V  
V
IOH = –2.0 mA  
V
Low Noise @ IOH = –0.5 mA  
Low Noise @ IOH = –0.5 mA  
IOL = +4.0 mA  
V
VOL1  
Output Low Voltage  
Output Low Voltage  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
0.1  
0.1  
V
5
5
0.4  
V
IOL = +4.0 mA  
0.4  
0.1  
V
Low Noise @ IOL = 1.0 mA  
Low Noise @ IOL = 1.0 mA  
IOL = +12 mA,  
0.4  
0.1  
V
VOL2  
1.0  
0.3  
V
5
5
1.0  
0.3  
V
IOL = +12 mA,  
VOFFSET Comparator Input  
Offset Voltage  
25.0  
10.0  
10.0  
2.8  
mV  
mV  
V
25.0  
VLV  
VCC Low Voltage  
Auto Reset  
1.8  
3.8  
@ 6 MHz Max. Int.  
CLK Freq.  
3
IIL  
Input Leakage  
(Input Bias Current  
of Comparator)  
4.5V  
5.5V  
–1.0  
–1.0  
1.0  
1.0  
µA  
µA  
VIN = 0V, VCC  
VIN = 0V, VCC  
IOL  
Output Leakage  
4.5V  
5.5V  
–1.0  
–1.0  
1.0  
1.0  
µA  
µA  
V
VIN = 0V, VCC  
VIN = 0V, VCC  
VICR  
Comparator Input  
Common Mode  
Voltage Range  
0
VCC –1.5  
DS97Z8X1104  
P R E L I M I N A R Y  
11  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
DC ELECTRICAL CHARACTERISTICS (Continued)  
TA = –40°C to  
+105°C  
Min Max  
Typical  
VCC [4]  
Sym  
Parameter  
@ 25°C  
Units  
Conditions  
Notes  
ICC  
Supply Current  
4.5V  
11.0  
11.0  
15.0  
15.0  
20.0  
20.0  
5.0  
6.8  
mA  
All Output and I/O Pins  
Floating @ 2 MHz  
5,7  
5,7  
5,7  
5,7  
5,7  
5,7  
5,7  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
6.8  
8.2  
mA  
mA  
mA  
mA  
mA  
mA  
All Output and I/O Pins  
Floating @ 2 MHz  
All Output and I/O Pins  
Floating @ 8 MHz  
8.2  
All Output and I/O Pins  
Floating @ 8 MHz  
12.0  
12.0  
2.5  
All Output and I/O Pins  
Floating @ 12 MHz  
All Output and I/O Pins  
Floating @ 12 MHz  
ICC1  
Standby Current  
HALT Mode VIN = 0V,  
VCC @ 2 MHz  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
5.0  
5.0  
5.0  
7.0  
7.0  
2.5  
3.0  
3.0  
4.0  
4.0  
mA  
mA  
mA  
mA  
mA  
HALT Mode VIN = 0V,  
VCC @ 2 MHz  
5,7  
5,7  
5,7  
5,7  
5,7  
HALT Mode VIN = 0V,  
VCC @ 8 MHz  
HALT Mode VIN = 0V,  
VCC @ 8 MHz  
HALT Mode VIN = 0V,  
VCC @ 12 MHz  
HALT Mode VIN = 0V,  
VCC @ 12 MHz  
ICC  
Supply Current  
(Low Noise Mode)  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
11.0  
11.0  
13.0  
13.0  
15.0  
15.0  
6.8  
6.8  
7.5  
7.5  
8.2  
8.2  
mA  
mA  
mA  
mA  
mA  
mA  
All Output and I/O Pins  
Floating @ 1 MHz  
7
7
7
7
7
7
All Output and I/O Pins  
Floating @ 1 MHz  
All Output and I/O Pins  
Floating @ 2 MHz  
All Output and I/O Pins  
Floating @ 2 MHz  
All Output and I/O Pins  
Floating @ 4 MHz  
All Output and I/O Pins  
Floating @ 4 MHz  
12  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
TA = –40°C to +105°C  
Typical  
@ 25°C Units Conditions  
VCC [4]  
Sym  
Parameter  
Min  
Max  
Notes  
ICC1  
Standby Current  
(Low Noise Mode)  
4.5V  
4.0  
2.5  
2.5  
2.8  
2.8  
3.0  
3.0  
1.0  
1.0  
mA HALT Mode VIN = 0V,  
7
1
VCC @ 1 MHz  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.0  
4.5  
4.5  
5.0  
5.0  
20  
mA HALT Mode VIN = 0V,  
VCC @ 1 MHz  
7
7
mA HALT Mode VIN = 0V,  
VCC @ 2 MHz  
mA HALT Mode VIN = 0V,  
VCC @ 2 MHz  
7
mA HALT Mode VIN = 0V,  
VCC @ 4 MHz  
7
mA HALT Mode VIN = 0V,  
VCC @ 4 MHz  
7
ICC2  
Standby Current  
µA STOP Mode VIN = 0V, VCC  
WDT is not Running  
7,8  
7,8  
20  
µA STOP Mode VIN = 0V, VCC  
WDT is not Running  
IALL  
Auto Latch Low  
Current  
4.5V  
5.5V  
4.5V  
5.5V  
40  
40  
16  
16  
µA 0V < VIN < VCC  
µA 0V < VIN < VCC  
µA 0V < VIN < VCC  
µA 0V < VIN < VCC  
IALH  
Auto Latch High  
Current  
–20.0  
–20.0  
–8.0  
–8.0  
Notes:  
1. Port 2 and Port 0 only  
2. VSS = 0V = GND  
3. The device operates down to VLV of the specified frequency for VLV . The minimum operational VCC is determined on the value of  
the voltage VLV at the ambient temperature. The VLV increases as the temperature decreases.  
4. VCC = 4.5V to 5.5V, typical values measured at VCC = 5.0V  
5. Standard Mode (not Low EMI Mode)  
6. Z86E08 only  
7. All outputs unloaded and all inputs are at VCC or VSS level.  
8. If analog comparator is selected, then the comparator inputs must be at VCC level.  
DS97Z8X1104  
P R E L I M I N A R Y  
13  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
AC ELECTRICAL CHARACTERISTICS  
3
1
Clock  
2
2
3
7
7
TIN  
4
5
6
IRQ N  
8
9
Figure 6. AC Electrical Timing Diagram  
14  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
AC ELECTRICAL CHARACTERISTICS  
Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)  
Standard Temperature  
1
TA= 0 °C to +70 °C  
8 MHz 12 MHz  
15  
VCC  
No  
Symbol  
TpC  
Parameter  
Input Clock Period  
Min  
Max  
Min  
Max  
Units  
Notes  
1
2
3
4
5
6
7
8
9
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
125  
125  
DC  
DC  
25  
83  
83  
DC  
DC  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
TrC,TfC  
TwC  
Clock Input Rise  
and Fall Times  
1
25  
15  
1
Input Clock Width  
62  
62  
41  
41  
1
1
TwTinL  
TwTinH  
TpTin  
Timer Input Low Width  
Timer Input High Width  
Timer Input Period  
100  
70  
100  
70  
1
1
5TpC  
5TpC  
5TpC  
5TpC  
1
1
8TpC 8TpC  
1
8TpC 8TpC  
1
TrTin,  
TtTin  
Timer Input Rise  
and Fall Time  
100  
100  
100  
ns  
ns  
ns  
ns  
1
100  
1
TwIL  
TwIH  
Twdt  
Tpor  
Int. Request Input  
Low Time  
70  
70  
70  
1,2  
1,2  
1,2  
1,2  
1
70  
5TpC 5TpC  
5TpC 5TpC  
12  
Int. Request Input  
High Time  
10  
Watch-Dog Timer  
Delay Time for Timeout  
12  
12  
20  
20  
ms  
ms  
ms  
ms  
12  
1
11  
Power-On Reset Time  
80  
80  
20  
20  
80  
80  
1
1
Notes:  
1. Timing Reference uses 0.7 VCC for a logic 1 and 0.2 VCC for a logic 0.  
2. Interrupt request through Port 3 (P33–P31).  
DS97Z8X1104  
P R E L I M I N A R Y  
15  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
AC ELECTRICAL CHARACTERISTICS  
Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)  
Extended Temperature  
TA= –40 °C to +105 °C  
8 MHz 12 MHz  
VCC  
No  
Symbol  
TpC  
Parameter  
Min  
Max  
Min  
Max  
Units  
Notes  
1
2
3
4
5
6
7
8
9
Input Clock Period  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
125  
125  
DC  
DC  
25  
25  
62  
62  
83  
83  
DC  
DC  
15  
15  
41  
41  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
TrC,TfC  
TwC  
Clock Input Rise  
and Fall Times  
1
1
Input Clock Width  
1
1
TwTinL  
TwTinH  
TpTin  
Timer Input Low Width  
Timer Input High Width  
Timer Input Period  
70  
70  
1
70  
70  
1
5TpC  
5TpC  
8TpC  
8TpC  
5TpC  
5TpC  
8TpC  
8TpC  
1
1
1
1
TrTin,  
TtTin  
Timer Input Rise  
and Fall Time  
100  
100  
100  
100  
ns  
ns  
ns  
ns  
1
1
TwIL  
TwIH  
Twdt  
Tpor  
Int. Request Input  
Low Time  
70  
70  
70  
70  
1,2  
1,2  
1,2  
1,2  
1
Int. Request Input  
High Time  
5TpC  
5TpC  
10  
5TpC  
5TpC  
10  
10  
Watch-Dog Timer  
Delay Time for Timeout  
ms  
ms  
ms  
ms  
10  
10  
1
11  
Power-On Reset Time  
12  
100  
100  
12  
100  
100  
1
12  
12  
1
Notes:  
1. Timing Reference uses 0.7 VCC for a logic 1 and 0.2 VCC for a logic 0.  
2. Interrupt request made through Port 3 (P33–P31).  
16  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
AC ELECTRICAL CHARACTERISTICS  
Low Noise Mode, Standard Temperature  
1
TA= 0 °C to +70 °C  
1 MHz 4 MHz  
VCC  
No  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Units  
Notes  
1
TPC  
Input Clock Period  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
1000  
1000  
DC  
DC  
25  
250  
250  
DC  
DC  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
2
TrC  
TfC  
Clock Input Rise  
and Fall Times  
1
25  
25  
1
3
TwC  
Input Clock Width  
500  
500  
125  
125  
1
1
4.  
TwTinL  
TwTinH  
TpTin  
Timer Input Low Width  
Timer Input High Width  
Timer Input Period  
70  
70  
1
70  
70  
1
5
2.5TpC  
2.5TpC  
4TpC  
4TpC  
2.5TpC  
2.5TpC  
4TpC  
4TpC  
1
1
6
1
1
7
TrTin,  
TtTin  
Timer Input Rise  
and Fall Time  
100  
100  
100  
100  
ns  
ns  
ns  
ns  
1
1
8
TwIL  
Low Time  
Int. Request Input  
70  
70  
70  
70  
1,2  
1,2  
1,2  
1,2  
1
9
TwIH  
High Time  
Int. Request Input  
2.5TpC  
2.5TpC  
12  
2.5TpC  
2.5TpC  
12  
10  
Twdt  
Watch-Dog Timer  
Delay Time for Timeout  
ms  
ms  
12  
12  
1
Notes:  
1. Timing Reference uses 0.7 VCC for a logic 1 and 0.2 VCC for a logic 0.  
2. Interrupt request through Port 3 (P33–P31).  
DS97Z8X1104  
P R E L I M I N A R Y  
17  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
AC ELECTRICAL CHARACTERISTICS (Continued)  
Low Noise Mode, Extended Temperature  
TA= –40 °C to +105 °C  
1 MHz 4 MHz  
VCC  
No  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Units  
Notes  
1
TPC  
Input Clock Period  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
4.5V  
5.5V  
1000  
1000  
DC  
DC  
25  
250  
250  
DC  
DC  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
1
2
TrC  
TfC  
Clock Input Rise  
and Fall Times  
1
25  
25  
1
3
TwC  
Input Clock Width  
500  
500  
125  
125  
1
1
4.  
TwTinL  
TwTinH  
TpTin  
Timer Input Low Width  
Timer Input High Width  
Timer Input Period  
70  
70  
1
70  
70  
1
5
2.5TpC  
2.5TpC  
2.5TpC  
2.5TpC  
4TpC  
4TpC  
1
1
6
4TpC  
4TpC  
100  
1
1
7
TrTin,  
TtTin  
Timer Input Rise  
and Fall Time  
100  
100  
ns  
ns  
ns  
ns  
1
100  
1
8
TwIL  
TwIH  
Twdt  
Int. Request Input  
Low Time  
70  
70  
70  
70  
1,2  
1,2  
1,2  
1,2  
1
9
Int. Request Input  
High Time  
2.5TpC  
2.5TpC  
10  
2.5TpC  
2.5TpC  
10  
10  
Watch-Dog Timer  
Delay Time for Timeout  
ms  
ms  
10  
10  
1
Notes:  
1. Timing Reference uses 0.7 VCC for a logic 1 and 0.2 VCC for a logic 0.  
2. Interrupt request through Port 3 (P33–P31).  
18  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
LOW NOISE VERSION  
Low EMI Emission  
Output drivers have resistances of 500 Ohms (typical).  
Oscillator divide-by-two circuitry eliminated.  
1
The Z86E04/E08 can be programmed to operate in a Low  
EMI Emission Mode by means of a mask ROM bit option.  
Use of this feature results in:  
The Low EMI Mode is mask-programmable to be selected  
by the customer at the time the ROM code is submitted.  
All pre-driver slew rates reduced to 10 ns typical.  
Internal SCLK/TCLK operation limited to a maximum of  
4 MHz–250 ns cycle time.  
PIN FUNCTIONS  
Clock Address Clock. This pin is a clock input. The internal  
address counter increases by one with one clock cycle.  
OTP Programming Mode  
D7–D0 Data Bus. Data can be read from, or written to, the  
EPROM through this data bus.  
PGM Program Mode (active Low). A Low level at this pin  
programs the data to the EPROM through the Data Bus.  
VCC Power Supply. It is typically 5V during EPROM Read  
Mode and 6.4V during the other modes (Program, Pro-  
gram Verify, and so on).  
Application Precaution  
The production test-mode environment may be enabled  
accidentally during normal operation if excessive noise  
surges above VCC occur on the XTAL1 pin.  
CE Chip Enable (active Low). This pin is active during  
EPROM Read Mode, Program Mode, and Program Verify  
Mode.  
In addition, processor operation of Z8 OTP devices may be  
affected by excessive noise surges on the VPP, CE, EPM,  
OE pins while the microcontroller is in Standard Mode.  
OE Output Enable (active Low). This pin drives the Data  
Bus direction. When this pin is Low, the Data Bus is output.  
When High, the Data Bus is input.  
Recommendations for dampening voltage surges in both  
test and OTP Mode include the following:  
EPM EPROM Program Mode. This pin controls the differ-  
ent EPROM Program Modes by applying different  
voltages.  
Using a clamping diode to VCC.  
Adding a capacitor to the affected pin.  
VPP Program Voltage. This pin supplies the program volt-  
age.  
Clear Clear (active High). This pin resets the internal ad-  
dress counter at the High Level.  
Note: Programming the EPROM/Test Mode Disable  
option will prevent accidental entry into EPROM Mode or  
Test Mode.  
DS97Z8X1104  
P R E L I M I N A R Y  
19  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
PIN FUNCTIONS (Continued)  
XTAL1, XTAL2 Crystal In, Crystal Out (time-based input  
and output, respectively). These pins connect a parallel-  
resonant crystal, LC, or an external single-phase clock  
(8 MHz or 12 MHz max) to the on-chip clock oscillator and  
buffer.  
Auto Latch. The Auto Latch puts valid CMOS levels on all  
CMOS inputs (except P33, P32, P31) that are not external-  
ly driven. A valid CMOS level, rather than a floating node,  
reduces excessive supply current flow in the input buffer.  
On Power-up and Reset, the Auto Latch will set the ports  
to an undetermined state of 0 or 1. Default condition is  
Auto Latches enabled.  
Port 0, P02–P00. Port 0 is a 3-bit bidirectional, Schmitt-  
triggered CMOS-compatible I/O port. These three I/O lines  
can be globally configured under software control to be in-  
puts or outputs (Figure 7).  
Port 0 (I/O)  
Z8  
OE  
PAD  
Out  
VCC@ 5.0V  
2.3 Hysteresis  
1.5  
In  
Auto Latch Option  
R
500 k  
Figure 7. Port 0 Configuration  
P R E L I M I N A R Y  
20  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
Port 2, P27–P20. Port 2 is an 8-bit, bit programmable, bi-  
directional, Schmitt-triggered CMOS-compatible I/O port.  
These eight I/O lines can be configured under software  
control to be inputs or outputs, independently. Bits pro-  
grammed as outputs can be globally programmed as ei-  
ther push-pull or open-drain (Figure 8).  
1
Z8  
Port 2 (I/O)  
Open-Drain  
/OE  
PAD  
Out  
1.5  
2.3 Hysteresis  
VCC @ 5.0V  
In  
Auto Latch Option  
R
500 k  
Figure 8. Port 2 Configuration  
DS97Z8X1104  
P R E L I M I N A R Y  
21  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
PIN FUNCTIONS (Continued)  
Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port  
with three fixed input (P33–P31) lines. These three input  
lines can be configured under software control as digital  
Schmitt-trigger inputs or analog inputs.  
These three input lines are also used as the interrupt  
sources IRQ0–IRQ3, and as the timer input signal TIN (Fig-  
ure 9).  
Z8  
Port 3  
0 = Digital  
R247 = P3M 1 = Analog  
D1  
TIN  
DIG.  
AN.  
P31 Data Latch  
IRQ2  
PAD  
+
-
P31 (AN1)  
IRQ3  
P32 Data Latch  
IRQ0  
PAD  
PAD  
+
-
P32 (AN2)  
P33 (REF)  
P33 Data Latch  
IRQ1  
V
cc  
IRQ 0,1,2 = Falling Edge Detection  
IRQ3 = Rising Edge Detection  
Figure 9. Port 3 Configuration  
22  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
Comparator Inputs. Two analog comparators are added  
to input of Port 3, P31, and P32, for interface flexibility. The  
comparators reference voltage P33 (REF) is common to  
both comparators.  
Mode. The common voltage range is 0–4 V when the VCC  
is 5.0V; the power supply and common mode rejection ra-  
tios are 90 dB and 60 dB, respectively.  
1
Interrupts are generated on either edge of Comparator 2's  
output, or on the falling edge of Comparator 1's output.  
The comparator output is used for interrupt generation,  
Port 3 data inputs, or TIN through P31. Alternatively, the  
comparators can be disabled, freeing the reference input  
(P33) for use as IRQ1 and/or P33 input.  
Typical applications for the on-board comparators; Zero  
crossing detection, A/D conversion, voltage scaling, and  
threshold detection. In Analog Mode, P33 input functions  
serve as a reference voltage to the comparators.  
The dual comparator (common inverting terminal) features  
a single power supply which discontinues power in STOP  
FUNCTIONAL DESCRIPTION  
The following special functions have been incorporated  
into the Z8 devices to enhance the standard Z8 core archi-  
tecture to provide the user with increased design flexibility.  
RESET. This function is accomplished by means of a Pow-  
er-On Reset or a Watch-Dog Timer Reset. Upon power-  
up, the Power-On Reset circuit waits for TPOR ms, plus 18  
clock cycles, then starts program execution at address  
000C (Hex) (Figure 10). The Z8 control registers' reset val-  
ue is shown in Table 3.  
INT OSC  
XTAL OSC  
POR  
(Cold Start)  
Chip Reset  
Delay Line  
TPOR msec  
18 CLK  
Reset Filiter  
P27  
(Stop Mode)  
Figure 10. Internal Reset Configuration  
Power-On Reset (POR). A timer circuit clocked by a ded-  
icated on-board RC oscillator is used for a POR timer func-  
tion. The POR time allows VCC and the oscillator circuit to  
stabilize before instruction execution begins. The POR  
timer circuit is a one-shot timer triggered by one of the four  
following conditions:  
Watch-Dog Timer Reset. The WDT is a retriggerable  
one-shot timer that resets the Z8 if it reaches its terminal  
count. The WDT is initially enabled by executing the WDT  
instruction and is retriggered on subsequent execution of  
the WDT instruction. The timer circuit is driven by an on-  
board RC oscillator.  
Power-bad to power-good status  
Stop-Mode Recovery  
WDT time-out  
WDH time-out  
DS97Z8X1104  
P R E L I M I N A R Y  
23  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
Table 3. Control Registers  
Reset Condition  
Addr.  
Reg.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 Comments  
FF  
FD  
FC  
FB  
FA  
SPL  
RP  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FLAGS  
IMR  
U
0
U
U
U
U
U
0
U
U
0
U
U
0
U
U
0
U
U
0
U
U
IRQ  
U
0
IRQ3 is used for positive edge  
detection  
F9  
IPR  
U
U
U
1
U
U
U
1
U
U
U
1
U
0
U
U
U
1
U
U
U
1
U
0
U
1
0
1
0
U
0
U
0
F8*  
F7*  
F6*  
F5  
P01M  
P3M  
P2M  
PRE0  
T0  
U
1
0
1
Inputs after reset  
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
U
U
0
U
U
0
F4  
F3  
PRE1  
T1  
F2  
U
0
F1  
TMR  
Note: *Registers are not reset after a STOP-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to  
be reconfigured as shown in Table 4 and the user must avoid bus contention on the port pins or it may affect device reliability.  
24  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
Program Memory. The Z86E04/E08 addresses up to  
1K/2KB of Internal Program Memory (Figure 11). The first  
12 bytes of program memory are reserved for the interrupt  
vectors. These locations contain six 16-bit vectors that cor-  
respond to the six available interrupts. Bytes 0–1024/2048  
are on-chip one-time programmable ROM.  
Register File. The Register File consists of three I/O port  
registers, 124 general-purpose registers, and 14 control  
and status registers R0–R3, R4–R127 and R241–R255,  
respectively (Figure 12). General-purpose registers occu-  
py the 04H to 7FH address space. I/O ports are mapped  
as per the existing CMOS Z8.  
1
Identifiers  
1023/2047  
Location  
Identifiers  
SPL  
3FFH/7FFH  
255 (FFH)  
Stack Pointer (Bits 7-0)  
Location of  
First Byte of  
Instruction  
Executed  
After RESET  
On-Chip  
ROM  
254 (FE)  
253 (FD)  
252 (FC)  
General-Purpose Register  
GPR  
RP  
Register Pointer  
12  
11  
0CH  
0BH  
FLAGS  
Program Control Flags  
Interrupt Mask Register  
Interrupt Request Register  
Interrupt Priority Register  
IRQ5  
IRQ5  
IRQ4  
IRQ4  
IRQ3  
IRQ3  
IRQ2  
IRQ2  
IRQ1  
IRQ1  
IRQ0  
IRQ0  
IMR  
IRQ  
251 (FB)  
250 (FA)  
10  
9
0AH  
09H  
IPR  
249 (F9)  
248 (F8)  
8
7
6
08H  
07H  
06H  
P01M  
P3M  
P2M  
PRE0  
T0  
Ports 0-1 Mode  
Port 3 Mode  
Interrupt  
Vector  
(Lower Byte)  
247 (F7)  
246 (F6)  
245 (F5)  
Port 2 Mode  
T0 Prescaler  
5
4
05H  
04H  
Interrupt  
Vector  
(Upper Byte)  
244 (F4)  
243 (F3)  
242 (F2)  
241 (F1H)  
Timer/Counter 0  
T1 Prescaler  
3
03H  
PRE1  
T1  
2
1
0
02H  
01H  
00H  
Timer/Counter 1  
TMR  
Timer Mode  
Not Implemented  
Figure 11. Program Memory Map  
128  
127 (7FH)  
General-Purpose  
Registers  
4
3
P3  
P2  
P1  
P0  
Port 3  
Port 2  
2
1
Reserved  
Port 0  
0 (00H)  
Figure 12. Register File  
DS97Z8X1104  
P R E L I M I N A R Y  
25  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
The Z8 instructions can access registers directly or indi-  
rectly through an 8-bit address field. This allows short 4-bit  
register addressing using the Register Pointer.  
Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255)  
used for the internal stack that resides within the 124 gen-  
eral-purpose registers.  
In the 4-bit mode, the register file is divided into eight work-  
ing register groups, each occupying 16 continuous loca-  
tions. The Register Pointer (Figure 13) addresses the  
starting location of the active working-register group.  
General-Purpose Registers (GPR). These registers are  
undefined after the device is powered up. The registers  
keep their last value after any reset, as long as the reset  
occurs in the VCC voltage-specified operating range. Note:  
Register R254 has been designated as a general-purpose  
register and is set to 00 Hex after any reset or Stop-Mode  
Recovery.  
Counter/Timer. There are two 8-bit programmable  
counter/timers (T0 and T1), each driven by its own 6-bit  
programmable prescaler. The T1 prescaler is driven by in-  
ternal or external clock sources; however, the T0 can be  
driven by the internal clock source only (Figure 14).  
r7 r6 r5 r4  
r3 r2 r1 r0  
R253  
(Register Pointer)  
The upper nibble of the register file address  
provided by the register pointer specifies  
the active working-register group.  
The 6-bit prescalers divide the input frequency of the clock  
source by any integer number from 1 to 64. Each prescaler  
drives its counter, which decrements the value (1 to 256)  
that has been loaded into the counter. When both counter  
and prescaler reach the end of count, a timer interrupt re-  
quest IRQ4 (T0) or IRQ5 (T1) is generated.  
FF  
F0  
R15 to R0  
7F  
70  
6F  
60  
5F  
The counter can be programmed to start, stop, restart to  
continue, or restart from the initial value. The counters are  
also programmed to stop upon reaching zero (Single-Pass  
Mode) or to automatically reload the initial value and con-  
tinue counting (Modulo-N Continuous Mode).  
50  
4F  
The lower nibble  
of the register  
file address  
provided by the  
instruction points  
to the specified  
register.  
40  
3F  
Specified Working  
Register Group  
30  
2F  
The counters, but not the prescalers, are read at any time  
without disturbing their value or count mode. The clock  
source for T1 is user-definable and is either the internal mi-  
croprocessor clock divided by four, or an external signal in-  
put through Port 3. The Timer Mode register configures the  
external timer input (P31) as an external clock, a trigger in-  
put that is retriggerable or non-retriggerable, or used as a  
gate input for the internal clock.  
20  
1F  
Register Group 1  
R15 to R0  
10  
0F  
R15 to R4*  
R3 to R0  
Register Group 0  
I/O Ports  
00  
*Expanded Register Group (0) is selected in this figure  
by handling bits D3 to D0 as "0" in Register R253(RP).  
Figure 13. Register Pointer  
26  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
Internal Data Bus  
1
Write  
Write  
Read  
OSC  
PRE0  
Initial Value  
Register  
T0  
T0  
Initial Value  
Register  
Current Value  
Register  
*
÷ 2  
6-Bit  
Down  
8-bit  
Down  
÷ 4  
Counter  
Counter  
IRQ4  
Internal Clock  
External Clock  
Clock  
Logic  
6-Bit  
Down  
Counter  
8-Bit  
Down  
Counter  
IRQ5  
÷ 4  
Internal Clock  
Gated Clock  
Triggered Clock  
PRE1  
Initial Value  
Register  
T1  
T1  
Initial Value  
Register  
Current Value  
Register  
TIN P31  
Write  
Write  
Read  
Internal Data Bus  
* Note: By passed, if Low EMI Mode is selected.  
Figure 14. Counter/Timers Block Diagram  
DS97Z8X1104  
P R E L I M I N A R Y  
27  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
Interrupts. The Z8 has six interrupts from six different  
sources. These interrupts are maskable and prioritized  
(Figure 15). The sources are divided as follows: the falling  
edge of P31 (AN1), P32 (AN2), P33 (REF), the rising edge  
of P32 (AN2), and two counter/timers. The Interrupt Mask  
Register globally or individually enables or disables the six  
interrupt requests (Table 4).  
To accommodate polled interrupt systems, interrupt inputs  
are masked and the interrupt request register is polled to  
determine which of the interrupt requests needs service.  
Note: User must select any Z86E08 mode in Zilog's C12  
ICEBOXemulator. The rising edge interrupt is not sup-  
ported on the CCP emulator (a hardware/software  
workaround must be employed).  
When more than one interrupt is pending, priorities are re-  
solved by a programmable priority encoder that is con-  
trolled by the Interrupt Priority register. All Z8 interrupts are  
vectored through locations in program memory. When an  
Interrupt machine cycle is activated, an Interrupt Request  
is granted. This disables all subsequent interrupts, saves  
the Program Counter and Status Flags, and then branches  
to the program memory vector location reserved for that in-  
terrupt. This memory location and the next byte contain the  
16-bit starting address of the interrupt service routine for  
that particular interrupt request.  
Table 4. Interrupt Types, Sources, and Vectors  
Vector  
Name Source  
Location Comments  
IRQ0  
IRQ1  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
Notes:  
AN2(P32)  
REF(P33)  
AN1(P31)  
AN2(P32)  
T0  
0,1  
2,3  
4,5  
6,7  
8,9  
External (F)Edge  
External (F)Edge  
External (F)Edge  
External (R)Edge  
Internal  
T1  
10,11 Internal  
F = Falling edge triggered  
R = Rising edge triggered  
IRQ0 - IRQ5  
IRQ  
IMR  
IPR  
Global  
Interrupt  
Enable  
6
Interrupt  
Request  
PRIORITY  
LOGIC  
Vector Select  
Figure 15. Interrupt Block Diagram  
28  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
Clock. The Z8 on-chip oscillator has a high-gain, parallel-  
resonant amplifier for connection to a crystal, LC, RC, ce-  
ramic resonator, or any suitable external clock source  
(XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should  
be AT cut, up to 12 MHz max., with a series resistance  
(RS) of less than or equal to 100 Ohms.  
The crystal should be connected across XTAL1 and  
XTAL2 using the vendors crystal recommended capacitors  
from each pin directly to device ground pin 14 (Figure 16).  
Note that the crystal capacitor loads should be connected  
to VSS, Pin 14 to reduce Ground noise injection.  
1
XTAL1  
XTAL2  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
XTAL1  
XTAL2  
C1  
C1  
C1  
*
*
R
*
L
C2  
C2  
*
*
External Clock  
RC  
Ceramic Resonator or  
Crystal  
LC  
@ 5V Vcc (TYP)  
C1, C2 = 47 pF TYP *  
F = 8 MHz  
C1 = 100 pF  
R = 2K  
F = 6 MHz  
* Typical value including pin parasitics  
Figure 16. Oscillator Configuration  
DS97Z8X1104  
P R E L I M I N A R Y  
29  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
Table 5. Typical Frequency vs. RC Values  
VCC = 5.0V @ 25°C  
Load Capacitor  
56 pFd  
33 pFd  
B(Hz)  
100 pFd  
0.00 1µFd  
A(Hz) B(Hz)  
Resistor (R)  
A(Hz)  
33K  
A(Hz)  
B(Hz)  
20K  
32K  
78K  
164K  
300K  
740K  
1.3M  
2M  
A(Hz)  
B(Hz)  
11K  
1.0M  
560K  
220K  
100K  
56K  
20K  
10K  
5K  
31K  
52K  
130K  
270K  
480K  
1M  
20K  
34K  
12K  
20K  
1.4K  
2.5K  
6K  
1.4K  
2.4K  
6K  
56K  
19K  
144K  
315K  
552K  
1.4M  
2.6M  
4.4M  
8M  
84K  
48K  
45K  
182K  
330K  
884K  
1.6M  
2.8M  
6M  
100K  
185K  
500K  
980K  
1.7K  
3.8K  
6.3K  
95K  
12K  
12K  
170K  
450K  
820K  
1.3M  
2.7M  
4.2M  
23K  
22K  
65K  
61K  
2M  
130K  
245K  
600K  
1.0M  
123K  
225K  
536K  
950K  
3M  
2K  
5M  
4M  
1K  
12M  
7M  
8.8M  
6M  
Notes:  
A = STD Mode Frequency.  
B = Low EMI Mode Frequency.  
Table 6. Typical Frequency vs. RC Values  
VCC = 3.3V @ 25°C  
Load Capacitor  
Resistor (R)  
33 pFd  
A(Hz)  
56 pFd  
B(Hz)  
100 pFd  
0.00 1µFd  
B(Hz)  
18K  
A(Hz)  
12K  
A(Hz)  
7.4K  
12K  
B(Hz)  
7.7K  
12K  
A(Hz)  
B(Hz)  
1K  
1.0M  
560K  
220K  
100K  
56K  
20K  
10K  
5K  
18K  
30K  
12K  
20K  
1K  
1.6K  
4K  
30K  
20K  
1.6K  
4K  
70K  
70K  
47K  
47K  
30K  
30K  
150K  
268K  
690M  
1.2M  
2M  
148K  
250K  
600K  
1M  
97K  
96K  
60K  
60K  
8K  
8K  
176K  
463K  
860K  
1.5M  
3.3M  
5M  
170K  
416K  
730K  
1.2M  
2.4M  
3.6M  
100K  
286K  
540K  
950K  
2.2M  
3.6K  
100K  
266K  
480K  
820K  
1.6M  
2.6M  
15K  
40K  
80K  
151K  
360K  
660K  
15K  
40K  
76K  
138K  
316K  
565K  
1.7M  
3M  
2K  
4.6M  
7M  
1K  
4.6M  
Notes:  
A = STD Mode Frequency.  
B = Low EMI Mode Frequency.  
30  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
HALT Mode. This instruction turns off the internal CPU  
clock but not the crystal oscillation. The counter/timers and  
external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain ac-  
tive. The device is recovered by interrupts, either external-  
ly or internally generated. An interrupt request must be ex-  
ecuted (enabled) to exit HALT Mode. After the interrupt  
service routine, the program continues from the instruction  
after the HALT.  
Watch-Dog Timer (WDT). The Watch-Dog Timer is en-  
abled by instruction WDT. When the WDT is enabled, it  
cannot be stopped by the instruction. With the WDT in-  
struction, the WDT is refreshed when it is enabled within  
every 1 Twdt period; otherwise, the controller resets itself,  
The WDT instruction affects the flags accordingly; Z=1,  
S=0, V=0.  
1
WDT = 5F (Hex)  
Note: On the C12 ICEBOX, the IRQ3 does not wake the  
device out of HALT Mode.  
Opcode WDT (5FH). The first time Opcode 5FH is execut-  
ed, the WDT is enabled and subsequent execution clears  
STOP Mode. This instruction turns off the internal clock  
and external crystal oscillation and reduces the standby  
current to 10 µA. The STOP Mode is released by a RESET  
through a Stop-Mode Recovery (pin P27). A Low input  
condition on P27 releases the STOP Mode. Program exe-  
cution begins at location 000C(Hex). However, when P27  
is used to release the STOP Mode, the I/O port Mode reg-  
isters are not reconfigured to their default power-on condi-  
tions. This prevents any I/O, configured as output when the  
STOP instruction was executed, from glitching to an un-  
known state. To use the P27 release approach with STOP  
Mode, use the following instruction:  
the WDT counter. This must be done at least every TWDT  
otherwise, the WDT times out and generates a reset. The  
generated reset is the same as a power-on reset of TPOR  
;
,
plus 18 XTAL clock cycles. The software enabled WDT  
does not run in STOP Mode.  
Opcode WDH (4FH). When this instruction is executed it  
enables the WDT during HALT. If not, the WDT stops  
when entering HALT. This instruction does not clear the  
counters, it just makes it possible to have the WDT running  
during HALT Mode. A WDH instruction executed without  
executing WDT (5FH) has no effect.  
Permanent WDT. Selecting the hardware enabled Perma-  
nent WDT option, will automatically enable the WDT upon  
exiting reset. The permanent WDT will always run in HALT  
Mode and STOP Mode, and it cannot be disabled.  
LD  
P2M, #1XXX XXXXB  
NOP  
STOP  
X = Dependent on user's application.  
Auto Reset Voltage (VLV). The Z8 has an auto-reset built-  
in. The auto-reset circuit resets the Z8 when it detects the  
VCC below VLV.  
Note: A low level detected on P27 pin will take the device  
out of STOP Mode even if configured as an output.  
In order to enter STOP or HALT Mode, it is necessary to  
first flush the instruction pipeline to avoid suspending exe-  
cution in mid-instruction. To do this, the user executes a  
NOP (opcode=FFH) immediately before the appropriate  
SLEEP instruction, such as:  
Figure 17 shows the Auto Reset Voltage versus tempera-  
ture. If the VCC drops below the VCC operating voltage  
range, the Z8 will function down to the VLV unless the inter-  
nal clock frequency is higher than the specified maximum  
VLV frequency.  
FF  
6F  
NOP  
; clear the pipeline  
; enter STOP Mode  
STOP  
or  
FF  
7F  
NOP  
; clear the pipeline  
; enter HALT Mode  
HALT  
DS97Z8X1104  
P R E L I M I N A R Y  
31  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
Vcc  
(Volts)  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
Temp  
40°C 60°C  
80°C  
100°C  
–40°C –20°C  
0°C  
20°C  
Figure 17. Typical Auto Reset Voltage  
(VLV) vs.Temperature  
32  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
ROM Protect. ROM Protect fully protects the Z8 ROM  
code from being read externally. When ROM Protect is se-  
lected, the instructions LDC and LDCI are supported  
(Z86E04/E08 and Z86C04/C08 do not support the instruc-  
tions of LDE and LDEI). When the device is programmed  
for ROM Protect, the Low Noise feature will not automati-  
cally be enabled.  
Low EMI Emission  
The Z8 can be programmed to operate in a low EMI Emis-  
sion (Low Noise) Mode by means of an EPROM program-  
mable bit option. Use of this feature results in:  
1
Less than 1 mA consumed during HALT Mode.  
All drivers slew rates reduced to 10 ns (typical).  
Please note that when using the device in a noisy environ-  
ment, it is suggested that the voltages on the EPM and CE  
pins be clamped to VCC through a diode to VCC to prevent  
accidentally entering the OTP Mode. The VPP requires  
both a diode and a 100 pF capacitor.  
Internal SCLK/TCLK = XTAL operation limited to a  
maximum of 4 MHz–250 ns cycle time.  
Output drivers have resistances of 500 ohms (typical).  
Oscillator divide-by-two circuitry eliminated.  
Auto Latch Disable. Auto Latch Disable option bit when  
programmed will globally disable all Auto Latches.  
In addition to VDD and GND (VSS), the Z8 changes all its pin  
functions in the EPROM Mode. XTAL2 has no function,  
XTAL1 functions as CE, P31 functions as OE, P32 func-  
tions as EPM, P33 functions as VPP, and P02 functions as  
PGM.  
WDT Enable. The WDT Enable option bit, when pro-  
grammed, will have the hardware enabled Permanent  
WDT enabled after exiting reset and can not be stopped in  
Halt or Stop Mode.  
EPROM/Test Mode Disable. The EPROM/Test Mode  
Disable option bit, when programmed, will disable the  
EPROM Mode and the Factory Test Mode. Reading, veri-  
fying, and programming the Z8 will be disabled. To fully  
verify that this mode is disabled, the device must be power  
cycled.  
User Modes. Table 7 shows the programming voltage of  
each mode.  
Table 7. OTP Programming Table  
VPP  
VCC*  
Programming Modes  
EPROM READ  
EPM  
VH  
CE  
VIL  
VIL  
VIL  
VH  
VH  
VH  
VH  
VH  
OE  
VIL  
VIH  
VIL  
VIH  
VIH  
VIL  
VIH  
VIL  
PGM  
VIH  
VIL  
ADDR  
ADDR  
ADDR  
ADDR  
NU  
DATA  
Out  
In  
NU  
VH  
VH  
VH  
VH  
VH  
VH  
VH  
5.0V  
6.4V  
6.4V  
6.4V  
6.4V  
6.4V  
6.4V  
6.4V  
PROGRAM  
VIH  
VIH  
VH  
PROGRAM VERIFY  
EPROM PROTECT  
LOW NOISE SELECT  
AUTO LATCH DISABLE  
WDT ENABLE  
VIH  
VIL  
Out  
NU  
NU  
NU  
NU  
NU  
VIH  
VIH  
VIL  
VIL  
NU  
VIL  
NU  
VIL  
NU  
EPROM/TEST MODE  
VIL  
VIL  
NU  
Notes:  
1. VH =12.75V ± 0.25 VDC  
.
2. VIH = As per specific Z8 DC specification.  
3. VIL= As per specific Z8 DC specification.  
4. X = Not used, but must be set to VH or VIH level.  
5. NU = Not used, but must be set to either VIH or VIL level.  
6. IPP during programming = 40 mA maximum.  
7. ICC during programming, verify, or read = 40 mA maximum.  
8. * VCC has a tolerance of ±0.25V.  
DS97Z8X1104  
P R E L I M I N A R Y  
33  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
Internal Address Counter. The address of Z8 is generat-  
ed internally with a counter clocked through pin P01  
(Clock). Each clock signal increases the address by one  
and the “high” level of pin P00 (Clear) will reset the ad-  
dress to zero. Figure 18 shows the setup time of the serial  
address input.  
Programming Waveform. Figures 19, 20, 21 and 22  
show the programming waveforms of each mode. Table 8  
shows the timing of programming waveforms.  
Programming Algorithm. Figure 23 shows the flow chart  
of the Z8 programming algorithm.  
Table 8. Timing of Programming Waveforms  
Name Min  
Parameters  
Max  
Units  
1
2
3
Address Setup Time  
Data Setup Time  
VPP Setup  
2
2
2
2
µs  
µs  
µs  
µs  
4
5
VCC Setup Time  
Chip Enable Setup Time  
Program Pulse Width  
Data Hold Time  
2
0.95  
2
µs  
ms  
µs  
µs  
ns  
ns  
ms  
µs  
µs  
µs  
ms  
ns  
ns  
6
7
8
OE Setup Time  
2
9
Data Access Time  
188  
10  
11  
12  
13  
14  
15  
16  
17  
Data Output Float Time  
Overprogram Pulse Width  
EPM Setup Time  
100  
2.85  
2
PGM Setup Time  
2
Address to OE Setup Time  
Option Program Pulse Width  
OE Width  
2
78  
250  
125  
Address Valid to OE Low  
34  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
T2  
1
P01 = Clock  
T4  
T1  
T3  
P00 = Clear  
Vpp/EPM  
T6  
T5  
Internal  
Address  
0 Min  
Valid  
Vih  
Vil  
Data  
Invalid  
Invalid  
Valid  
9
Legend:  
30 ns Min  
100 ns Min  
200 ns Min  
100 ns Min  
15 ns Max  
40 µs Min  
T1 Reset Clock Width  
T2 Input Clock High  
T3 Input Clock Period  
T4 Input Clock Low  
T5 Clock to Address Counter Out Delay  
T6 Epm/Vpp Set up Time  
Figure 18. Z86E04/E08 Address Counter Waveform  
DS97Z8X1104  
P R E L I M I N A R Y  
35  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
VIH  
Address  
Data  
Address Stable  
17  
Address Stable  
Valid  
VIL  
VIH  
VIL  
Invalid  
Valid  
9
Invalid  
VIH  
VIL  
V
PP  
VH  
VIL  
EPM  
12  
5.0V  
VIH  
VIL  
V
CC  
CE  
OE  
5
VIH  
VIL  
16  
16  
VIH  
VIL  
PGM  
13  
Figure 19. Z86E04/E08 Programming Waveform  
(EPROM Read)  
36  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
VIH  
VIL  
VIH  
VIL  
Address  
Stable  
Address  
1
1
Data  
Stable  
Data Out  
Valid  
Data  
2
9
10  
VH  
VPP  
EPM  
VCC  
VIH  
3
VH  
VIL  
6V  
5.0V  
4
7
VIH  
CE  
OE  
VIL  
5
VIH  
VIL  
13  
16  
VIH  
PGM  
VIL  
6
8
11  
Program  
Cycle  
Verify  
Cycle  
Figure 20. Z86E04/E08 Programming Waveform  
(Program and Verify)  
DS97Z8X1104  
P R E L I M I N A R Y  
37  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
V
IH  
Address  
V
IL  
V
IH  
Data  
V
IL  
VH  
VPP  
V
IH  
3
6V  
VCC  
5.0V  
4
VH  
CE  
V
IH  
5
V
IH  
OE  
V
IL  
VH  
V
IH  
V
IH  
EPM  
V
IL  
12  
13  
12  
13  
V
IH  
PGM  
V
IL  
15  
15  
Low Noise Program  
EPROM Protect  
Figure 21. Z86E04/E08 Programming Options Waveform  
(EPROM Protect and Low Noise Program)  
38  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
V
IH  
Address  
1
V
IL  
V
IH  
Data  
VIL  
VH  
VPP  
VIH  
3
6V  
V
CC  
5.0V  
4
V
H
CE  
OE  
V
IH  
V
IH  
5
V
IL  
12  
13  
12  
13  
VIH  
EPM  
PGM  
V
IL  
12  
13  
12  
13  
V
IH  
VIL  
15  
Auto Latch  
15  
15  
WDT  
EPROM/Test  
Mode Disabl e  
Figure 22. Z86E04/E08 Programming Options Waveform  
(Auto Latch Disable, Permanent WDT Enable and  
EPROM/Test Mode Disable)  
DS97Z8X1104  
P R E L I M I N A R Y  
39  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
FUNCTIONAL DESCRIPTION (Continued)  
Start  
Addr =  
First Location  
VCC = 6.4V  
VPP= 13.0V  
N = 0  
Program  
1 ms Pulse  
Increment N  
Yes  
N = 25 ?  
No  
Fail  
Verify  
One Byte  
Fail  
Verify  
Byte  
Pass  
Pass  
Prog. One Pulse  
3xN ms Duration  
Increment  
Address  
No  
Last Addr ?  
Yes  
VCC = VPP = 5.0V  
Fail  
Verify All  
Bytes  
Pass  
Device  
Failed  
Device  
Passed  
Figure 23. Z86E04/E08 Programming Algorithm  
40  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
Z8 CONTROL REGISTERS  
R241 TMR  
R244 T0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
D7 D6 D5 D4 D3 D2 D1 D0  
T
Initial Value  
0
0
1
No Function  
Load T0  
(When Written)  
(Range: 1-256 Decimal  
01-00 HEX)  
0
1
Disable T0 Count  
Enable T0 Count  
T
Current Value  
0
(When READ)  
0
1
No Function  
Load T1  
0
1
Disable T1 Count  
Enable T1 Count  
Figure 27. Counter/Timer 0 Register  
(F4H: Read/Write)  
TIN Modes  
00 External Clock Input  
01 Gate Input  
10 Trigger Input  
(Non-retriggerable)  
11 Trigger Input  
(Retriggerable)  
R245 PRE0  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved (Must be 0)  
Count Mode  
0
1
T0 Single Pass  
T0 Modulo N  
Figure 24. Timer Mode Register (F1H: Read/Write)  
Reserved (Must be 0)  
Prescaler Modulo  
(Range: 1-64 Decimal  
01-00 HEX)  
R242 T1  
D7 D6 D5 D4 D3 D2 D1 D0  
T
Initial Value  
1
Figure 28. Prescaler 0 Register (F5H:Write Only)  
(When Written)  
(Range 1-256 Decimal  
01-00 HEX)  
T
Current Value  
1
(When READ)  
R246 P2M  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 25. Counter Timer 1 Register (F2H: Read/Write)  
P2 - P2 I/O Definition  
7
0
0 Defines Bit as OUTPUT  
1 Defines Bit as INPUT  
R243 PRE1  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 29. Port 2 Mode Register (F6H:Write Only)  
Count Mode  
0 = T Single Pass  
1
1 = T Modulo N  
1
Clock Source  
R247 P3M  
1 = T Internal  
1
0 = T External Timing Input  
1
D7 D6 D5 D4 D3 D2 D1 D0  
(T ) Mode  
IN  
Prescaler Modulo  
(Range: 1-64 Decimal  
01-00 HEX)  
0
1
Port 2 Open-Drain  
Port 2 Push-pull  
Port 3 Inputs  
0 Digital Mode  
1 Analog Mode  
Figure 26. Prescaler 1 Register (F3H:Write Only)  
Reserved (Must be 0)  
Figure 30. Port 3 Mode Register (F7H:Write Only)  
DS97Z8X1104  
P R E L I M I N A R Y  
41  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
Z8 CONTROL REGISTERS (Continued)  
R251 IMR  
R248 P01M  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
1 Enables IRQ0-IRQ5  
P0 -P0 Mode  
00 = Output  
01 = Input  
2
0
(D = IRQ0)  
0
Reserved (Must be 0.)  
1 Enables Interrupts  
Reserved (Must be 1.)  
Reserved (Must be 0.)  
Figure 34. Interrupt Mask Register  
(FBH: Read/Write)  
Figure 31. Port 0 and 1 Mode Register  
(F8H:Write Only)  
R252 Flags  
D7 D6 D5 D4 D3 D2 D1 D0  
R249 IPR  
D7 D6 D5 D4 D3 D2 D1 D0  
User Flag F1  
User Flag F2  
Half Carry Flag  
Interrupt Group Priority  
Reserved = 000  
C > A > B = 001  
A > B > C = 010  
A > C > B = 011  
B > C > A= 100  
C > B > A= 101  
B >A > C = 110  
Reserved = 111  
Decimal Adjust Flag  
Overflow Flag  
Sign Flag  
Zero Flag  
Carry Flag  
IRQ1, IRQ4 Priority (Group C)  
0 = IRQ1 > IRQ4  
1 = IRQ4 > IRQ1  
Figure 35. Flag Register  
(FCH: Read/Write)  
IRQ0, IRQ2 Priority (Group B)  
0 = IRQ2 > IRQ0  
1 = IRQ0 > IRQ2  
IRQ3, IRQ5 Priority (Group A)  
0 = IRQ5 > IRQ3  
1 = IRQ3 > IRQ5  
R253 RP  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved (Must be 0.)  
Figure 32. Interrupt Priority Register  
(F9H:Write Only)  
Expanded Register File  
Working Register Pointer  
Default After Reset = 00H  
R250 IRQ  
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 36. Register Pointer  
(FDH: Read/Write)  
IRQ0 = P32 Input  
IRQ1 = P33 Input  
IRQ2 = P31 Input  
IRQ3 = P32 Input  
IRQ4 = T0  
R255 SPL  
D7 D6 D5 D4 D3 D2 D1 D0  
IRQ5 = T1  
Reserved (Must be 0)  
Stack Pointer Lower  
Byte (SP - SP  
)
0
7
Figure 33. Interrupt Request Register  
(FAH: Read/Write)  
Figure 37. Stack Pointer  
(FFH: Read/Write)  
42  
P R E L I M I N A R Y  
DS97Z8X1104  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
PACKAGE INFORMATION  
1
18-Pin DIP Package Diagram  
18-Pin SOIC Package Diagram  
P R E L I M I N A R Y  
DS97Z8X1104  
43  
Z86E04/E08  
CMOS Z8 OTP Microcontrollers  
Zilog  
ORDERING INFORMATION  
Z86E04  
Z86E08  
Standard Temperature  
Standard Temperature  
18-Pin DIP  
18-Pin SOIC  
18-Pin DIP  
18-Pin SOIC  
Z86E0412PSC  
Z86E0412PEC  
Z86E0412SSC  
Z86E0412SEC  
Z86E0812PSC  
Z86E0812PEC  
Z86E0812SSC  
Z86E0812SEC  
For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.  
Codes  
Preferred Package  
Speeds  
P = Plastic DIP  
12 =12 MHz  
Longer Lead Time  
Environmental  
S = SOIC  
C = Plastic Standard  
Preferred Temperature  
S = 0°C to +70°C  
E = –40°C to +105°C  
Example:  
Z 86E04 12 P S C  
is a Z86E04, 12 MHz, DIP, 0°C to +70°C, Plastic Standard Flow  
Environmental Flow  
Temperature  
Package  
Speed  
Product Number  
Zilog Prefix  
© 1998 by Zilog, Inc. All rights reserved. No part of this  
document may be copied or reproduced in any form or by  
any means without the prior written consent of Zilog, Inc.  
The information in this document is subject to change  
without notice. Devices sold by Zilog, Inc. are covered by  
warranty and patent indemnification provisions appearing  
in Zilog, Inc. Terms and Conditions of Sale only.  
Zilog, Inc. shall not be responsible for any errors that may  
appear in this document. Zilog, Inc. makes no commitment  
to update or keep current the information contained in this  
document.  
Zilog’s products are not authorized for use as critical  
components in life support devices or systems unless a  
specific written agreement pertaining to such intended use  
is executed between the customer and Zilog prior to use.  
Life support devices or systems are those which are  
intended for surgical implantation into the body, or which  
sustains life whose failure to perform, when properly used  
in accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in  
significant injury to the user.  
ZILOG, INC. MAKES NO WARRANTY, EXPRESS,  
STATUTORY, IMPLIED OR BY DESCRIPTION,  
REGARDING THE INFORMATION SET FORTH HEREIN  
OR REGARDING THE FREEDOM OF THE DESCRIBED  
DEVICES  
FROM  
INTELLECTUAL  
PROPERTY  
INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY  
OF MERCHANTABILITY OR FITNESS FOR ANY  
PURPOSE.  
Zilog, Inc. 210 East Hacienda Ave.  
Campbell, CA 95008-6600  
Telephone (408) 370-8000  
FAX 408 370-8056  
Internet: http://www.zilog.com  
44  
P R E L I M I N A R Y  
DS97Z8X1104  

相关型号:

Z86E0812PSG1866

Z86E04/E08 CMOS Z8 OTP MICROCONTROLLERS
ZILOG

Z86E0812SEC

CMOS Z8 OTP Microcontrollers
ZILOG

Z86E0812SEC1903

CMOS Z8 OTP MICROCONTROLLERS
ZILOG

Z86E0812SEG

CMOS Z8 OTP Microcontrollers
ZILOG

Z86E0812SSC

Microcontroller, 8-Bit, OTPROM, Z8 CPU, 12MHz, CMOS, PDSO18, SOIC-18
IXYS

Z86E0812SSC1860

CMOS Z8 OTP Microcontrollers
ZILOG

Z86E0812SSC1866

CMOS Z8 OTP Microcontrollers
ZILOG

Z86E0812SSC1903

CMOS Z8 OTP Microcontrollers
ZILOG

Z86E0812SSC1924

CMOS Z8 OTP Microcontrollers
ZILOG

Z86E0812SSCXXXX

暂无描述
ZILOG

Z86E0812SSG

暂无描述
ZILOG

Z86E0812SSG

Microcontroller, 8-Bit, OTPROM, 12MHz, CMOS, PDSO18, SOIC-18
IXYS