Z8F4821VN020AC [IXYS]

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PQCC44, PLASTIC, LCC-44;
Z8F4821VN020AC
型号: Z8F4821VN020AC
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PQCC44, PLASTIC, LCC-44

时钟 微控制器 外围集成电路
文件: 总297页 (文件大小:8978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance 8-Bit Microcontrollers  
Z8 Encore! XP® F64XX Series  
Product Specification  
PS019921-0308  
Copyright ©2008 by Zilog®, Inc. All rights reserved.  
www.zilog.com  
DO NOT USE IN LIFE SUPPORT  
Warning:  
LIFE SUPPORT POLICY  
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE  
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF  
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.  
As used herein  
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)  
support or sustain life and whose failure to perform when properly used in accordance with instructions for  
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A  
critical component is any component in a life support device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support device or system or to affect its safety or  
effectiveness.  
Document Disclaimer  
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,  
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,  
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY  
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.  
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY  
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR  
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this  
document has been verified according to the general principles of electrical and mechanical engineering.  
Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered  
trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.  
PS019921-0308  
Z8 Encore! XP® F64XX Series  
Product Specification  
iii  
Revision History  
Each instance in the Revision History table reflects a change to this document from its pre-  
vious revision. For more details, refer to the corresponding pages or appropriate links  
given in the table below.  
Revision  
Level  
Page  
Date  
Description  
Number  
March  
21  
Changed title to Z8 Encore! XP F64XX Series.  
All  
2008  
February 20  
2008  
Changed Z8 Encore! XP 64K Series Flash  
Microcontrollers to Z8 Encore! XP F64xx Series Flash  
Microcontrollers. Deleted three sentences that  
mentioned Z8R642. Removed the 40 PDIP package.  
Added ZENETSC0100ZACG to the end of the  
Ordering Information table. Changed the flag status to  
unaffected for BIT, BSET, and BCLR in Table 133 on  
page 246.  
Various  
December 19  
2007  
Updated Zilog logo, Disclaimer section, and  
implemented style guide. Updated Table 112.  
Changed Z8 Encore! 64K Series to Z8 Encore! XP  
64K Series Flash Microcontrollers throughout the  
document.  
All  
December 18  
2006  
November 17  
2006  
Updated Table 110 and Ordering Information.  
224, 265  
270  
Updated Part Number Suffix Designations.  
PS019921-0308  
Z8 Encore! XP® F64XX Series  
Product Specification  
iv  
Table of Contents  
Manual Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii  
About This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii  
Intended Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii  
Manual Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii  
Safeguards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Part Selection Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
CPU and Peripheral Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
eZ8CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General-Purpose Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Flash Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
10-Bit Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Reset Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Signal and Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Available Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Register File Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PS019921-0308  
Table of Contents  
Z8 Encore! XP® F64XX Series  
Product Specification  
v
Control Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Reset and Stop Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Reset Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Voltage Brownout Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Watchdog Timer Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
On-Chip Debugger Initiated Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Stop Mode Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Stop Mode Recovery Using Watchdog Timer Time-Out . . . . . . . . . . . . . . . 50  
Stop Mode Recovery Using a GPIO Port Pin Transition HALT . . . . . . . . . . 50  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
STOP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
HALT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
General-Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
GPIO Port Availability By Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
GPIO Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GPIO Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
GPIO Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Port A–H Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Port A–H Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Port A–H Input Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Port A–H Output Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Interrupt Vector Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Master Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Interrupt Vectors and Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Software Interrupt Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Interrupt Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Interrupt Request 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Interrupt Request 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
PS019921-0308  
Table of Contents  
Z8 Encore! XP® F64XX Series  
Product Specification  
vi  
Interrupt Request 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
IRQ0 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
IRQ1 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
IRQ2 Enable High and Low Bit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Interrupt Edge Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Interrupt Port Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Interrupt Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Timer Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Reading the Timer Count Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Timer Output Signal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Timer 0-3 High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Timer Reload High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . . . 87  
Timer 0-3 PWM High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . 88  
Timer 0-3 Control 0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Timer 0-3 Control 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Watchdog Timer Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Watchdog Timer Time-Out Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Watchdog Timer Reload Unlock Sequence . . . . . . . . . . . . . . . . . . . . . . . . 95  
Watchdog Timer Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Watchdog Timer Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Watchdog Timer Reload Upper, High and Low Byte Registers . . . . . . . . . . 97  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Transmitting Data using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . 101  
Transmitting Data using the Interrupt-Driven Method . . . . . . . . . . . . . . . . 102  
Receiving Data using the Polled Method . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Receiving Data using the Interrupt-Driven Method . . . . . . . . . . . . . . . . . . 104  
Clear To Send (CTS) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
PS019921-0308  
Table of Contents  
Z8 Encore! XP® F64XX Series  
Product Specification  
vii  
MULTIPROCESSOR (9-bit) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
External Driver Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
UART Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
UART Baud Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
UART Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
UART Transmit Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
UART Receive Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
UART Status 0 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
UART Status 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
UART Control 0 and Control 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . 113  
UART Address Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
UART Baud Rate High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . 116  
Infrared Encoder/Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Transmitting IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Receiving IrDA Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Infrared Encoder/Decoder Control Register Definitions . . . . . . . . . . . . . . . . . 124  
Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
SPI Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
SPI Clock Phase and Polarity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Multi-Master Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Slave Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
SPI Baud Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
SPI Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
SPI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
SPI Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
SPI Diagnostic State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
SPI Baud Rate High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . 138  
I2C Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
PS019921-0308  
Table of Contents  
Z8 Encore! XP® F64XX Series  
Product Specification  
viii  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
SDA and SCL Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
I2C Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Software Control of I2C Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Start and Stop Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Master Write and Read Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Address Only Transaction with a 7-bit Address . . . . . . . . . . . . . . . . . . . . 144  
Write Transaction with a 7-Bit Address . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Address Only Transaction with a 10-bit Address . . . . . . . . . . . . . . . . . . . 146  
Write Transaction with a 10-Bit Address . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Read Transaction with a 7-Bit Address . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Read Transaction with a 10-Bit Address . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
I2C Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
I2C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
I2C Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
I2C Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
I2C Baud Rate High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . . . 156  
I2C Diagnostic State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
I2C Diagnostic Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
DMA0 and DMA1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Configuring DMA0 and DMA1 for Data Transfer . . . . . . . . . . . . . . . . . . . . 161  
DMA_ADC Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Configuring DMA_ADC for Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 162  
DMA Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
DMAx Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
DMAx I/O Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
DMAx Address High Nibble Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
DMAx Start/Current Address Low Byte Register . . . . . . . . . . . . . . . . . . . . 166  
DMAx End Address Low Byte Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
DMA_ADC Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
DMA_ADC Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
DMA Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
PS019921-0308  
Table of Contents  
Z8 Encore! XP® F64XX Series  
Product Specification  
ix  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Automatic Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Single-Shot Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
DMA Control of the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
ADC Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
ADC Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
ADC Data High Byte Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
ADC Data Low Bits Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Information Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Timing Using the Flash Frequency Registers . . . . . . . . . . . . . . . . . . . . . 182  
Flash Read Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Flash Write/Erase Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Byte Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Page Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Mass Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Flash Controller Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Flash Controller Behavior in Debug Mode . . . . . . . . . . . . . . . . . . . . . . . . 185  
Flash Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Flash Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Flash Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Page Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Flash Sector Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Flash Frequency High and Low Byte Registers . . . . . . . . . . . . . . . . . . . . 188  
Option Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Option Bit Configuration By Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Option Bit Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Flash Memory Address 0000H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Flash Memory Address 0001H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
On-Chip Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
OCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
PS019921-0308  
Table of Contents  
Z8 Encore! XP® F64XX Series  
Product Specification  
x
DEBUG Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
OCD Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
OCD Auto-Baud Detector/Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
OCD Serial Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
On-Chip Debugger Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
On-Chip Debugger Control Register Definitions . . . . . . . . . . . . . . . . . . . . . . . 205  
OCD Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
OCD Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
On-Chip Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Crystal Oscillator Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Oscillator Operation with an External RC Network . . . . . . . . . . . . . . . . . . . . . 209  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
On-Chip Peripheral AC and DC Electrical Characteristics . . . . . . . . . . . . . . . 222  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
General-Purpose I/O Port Input Data Sample Timing . . . . . . . . . . . . . . . . 228  
General-Purpose I/O Port Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . 229  
On-Chip Debugger Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
SPI Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
SPI Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
I2C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
UART Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
eZ8CPU Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
Assembly Language Programming Introduction . . . . . . . . . . . . . . . . . . . . . . . 237  
Assembly Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
eZ8 CPU Instruction Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
Condition Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
eZ8 CPU Instruction Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
eZ8 CPU Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
Flags Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
Opcode Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
PS019921-0308  
Table of Contents  
Z8 Encore! XP® F64XX Series  
Product Specification  
xi  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
Part Number Suffix Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
PS019921-0308  
Table of Contents  
Z8 Encore! XP® F64XX Series  
Product Specification  
xii  
Manual Objectives  
This product specification provides detailed operating information for the Flash devices  
within Zilog’s Z8 Encore! XP® F64XX Series microcontroller (MCU) products. Within  
this document, the Z8F642x, Z8F482x, Z8F322x, Z8F242x, and Z8F162x devices are  
referred to collectively as the Z8 Encore! XP F64XX Series unless specifically stated  
otherwise.  
About This Manual  
Zilog® recommends that you read and understand everything in this manual before setting  
up and using the product. However, we recognize that there are different styles of learning.  
Therefore, we have designed this product specification to be used either as a how to  
procedural manual or a reference guide to important data.  
Intended Audience  
This document is written for Zilog customers who are experienced at working with micro-  
controllers, integrated circuits, or printed circuit assemblies.  
Manual Conventions  
The following assumptions and conventions are adopted to provide clarity and ease of use:  
Courier Typeface  
Commands, code lines and fragments, bits, equations, hexadecimal addresses, and various  
executable items are distinguished from general text by the use of the Couriertypeface.  
Where the use of the font is not indicated, as in the Index, the name of the entity is  
presented in upper case.  
Example: FLAGS[1] is smrf.  
Hexadecimal Values  
Hexadecimal values are designated by uppercase H suffix and appear in the Courier  
typeface.  
Example: R1 is set to F8H.  
Brackets  
The square brackets, [ ], indicate a register or bus.  
Example: For the register R1[7:0], R1 is an 8-bit register, R1[7] is the most significant  
bit, and R1[0] is the least significant bit.  
PS019921-0308  
Manual Objectives  
Z8 Encore! XP® F64XX Series  
Product Specification  
xiii  
Braces  
The curly braces, { }, indicate a single register or bus created by concatenating some  
combination of smaller registers, buses, or individual bits.  
Example: The 12-bit register address {0H, RP[7:4], R1[3:0]} is composed of a 4-bit  
hexadecimal value (0H) and two 4-bit register values taken from the Register Pointer  
(RP) and Working Register R1. 0His the most-significant nibble (4-bit value) of the  
12-bit register, and R1[3:0] is the least significant nibble of the 12-bit register.  
Parentheses  
The parentheses, ( ), indicate an indirect register address lookup.  
Example: (R1) is the memory location referenced by the address contained in the  
Working Register R1.  
Parentheses/Bracket Combinations  
The parentheses, ( ), indicate an indirect register address lookup and the square brackets,  
[ ], indicate a register or bus.  
Example: Assume PC[15:0] contains the value 1234h. (PC[15:0]) then refers to the  
contents of the memory location at address 1234h.  
Use of the Words Set, Reset and Clear  
The word set implies that a register bit or a condition contains a logical 1. The words reset  
or clear imply that a register bit or a condition contains a logical 0. When either of these  
terms is followed by a number, the word logical may not be included; however, it is  
implied.  
Notation for Bits and Similar Registers  
A field of bits within a register is designated as: Register[n:n].  
Example: ADDR[15:0] refers to bits 15 through bit 0 of the Address.  
Use of the Terms LSB, MSB, lsb, and msb  
In this document, the terms LSB and MSB, when appearing in upper case, mean least  
significant byte and most significant byte, respectively. The lowercase forms, lsb and msb,  
mean least significant bit and most significant bit, respectively.  
Use of Initial Uppercase Letters  
Initial uppercase letters designate settings and conditions in general text.  
Example 1: The receiver forces the SCL line to Low.  
Example 2: The Master can generate a Stop condition to abort the transfer.  
PS019921-0308  
Manual Objectives  
Z8 Encore! XP® F64XX Series  
Product Specification  
xiv  
Use of All Uppercase Letters  
The use of all uppercase letters designates the names of states, modes, and commands.  
Example 1: The bus is considered BUSY after the Start condition.  
Example 2: A START command triggers the processing of the initialization sequence.  
Example 3: STOP mode.  
Bit Numbering  
Bits are numbered from 0 to n–1 where n indicates the total number of bits. For example,  
the 8 bits of a register are numbered from 0 to 7.  
Safeguards  
It is important that you understand the following safety terms, which are defined here.  
Caution:  
Indicates a procedure or file may become corrupted if you do not follow  
directions.  
PS019921-0308  
Manual Objectives  
Z8 Encore! XP® F64XX Series  
Product Specification  
1
Introduction  
Zilog’s Z8 Encore! XP MCU family of products are a line of Zilog® microcontroller  
products based upon the 8-bit eZ8 CPU. The Z8 Encore! XP® F64XX Series, hereafter  
referred to collectively as the Z8 Encore! XP or the F64XX Series adds Flash memory to  
Zilog’s extensive line of 8-bit microcontrollers. The Flash in-circuit programming  
capability allows for faster development time and program changes in the field. The new  
eZ8CPU is upward compatible with existing Z8® instructions. The rich-peripheral set  
of the Z8 Encore! XP makes it suitable for a variety of applications including motor  
control, security systems, home appliances, personal electronic devices, and sensors.  
Features  
The features of Z8 Encore! XP F64XX Series include:  
20 MHz eZ8 CPU  
Up to 64 KB Flash with in-circuit programming capability  
Up to 4 KB register RAM  
12-channel, 10-bit Analog-to-Digital Converter (ADC)  
Two full-duplex 9-bit UARTs with bus transceiver Driver Enable control  
Inter-integrated circuit (I2C)  
Serial Peripheral Interface (SPI)  
Two Infrared Data Association (IrDA)-compliant infrared encoder/decoders  
Up to four 16-bit timers with capture, compare, and PWM capability  
Watchdog Timer (WDT) with internal RC oscillator  
Three-channel DMA  
Up to 60 input/output (I/O) pins  
24 interrupts with configurable priority  
On-Chip Debugger  
Voltage Brownout (VBO) Protection  
Power-On Reset (POR)  
Operating voltage of 3.0 V to 3.6 V with 5 V-tolerant inputs  
0 °C to +70 °C, –40 °C to +105 °C, and –40 °C to +125 °C operating temperature  
ranges  
PS019921-0308  
Introduction  
Z8 Encore! XP® F64XX Series  
Product Specification  
2
Part Selection Guide  
Table 1 identifies the basic features and package styles available for each device within the  
Z8 Encore! XP product line.  
Table 1. Z8 Encore! XP® F64XX Series Part Selection Guide  
16-bit  
Part  
Flash RAM  
Timers  
ADC UARTs  
44-pin 64/68-pin 80-pin  
2
Number (KB) (KB) I/O with PWM Inputs with IrDA I C SPI packages packages package  
Z8F1621  
Z8F1622  
Z8F2421  
Z8F2422  
Z8F3221  
Z8F3222  
Z8F4821  
Z8F4822  
Z8F4823  
Z8F6421  
Z8F6422  
Z8F6423  
16  
16  
24  
24  
32  
32  
48  
48  
48  
64  
64  
64  
2
2
2
2
2
2
4
4
4
4
4
4
31  
46  
31  
46  
31  
46  
31  
46  
60  
31  
46  
60  
3
4
3
4
3
4
3
4
4
3
4
4
8
12  
8
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
12  
8
12  
8
12  
12  
8
X
X
X
12  
12  
X
Die Form Contact  
®
Sales  
Zilog  
PS019921-0308  
Introduction  
Z8 Encore! XP® F64XX Series  
Product Specification  
3
Block Diagram  
Figure 1 displays the block diagram of the architecture of the Z8 Encore! XP® F64XX  
Series.  
XTAL/RC  
Oscillator  
On-Chip  
Debugger  
POR/VBO  
and Reset  
Controller  
eZ8TM  
CPU  
Interrupt  
WDT with  
Controller  
RC Oscillator  
System  
Clock  
Memory Busses  
Register Bus  
2
Flash  
RAM  
Timers  
UARTs  
I C  
SPI  
ADC  
DMA  
Controller  
Controller  
IrDA  
Flash  
RAM  
Memory  
GPIO  
Figure 1. Z8 Encore! XP® F64XX Series Block Diagram  
CPU and Peripheral Overview  
eZ8CPU Features  
The latest 8-bit eZ8 CPU meets the continuing demand for faster and more code-efficient  
microcontrollers. The eZ8 CPU executes a superset of the original Z8® instruction set.  
PS019921-0308  
Introduction  
Z8 Encore! XP® F64XX Series  
Product Specification  
4
The eZ8 CPU features include:  
Direct register-to-register architecture allows each register to function as an  
accumulator, improving execution time and decreasing the required Program Memory  
Software stack allows much greater depth in subroutine calls and interrupts than  
hardware stacks  
Compatible with existing Z8 code  
Expanded internal Register File allows access of up to 4 KB  
New instructions improve execution efficiency for code developed using higher-level  
programming languages, including C  
Pipelined instruction fetch and execution  
New instructions for improved performance including BIT, BSWAP, BTJ, CPC, LDC,  
LDCI, LEA, MULT, and SRL  
New instructions support 12-bit linear addressing of the Register File  
Up to 10 MIPS operation  
C-Compiler friendly  
2 to 9 clock cycles per instruction  
For more information on the eZ8 CPU, refer to eZ8CPU Core User Manual (UM0128)  
available for download at www.zilog.com.  
General-Purpose Input/Output  
The Z8 Encore! XP® F64XX Series feature seven 8-bit ports (Ports A-G) and one 4-bit  
port (Port H) for general-purpose input/output (GPIO). Each pin is individually  
programmable. All ports (except B and H) support 5 V-tolerant inputs.  
Flash Controller  
The Flash Controller programs and erases the Flash memory.  
10-Bit Analog-to-Digital Converter  
The Analog-to-Digital Converter converts an analog input signal to a 10-bit binary  
number. The ADC accepts inputs from up to 12 different analog input sources.  
UARTs  
Each UART is full-duplex and capable of handling asynchronous data transfers. The  
UARTs support 8- and 9-bit data modes, selectable parity, and an efficient bus transceiver  
Driver Enable signal for controlling a multi-transceiver bus, such as RS-485.  
PS019921-0308  
Introduction  
Z8 Encore! XP® F64XX Series  
Product Specification  
5
I2C  
The I2C controller makes the Z8 Encore! XP compatible with the I2C protocol. The I2C  
controller consists of two bidirectional bus lines, a serial data (SDA) line and a serial clock  
(SCL) line.  
Serial Peripheral Interface  
The serial peripheral interface allows the Z8 Encore! XP to exchange data between other  
peripheral devices such as EEPROMs, A/D converters and ISDN devices. The SPI is a  
full-duplex, synchronous, character-oriented channel that supports a four-wire interface.  
Timers  
Up to four 16-bit reloadable timers can be used for timing/counting events or for motor  
control operations. These timers provide a 16-bit programmable reload counter and  
operate in ONE-SHOT, CONTINUOUS, GATED, CAPTURE, COMPARE, CAPTURE  
AND COMPARE, and PWM modes. Only 3 timers (Timers 0-2) are available in the 44-  
pin packages.  
Interrupt Controller  
The Z8 Encore! XP® F64XX Series products support up to 24 interrupts. These interrupts  
consist of 12 internal and 12 GPIO pins. The interrupts have 3 levels of programmable  
interrupt priority.  
Reset Controller  
The Z8 Encore! XP can be reset using the RESET pin, Power-On Reset, Watchdog Timer,  
STOP mode exit, or Voltage Brownout (VBO) warning signal.  
On-Chip Debugger  
The Z8 Encore! XP features an integrated On-Chip Debugger. The OCD provides a rich  
set of debugging capabilities, such as reading and writing registers, programming the  
Flash, setting breakpoints and executing code. A single-pin interface provides  
communication to the OCD.  
DMA Controller  
The Z8 Encore! XP® F64XX Series feature three channels of DMA. Two of the channels  
are for register RAM to and from I/O operations. The third channel automatically controls  
the transfer of data from the ADC to the memory.  
PS019921-0308  
Introduction  
Z8 Encore! XP® F64XX Series  
Product Specification  
6
PS019921-0308  
Introduction  
Z8 Encore! XP® F64XX Series  
Product Specification  
7
Signal and Pin Descriptions  
The Z8 Encore! XP® F64XX Series product are available in a variety of packages styles  
and pin configurations. This chapter describes the signals and available pin configurations  
for each of the package styles. For information on physical package specifications, see  
Packaging on page 261.  
Available Packages  
Table 2 identifies the package styles that are available for each device within the  
Z8 Encore! XP F64XX Series product line.  
Table 2. Z8 Encore! XP F64XX Series Package Options  
44-pin  
LQFP  
44-pin  
PLCC  
64-pin  
LQFP  
68-pin  
PLCC  
80-pin  
QFP  
Part Number  
Z8F1621  
Z8F1622  
Z8F2421  
Z8F2422  
Z8F3221  
Z8F3222  
Z8F4821  
Z8F4822  
Z8F4823  
Z8F6421  
Z8F6422  
Z8F6423  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
8
Pin Configurations  
Figure 2 through Figure 6 on page 12 display the pin configurations for all of the packages  
available in the Z8 Encore! XP F64XX Series. For description of the signals, see Table 3  
on page 13. Timer 3 is not available in the 44-pin packages.  
6
1
40  
39  
PA7 / SDA  
PD6 / CTS1  
PC3 / SCK  
VSS  
PA0 / T0IN  
PD2  
PC2 / SS  
RESET  
VDD  
7
VDD  
34  
12  
PC7 / T2OUT  
PC6 / T2IN  
DBG  
PC1 / T1OUT  
PC0 / T1IN  
VSS  
VSS  
PD1  
PD0  
XOUT  
XIN  
29  
VDD  
17  
18  
28  
23  
Figure 2. Z8 Encore! XP F64XX Series in 44-Pin Plastic Leaded Chip Carrier (PLCC)  
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
9
33  
34  
23  
22  
28  
PA7 / SDA  
PD6 / CTS1  
PC3 / SCK  
VSS  
PA0 / T0IN  
PD2  
PC2 / SS  
RESET  
VDD  
VDD  
39  
44  
17  
PC7 / T2OUT  
PC6 / T2IN  
DBG  
PC1 / T1OUT  
PC0 / T1IN  
VSS  
VSS  
PD1  
PD0  
XOUT  
XIN  
12  
VDD  
1
11  
6
Figure 3. Z8 Encore! XP F64XX Series in 44-Pin Low-Profile Quad Flat Package (LQFP)  
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
10  
40  
48  
49  
33  
32  
PA7 / SDA  
PD6 / CTS1  
PC3 / SCK  
PD7 / RCOUT  
VSS  
PA0 / T0IN  
PD2  
PC2 / SS  
RESET  
VDD  
PE5  
PE6  
PE7  
VDD  
PG3  
VDD  
PC7 / T2OUT  
PC6 / T2IN  
DBG  
PC1 / T1OUT  
PC0 / T1IN  
PE4  
PE3  
VSS  
PE2  
PE1  
PE0  
VSS  
25  
56  
64  
PD1 / T3OUT  
PD0 / T3IN  
XOUT  
XIN  
17  
1
16  
8
Figure 4. Z8 Encore! XP F64XX Series in 64-Pin Low-Profile Quad Flat Package (LQFP)  
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
11  
9
1
61  
60  
PA7 / SDA  
PD6 / CTS1  
PC3 / SCK  
PD7 / RCOUT  
VSS  
PE5  
PE6  
PE7  
VDD  
PA0 / T0IN  
PD2  
PC2 / SS  
RESET  
VDD  
10  
18  
PE4  
PE3  
VSS  
PE2  
52  
PE1  
PE0  
PG3  
VDD  
PC7 / T2OUT  
PC6 / T2IN  
DBG  
PC1 / T1OUT  
PC0 / T1IN  
VSS  
VSS  
VDD  
PD1 / T3OUT  
PD0 / T3IN  
XOUT  
XIN  
26  
44  
43  
27  
35  
Figure 5. Z8 Encore! XP F64XX Series in 68-Pin Plastic Leaded Chip Carrier (PLCC)  
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
12  
80  
65  
75  
70  
64  
PA7 / SDA  
PD6 / CTS1  
PC3 / SCK  
PD7 / RCOUT  
PG0  
PA0 / T0IN  
PD2  
PC2 / SS  
PF6  
1
5
60  
RESET  
VSS  
PG1  
VDD  
PF5  
PG2  
PF4  
PE5  
PF3  
10  
15  
55  
50  
45  
PE4  
PE3  
VSS  
PE2  
PE1  
PE0  
VSS  
PF2  
PE6  
PE7  
VDD  
PG3  
PG4  
PG5  
PG6  
VDD  
PG7  
PF1  
PF0  
VDD  
PC7 / T2OUT  
PC6 / T2IN  
DBG  
PC1 / T1OUT  
PC0 / T1IN  
20  
24  
PD1 / T3OUT  
PD0 / T3IN  
XOUT  
XIN  
41 VSS  
40  
25  
30  
35  
Figure 6. Z8 Encore! XP F64XX Series in 80-Pin Quad Flat Package (QFP)  
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
13  
Signal Descriptions  
Table 3 describes the Z8 Encore! XP signals. To determine the signals available for the  
specific package styles, see Pin Configurations on page 8.  
Table 3. Signal Descriptions  
Signal  
Mnemonic  
I/O  
Description  
General-Purpose I/O Ports A-H  
PA[7:0]  
I/O  
Port A[7:0]. These pins are used for general-purpose I/O and support  
5 V-tolerant inputs.  
PB[7:0]  
PC[7:0]  
I/O  
I/O  
Port B[7:0]. These pins are used for general-purpose I/O.  
Port C[7:0]. These pins are used for general-purpose I/O. These pins are  
used for general-purpose I/O and support 5 V-tolerant inputs  
PD[7:0]  
PE[7:0]  
PF[7:0]  
PG[7:0]  
PH[3:0]  
I/O  
I/O  
I/O  
I/O  
I/O  
Port D[7:0]. These pins are used for general-purpose I/O. These pins are  
used for general-purpose I/O and support 5 V-tolerant inputs  
Port E[7:0]. These pins are used for general-purpose I/O. These pins are  
used for general-purpose I/O and support 5 V-tolerant inputs.  
Port F[7:0]. These pins are used for general-purpose I/O. These pins are  
used for general-purpose I/O and support 5 V-tolerant inputs.  
Port G[7:0]. These pins are used for general-purpose I/O. These pins are  
used for general-purpose I/O and support 5 V-tolerant inputs.  
Port H[3:0]. These pins are used for general-purpose I/O.  
2
I C Controller  
2
SCL  
O
Serial Clock. This is the output clock for the I C. This pin is multiplexed with a  
general-purpose I/O pin. When the general-purpose I/O pin is configured for  
alternate function to enable the SCL function, this pin is open-drain.  
2
SDA  
I/O  
Serial Data. This open-drain pin transfers data between the I C and a slave.  
This pin is multiplexed with a general-purpose I/O pin. When the  
general-purpose I/O pin is configured for alternate function to enable the  
SDA function, this pin is open-drain.  
SPI Controller  
I/O  
Slave Select. This signal can be an output or an input. If the Z8 Encore! XP  
F64XX Series is the SPI master, this pin may be configured as the Slave  
Select output. If the Z8 Encore! XP F64XX Series is the SPI slave, this pin is  
the input slave select. It is multiplexed with a general-purpose I/O pin.  
SS  
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
14  
Table 3. Signal Descriptions (Continued)  
Signal  
Mnemonic  
I/O  
Description  
SCK  
I/O  
SPI Serial Clock. The SPI master supplies this pin. If the Z8 Encore! XP  
F64XX Series is the SPI master, this pin is an output. If the Z8 Encore! XP  
F64XX Series is the SPI slave, this pin is an input. It is multiplexed with a  
general-purpose I/O pin.  
MOSI  
MISO  
I/O  
I/O  
Master-Out/Slave-In. This signal is the data output from the SPI master  
device and the data input to the SPI slave device. It is multiplexed with a  
general-purpose I/O pin.  
Master-In/Slave-Out. This pin is the data input to the SPI master device and  
the data output from the SPI slave device. It is multiplexed with a  
general-purpose I/O pin.  
UART Controllers  
TXD0 / TXD1  
RXD0 / RXD1  
CTS0 / CTS1  
DE0 / DE1  
O
Transmit Data. These signals are the transmit outputs from the UARTs. The  
TXD signals are multiplexed with general-purpose I/O pins.  
I
Receive Data. These signals are the receiver inputs for the UARTs and  
IrDAs. The RXD signals are multiplexed with general-purpose I/O pins.  
I
Clear To Send. These signals are control inputs for the UARTs. The CTS  
signals are multiplexed with general-purpose I/O pins.  
O
Driver Enable. This signal allows automatic control of external RS-485  
drivers. This signal is approximately the inverse of the Transmit Empty (TXE)  
bit in the UART Status 0 register. The DE signal may be used to ensure an  
external RS-485 driver is enabled when data is transmitted by the UART.  
Timers  
T0OUT/T1OUT/ O  
T2OUT/T3OUT  
Timer Output 0-3. These signals are output pins from the timers. The Timer  
Output signals are multiplexed with general-purpose I/O pins. T3OUT is not  
available in 44-pin package devices.  
T0IN/T1IN/  
T2IN/T3IN  
I
Timer Input 0-3. These signals are used as the capture, gating and counter  
inputs. The Timer Input signals are multiplexed with general-purpose I/O  
pins. T3IN is not available in 44-pin package devices.  
Analog  
ANA[11:0]  
I
I
Analog Input. These signals are inputs to the ADC. The ADC analog inputs  
are multiplexed with general-purpose I/O pins.  
VREF  
Analog-to-Digital converter reference voltage input. The VREF pin must be  
left unconnected (or capacitively coupled to analog ground) if the internal  
voltage reference is selected as the ADC reference voltage.  
Oscillators  
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
15  
Table 3. Signal Descriptions (Continued)  
Signal  
Mnemonic  
I/O  
Description  
XIN  
I
External Crystal Input. This is the input pin to the crystal oscillator. A crystal  
can be connected between it and the XOUT pin to form the oscillator. This  
signal is usable with external RC networks and an external clock driver.  
XOUT  
O
O
External Crystal Output. This pin is the output of the crystal oscillator. A  
crystal can be connected between it and the XIN pin to form the oscillator.  
When the system clock is referred to in this manual, it refers to the frequency  
of the signal at this pin. This pin must be left unconnected when not using a  
crystal.  
RCOUT  
RC Oscillator Output. This signal is the output of the RC oscillator. It is  
multiplexed with a general-purpose I/O pin. This signal must be left  
unconnected when not using a crystal.  
On-Chip Debugger  
DBG  
I/O  
Debug. This pin is the control and data input and output to and from the On-  
Chip Debugger. This pin is open-drain.  
Caution:  
For operation of the On-Chip Debugger, all power pins (VDD and  
AVDD) must be supplied with power and all ground pins (VSS and  
AVSS) must be properly grounded.  
The DBG pin is open-drain and must have an external pull-up resistor  
to ensure proper operation.  
Reset  
I
RESET. Generates a Reset when asserted (driven Low).  
RESET  
Power Supply  
VDD  
I
I
I
I
Power Supply.  
Analog Power Supply.  
Ground.  
AVDD  
VSS  
AVSS  
Analog Ground.  
Pin Characteristics  
Table 4 on page 16 provides detailed information on the characteristics for each pin  
available on the Z8 Encore! XP F64XX Series products and the data is sorted  
alphabetically by the pin symbol mnemonic.  
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
16  
Table 4. Pin Characteristics of the Z8 Encore! XP F64XX Series  
Active Low  
or  
Internal Schmitt-  
Symbol  
Reset  
Tri-State Pull-up or Trigger  
Open Drain  
Output  
Mnemonic Direction Direction Active High Output Pull-down  
Input  
AVSS  
AVDD  
DBG  
N/A  
N/A  
I/O  
N/A  
N/A  
I
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Yes  
N/A  
Yes  
No  
No  
No  
No  
No  
No  
N/A  
No  
N/A  
Yes  
N/A  
Yes  
No  
VSS  
N/A  
I/O  
N/A  
I
PA[7:0]  
Yes  
Yes,  
Programmable  
PB[7:0]  
PC[7:0]  
PD[7:0]  
PE7:0]  
PF[7:0]  
PG[7:0]  
PH[3:0]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes,  
Programmable  
Yes,  
Programmable  
Yes,  
Programmable  
Yes,  
Programmable  
Yes,  
Programmable  
Yes,  
Programmable  
Yes,  
Programmable  
RESET  
VDD  
I
I
Low  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Pull-up  
No  
Yes  
No  
No  
No  
N/A  
N/A  
N/A  
No  
N/A  
I
N/A  
I
XIN  
No  
XOUT  
O
O
Yes, in  
STOP  
mode  
No  
Note: x represents integer 0, 1,... to indicate multiple pins with symbol mnemonics that differ only by the integer.  
PS019921-0308  
Signal and Pin Descriptions  
Z8 Encore! XP® F64XX Series  
Product Specification  
17  
Address Space  
The eZ8CPU can access three distinct address spaces:  
The Register File contains addresses for the general-purpose registers and the  
eZ8 CPU, peripheral, and general-purpose I/O port control registers.  
The Program Memory contains addresses for all memory locations having executable  
code and/or data.  
The Data Memory consists of the addresses for all memory locations that hold only  
data.  
These three address spaces are covered briefly in the following subsections. For more  
information on eZ8 CPU and its address space, refer to eZ8CPU Core User Manual  
(UM0128) available for download at www.zilog.com.  
Register File  
The Register File address space in the Z8 Encore! XP F64XX Series is 4 KB (4096 bytes).  
The Register File is composed of two sections—control registers and general-purpose reg-  
isters. When instructions are executed, registers are read from when defined as sources  
and written to when defined as destinations. The architecture of the eZ8 CPU allows all  
general-purpose registers to function as accumulators, address pointers, index registers,  
stack areas, or scratch pad memory.  
The upper 256 bytes of the 4 KB Register File address space are reserved for control of the  
eZ8 CPU, the on-chip peripherals, and the I/O ports. These registers are located at  
addresses from F00Hto FFFH. Some of the addresses within the 256-byte control register  
section are reserved (unavailable). Reading from an reserved Register File addresses  
returns an undefined value. Writing to reserved Register File addresses is not  
recommended and can produce unpredictable results.  
The on-chip RAM always begins at address 000H in the Register File address space. The  
Z8 Encore! XP F64XX Series provide 2 KB to 4 KB of on-chip RAM depending upon the  
device. Reading from Register File addresses outside the available RAM addresses (and  
not within the control register address space) returns an undefined value. Writing to these  
Register File addresses produces no effect. To determine the amount of RAM available for  
the specific Z8 Encore! XP F64XX Series device, see Part Selection Guide on page 2.  
Program Memory  
The eZ8CPU supports 64 KB of Program Memory address space. The Z8 Encore! XP  
F64XX Series contains 16 KB to 64 KB of on-chip Flash in the Program Memory address  
space, depending upon the device. Reading from Program Memory addresses outside the  
PS019921-0308  
Address Space  
Z8 Encore! XP® F64XX Series  
Product Specification  
18  
available Flash memory addresses returns FFH. Writing to these unimplemented Program  
Memory addresses produces no effect. Table 5 describes the Program Memory maps for  
the Z8 Encore! XP F64XX Series products.  
Table 5. Z8 Encore! XP F64XX Series Program Memory Maps  
Program Memory Address (Hex) Function  
Z8F162x Products  
0000-0001  
Option Bits  
0002-0003  
Reset Vector  
0004-0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Program Memory  
0006-0007  
0008-0037  
0038-3FFF  
Z8F242x Products  
0000-0001  
Option Bits  
0002-0003  
Reset Vector  
0004-0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Program Memory  
0006-0007  
0008-0037  
0038-5FFF  
Z8F322x Products  
0000-0001  
Option Bits  
0002-0003  
Reset Vector  
0004-0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Program Memory  
0006-0007  
0008-0037  
0038-7FFF  
Z8F482x Products  
0000-0001  
Option Bits  
0002-0003  
Reset Vector  
0004-0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
0006-0007  
PS019921-0308  
Address Space  
Z8 Encore! XP® F64XX Series  
Product Specification  
19  
Table 5. Z8 Encore! XP F64XX Series Program Memory Maps (Continued)  
Program Memory Address (Hex) Function  
0008-0037  
Interrupt Vectors*  
Program Memory  
0038-BFFF  
Z8F642x Products  
0000-0001  
Option Bits  
0002-0003  
Reset Vector  
0004-0005  
WDT Interrupt Vector  
Illegal Instruction Trap  
Interrupt Vectors*  
Program Memory  
0006-0007  
0008-0037  
0038-FFFF  
*See Table 23 on page 63 for a list of the interrupt vectors.  
Data Memory  
The Z8 Encore! XP F64XX Series does not use the eZ8 CPU’s 64 KB Data Memory  
address space.  
Information Area  
Table 6 on page 20 describes the Z8 Encore! XP F64XX Series Information Area. This  
512 byte Information Area is accessed by setting bit 7 of the Page Select Register to 1.  
When access is enabled, the Information Area is mapped into the Program Memory and  
overlays the 512 bytes at addresses FE00Hto FFFFH. When the Information Area access is  
enabled, execution of LDC and LDCI instruction from these Program Memory addresses  
return the Information Area data rather than the Program Memory data. Reads of these  
addresses through the On-Chip Debugger also returns the Information Area data.  
Execution of code from these addresses continues to correctly use the Program Memory.  
Access to the Information Area is read-only.  
PS019921-0308  
Address Space  
Z8 Encore! XP® F64XX Series  
Product Specification  
20  
Table 6. Z8 Encore! XP F64XX Series Information Area Map  
Program Memory  
Address (Hex)  
Function  
FE00H-FE3FH  
FE40H-FE53H  
Reserved  
Part Number  
20-character ASCII alphanumeric code  
Left justified and filled with zeros (ASCII Null character)  
FE54H-FFFFH  
Reserved  
PS019921-0308  
Address Space  
Z8 Encore! XP® F64XX Series  
Product Specification  
21  
Register File Address Map  
Table 7 provides the address map for the Register File of the Z8 Encore! XP F64XX  
Series products. Not all devices and package styles in the Z8 Encore! XP F64XX Series  
support Timer 3 and all of the GPIO Ports. Consider registers for unimplemented peripher-  
als as Reserved.  
Table 7. Z8 Encore! XP F64XX Series Register File Address Map  
Address (Hex) Register Description  
General-Purpose RAM  
Mnemonic  
Reset (Hex) Page No  
000-EFF  
General-Purpose Register File RAM  
XX  
Timer 0  
F00  
Timer 0 High Byte  
T0H  
00  
01  
FF  
FF  
00  
00  
00  
00  
86  
86  
87  
87  
88  
88  
89  
90  
F01  
Timer 0 Low Byte  
T0L  
F02  
Timer 0 Reload High Byte  
Timer 0 Reload Low Byte  
Timer 0 PWM High Byte  
Timer 0 PWM Low Byte  
Timer 0 Control 0  
T0RH  
T0RL  
T0PWMH  
T0PWML  
T0CTL0  
T0CTL1  
F03  
F04  
F05  
F06  
F07  
Timer 0 Control 1  
Timer 1  
F08  
Timer 1 High Byte  
T1H  
00  
01  
FF  
FF  
00  
00  
00  
00  
86  
86  
87  
87  
88  
88  
89  
90  
F09  
Timer 1 Low Byte  
T1L  
F0A  
F0B  
F0C  
F0D  
F0E  
F0F  
Timer 1 Reload High Byte  
Timer 1 Reload Low Byte  
Timer 1 PWM High Byte  
Timer 1 PWM Low Byte  
Timer 1 Control 0  
T1RH  
T1RL  
T1PWMH  
T1PWML  
T1CTL0  
T1CTL1  
Timer 1 Control 1  
Timer 2  
F10  
Timer 2 High Byte  
T2H  
00  
01  
FF  
FF  
00  
00  
00  
86  
86  
87  
87  
88  
88  
89  
F11  
Timer 2 Low Byte  
T2L  
F12  
Timer 2 Reload High Byte  
Timer 2 Reload Low Byte  
Timer 2 PWM High Byte  
Timer 2 PWM Low Byte  
Timer 2 Control 0  
T2RH  
T2RL  
T2PWMH  
T2PWML  
T2CTL0  
F13  
F14  
F15  
F16  
PS019921-0308  
Register File Address Map  
Z8 Encore! XP® F64XX Series  
Product Specification  
22  
Table 7. Z8 Encore! XP F64XX Series Register File Address Map (Continued)  
Address (Hex) Register Description  
F17 Timer 2 Control 1  
Mnemonic  
T2CTL1  
Reset (Hex) Page No  
00  
90  
Timer 3 (unavailable in the 44-pin packages)  
F18  
Timer 3 High Byte  
T3H  
00  
01  
FF  
FF  
00  
00  
00  
00  
XX  
86  
86  
87  
87  
88  
88  
89  
90  
F19  
Timer 3 Low Byte  
T3L  
F1A  
F1B  
F1C  
F1D  
F1E  
F1F  
20-3F  
Timer 3 Reload High Byte  
Timer 3 Reload Low Byte  
Timer 3 PWM High Byte  
Timer 3 PWM Low Byte  
Timer 3 Control 0  
T3RH  
T3RL  
T3PWMH  
T3PWML  
T3CTL0  
T3CTL1  
Timer 3 Control 1  
Reserved  
UART 0  
F40  
UART0 Transmit Data  
UART0 Receive Data  
UART0 Status 0  
U0TXD  
XX  
110  
111  
111  
113  
113  
111  
116  
116  
116  
U0RXD  
U0STAT0  
U0CTL0  
U0CTL1  
U0STAT1  
U0ADDR  
U0BRH  
U0BRL  
XX  
F41  
F42  
F43  
F44  
F45  
F46  
F47  
0000011Xb  
UART0 Control 0  
00  
00  
00  
00  
FF  
FF  
UART0 Control 1  
UART0 Status 1  
UART0 Address Compare Register  
UART0 Baud Rate High Byte  
UART0 Baud Rate Low Byte  
UART 1  
F48  
UART1 Transmit Data  
UART1 Receive Data  
UART1 Status 0  
U1TXD  
XX  
110  
111  
111  
113  
113  
111  
116  
116  
116  
U1RXD  
U1STAT0  
U1CTL0  
U1CTL1  
U1STAT1  
U1ADDR  
U1BRH  
U1BRL  
XX  
F49  
F4A  
F4B  
F4C  
F4D  
F4E  
F4F  
0000011Xb  
UART1 Control 0  
00  
00  
00  
00  
FF  
FF  
UART1 Control 1  
UART1 Status 1  
UART1 Address Compare Register  
UART1 Baud Rate High Byte  
UART1 Baud Rate Low Byte  
2
I C  
2
F50  
I C Data  
I2CDATA  
I2CSTAT  
I2CCTL  
I2CBRH  
I2CBRL  
I2CDST  
I2CDIAG  
00  
80  
00  
FF  
FF  
C0  
00  
XX  
152  
153  
154  
156  
156  
157  
159  
2
F51  
I C Status  
2
F52  
I C Control  
2
2
2
2
F53  
I C Baud Rate High Byte  
F54  
I C Baud Rate Low Byte  
F55  
I C Diagnostic State  
F56  
I C Diagnostic Control  
F57-F5F  
Reserved  
Serial Peripheral Interface (SPI)  
PS019921-0308  
Register File Address Map  
Z8 Encore! XP® F64XX Series  
Product Specification  
23  
Table 7. Z8 Encore! XP F64XX Series Register File Address Map (Continued)  
Address (Hex) Register Description  
Mnemonic  
SPIDATA  
SPICTL  
SPISTAT  
SPIMODE  
SPIDST  
SPIBRH  
SPIBRL  
Reset (Hex) Page No  
F60  
SPI Data  
XX  
00  
01  
00  
00  
XX  
FF  
FF  
XX  
133  
133  
135  
136  
137  
F61  
SPI Control  
F62  
SPI Status  
F63  
SPI Mode  
SPI Diagnostic State  
Reserved  
SPI Baud Rate High Byte  
SPI Baud Rate Low Byte  
Reserved  
F64  
F65  
F66  
138  
138  
F67  
F68-F6F  
Analog-to-Digital Converter  
F70  
ADC Control  
ADCCTL  
ADCD_H  
ADCD_L  
20  
175  
F71  
Reserved  
XX  
XX  
XX  
XX  
F72  
ADC Data High Byte  
ADC Data Low Bits  
Reserved  
176  
176  
F73  
F74-FAF  
DMA 0  
FB0  
DMA0 Control  
DMA0CTL  
DMA0IO  
DMA0H  
00  
163  
165  
165  
166  
166  
FB1  
DMA0 I/O Address  
XX  
XX  
FB2  
DMA0 End/Start Address High Nibble  
DMA0 Start Address Low Byte  
DMA0 End Address Low Byte  
FB3  
DMA0START XX  
FB4  
DMA0END  
XX  
DMA 1  
FB8  
DMA1 Control  
DMA1CTL  
DMA1IO  
DMA1H  
00  
163  
165  
165  
166  
166  
FB9  
DMA1 I/O Address  
XX  
XX  
FBA  
FBB  
FBC  
DMA1 End/Start Address High Nibble  
DMA1 Start Address Low Byte  
DMA1 End Address Low Byte  
DMA1START XX  
DMA1END  
XX  
DMA ADC  
FBD  
DMA_ADC Address  
DMA_ADC Control  
DMA_ADC Status  
DMAA_ADDR XX  
DMAACTL 00  
DMAASTAT 00  
167  
168  
169  
FBE  
FBF  
Interrupt Controller  
FC0  
FC1  
FC2  
FC3  
FC4  
FC5  
FC6  
FC7  
FC8  
Interrupt Request 0  
IRQ0  
00  
00  
00  
00  
00  
00  
00  
00  
00  
67  
70  
70  
68  
71  
71  
69  
72  
72  
IRQ0 Enable High Bit  
IRQ0 Enable Low Bit  
Interrupt Request 1  
IRQ1 Enable High Bit  
IRQ1 Enable Low Bit  
Interrupt Request 2  
IRQ2 Enable High Bit  
IRQ2 Enable Low Bit  
IRQ0ENH  
IRQ0ENL  
IRQ1  
IRQ1ENH  
IRQ1ENL  
IRQ2  
IRQ2ENH  
IRQ2ENL  
PS019921-0308  
Register File Address Map  
Z8 Encore! XP® F64XX Series  
Product Specification  
24  
Table 7. Z8 Encore! XP F64XX Series Register File Address Map (Continued)  
Address (Hex) Register Description  
Mnemonic  
IRQES  
IRQPS  
IRQCTL  
Reset (Hex) Page No  
FC9-FCC  
FCD  
Reserved  
XX  
Interrupt Edge Select  
Interrupt Port Select  
Interrupt Control  
00  
00  
00  
74  
74  
75  
FCE  
FCF  
GPIO Port A  
FD0  
Port A Address  
Port A Control  
Port A Input Data  
Port A Output Data  
PAADDR  
PACTL  
PAIN  
00  
00  
XX  
00  
57  
58  
62  
62  
FD1  
FD2  
FD3  
PAOUT  
GPIO Port B  
FD4  
Port B Address  
Port B Control  
Port B Input Data  
Port B Output Data  
PBADDR  
PBCTL  
PBIN  
00  
00  
XX  
00  
57  
58  
62  
62  
FD5  
FD6  
FD7  
PBOUT  
GPIO Port C  
FD8  
Port C Address  
Port C Control  
Port C Input Data  
Port C Output Data  
PCADDR  
PCCTL  
PCIN  
00  
00  
XX  
00  
57  
58  
62  
62  
FD9  
FDA  
FDB  
PCOUT  
GPIO Port D  
FDC  
Port D Address  
Port D Control  
Port D Input Data  
Port D Output Data  
PDADDR  
PDCTL  
PDIN  
00  
00  
XX  
00  
57  
58  
62  
62  
FDD  
FDE  
FDF  
PDOUT  
GPIO Port E  
FE0  
Port E Address  
Port E Control  
Port E Input Data  
Port E Output Data  
PEADDR  
PECTL  
PEIN  
00  
00  
XX  
00  
57  
58  
62  
62  
FE1  
FE2  
FE3  
PEOUT  
GPIO Port F  
FE4  
Port F Address  
Port F Control  
Port F Input Data  
Port F Output Data  
PFADDR  
PFCTL  
PFIN  
00  
00  
XX  
00  
57  
58  
62  
62  
FE5  
FE6  
FE7  
PFOUT  
GPIO Port G  
FE8  
Port G Address  
Port G Control  
Port G Input Data  
Port G Output Data  
PGADDR  
PGCTL  
PGIN  
00  
00  
XX  
00  
57  
58  
62  
62  
FE9  
FEA  
FEB  
PGOUT  
GPIO Port H  
FEC  
Port H Address  
Port H Control  
PHADDR  
PHCTL  
00  
00  
57  
58  
FED  
PS019921-0308  
Register File Address Map  
Z8 Encore! XP® F64XX Series  
Product Specification  
25  
Table 7. Z8 Encore! XP F64XX Series Register File Address Map (Continued)  
Address (Hex) Register Description  
Mnemonic  
PHIN  
PHOUT  
Reset (Hex) Page No  
FEE  
FEF  
Port H Input Data  
XX  
00  
62  
62  
Port H Output Data  
Watchdog Timer  
FF0  
Watchdog Timer Control  
WDTCTL  
WDTU  
WDTH  
WDTL  
XXX00000b 96  
FF1  
Watchdog Timer Reload Upper Byte  
Watchdog Timer Reload High Byte  
Watchdog Timer Reload Low Byte  
Reserved  
FF  
FF  
FF  
XX  
97  
97  
97  
FF2  
FF3  
FF4-FF7  
Flash Memory Controller  
FF8  
FF8  
FF9  
Flash Control  
FCTL  
FSTAT  
FPS  
00  
00  
00  
00  
00  
00  
XX  
186  
186  
187  
188  
188  
188  
Flash Status  
Page Select  
FF9 (if enabled) Flash Sector Protect  
FPROT  
FFA  
Flash Programming Frequency High Byte FFREQH  
Flash Programming Frequency Low Byte FFREQL  
Reserved  
FFB  
FF4-FF8  
Read-Only Memory Controller  
FF9  
Page Select  
Reserved  
RPS  
00  
XX  
FFA-FFB  
eZ8 CPU  
FFC  
Flags  
XX  
XX  
XX  
XX  
Refer to eZ8  
FFD  
Register Pointer  
Stack Pointer High Byte  
Stack Pointer Low Byte  
RP  
CPU Core  
User Manual  
(UM0128)  
FFE  
SPH  
SPL  
FFF  
Note: XX=Undefined  
PS019921-0308  
Register File Address Map  
Z8 Encore! XP® F64XX Series  
Product Specification  
26  
Control Register  
Summary  
Timer 0 Control 1  
T0CTL1 (F07H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer Mode  
000 = One-Shot mode  
001 = CONTINUOUS mode  
010 = COUNTER mode  
011 = PWM mode  
Timer 0 High Byte  
T0H (F00H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
100 = CAPTURE mode  
101 = COMPARE mode  
110 = GATED mode  
Timer 0 current count value [15:8]  
111 = Capture/COMPARE mode  
Prescale Value  
000 = Divide by 1  
001 = Divide by 2  
010 = Divide by 4  
011 = Divide by 8  
100 = Divide by 16  
101 = Divide by 32  
110 = Divide by 64  
111 = Divide by 128  
Timer 0 Low Byte  
T0L (F01H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 0 current count value [7:0]  
Timer Input/Output Polarity  
Timer 0 Reload High Byte  
T0RH (F02H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Operation of this bit is a function of  
the current operating mode of the  
timer  
Timer 0 reload value [15:8]  
Timer Enable  
0 = Timer is disabled  
1 = Timer is enabled  
Timer 0 Reload Low Byte  
T0RL (HF03 - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 1 High Byte  
T1H (F08H - Read/Write)  
Timer 0 reload value [7:0]  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 1 current count value [15:8]  
Timer 0 PWM High Byte  
T0PWMH (F04H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 1 Low Byte  
T1L (F09H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 0 PWM value [15:8]  
Timer 1 current count value [7:0]  
Timer 0 Control 0  
T0CTL0 (F06H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 1 Reload High Byte  
T1RH (F0AH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved  
Cascade Timer  
Timer 1 reload value [15:8]  
0 = Timer 0 Input signal is GPIO pin  
1 = Timer 0 Input signal is Timer 3  
out  
Reserved  
Timer 1 Reload Low Byte  
T1RL (F0BH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 1 reload value [7:0]  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
27  
Timer 1 PWM High Byte  
T1PWMH (F0CH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 2 High Byte  
T2H (F10H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 1 PWM value [15:8]  
Timer 2 current count value [15:8]  
Timer 1 PWM Low Byte  
T1PWML (F0DH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 2 Low Byte  
T2L (F11H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 1 PWM value [7:0]  
Timer 2 current count value [7:0]  
Timer 1 Control 0  
Timer 2 Reload High Byte  
T2RH (F12H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
T1CTL0 (F0EH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved  
Timer 2 reload value [15:8]  
Cascade Timer  
0 = Timer 1 Input signal is GPIO pin  
1 = Timer 1 Input signal is Timer 0  
Timer 2 Reload Low Byte  
T2RL (F13H- Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
out  
Reserved  
Timer 2 reload value [7:0]  
Timer 1 Control 1  
T1CTL1 (F0FH - Read/Write)  
Timer 2 PWM High Byte  
T2PWMH (F14H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer Mode  
000 = One-Shot mode  
001 = CONTINUOUS mode  
010 = COUNTER mode  
011 = PWM mode  
Timer 2 PWM value [15:8]  
100 = CAPTURE mode  
101 = COMPARE mode  
110 = GATED mode  
Timer 2 PWM Low Byte  
T2PWML (F15H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
111 = Capture/COMPARE mode  
Prescale Value  
000 = Divide by 1  
001 = Divide by 2  
010 = Divide by 4  
011 = Divide by 8  
100 = Divide by 16  
101 = Divide by 32  
110 = Divide by 64  
111 = Divide by 128  
Timer 2 PWM value [7:0]  
Timer 2 Control 0  
T2CTL0 (F16H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer Input/Output Polarity  
Reserved  
Operation of this bit is a function of  
Cascade Timer  
the current operating mode of the  
timer  
0 = Timer 2 Input signal is GPIO pin  
1 = Timer 2 Input signal is Timer 1  
out  
Reserved  
Timer Enable  
0 = Timer is disabled  
1 = Timer is enabled  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
28  
Timer 2 Control 1  
Timer 3 PWM High Byte  
T2CTL1 (F17H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
T3PWMH (F1CH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer Mode  
Timer 3 PWM value [15:8]  
000 = One-Shot mode  
001 = CONTINUOUS mode  
010 = COUNTER mode  
011 = PWM mode  
Timer 3 PWM Low Byte  
T3PWML (F1DH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
100 = CAPTURE mode  
101 = COMPARE mode  
110 = GATED mode  
111 = CAPTURE/COMPARE mode  
Timer 3 PWM value [7:0]  
Prescale Value  
000 = Divide by 1  
001 = Divide by 2  
010 = Divide by 4  
011 = Divide by 8  
100 = Divide by 16  
101 = Divide by 32  
110 = Divide by 64  
111 = Divide by 128  
Timer 3 Control 0  
T3CTL0 (F1EH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved  
Cascade Timer  
Timer Input/Output Polarity  
0 = Timer 3 Input signal is GPIO pin  
Operation of this bit is a function of  
1 = Timer 3 Input signal is Timer 2  
the current operating mode of the  
out  
Reserved  
timer  
Timer Enable  
0 = Timer is disabled  
1 = Timer is enabled  
Timer 3 Control 1  
T3CTL1 (F1FH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer 3 High Byte  
T3H (F18H - Read/Write)  
Timer Mode  
D7 D6 D5 D4 D3 D2 D1 D0  
000 = One-Shot mode  
001 = CONTINUOUS mode  
010 = COUNTER mode  
011 = PWM mode  
Timer 3 current count value [15:8]  
100 = CAPTURE mode  
101 = COMPARE mode  
110 = GATED mode  
Timer 3 Low Byte  
111 = Capture/COMPARE mode  
T3L (F19H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Prescale Value  
000 = Divide by 1  
001 = Divide by 2  
010 = Divide by 4  
011 = Divide by 8  
100 = Divide by 16  
101 = Divide by 32  
110 = Divide by 64  
111 = Divide by 128  
Timer 3 current count value [7:0]  
Timer 3 Reload High Byte  
T3RH (F1AH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer Input/Output Polarity  
Timer 3 reload value [15:8]  
Operation of this bit is a function of  
the current operating mode of the  
timer  
Timer 3 Reload Low Byte  
T3RL (F1BH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Timer Enable  
0 = Timer is disabled  
1 = Timer is enabled  
Timer 3 reload value [7:0]  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
29  
UART0 Transmit Data  
U0TXD (F40H - Write Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
UART0 Control 0  
U0CTL0 (F42H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
UART0 transmitter data byte [7:0]  
Loop Back Enable  
0 = Normal operation  
1 = Transmit data is looped back to  
the receiver  
UART0 Receive Data  
U0RXD (F40H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Stop Bit Select  
0 = Transmitter sends 1 Stop bit  
1 = Transmitter sends 2 Stop bits  
UART0 receiver data byte [7:0]  
Send Break  
0 = No break is sent  
1 = Output of the transmitter is zero  
UART0 Status 0  
Parity Select  
0 = Even parity  
1 = Odd parity  
U0STAT0 (F41H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Parity Enable  
CTS signal  
0 = Parity is disabled  
1 = Parity is enabled  
Returns the level of the CTS signal  
Transmitter Empty  
CTS Enable  
0 = Data is currently transmitting  
1 = Transmission is complete  
0 = CTS signal has no effect on the  
transmitter  
1 = UART recognizes CTS signal as  
Transmitter Data Register Empty  
0 = Transmit Data Register is full  
1 = Transmit Data register is empty  
a
transmit enable control signal  
Receive Enable  
Break Detect  
0 = Receiver disabled  
1 = Receiver enabled  
0 = No break occurred  
1 = A break occurred  
Transmit Enable  
Framing Error  
0 = Transmitter disabled  
1 = Transmitter enabled  
0 = No framing error occurred  
1 = A framing occurred  
Overrun Error  
0 = No overrun error occurred  
1 = An overrun error occurred  
Parity Error  
0 = No parity error occurred  
1 = A parity error occurred  
Receive Data Available  
0 = Receive Data Register is empty  
1 = A byte is available in the Receive  
Data Register  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
30  
UART0 Address Compare  
U0ADDR (F45H - Read/Write)  
UART0 Control 1  
D7 D6 D5 D4 D3 D2 D1 D0  
U0CTL1 (F43H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
UART0 Address Compare [7:0]  
Infrared Encoder/Decoder Enable  
0 = Infrared endec is disabled  
1 = Infrared endec is enabled  
Received Data Interrupt Enable  
0 = Received data and errors  
UART0 Baud Rate Generator High Byte  
U0BRH (F46H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
generate  
interrupt requests  
1 = Only errors generate interrupt  
requests. Received data does  
UART0 Baud Rate divisor [15:8]  
not.  
Baud Rate Registers Control  
UART0 Baud Rate Generator Low Byte  
U0BRL (F47H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Refer to UART chapter for operation  
Driver Enable Polarity  
0 = DE signal is active High  
1 = DE signal is active Low  
UART0 Baud Rate divisor [7:0]  
Multiprocessor Bit Transmit  
0 = Send a 0 as the multiprocessor  
UART1 Transmit Data  
U1TXD (F48H - Write Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
bit  
1 = Send a 1 as the multiprocessor  
bit  
Multiprocessor Mode [0]  
UART1 transmitter data byte[7:0]  
See Multiprocessor Mode [1] below  
Multiprocessor (9-bit) Enable  
0 = Multiprocessor mode is disabled  
1 = Multiprocessor mode is enabled  
UART1 Receive Data  
U1RXD (F48H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Multiprocessor Mode [1]  
with Multiprocess Mode bit 0:  
00 = Interrupt on all received bytes  
01 = Interrupt only on address bytes  
10 = Interrupt on address match and  
following data  
UART receiver data byte [7:0]  
11 = Interrupt on data following an  
address match  
UART0 Status 1  
U0STAT1 (F44H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Mulitprocessor Receive  
Returns value of last multiprocessor  
bit  
New Frame  
0 = Current byte is not start of frame  
1 = Current byte is start of new  
frame  
Reserved  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
31  
UART1 Status 0  
UART1 Control 0  
U1STAT0 (F49H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
U1CTL0 (F4AH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
CTS signal  
Loop Back Enable  
Returns the level of the CTS signal  
0 = Normal operation  
1 = Transmit data is looped back to  
the receiver  
Transmitter Empty  
0 = Data is currently transmitting  
1 = Transmission is complete  
Stop Bit Select  
0 = Transmitter sends 1 Stop bit  
1 = Transmitter sends 2 Stop bits  
Transmitter Data Register Empty  
0 = Transmit Data Register is full  
1 = Transmit Data register is empty  
Send Break  
0 = No break is sent  
1 = Output of the transmitter is zero  
Break Detect  
0 = No break occurred  
1 = A break occurred  
Parity Select  
0 = Even parity  
1 = Odd parity  
Framing Error  
0 = No framing error occurred  
1 = A framing occurred  
Parity Enable  
0 = Parity is disabled  
1 = Parity is enabled  
Overrun Error  
0 = No overrun error occurred  
1 = An overrun error occurred  
CTS Enable  
0 = CTS signal has no effect on the  
transmitter  
Parity Error  
1 = UART recognizes CTS signal as  
0 = No parity error occurred  
1 = A parity error occurred  
a
transmit enable control signal  
Receive Data Available  
0 = Receive Data Register is empty  
1 = A byte is available in the Receive  
Data Register  
Receive Enable  
0 = Receiver disabled  
1 = Receiver enabled  
Transmit Enable  
0 = Transmitter disabled  
1 = Transmitter enabled  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
32  
UART1 Address Compare  
U0ADDR (F4DH - Read/Write)  
UART1 Control 1  
D7 D6 D5 D4 D3 D2 D1 D0  
U0CTL1 (F4BH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
UART1 Address Compare [7:0]  
Infrared Encoder/Decoder Enable  
0 = Infrared endec is disabled  
1 = Infrared endec is enabled  
Received Data Interrupt Enable  
0 = Received data and errors  
UART1 Baud Rate Generator High Byte  
U0BRH (F4EH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
generate  
interrupt requests  
1 = Only errors generate interrupt  
requests. Received data does  
UART1 Baud Rate divisor [15:8]  
not.  
Baud Rate Registers Control  
UART1 Baud Rate Generator Low Byte  
U1BRL (F4FH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Refer to UART chapter for operation  
Driver Enable Polarity  
0 = DE signal is active High  
1 = DE signal is active Low  
UART1 Baud Rate divisor [7:0]  
Multiprocessor Bit Transmit  
0 = Send a 0 as the multiprocessor  
2
I C Data  
bit  
1 = Send a 1 as the multiprocessor  
bit  
I2CDATA (F50H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Multiprocessor Mode [0]  
I2C data [7:0]  
See Multiprocessor Mode [1] below  
Multiprocessor (9-bit) Enable  
0 = Multiprocessor mode is disabled  
1 = Multiprocessor mode is enabled  
Multiprocessor Mode [1]  
with Multiprocess Mode bit 0:  
00 = Interrupt on all received bytes  
01 = Interrupt only on address bytes  
10 = Interrupt on address match and  
following data  
11 = Interrupt on data following an  
address match  
UART1 Status 1  
U0STAT1 (F4CH - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Mulitprocessor Receive  
Returns value of last multiprocessor  
bit  
New Frame  
0 = Current byte is not start of frame  
1 = Current byte is start of new  
frame  
Reserved  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
33  
2
I C Status  
2
I2CSTAT (F51H - Read Only)  
I C Control  
D7 D6 D5 D4 D3 D2 D1 D0  
I2CCTL (F52H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
NACK Interrupt  
0 = No action required to service  
I2C Signal Filter Enable  
NAK  
0 = Digital filtering disabled  
1 = START/STOP not set after NAK  
1 = Low-pass digital filters enabled  
on SDA and SCL input signals  
Data Shift State  
0 = Data is not being transferred  
1 = Data is being transferred  
Flush Data  
0 = No effect  
1 = Clears I2C Data register  
Transmit Address State  
0 = Address is not being transferred  
1 = Address is being transferred  
Send NAK  
0 = Do not send NAK  
1 = Send NAK after next byte  
Read  
received  
0 = Write operation  
1 = Read operation  
from slave  
Enable TDRE Interrupts  
10-Bit Address  
0 = Do not generate an interrupt  
0 = 7-bit address being transmitted  
1 = 10-bit address being transmitted  
when  
the I2C Data register is empty  
1 = Generate an interrupt when the  
Acknowledge  
I2C  
0 = Acknowledge not  
transmitted/received  
1 = For last byte, Acknowledge was  
transmitted/received  
Transmit Data register is empty  
Baud Rate Generator Interrupt  
0 = Interrupts behave as set by I2C  
control  
Receive Data Register Full  
1 = BRG generates an interrupt  
0 = I2C has not received data  
when  
1 = Data register contains received  
it counts down to zero  
data  
Send Stop Condition  
Transmit Data Register Empty  
0 = Data register is full  
0 = Do not issue Stop condition after  
data transmission is complete  
1 = Issue Stop condition after data  
transmission is complete  
1 = Data register is empty  
Send Start Condition  
0 = Do not send Start Condition  
1 = Send Start Condition  
I2C Enable  
0 = I2C is disabled  
1 = I2C is enabled  
I2C Baud Rate Generator High Byte  
I2CBRH (F53H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
I2C Baud Rate divisor [15:8]  
I2C Baud Rate Generator Low Byte  
I2CBRL (F54H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
I2C Baud Rate divisor [7:0]  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
34  
SPI Data  
SPI Status  
SPIDATA (F60H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
SPISTAT (F62H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
SPI Data [7:0]  
Slave Select  
0 = If Slave, SS pin is asserted  
1 = If Slave, SS pin is not asserted  
Transmit Status  
SPI Control  
0 = No data transmission in progress  
SPICTL (F61H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
1 = Data transmission now in  
progress  
Reserved  
SPI Enable  
0 = SPI disabled  
1 = SPI enabled  
Slave Mode Transaction Abort  
0 = No slave mode transaction abort  
detected  
Master Mode Enabled  
0 = SPI configured in Slave mode  
1 = SPI configured in Master mode  
1 = Slave mode transaction abort  
was  
detected  
Wire-OR (open-drain) Mode  
0 = SPI signals not configured for  
open-drain  
Collision  
0 = No multi-master collision  
1 = SPI signals (SCK, SS, MISO,  
detected  
and  
1 = Multi-master collision was  
MOSI) configured for open-  
detected  
drain  
Overrun  
Clock Polarity  
0 = No overrun error detected  
1 = Overrun error was detected  
0 = SCK idles Low  
1 = SPI idles High  
Interrupt Request  
Phase Select  
0 = No SPI interrupt request pending  
1 = SPI interrupt request is pending  
Sets the phase relationship of the  
data  
to the clock.  
BRG Timer Interrupt Request  
0 = BRG timer function is disabled  
1 = BRG time-out interrupt is  
enabled  
SPI Mode  
SPIMODE (F63H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Start an SPI Interrupt Request  
0 = No effect  
Slave Select Value  
If Master and SPIMODE[1] = 1:  
0 = SS pin driven Low  
1 = Generate an SPI interrupt  
1 = SS pin driven High  
request  
Slave Select I/O  
Interrupt Request Enable  
0 = SS pin configured as an input  
1 = SS pin configured as an output  
(Master mode only)  
0 = SPI interrupt requests are  
disabled  
1 = SPI interrupt requests are  
enabled  
Number of Data Bits Per Character  
000 = 8 bits  
001 = 1 bit  
010 = 2 bits  
011 = 3 bits  
100 = 4 bits  
101 = 5 bit  
110 = 6 bits  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
35  
SPI Mode  
ADC Control  
SPIMODE (F63H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
111 = 7 bits  
ADCCTL (F70H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Analog Input Select  
Diagnostic Mode Control  
0000 = ANA0  
0010 = ANA2  
0100 = ANA4  
0110 = ANA6  
1000 = ANA8  
0001 = ANA1  
0011 = ANA3  
0101 = ANA5  
0111 = ANA7  
1001 = ANA9  
0 = Reading from SPIBRH, SPIBRL  
returns reload values  
1 = Reading from SPIBRH, SPIBRL  
returns current BRG count value  
1010 = ANA10 1011 = ANA11  
11xx = Reserved  
Reserved  
Continuous Mode Select  
0 = Single-shot conversion  
1 = Continuous conversion  
SPI Diagnostic State  
External VREF select  
SPIDST (F64H - Read Only)  
0 = Internal voltage reference  
D7 D6 D5 D4 D3 D2 D1 D0  
selected  
1 = External voltage reference  
SPI State  
selected  
Transmit Clock Enable  
Reserved  
0 = Internal transmit clock enable  
signal is deasserted  
Conversion Enable  
1 = Internal transmit clock enable  
signal is asserted  
0 = Conversion is complete  
1 = Begin conversion  
Shift Clock Enable  
0 = Internal shift clock enable signal  
is deasserted  
1 = Internal shift clock enable signal  
is asserted  
ADC Data High Byte  
ADCD_H (F72H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
SPI Baud Rate Generator High Byte  
ADC Data [9:2]  
SPIBRH (F66H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
ADC Data Low Bits  
SPI Baud Rate divisor [15:8]  
ADCD_L (F73H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
SPI Baud Rate Generator Low Byte  
SPIBRL (F67H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved  
ADC Data [1:0]  
SPI Baud Rate divisor [7:0]  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
36  
DMA0 Control  
DMA0CTL (FB0H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
DMA0 Address High Nibble  
DMA0H (FB2H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Request Trigger Source Select  
000 = Timer 0  
DMA0 Start Address [11:8]  
001 = Timer 1  
010 = Timer 2  
DMA0 End Address [11:8]  
011 = Timer 3  
100 = UART0 Received Data  
register  
contains valid data  
DMA0 Start/Current Address Low Byte  
DMA0START (FB3H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
101 = UART1 Received Data  
register  
contains valid data  
110 = I2C receiver contains valid  
DMA0 Start Address [7:0]  
data  
111 = Reserved  
Word Select  
DMA0 End Address Low Byte  
DMA0END (FB4H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
0 = DMA transfers 1 byte per  
request  
1 = DMA transfers 2 bytes per  
request  
DMA0 End Address [7:0]  
DMA0 Interrupt Enable  
0 = DMA0 does not generate  
interrupts  
1 = DMA0 generates an interrupt  
when  
End Address data is transferred  
DMA0 Data Transfer Direction  
0 = Register File to peripheral  
registers  
1 = Peripheral registers to Register  
File  
DMA0 Loop Enable  
0 = DMA disables after End Address  
1 = DMA reloads Start Address after  
End Address and continues to  
run  
DMA0 Enable  
0 = DMA0 is disabled  
1 = DMA0 is enabled  
DMA0 I/O Address  
DMA0IO (FB1H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
DMA0 Peripheral Register Address  
Low byte of on-chip peripheral  
control  
registers on Register File page FH  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
37  
DMA1 Control  
DMA1 Address High Nibble  
DMA1CTL (FB8H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
DMA1H (FBAH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Request Trigger Source Select  
DMA1 Start Address [11:8]  
000 = Timer 0  
001 = Timer 1  
DMA1 End Address [11:8]  
010 = Timer 2  
011 = Timer 3  
100 = UART0 Transmit Data register  
is empty  
DMA1 Start/Current Address Low Byte  
DMA1START (FBBH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
101 = UART1 Transmit Data register  
is empty  
110 = I2C Transmit Data register  
is empty  
DMA1 Start Address [7:0]  
111 = Reserved  
Word Select  
0 = DMA transfers 1 byte per  
DMA1 End Address Low Byte  
DMA1END (FBCH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
request  
1 = DMA transfers 2 bytes per  
request  
DMA1 Interrupt Enable  
DMA1 End Address [7:0]  
0 = DMA1 does not generate  
interrupts  
1 = DMA1 generates an interrupt  
DMA_ADC Address  
when  
End Address data is transferred  
DMAA_ADDR (FBDH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
DMA1 Data Transfer Direction  
0 = Register File to peripheral  
Reserved  
registers  
1 = Peripheral registers to Register  
DMA_ADC Address  
File  
DMA1 Loop Enable  
0 = DMA disables after End Address  
1 = DMA reloads Start Address after  
End Address and continues to  
run  
DMA1 Enable  
0 = DMA1 is disabled  
1 = DMA1 is enabled  
DMA1 I/O Address  
DMA1IO (FB9H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
DMA1 Peripheral Register Address  
Low byte of on-chip peripheral  
control  
registers on Register File page FH  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
38  
DMA_ADC Control  
Interrupt Request 0  
DMAACTL (FBEH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
IRQ0 (FC0H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
ADC Analog Input Number  
ADC Interrupt Request  
0000 = Analog input 0 updated  
0001 = Analog input 0-1 updated  
0010 = Analog input 0-2 updated  
0011 = Analog input 0-3 updated  
0100 = Analog input 0-4 updated  
0101 = Analog input 0-5 updated  
0100 = Analog input 0-6 updated  
0101 = Analog input 0-7 updated  
1000 = Analog input 0-8 updated  
1001 = Analog input 0-9 updated  
1010 = Analog input 0-10 updated  
1011 = Analog inputs 0-11 updated  
11xx = Reserved  
SPI Interrupt Request  
I2C Interrupt Request  
UART 0 Transmitter Interrupt  
UART 0 Receiver Interrupt Request  
Timer 0 Interrupt Request  
Timer 1 Interrupt Request  
Timer 2 Interrupt Request  
Reserved  
For all of the above peripherals:  
0 = Peripheral IRQ is not pending  
1 = Peripheral IRQ is awaiting  
service  
Interrupt request enable  
0 = DMA_ADC does not generate  
interrupt requests  
1 = DMA_ADC generates interrupt  
requests after last analog input  
DMA_ADC Enable  
IRQ0 Enable High Bit  
0 = DMA_ADC is disabled  
1 = DMA_ADC is enabled  
IRQ0ENH (FC1H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
ADC IRQ Enable Hit Bit  
DMA Status  
DMAA_STAT (FBFH - Read Only)  
SPI IRQ Enable High Bit  
D7 D6 D5 D4 D3 D2 D1 D0  
I2C IRQ Enable High Bit  
DMA0 Interrupt Request Indicator  
UART 0 Transmitter IRQ Enable  
UART 0 Receiver IRQ Enable High  
Timer 0 IRQ Enable High Bit  
Timer 1 IRQ Enable High Bit  
Timer 2 IRQ Enable High Bit  
0 = DMA0 is not the source of the  
IRQ  
1 = DMA0 is the source of the IRQ  
DMA1 Interrupt Request Indicator  
0 = DMA1 is not the source of the  
IRQ  
1 = DMA1 is the source of the IRQ  
DMA_ADC Interrupt Request  
0 = DMA_ADC is not the source of  
the  
IRQ  
1 = DMA_ADC is the source of the  
IRQ  
Reserved  
Current ADC analog input  
Identifies the analog input the ADC  
is  
currently converting  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
39  
Interrupt Request 2  
IRQ0 Enable Low Bit  
IRQ2 (FC6H - Read/Write)  
IRQ0ENL (FC2H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Port C Pin Interrupt Request  
ADC IRQ Enable Hit Bit  
0 = IRQ from corresponding pin [3:0]  
is not pending  
SPI IRQ Enable Low Bit  
1 = IRQ from corresponding pin [3:0]  
is awaiting service  
I2C IRQ Enable Low Bit  
DMA Interrupt Request  
UART 0 Transmitter IRQ Enable  
UART 0 Receiver IRQ Enable Low  
Timer 0 IRQ Enable Low Bit  
Timer 1 IRQ Enable Low Bit  
Timer 2 IRQ Enable Low Bit  
UART 1 Transmitter Interrupt  
UART 1 Receiver Interrupt Request  
Timer 3 Interrupt Request  
For all of the above peripherals:  
0 = Peripheral IRQ is not pending  
1 = Peripheral IRQ is awaiting  
service  
Interrupt Request 1  
IRQ1 (FC3H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
IRQ2 Enable High Bit  
IRQ2ENH (FC7H - Read/Write)  
Port A or D Pin Interrupt Request  
D7 D6 D5 D4 D3 D2 D1 D0  
0 = IRQ from corresponding pin [7:0]  
is not pending  
Port C Pin IRQ Enable High Bit  
1 = IRQ from corresponding pin [7:0]  
is awaiting service  
DMA IRQ Enable High Bit  
UART 1 Transmitter IRQ Enable  
UART 1 Receiver IRQ Enable High  
Timer 3 IRQ Enable High Bit  
IRQ1 Enable High Bit  
IRQ1ENH (FC4H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port A or D Pin IRQ Enable High Bit  
IRQ2 Enable Low Bit  
IRQ2ENL (FC8H - Read/Write)  
IRQ1 Enable Low Bit  
D7 D6 D5 D4 D3 D2 D1 D0  
IRQ1ENL (FC5H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port C Pin IRQ Enable Low Bit  
Port A or D Pin IRQ Enable Low Bit  
DMA IRQ Enable Low Bit  
UART 1 Transmitter IRQ Enable  
UART 1 Receiver IRQ Enable Low  
Timer 3 IRQ Enable Low Bit  
Interrupt Edge Select  
IRQES (FCDH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port A or D Interrupt Edge Select  
0 = Falling edge  
1 = Rising edge  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
40  
Interrupt Port Select  
IRQPS (FCEH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port B Address  
PBADDR (FD4H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port A or D Port Pin Select [7:0]  
Port B Address[7:0]  
0 = Port A pin is the interrupt source  
1 = Port D pin is the interrupt source  
Selects Port Sub-Registers:  
00H = No function  
01H = Data direction  
02H = Alternate function  
03H = Output control (open-drain)  
04H = High drive enable  
05H = Stop Mode Recovery enable  
06H-FFH = No function  
Interrupt Control  
IRQCTL (FCFH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Reserved  
Port B Control  
Interrupt Request Enable  
PBCTL (FD5H - Read/Write)  
0 = Interrupts are disabled  
1 = Interrupts are enabled  
D7 D6 D5 D4 D3 D2 D1 D0  
Port B Control[7:0]  
Provides Access to Port Sub-  
Registers  
Port A Address  
PAADDR (FD0H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port B Input Data  
Port A Address[7:0]  
PBIN (FD6H - Read Only)  
Selects Port Sub-Registers:  
00H = No function  
D7 D6 D5 D4 D3 D2 D1 D0  
01H = Data direction  
02H = Alternate function  
03H = Output control (open-drain)  
04H = High drive enable  
05H = Stop Mode Recovery enable  
06H-FFH = No function  
Port B Input Data [7:0]  
Port B Output Data  
PBOUT (FD7H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port A Control  
Port B Output Data [7:0]  
PACTL (FD1H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port A Control[7:0]  
Port C Address  
Provides Access to Port Sub-  
Registers  
PCADDR (FD8H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port C Address[7:0]  
Selects Port Sub-Registers:  
00H = No function  
Port A Input Data  
PAIN (FD2H - Read Only)  
01H = Data direction  
D7 D6 D5 D4 D3 D2 D1 D0  
02H = Alternate function  
03H = Output control (open-drain)  
04H = High drive enable  
05H = Stop Mode Recovery enable  
06H-FFH = No function  
Port A Input Data [7:0]  
Port A Output Data  
PAOUT (FD3H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port A Output Data [7:0]  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
41  
Port C Control  
Port D Output Data  
PCCTL (FD9H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
PDOUT (FDFH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port C Control[7:0]  
Port D Output Data [7:0]  
Provides Access to Port Sub-  
Registers  
Port E Address  
PEADDR (FE0H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port C Input Data  
PCIN (FDAH - Read Only)  
Port E Address[7:0]  
D7 D6 D5 D4 D3 D2 D1 D0  
Selects Port Sub-Registers:  
00H = No function  
Port C Input Data [7:0]  
01H = Data direction  
02H = Alternate function  
03H = Output control (open-drain)  
04H = High drive enable  
05H = Stop Mode Recovery enable  
06H-FFH = No function  
Port C Output Data  
PCOUT (FDBH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port C Output Data [7:0]  
Port E Control  
PECTL (FE1H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port D Address  
PDADDR (FDCH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port E Control[7:0]  
Provides Access to Port Sub-  
Registers  
Port D Address[7:0]  
Selects Port Sub-Registers:  
00H = No function  
01H = Data direction  
Port E Input Data  
02H = Alternate function  
03H = Output control (open-drain)  
04H = High drive enable  
05H = Stop Mode Recovery enable  
06H-FFH = No function  
PEIN (FE2H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port E Input Data [7:0]  
Port D Control  
Port E Output Data  
PDCTL (FDDH - Read/Write)  
PEOUT (FE3H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Port D Control[7:0]  
Port E Output Data [7:0]  
Provides Access to Port Sub-  
Registers  
Port F Address  
PFADDR (FE4H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port D Input Data  
PDIN (FDE H- Read Only)  
Port F Address[7:0]  
D7 D6 D5 D4 D3 D2 D1 D0  
Selects Port Sub-Registers:  
00H = No function  
Port D Input Data [7:0]  
01H = Data direction  
02H = Alternate function  
03H = Output control (open-drain)  
04H = High drive enable  
05H = Stop Mode Recovery enable  
06H-FFH = No function  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
42  
Port F Control  
Port G Output Data  
PFCTL (FE5H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
PGOUT (FEBH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port F Control[7:0]  
Port G Output Data [7:0]  
Provides Access to Port Sub-  
Registers  
Port H Address  
PHADDR (FECH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port F Input Data  
PFIN (FE6H - Read Only)  
Port H Address[7:0]  
D7 D6 D5 D4 D3 D2 D1 D0  
Selects Port Sub-Registers:  
00H = No function  
Port F Input Data [7:0]  
01H = Data direction  
02H = Alternate function  
03H = Output control (open-drain)  
04H = High drive enable  
05H = Stop Mode Recovery enable  
06H-FFH = No function  
Port F Output Data  
PFOUT (FE7H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port F Output Data [7:0]  
Port H Control  
PHCTL (FEDH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port G Address  
PGADDR (FE8H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port H Control [3:0]  
Provides Access to Port Sub-  
Registers  
Port G Address[7:0]  
Selects Port Sub-Registers:  
00H = No function  
Reserved  
01H = Data direction  
02H = Alternate function  
03H = Output control (open-drain)  
04H = High drive enable  
05H = Stop Mode Recovery enable  
06H-FFH = No function  
Port H Input Data  
PHIN (FEEH - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port H Input Data [3:0]  
Reserved  
Port G Control  
PGCTL (FE9H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port H Output Data  
Port G Control[7:0]  
PHOUT (FEFH - Read/Write)  
Provides Access to Port Sub-  
Registers  
D7 D6 D5 D4 D3 D2 D1 D0  
Port H Output Data [3:0]  
Reserved  
Port G Input Data  
PGIN (FEAH - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Port G Input Data [7:0]  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
43  
Watchdog Timer Control  
WDTCTL (FF0H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Flash Status  
FSTAT (FF8H - Read Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
SM Configuration Indicator  
Flash Controller Status  
Reserved  
00_0000 = Flash controller locked  
00_0001 = First unlock received  
00_0010 = Second unlock received  
00_0011 = Flash controller unlocked  
00_0100 = Flash Sector Protect  
EXT  
0 = Reset not generated by RESET  
pin  
1 = Reset generated by RESET pin  
register  
WDT  
selected  
0 = WDT timeout has not occurred  
1 = WDT timeout occurred  
00_1xxx = Programming in progress  
01_0xxx = Page erase in progress  
10_0xxx = Mass erase in progress  
STOP  
0 = SMR has not occurred  
1 = SMR has occurred  
Reserved  
POR  
0 = POR has not occurred  
1 = POR has occurred  
Page Select  
FPS (FF9H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Page Select [6:0]  
Watchdog Timer Reload Upper Byte  
Identifies the Flash memory page for  
Page Erase operation.  
WDTU (FF1H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Information Area Enable  
WDT reload value [23:16]  
0 = Information Area access is  
disabled  
1 = Information Area access is  
enabled  
Watchdog Timer Reload Middle Byte  
WDTH (FF2 H- Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Flash Sector Protect  
WDT reload value [15:8]  
FPROT (FF9H - Read/Write to 1’s)  
D7 D6 D5 D4 D3 D2 D1 D0  
Flash Sector Protect [7:0]  
Watchdog Timer Reload Low Byte  
WDTL (FF3H - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
0 = Sector can be programmed or  
erased from user code  
1 = Sector is protected and cannot  
be  
WDT reload value [7:0]  
programmed or erased from  
user  
code  
Flash Control  
FCTL (FF8H - Write Only)  
D7 D6 D5 D4 D3 D2 D1 D0  
Flash Frequency High Byte  
FFREQH (FFAH - Read/Write)  
Flash Command  
D7 D6 D5 D4 D3 D2 D1 D0  
73H = First unlock command  
8CH = Second unlock command  
95H = Page erase command  
63H = Mass erase command  
5EH = Flash Sector Protect reg  
Flash Frequency value [15:8]  
select  
Flash Frequency Low Byte  
FFREQL (FFBH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Flash Frequency value [7:0]  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
44  
Flags  
FLAGS (FFC - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
F1 - User Flag 1  
F2 - User Flag 2  
H - Half Carry  
D - Decimal Adjust  
V - Overflow Flag  
S - Sign Flag  
Z - Zero Flag  
C - Carry Flag  
Register Pointer  
RP (FFDH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Working Register Page Address  
Working Register Group Address  
Stack Pointer High Byte  
SPH (FFEH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Stack Pointer [15:8]  
Stack Pointer Low Byte  
SPL (FFFH - Read/Write)  
D7 D6 D5 D4 D3 D2 D1 D0  
Stack Pointer [7:0]  
PS019921-0308  
Control Register Summary  
Z8 Encore! XP® F64XX Series  
Product Specification  
45  
Reset and Stop Mode Recovery  
The Reset Controller within the Z8 Encore! XP F64XX Series controls Reset and Stop  
Mode Recovery operation. In typical operation, the following events cause a Reset to  
occur:  
Power-On Reset  
Voltage Brownout  
Watchdog Timer time-out (when configured via the WDT_RES Option Bit to initiate  
a Reset)  
External RESET pin assertion  
On-Chip Debugger initiated Reset (OCDCTL[0] set to 1)  
When the Z8 Encore! XP F64XX Series devices are in STOP mode, a Stop Mode Recov-  
ery is initiated by either of the following:  
Watchdog Timer time-out  
GPIO Port input pin transition on an enabled Stop Mode Recovery source  
DBG pin driven Low  
Reset Types  
The Z8 Encore! XP F64XX Series provides two different types of reset operation (system  
reset and Stop Mode Recovery). The type of Reset is a function of both the current operat-  
ing mode of the Z8 Encore! XP F64XX Series devices and the source of the Reset. Table 8  
lists the types of Reset and their operating characteristics.  
Table 8. Reset and Stop Mode Recovery Characteristics and Latency  
Reset Characteristics and Latency  
Reset Type  
Control Registers  
eZ8 CPU Reset Latency (Delay)  
System reset  
Reset (as applicable) Reset  
66 WDT Oscillator cycles + 16 System Clock cycles  
66 WDT Oscillator cycles + 16 System Clock cycles  
Stop Mode  
Recovery  
Unaffected, except  
WDT_CTL register  
Reset  
PS019921-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F64XX Series  
Product Specification  
46  
System Reset  
During a system reset, the Z8 Encore! XP F64XX Series devices are held in Reset for 66  
cycles of the Watchdog Timer oscillator followed by 16 cycles of the system clock. At the  
beginning of Reset, all GPIO pins are configured as inputs.  
During Reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal  
oscillator and Watchdog Timer oscillator continue to run. The system clock begins  
operating following the Watchdog Timer oscillator cycle count. The eZ8 CPU and on-chip  
peripherals remain idle through the 16 cycles of the system clock.  
Upon Reset, control registers within the Register File that have a defined Reset value are  
loaded with their reset values. Other control registers (including the Stack Pointer,  
Register Pointer, and Flags) and general-purpose RAM are undefined following Reset.  
The eZ8 CPU fetches the Reset vector at Program Memory addresses 0002Hand 0003H  
and loads that value into the Program Counter. Program execution begins at the Reset  
vector address.  
Reset Sources  
Table 9 lists the reset sources as a function of the operating mode. The text following pro-  
vides more detailed information on the individual Reset sources. A Power-On Reset/Volt-  
age Brownout event always takes priority over all other possible reset sources to ensure a  
full system reset occurs.  
Table 9. Reset Sources and Resulting Reset Type  
Operating Mode  
Reset Source  
Reset Type  
NORMAL or HALT  
modes  
Power-On Reset/Voltage  
Brownout  
system reset  
Watchdog Timer time-out  
when configured for Reset  
system reset  
system reset  
RESET pin assertion  
On-Chip Debugger initiated Reset system reset except the On-Chip Debugger is  
(OCDCTL[0] set to 1)  
unaffected by the reset  
system reset  
STOP mode  
Power-On Reset/Voltage  
Brownout  
RESET pin assertion  
DBG pin driven Low  
system reset  
system reset  
PS019921-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F64XX Series  
Product Specification  
47  
Power-On Reset  
Each device in the Z8 Encore! XP F64XX Series contains an internal Power-On Reset cir-  
cuit. The POR circuit monitors the supply voltage and holds the device in the Reset state  
until the supply voltage reaches a safe operating level. After the supply voltage exceeds  
the POR voltage threshold (VPOR), the POR Counter is enabled and counts 66 cycles of  
the Watchdog Timer oscillator. After the POR counter times out, the XTAL Counter is  
enabled to count a total of 16 system clock pulses. The devices are held in the Reset state  
until both the POR Counter and XTAL counter have timed out. After the Z8 Encore! XP  
F64XX Series devices exit the Power-On Reset state, the eZ8 CPU fetches the Reset vec-  
tor. Following Power-On Reset, the PORstatus bit in the Watchdog Timer Control  
(WDTCTL) register is set to 1.  
Figure 7 displays Power-On Reset operation. For the POR threshold voltage (VPOR), see  
Electrical Characteristics on page 211.  
VCC = 3.3 V  
VPOR  
VVBO  
Program  
VCC = 0.0 V  
WDT Clock  
Execution  
Primary  
Oscillator  
Oscillator  
Start-up  
Internal RESET  
signal  
POR  
XTAL  
counter delay  
counter delay  
Not to Scale  
Figure 7. Power-On Reset Operation  
Voltage Brownout Reset  
The devices in the Z8 Encore! XP F64XX Series provide low Voltage Brownout  
protection. The VBO circuit senses when the supply voltage drops to an unsafe level  
PS019921-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F64XX Series  
Product Specification  
48  
(below the VBO threshold voltage) and forces the device into the Reset state. While the  
supply voltage remains below the Power-On Reset voltage threshold (VPOR), the VBO  
block holds the device in the Reset state.  
After the supply voltage again exceeds the Power-On Reset voltage threshold, the devices  
progress through a full system reset sequence, as described in the Power-On Reset section.  
Following Power-On Reset, the PORstatus bit in the Watchdog Timer Control  
(WDTCTL) register is set to 1. Figure 8 displays Voltage Brownout operation. For the  
VBO and POR threshold voltages (VVBO and VPOR), see Electrical Characteristics on  
page 211.  
The Voltage Brownout circuit can be either enabled or disabled during STOP mode. Oper-  
ation during STOP mode is set by the VBO_AOOption Bit. For information on configuring  
VBO_AO, see Option Bits page 191.  
VCC = 3.3 V  
VCC = 3.3 V  
VPOR  
VVBO  
Program  
Voltage  
Program  
Execution  
Brownout  
Execution  
WDT Clock  
Primary  
Oscillator  
Internal RESET  
Signal  
POR  
XTAL  
Counter Delay Counter Delay  
Figure 8. Voltage Brownout Reset Operation  
Watchdog Timer Reset  
If the device is in normal or HALT mode, the Watchdog Timer can initiate a system reset  
at time-out if the WDT_RESOption Bit is set to 1. This capability is the default  
PS019921-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F64XX Series  
Product Specification  
49  
(unprogrammed) setting of the WDT_RESOption Bit. The WDTstatus bit in the WDT  
Control register is set to signify that the reset was initiated by the Watchdog Timer.  
External Pin Reset  
The RESET pin has a Schmitt-triggered input, an internal pull-up, an analog filter and a  
digital filter to reject noise. Once the RESET pin is asserted for at least 4 system clock  
cycles, the devices progress through the system reset sequence. While the RESET input  
pin is asserted Low, the Z8 Encore! XP F64XX Series devices continue to be held in the  
Reset state. If the RESET pin is held Low beyond the system reset time-out, the devices  
exit the Reset state immediately following RESET pin deassertion. Following a system  
reset initiated by the external RESET pin, the EXTstatus bit in the Watchdog Timer Con-  
trol (WDTCTL) register is set to 1.  
On-Chip Debugger Initiated Reset  
A Power-On Reset can be initiated using the On-Chip Debugger by setting the RSTbit in  
the OCD Control register. The On-Chip Debugger block is not reset but the rest of the chip  
goes through a normal system reset. The RSTbit automatically clears during the system  
reset. Following the system reset the PORbit in the WDT Control register is set.  
Stop Mode Recovery  
STOP mode is entered by the eZ8 executing a STOPinstruction. For detailed STOP mode  
information, see Low-Power Modes on page 45. During Stop Mode Recovery, the devices  
are held in reset for 66 cycles of the Watchdog Timer oscillator followed by 16 cycles of  
the system clock. Stop Mode Recovery only affects the contents of the Watchdog Timer  
Control register. Stop Mode Recovery does not affect any other values in the Register File,  
including the Stack Pointer, Register Pointer, Flags, peripheral control registers, and  
general-purpose RAM.  
The eZ8CPU fetches the Reset vector at Program Memory addresses 0002Hand 0003H  
and loads that value into the Program Counter. Program execution begins at the Reset  
vector address. Following Stop Mode Recovery, the STOPbit in the Watchdog Timer  
Control Register is set to 1. Table 10 lists the Stop Mode Recovery sources and resulting  
actions.  
PS019921-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F64XX Series  
Product Specification  
50  
Table 10. Stop Mode Recovery Sources and Resulting Action  
Operating Mode  
Stop Mode Recovery Source  
Action  
STOP mode  
Watchdog Timer time-out  
when configured for Reset  
Stop Mode Recovery  
Watchdog Timer time-out  
Stop Mode Recovery followed by interrupt  
(if interrupts are enabled)  
when configured for interrupt  
Data transition on any GPIO Port pin Stop Mode Recovery  
enabled as a Stop Mode Recovery  
source  
Stop Mode Recovery Using Watchdog Timer Time-Out  
If the Watchdog Timer times out during STOP mode, the device undergoes a Stop Mode  
Recovery sequence. In the Watchdog Timer Control register, the WDTand STOPbits are  
set to 1. If the Watchdog Timer is configured to generate an interrupt upon time-out and  
the Z8 Encore! XP F64XX Series devices are configured to respond to interrupts, the eZ8  
CPU services the Watchdog Timer interrupt request following the normal Stop Mode  
Recovery sequence.  
Stop Mode Recovery Using a GPIO Port Pin Transition HALT  
Each of the GPIO Port pins may be configured as a Stop Mode Recovery input source. On  
any GPIO pin enabled as a Stop Mode Recovery source, a change in the input pin value  
(from High to Low or from Low to High) initiates Stop Mode Recovery. The GPIO Stop  
Mode Recovery signals are filtered to reject pulses less than 10 ns (typical) in duration. In  
the Watchdog Timer Control register, the STOPbit is set to 1.  
Caution: In STOP mode, the GPIO Port Input Data registers (PxIN) are disabled. The  
Port Input Data registers record the Port transition only if the signal stays on  
the Port pin through the end of the Stop Mode Recovery delay. Thus, short puls-  
es on the Port pin can initiate Stop Mode Recovery without being written to the  
Port Input Data register or without initiating an interrupt (if enabled for that  
pin).  
PS019921-0308  
Reset and Stop Mode Recovery  
Z8 Encore! XP® F64XX Series  
Product Specification  
51  
Low-Power Modes  
The Z8 Encore! XP F64XX Series products contain power-saving features. The highest  
level of power reduction is provided by STOP mode. The next level of power reduction is  
provided by the HALT mode.  
STOP Mode  
Execution of the eZ8CPU’s STOP instruction places the device into STOP mode. In  
STOP mode, the operating characteristics are:  
Primary crystal oscillator is stopped; the XIN pin is driven High and the XOUT pin is  
driven Low.  
System clock is stopped.  
eZ8 CPU is stopped.  
Program counter (PC) stops incrementing.  
The Watchdog Timer and its internal RC oscillator continue to operate, if enabled for  
operation during STOP mode.  
The Voltage Brownout protection circuit continues to operate, if enabled for operation  
in STOP mode using the associated Option Bit.  
All other on-chip peripherals are idle.  
To minimize current in STOP mode, all GPIO pins that are configured as digital inputs  
must be driven to one of the supply rails (VCC or GND), the Voltage Brownout protection  
must be disabled, and the Watchdog Timer must be disabled. The devices can be brought  
out of STOP mode using Stop Mode Recovery. For more information on Stop Mode  
Recovery, see Reset and Stop Mode Recovery on page 45.  
STOP mode must not be used when driving the Z8 Encore! XP F64XX Series  
devices with an external clock driver source.  
Caution:  
HALT Mode  
Execution of the eZ8 CPU’s HALT instruction places the device into HALT mode. In  
HALT mode, the operating characteristics are:  
Primary crystal oscillator is enabled and continues to operate.  
System clock is enabled and continues to operate.  
eZ8 CPU is stopped.  
PS019921-0308  
Low-Power Modes  
Z8 Encore! XP® F64XX Series  
Product Specification  
52  
Program Counter stops incrementing.  
Watchdog Timer’s internal RC oscillator continues to operate.  
The Watchdog Timer continues to operate, if enabled.  
All other on-chip peripherals continue to operate.  
The eZ8 CPU can be brought out of HALT mode by any of the following operations:  
Interrupt  
Watchdog Timer time-out (interrupt or reset)  
Power-On Reset  
Voltage Brownout Reset  
External RESET pin assertion  
To minimize current in HALT mode, all GPIO pins which are configured as inputs must be  
driven to one of the supply rails (VCC or GND).  
PS019921-0308  
Low-Power Modes  
Z8 Encore! XP® F64XX Series  
Product Specification  
53  
General-Purpose I/O  
The Z8 Encore! XP F64XX Series products support a maximum of seven 8-bit ports (Ports  
A–G) and one 4-bit port (Port H) for general-purpose input/output (GPIO) operations.  
Each port consists of control and data registers. The GPIO control registers are used to  
determine data direction, open-drain, output drive current and alternate pin functions.  
Each port pin is individually programmable. All ports (except B and H) support 5 V-toler-  
ant inputs.  
GPIO Port Availability By Device  
Table 11 lists the port pins available with each device and package type.  
Table 11. Port Availability by Device and Package Type  
Device  
Packages  
Port A Port B Port C Port D Port E Port F Port G Port H  
Z8X1621  
Z8X1622  
Z8X2421  
Z8X2422  
Z8X3221  
Z8X3222  
Z8X4821  
Z8X4822  
Z8X4823  
Z8X6421  
Z8X6422  
Z8X6423  
44-pin  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[6:0]  
[7:0]  
[6:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
-
-
-
-
64- and 68-pin [7:0]  
44-pin [7:0]  
64- and 68-pin [7:0]  
44-pin [7:0]  
64- and 68-pin [7:0]  
44-pin [7:0]  
64- and 68-pin [7:0]  
[7:0]  
-
[7]  
-
[3]  
-
[3:0]  
-
[7:0]  
-
[7]  
-
[3]  
-
[3:0]  
-
[7:0]  
-
[7]  
-
[3]  
-
[3:0]  
-
[7:0]  
[7:0]  
-
[7]  
[7:0]  
-
[3]  
[7:0]  
-
[3:0]  
[3:0]  
-
80-pin  
44-pin  
[7:0]  
[7:0]  
64- and 68-pin [7:0]  
80-pin [7:0]  
[7:0]  
[7:0]  
[7]  
[7:0]  
[3]  
[7:0]  
[3:0]  
[3:0]  
Architecture  
Figure 9 displays a simplified block diagram of a GPIO port pin. In Figure 9, the ability to  
accommodate alternate functions and variable port current drive strength are not illus-  
trated.  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
54  
Port Input  
Schmitt-Trigger  
Data Register  
Q
D
System  
Clock  
VDD  
Port Output Control  
Port Output  
Data Register  
DATA  
Bus  
D
Q
Port  
Pin  
System  
Clock  
Port Data Direction  
GND  
Figure 9. GPIO Port Pin Block Diagram  
GPIO Alternate Functions  
Many of the GPIO port pins can be used as both general-purpose I/O and to provide access  
to on-chip peripheral functions such as the timers and serial communication devices. The  
Port A–H Alternate Function sub-registers configure these pins for either general-purpose  
I/O or alternate function operation. When a pin is configured for alternate function, control  
of the port pin direction (input/output) is passed from the Port A–H Data Direction regis-  
ters to the alternate function assigned to this pin. Table 12 lists the alternate functions  
associated with each port pin.  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
55  
Table 12. Port Alternate Function Mapping  
Port  
Pin  
Mnemonic  
T0IN  
Alternate Function Description  
Port A PA0  
PA1  
Timer 0 Input  
T0OUT  
DE0  
Timer 0 Output  
PA2  
UART 0 Driver Enable  
UART 0 Clear to Send  
PA3  
CTS0  
PA4  
RXD0/IRRX0 UART 0/IrDA 0 Receive Data  
PA5  
TXD0/IRTX0  
SCL  
UART 0/IrDA 0 Transmit Data  
2
PA6  
I C Clock (automatically open-drain)  
2
PA7  
SDA  
I C Data (automatically open-drain)  
Port B PB0  
PB1  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
T1IN  
ADC Analog Input 0  
ADC Analog Input 1  
ADC Analog Input 2  
ADC Analog Input 3  
ADC Analog Input 4  
ADC Analog Input 5  
ADC Analog Input 6  
ADC Analog Input 7  
Timer 1 Input  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
Port C PC0  
PC1  
T1OUT  
SS  
Timer 1 Output  
PC2  
SPI Slave Select  
SPI Serial Clock  
PC3  
SCK  
PC4  
MOSI  
MISO  
T2IN  
SPI Master Out/Slave In  
SPI Master In/Slave Out  
Timer 2 In  
PC5  
PC6  
PC7  
T2OUT  
Timer 2 Out  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
56  
Table 12. Port Alternate Function Mapping (Continued)  
Port  
Pin  
Mnemonic  
T3IN  
Alternate Function Description  
Port D PD0  
PD1  
Timer 3 In (unavailable in 44-pin packages)  
Timer 3 Out (unavailable in 44-pin packages)  
No alternate function  
T3OUT  
N/A  
PD2  
PD3  
DE1  
UART 1 Driver Enable  
PD4  
RXD1/IRRX1 UART 1/IrDA 1 Receive Data  
PD5  
TXD1/IRTX1  
CTS1  
UART 1/IrDA 1 Transmit Data  
UART 1 Clear to Send  
Watchdog Timer RC Oscillator Output  
No alternate functions  
No alternate functions  
No alternate functions  
ADC Analog Input 8  
PD6  
PD7  
RCOUT  
Port E  
Port F  
PE[7:0] N/A  
PF[7:0] N/A  
Port G PG[7:0] N/A  
Port H PH0  
PH1  
ANA8  
ANA9  
ADC Analog Input 9  
PH2  
ANA10  
ANA11  
ADC Analog Input 10  
PH3  
ADC Analog Input 11  
GPIO Interrupts  
Many of the GPIO port pins can be used as interrupt sources. Some port pins may be con-  
figured to generate an interrupt request on either the rising edge or falling edge of the pin  
input signal. Other port pin interrupts generate an interrupt when any edge occurs (both  
rising and falling). For more information on interrupts using the GPIO pins, see Interrupt  
Controller on page 63.  
GPIO Control Register Definitions  
Four registers for each Port provide access to GPIO control, input data, and output data.  
Table 13 lists these Port registers. Use the Port A–H Address and Control registers  
together to provide access to sub-registers for Port configuration and control.  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
57  
Table 13. GPIO Port Registers and Sub-Registers  
Port Register Mnemonic  
Port Register Name  
PxADDR  
Port AH Address Register  
(Selects sub-registers)  
PxCTL  
Port AH Control Register  
(Provides access to sub-registers)  
PxIN  
Port AH Input Data Register  
Port AH Output Data Register  
PxOUT  
Port Sub-Register Mnemonic Port Register Name  
PxDD  
Data Direction  
PxAF  
Alternate Function  
Output Control (Open-Drain)  
High Drive Enable  
PxOC  
PxDD  
PxSMRE  
Stop Mode Recovery Source  
Enable  
Port A–H Address Registers  
The Port A–H Address registers select the GPIO Port functionality accessible through the  
Port A–H Control registers. The Port A–H Address and Control registers combine to pro-  
vide access to all GPIO Port control (Table 14).  
Table 14. Port AH GPIO Address Registers (PxADDR)  
BITS  
7
6
5
4
3
2
1
0
PADDR[7:0]  
FIELD  
RESET  
R/W  
00H  
R/W  
FD0H, FD4H, FD8H, FDCH, FE0H, FE4H, FE8H, FECH  
ADDR  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
58  
PADDR[7:0]—Port Address  
The Port Address selects one of the sub-registers accessible through the Port Control reg-  
ister.  
Port Control sub-register accessible using the Port AH Control  
PADDR[7:0]  
Registers  
00H  
No function. Provides some protection against accidental Port  
reconfiguration  
01H  
Data Direction  
02H  
Alternate Function  
03H  
04H  
Output Control (Open-Drain)  
High Drive Enable  
05H  
06H-FFH  
Stop Mode Recovery Source Enable  
No function  
Port A–H Control Registers  
The Port A–H Control registers set the GPIO port operation. The value in the correspond-  
ing Port A–H Address register determines the control sub-registers accessible using the  
Port A–H Control register (Table 15).  
Table 15. Port AH Control Registers (PxCTL)  
7
6
5
4
3
2
1
0
BITS  
PCTL  
00H  
FIELD  
RESET  
R/W  
R/W  
FD1H, FD5H, FD9H, FDDH, FE1H, FE5H, FE9H, FEDH  
ADDR  
PCTL[7:0]—Port Control  
The Port Control register provides access to all sub-registers that configure the GPIO Port  
operation.  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
59  
Port AH Data Direction Sub-Registers  
The Port A–H Data Direction sub-register is accessed through the Port A–H Control regis-  
ter by writing 01H to the Port A–H Address register (Table 16).  
Table 16. Port AH Data Direction Sub-Registers  
BITS  
7
6
5
4
3
2
1
0
DD7  
DD6  
DD5  
DD4  
DD3  
DD2  
DD1  
DD0  
FIELD  
RESET  
R/W  
1
R/W  
If 01H in Port AH Address Register, accessible through Port AH Control Register  
ADDR  
DD[7:0]—Data Direction  
These bits control the direction of the associated port pin. Port Alternate Function opera-  
tion overrides the Data Direction register setting.  
0 = Output. Data in the Port A–H Output Data register is driven onto the port pin.  
1 = Input. The port pin is sampled and the value written into the Port A–H Input Data  
Register. The output driver is tri-stated.  
Port AH Alternate Function Sub-Registers  
The Port A–H Alternate Function sub-register (Table 17) is accessed through the  
Port A–H Control register by writing 02Hto the Port A–H Address register. The Port A–H  
Alternate Function sub-registers select the alternate functions for the selected pins. To  
determine the alternate function associated with each port pin, see GPIO Alternate Func-  
tions on page 54.  
Caution: Do not enable alternate function for GPIO port pins which do not have an as-  
sociated alternate function. Failure to follow this guideline may result in un-  
predictable operation.  
Table 17. Port AH Alternate Function Sub-Registers  
BITS  
7
6
5
4
3
2
1
0
AF7  
AF6  
AF5  
AF4  
AF3  
AF2  
AF1  
AF0  
FIELD  
RESET  
R/W  
0
R/W  
If 02H in Port AH Address Register, accessible through Port AH Control Register  
ADDR  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
60  
AF[7:0]—Port Alternate Function enabled  
0 = The port pin is in NORMAL mode and the DDxbit in the Port A–H Data Direction  
sub-register determines the direction of the pin.  
1 = The alternate function is selected. Port pin operation is controlled by the  
alternate function.  
Port AH Output Control Sub-Registers  
The Port A–H Output Control sub-register (Table 18) is accessed through the  
Port A–H Control register by writing 03Hto the Port A–H Address register. Setting the  
bits in the Port A–H Output Control sub-registers to 1 configures the specified port pins  
for open-drain operation. These sub-registers affect the pins directly and, as a result, alter-  
nate functions are also affected.  
Table 18. Port AH Output Control Sub-Registers  
BITS  
7
6
5
4
3
2
1
0
POC7  
POC6  
POC5  
POC4  
POC3  
POC2  
POC1  
POC0  
FIELD  
RESET  
R/W  
0
R/W  
If 03H in Port AH Address Register, accessible through Port AH Control Register  
ADDR  
POC[7:0]—Port Output Control  
These bits function independently of the alternate function bit and disables the drains if set  
to 1.  
0 = The drains are enabled for any output mode.  
1 = The drain of the associated pin is disabled (open-drain mode).  
Port AH High Drive Enable Sub-Registers  
The Port A–H High Drive Enable sub-register (Table 19) is accessed through the Port A–  
H Control register by writing 04Hto the Port A–H Address register. Setting the bits in the  
Port A–H High Drive Enable sub-registers to 1 configures the specified port pins for high  
current output drive operation. The Port A–H High Drive Enable sub-register affects the  
pins directly and, as a result, alternate functions are also affected.  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
61  
Table 19. Port AH High Drive Enable Sub-Registers  
BITS  
7
6
5
4
3
2
1
0
PHDE7  
PHDE6  
PHDE5  
PHDE4  
PHDE3  
PHDE2  
PHDE1  
PHDE0  
FIELD  
RESET  
R/W  
0
R/W  
If 04H in Port A-H Address Register, accessible through Port A-H Control Register  
ADDR  
PHDE[7:0]—Port High Drive Enabled  
0 = The Port pin is configured for standard output current drive.  
1 = The Port pin is configured for high output current drive.  
Port AH Stop Mode Recovery Source Enable Sub-Registers  
The Port A–H Stop Mode Recovery Source Enable sub-register (Table 20) is accessed  
through the Port A–H Control register by writing 05Hto the Port A–H Address register.  
Setting the bits in the Port A–H Stop Mode Recovery Source Enable sub-registers to 1  
configures the specified Port pins as a Stop Mode Recovery source. During STOP Mode,  
any logic transition on a Port pin enabled as a Stop Mode Recovery source initiates Stop  
Mode Recovery.  
Table 20. Port AH Stop Mode Recovery Source Enable Sub-Registers  
BITS  
7
6
5
4
3
2
1
0
PSMRE7 PSMRE6 PSMRE5 PSMRE4 PSMRE3 PSMRE2 PSMRE1 PSMRE0  
FIELD  
RESET  
R/W  
0
R/W  
If 05H in Port AH Address Register, accessible through Port AH Control Register  
ADDR  
PSMRE[7:0]—Port Stop Mode Recovery Source Enabled  
0 = The Port pin is not configured as a Stop Mode Recovery source. Transitions on this  
pin during STOP mode do not initiate Stop Mode Recovery.  
1 = The Port pin is configured as a Stop Mode Recovery source. Any logic transition  
on this pin during STOP mode initiates Stop Mode Recovery.  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
62  
Port A–H Input Data Registers  
Reading from the Port A–H Input Data registers (Table 21) returns the sampled values  
from the corresponding port pins. The Port A–H Input Data registers are Read-only.  
Table 21. Port AH Input Data Registers (PxIN)  
BITS  
7
6
5
4
3
2
1
0
PIN7  
PIN6  
PIN5  
PIN4  
PIN3  
PIN2  
PIN1  
PIN0  
FIELD  
RESET  
R/W  
X
R
FD2H, FD6H, FDAH, FDEH, FE2H, FE6H, FEAH, FEEH  
ADDR  
PIN[7:0]—Port Input Data  
Sampled data from the corresponding port pin input.  
0 = Input data is logical 0 (Low).  
1 = Input data is logical 1 (High).  
Port A–H Output Data Register  
The Port A–H Output Data register (Table 22) writes output data to the pins.  
Table 22. Port AH Output Data Register (PxOUT)  
BITS  
7
6
5
4
3
2
1
0
POUT7  
POUT6  
POUT5  
POUT4  
POUT3  
POUT2  
POUT1  
POUT0  
FIELD  
RESET  
R/W  
0
R/W  
FD3H, FD7H, FDBH, FDFH, FE3H, FE7H, FEBH, FEFH  
ADDR  
POUT[7:0]—Port Output Data  
These bits contain the data to be driven out from the port pins. The values are only driven  
if the corresponding pin is configured as an output and the pin is not configured for alter-  
nate function operation.  
0 = Drive a logical 0 (Low).  
1= Drive a logical 1 (High). High value is not driven if the drain has been disabled by  
setting the corresponding Port Output Control register bit to 1.  
PS019921-0308  
General-Purpose I/O  
Z8 Encore! XP® F64XX Series  
Product Specification  
63  
Interrupt Controller  
The interrupt controller on the Z8 Encore! XP F64XX Series products prioritizes the inter-  
rupt requests from the on-chip peripherals and the GPIO port pins. The features of the  
interrupt controller include the following:  
24 unique interrupt vectors:  
12 GPIO port pin interrupt sources  
12 on-chip peripheral interrupt sources  
Flexible GPIO interrupts  
Eight selectable rising and falling edge GPIO interrupts  
Four dual-edge interrupts  
Three levels of individually programmable interrupt priority  
Watchdog Timer can be configured to generate an interrupt  
Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly  
manner and force the CPU to start an interrupt service routine (ISR). Usually this interrupt  
service routine is involved with the exchange of data, status information, or control  
information between the CPU and the interrupting peripheral. When the service routine is  
completed, the CPU returns to the operation from which it was interrupted.  
The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts,  
the interrupt control has no effect on operation. For more information on interrupt  
servicing by the eZ8 CPU, refer to eZ8CPU Core User Manual (UM0128) available for  
download at www.zilog.com.  
Interrupt Vector Listing  
Table 23 lists all of the interrupts available in order of priority. The interrupt vector is  
stored with the most-significant byte (MSB) at the even Program Memory address and the  
least-significant byte (LSB) at the following odd Program Memory address.  
Table 23. Interrupt Vectors in Order of Priority  
Program Memory  
Priority Vector Address  
Highest 0002H  
0004H  
Interrupt Source  
Reset (not an interrupt)  
Watchdog Timer (see Watchdog Timer on page 93)  
Illegal Instruction Trap (not an interrupt)  
Timer 2  
0006H  
0008H  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
64  
Table 23. Interrupt Vectors in Order of Priority (Continued) (Continued)  
Program Memory  
Priority Vector Address  
000AH  
Interrupt Source  
Timer 1  
000CH  
Timer 0  
000EH  
UART 0 receiver  
UART 0 transmitter  
0010H  
2
0012H  
I C  
0014H  
SPI  
0016H  
ADC  
0018H  
Port A7 or Port D7, rising or falling input edge  
Port A6 or Port D6, rising or falling input edge  
Port A5 or Port D5, rising or falling input edge  
Port A4 or Port D4, rising or falling input edge  
Port A3 or Port D3, rising or falling input edge  
Port A2 or Port D2, rising or falling input edge  
Port A1 or Port D1, rising or falling input edge  
Port A0 or Port D0, rising or falling input edge  
Timer 3 (not available in 44-pin packages)  
UART 1 receiver  
001AH  
001CH  
001EH  
0020H  
0022H  
0024H  
0026H  
0028H  
002AH  
002CH  
UART 1 transmitter  
002EH  
DMA  
0030H  
Port C3, both input edges  
0032H  
Port C2, both input edges  
0034H  
Port C1, both input edges  
Lowest 0036H  
Port C0, both input edges  
Architecture  
Figure 10 displays a block diagram of the interrupt controller.  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
65  
High  
Port Interrupts  
Priority  
Vector  
Priority  
IRQ Request  
Mux  
Medium  
Priority  
Internal Interrupts  
Low  
Priority  
Figure 10. Interrupt Controller Block Diagram  
Operation  
Master Interrupt Enable  
The master interrupt enable bit (IRQE) in the Interrupt Control register globally enables  
and disables interrupts.  
Interrupts are globally enabled by any of the following actions:  
Executing an Enable Interrupt (EI) instruction.  
Executing an Return from Interrupt (IRET) instruction.  
Writing a 1 to the IRQEbit in the Interrupt Control register.  
Interrupts are globally disabled by any of the following actions:  
Execution of a Disable Interrupt (DI) instruction.  
eZ8 CPU acknowledgement of an interrupt service request from the interrupt  
controller.  
Writing a 0 to the IRQEbit in the Interrupt Control register.  
Reset.  
Executing a Trap instruction.  
Illegal Instruction trap.  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
66  
Interrupt Vectors and Priority  
The interrupt controller supports three levels of interrupt priority. Level 3 is the highest  
priority, Level 2 is the second highest priority, and Level 1 is the lowest priority. If all of  
the interrupts were enabled with identical interrupt priority (all as Level 2 interrupts, for  
example), then interrupt priority would be assigned from highest to lowest as specified in  
Table 23 on page 63. Level 3 interrupts always have higher priority than Level 2 interrupts  
which, in turn, always have higher priority than Level 1 interrupts. Within each interrupt  
priority level (Level 1, Level 2, or Level 3), priority is assigned as specified in Table 23 on  
page 63. Reset, Watchdog Timer interrupt (if enabled), and Illegal Instruction Trap always  
have highest priority.  
Interrupt Assertion  
Interrupt sources assert their interrupt requests for only a single system clock period  
(single pulse). When the interrupt request is acknowledged by the eZ8 CPU, the  
corresponding bit in the Interrupt Request register is cleared until the next interrupt  
occurs. Writing a 0 to the corresponding bit in the Interrupt Request register likewise  
clears the interrupt request.  
Caution: The following style of coding to clear bits in the Interrupt Request registers is  
NOT recommended. All incoming interrupts that are received between  
execution of the first LDX command and the last LDX command are lost.  
Poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
AND r0, MASK  
LDX IRQ0, r0  
To avoid missing interrupts, the following style of coding to clear bits in  
the Interrupt Request 0 register is recommended:  
Good coding style that avoids lost interrupt requests:  
ANDX IRQ0, MASK  
Software Interrupt Assertion  
Program code can generate interrupts directly. Writing a 1 to the desired bit in the Interrupt  
Request register triggers an interrupt (assuming that interrupt is enabled). When the inter-  
rupt request is acknowledged by the eZ8 CPU, the bit in the Interrupt Request register is  
automatically cleared to 0.  
Caution: The following style of coding to generate software interrupts by setting bits in  
the Interrupt Request registers is NOT recommended. All incoming interrupts  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
67  
that are received between execution of the first LDX command and the last  
LDX command are lost.  
Poor coding style that can result in lost interrupt requests:  
LDX r0, IRQ0  
OR r0, MASK  
LDX IRQ0, r0  
To avoid missing interrupts, the following style of coding to set bits in the  
Interrupt Request registers is recommended:  
Good coding style that avoids lost interrupt requests:  
ORX IRQ0, MASK  
Interrupt Control Register Definitions  
For all interrupts other than the Watchdog Timer interrupt, the interrupt control registers  
enable individual interrupts, set interrupt priorities, and indicate interrupt requests.  
Interrupt Request 0 Register  
The Interrupt Request 0 (IRQ0) register (Table 24) stores the interrupt requests for both  
vectored and polled interrupts. When a request is presented to the interrupt controller, the  
corresponding bit in the IRQ0 register becomes 1. If interrupts are globally enabled (vec-  
tored interrupts), the interrupt controller passes an interrupt request to the eZ8CPU. If  
interrupts are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt  
Request 0 register to determine if any interrupt requests are pending  
Table 24. Interrupt Request 0 Register (IRQ0)  
BITS  
7
6
5
4
3
2
1
0
T2I  
T1I  
T0I  
U0RXI  
U0TXI  
I2CI  
SPII  
ADCI  
FIELD  
RESET  
R/W  
0
R/W  
FC0H  
ADDR  
T2I—Timer 2 Interrupt Request  
0 = No interrupt request is pending for Timer 2.  
1 = An interrupt request from Timer 2 is awaiting service.  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
68  
T1I—Timer 1 Interrupt Request  
0 = No interrupt request is pending for Timer 1.  
1 = An interrupt request from Timer 1 is awaiting service.  
T0I—Timer 0 Interrupt Request  
0 = No interrupt request is pending for Timer 0.  
1 = An interrupt request from Timer 0 is awaiting service.  
U0RXI—UART 0 Receiver Interrupt Request  
0 = No interrupt request is pending for the UART 0 receiver.  
1 = An interrupt request from the UART 0 receiver is awaiting service.  
U0TXI—UART 0 Transmitter Interrupt Request  
0 = No interrupt request is pending for the UART 0 transmitter.  
1 = An interrupt request from the UART 0 transmitter is awaiting service.  
I2CI— I2C Interrupt Request  
0 = No interrupt request is pending for the I2C.  
1 = An interrupt request from the I2C is awaiting service.  
SPII—SPI Interrupt Request  
0 = No interrupt request is pending for the SPI.  
1 = An interrupt request from the SPI is awaiting service.  
ADCI—ADC Interrupt Request  
0 = No interrupt request is pending for the Analog-to-Digital Converter.  
1 = An interrupt request from the Analog-to-Digital Converter is awaiting service.  
Interrupt Request 1 Register  
The Interrupt Request 1 (IRQ1) register (Table 25) stores interrupt requests for both vec-  
tored and polled interrupts. When a request is presented to the interrupt controller, the cor-  
responding bit in the IRQ1 register becomes 1. If interrupts are globally enabled (vectored  
interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts  
are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1  
register to determine if any interrupt requests are pending.  
Table 25. Interrupt Request 1 Register (IRQ1)  
BITS  
7
6
5
4
3
2
1
0
PAD7I  
PAD6I  
PAD5I  
PAD4I  
PAD3I  
PAD2I  
PAD1I  
PAD0I  
FIELD  
RESET  
R/W  
0
R/W  
FC3H  
ADDR  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
69  
PADxI—Port A or Port D Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port A or Port D pin x.  
1 = An interrupt request from GPIO Port A or Port D pin x is awaiting service.  
where x indicates the specific GPIO Port pin number (0 through 7). For each pin, only 1 of  
either Port A or Port D can be enabled for interrupts at any one time. Port selection (A or  
D) is determined by the values in the Interrupt Port Select Register.  
Interrupt Request 2 Register  
The Interrupt Request 2 (IRQ2) register (Table 26) stores interrupt requests for both vec-  
tored and polled interrupts. When a request is presented to the interrupt controller, the cor-  
responding bit in the IRQ2 register becomes 1. If interrupts are globally enabled (vectored  
interrupts), the interrupt controller passes an interrupt request to the eZ8 CPU. If interrupts  
are globally disabled (polled interrupts), the eZ8 CPU can read the Interrupt Request 1  
register to determine if any interrupt requests are pending.  
Table 26. Interrupt Request 2 Register (IRQ2)  
BITS  
7
6
5
4
3
2
1
0
T3I  
U1RXI  
U1TXI  
DMAI  
PC3I  
PC2I  
PC1I  
PC0I  
FIELD  
RESET  
R/W  
0
R/W  
FC6H  
ADDR  
T3I—Timer 3 Interrupt Request  
0 = No interrupt request is pending for Timer 3.  
1 = An interrupt request from Timer 3 is awaiting service.  
U1RXI—UART 1 Receive Interrupt Request  
0 = No interrupt request is pending for the UART1 receiver.  
1 = An interrupt request from UART1 receiver is awaiting service.  
U1TXI—UART 1 Transmit Interrupt Request  
0 = No interrupt request is pending for the UART 1 transmitter.  
1 = An interrupt request from the UART 1 transmitter is awaiting service.  
DMAI—DMA Interrupt Request  
0 = No interrupt request is pending for the DMA.  
1 = An interrupt request from the DMA is awaiting service.  
PCxI—Port C Pin x Interrupt Request  
0 = No interrupt request is pending for GPIO Port C pin x.  
1 = An interrupt request from GPIO Port C pin x is awaiting service.  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
70  
where x indicates the specific GPIO Port C pin number (0 through 3).  
IRQ0 Enable High and Low Bit Registers  
The IRQ0 Enable High and Low Bit registers (see Table 28 and Table 29 on page 71) form  
a priority encoded enabling for interrupts in the Interrupt Request 0 register. Priority is  
generated by setting bits in each register. Table 27 describes the priority control for IRQ0.  
Table 27. IRQ0 Enable and Priority Encoding  
IRQ0ENH[x] IRQ0ENL[x]  
Priority  
Disabled  
Level 1  
Level 2  
Level 3  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Nominal  
High  
Note: where x indicates the register bits from 0 through 7.  
Table 28. IRQ0 Enable High Bit Register (IRQ0ENH)  
BITS  
7
6
5
4
3
2
1
0
T2ENH  
T1ENH  
T0ENH  
U0RENH U0TENH I2CENH  
SPIENH ADCENH  
FIELD  
RESET  
R/W  
0
R/W  
FC1H  
ADDR  
T2ENH—Timer 2 Interrupt Request Enable High Bit  
T1ENH—Timer 1 Interrupt Request Enable High Bit  
T0ENH—Timer 0 Interrupt Request Enable High Bit  
U0RENH—UART 0 Receive Interrupt Request Enable High Bit  
U0TENH—UART 0 Transmit Interrupt Request Enable High Bit  
I2CENH—I2C Interrupt Request Enable High Bit  
SPIENH—SPI Interrupt Request Enable High Bit  
ADCENH—ADC Interrupt Request Enable High Bit  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
71  
Table 29. IRQ0 Enable Low Bit Register (IRQ0ENL)  
BITS  
7
6
5
4
3
2
1
0
T2ENL  
T1ENL  
T0ENL  
U0RENL U0TENL  
I2CENL  
SPIENL  
ADCENL  
FIELD  
RESET  
R/W  
0
R/W  
FC2H  
ADDR  
T2ENL—Timer 2 Interrupt Request Enable Low Bit  
T1ENL—Timer 1 Interrupt Request Enable Low Bit  
T0ENL—Timer 0 Interrupt Request Enable Low Bit  
U0RENL—UART 0 Receive Interrupt Request Enable Low Bit  
U0TENL—UART 0 Transmit Interrupt Request Enable Low Bit  
I2CENL—I2C Interrupt Request Enable Low Bit  
SPIENL—SPI Interrupt Request Enable Low Bit  
ADCENL—ADC Interrupt Request Enable Low Bit  
IRQ1 Enable High and Low Bit Registers  
The IRQ1 Enable High and Low Bit registers (see Table 31 and Table 32 on page 72) form  
a priority encoded enabling for interrupts in the Interrupt Request 1 register. Priority is  
generated by setting bits in each register. Table 30 describes the priority control for IRQ1.  
Table 30. IRQ1 Enable and Priority Encoding  
IRQ1ENH[x] IRQ1ENL[x]  
Priority  
Disabled  
Level 1  
Level 2  
Level 3  
Description  
Disabled  
Low  
0
0
1
1
0
1
0
1
Nominal  
High  
Note: where x indicates the register bits from 0 through 7.  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
72  
Table 31. IRQ1 Enable High Bit Register (IRQ1ENH)  
BITS  
7
6
5
4
3
2
1
0
PAD7ENH PAD6ENH PAD5ENH PAD4ENH PAD3ENH PAD2ENH PAD1ENH PAD0ENH  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC4H  
ADDR  
PADxENH—Port A or Port D Bit[x] Interrupt Request Enable High Bit.  
For selection of either Port A or Port D as the interrupt source, see Interrupt Port Select  
Register on page 74.  
Table 32. IRQ1 Enable Low Bit Register (IRQ1ENL)  
BITS  
7
6
5
4
3
2
1
0
PAD7ENL PAD6ENL PAD5ENL PAD4ENL PAD3ENL PAD2ENL PAD1ENL PAD0ENL  
FIELD  
RESET  
R/W  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FC5H  
ADDR  
PADxENL—Port A or Port D Bit[x] Interrupt Request Enable Low Bit  
For selection of either Port A or Port D as the interrupt source, see Interrupt Port Select  
Register on page 74.  
IRQ2 Enable High and Low Bit Registers  
The IRQ2 Enable High and Low Bit registers (see Table 34 and Table 35 on page 73) form  
a priority encoded enabling for interrupts in the Interrupt Request 2 register. Priority is  
generated by setting bits in each register. Table 33 describes the priority control for IRQ2.  
Table 33. IRQ2 Enable and Priority Encoding  
IRQ2ENH[x] IRQ2ENL[x]  
Priority  
Disabled  
Level 1  
Level 2  
Description  
Disabled  
Low  
0
0
1
0
1
0
Nominal  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
73  
Table 33. IRQ2 Enable and Priority Encoding (Continued)  
IRQ2ENH[x] IRQ2ENL[x]  
Priority  
Level 3  
Description  
High  
1
1
Note: where x indicates the register bits from 0 through 7.  
Table 34. IRQ2 Enable High Bit Register (IRQ2ENH)  
BITS  
7
6
5
4
3
2
1
0
T3ENH  
U1RENH U1TENH DMAENH C3ENH  
C2ENH  
C1ENH  
C0ENH  
FIELD  
RESET  
R/W  
0
R/W  
FC7H  
ADDR  
T3ENH—Timer 3 Interrupt Request Enable High Bit  
U1RENH—UART 1 Receive Interrupt Request Enable High Bit  
U1TENH—UART 1 Transmit Interrupt Request Enable High Bit  
DMAENH—DMA Interrupt Request Enable High Bit  
C3ENH—Port C3 Interrupt Request Enable High Bit  
C2ENH—Port C2 Interrupt Request Enable High Bit  
C1ENH—Port C1 Interrupt Request Enable High Bit  
C0ENH—Port C0 Interrupt Request Enable High Bit  
Table 35. IRQ2 Enable Low Bit Register (IRQ2ENL)  
BITS  
7
6
5
4
3
2
1
0
T3ENL  
U1RENL U1TENL DMAENL  
C3ENL  
C2ENL  
C1ENL  
C0ENL  
FIELD  
RESET  
R/W  
0
R/W  
FC8H  
ADDR  
T3ENL—Timer 3 Interrupt Request Enable Low Bit  
U1RENL—UART 1 Receive Interrupt Request Enable Low Bit  
U1TENL—UART 1 Transmit Interrupt Request Enable Low Bit  
DMAENL—DMA Interrupt Request Enable Low Bit  
C3ENL—Port C3 Interrupt Request Enable Low Bit  
C2ENL—Port C2 Interrupt Request Enable Low Bit  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
74  
C1ENL—Port C1 Interrupt Request Enable Low Bit  
C0ENL—Port C0 Interrupt Request Enable Low Bit  
Interrupt Edge Select Register  
The Interrupt Edge Select (IRQES) register (Table 36) determines whether an interrupt is  
generated for the rising edge or falling edge on the selected GPIO Port input pin. The  
Interrupt Port Select register selects between Port A and Port D for the individual inter-  
rupts.  
Table 36. Interrupt Edge Select Register (IRQES)  
BITS  
7
6
5
4
3
2
1
0
IES7  
IES6  
IES5  
IES4  
IES3  
IES2  
IES1  
IES0  
FIELD  
RESET  
R/W  
0
R/W  
FCDH  
ADDR  
IESx—Interrupt Edge Select x  
The minimum pulse width should be greater than 1 system clock to guarantee capture of  
the edge triggered interrupt. Shorter pulses may be captured but not guaranteed.  
0 = An interrupt request is generated on the falling edge of the PAx/PDx input.  
1 = An interrupt request is generated on the rising edge of the PAx/PDx input.  
where x indicates the specific GPIO Port pin number (0 through 7).  
Interrupt Port Select Register  
The Port Select (IRQPS) register (Table 37) determines the port pin that generates the  
PAx/PDx interrupts. This register allows either Port A or Port D pins to be used as  
interrupts. The Interrupt Edge Select register controls the active interrupt edge.  
Table 37. Interrupt Port Select Register (IRQPS)  
BITS  
7
6
5
4
3
2
1
0
PAD7S  
PAD6S  
PAD5S  
PAD4S  
PAD3S  
PAD2S  
PAD1S  
PAD0S  
FIELD  
RESET  
R/W  
0
R/W  
FCEH  
ADDR  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
75  
PADxS—PAx/PDx Selection  
0 = PAx is used for the interrupt for PAx/PDx interrupt request.  
1 = PDx is used for the interrupt for PAx/PDx interrupt request.  
where x indicates the specific GPIO Port pin number (0 through 7).  
Interrupt Control Register  
The Interrupt Control (IRQCTL) register (Table 38) contains the master enable bit for all  
interrupts.  
Table 38. Interrupt Control Register (IRQCTL)  
BITS  
7
6
5
4
3
2
1
0
IRQE  
Reserved  
FIELD  
RESET  
R/W  
0
R/W  
R
FCFH  
ADDR  
IRQE—Interrupt Request Enable  
This bit is set to 1 by execution of an EI or IRET instruction, or by a direct register write of  
a 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of  
an interrupt request, or Reset.  
0 = Interrupts are disabled  
1 = Interrupts are enabled  
Reserved—Must be 0.  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
76  
PS019921-0308  
Interrupt Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
77  
Timers  
The Z8 Encore! XP® F64XX Series products contain up to four 16-bit reloadable timers  
that can be used for timing, event counting, or generation of pulse width modulated sig-  
nals. The timers’ features include:  
16-bit reload counter  
Programmable prescaler with prescale values from 1 to 128  
PWM output generation  
Capture and compare capability  
External input pin for timer input, clock gating, or capture signal. External input pin  
signal frequency is limited to a maximum of one-fourth the system clock frequency.  
Timer output pin  
Timer interrupt  
In addition to the timers described in this chapter, the Baud Rate Generators for any  
unused UART, SPI, or I2C peripherals may also be used to provide basic timing function-  
ality. For information on using the Baud Rate Generators as timers, see the respective  
serial communication peripheral. Timer 3 is unavailable in the 44-pin package devices.  
Architecture  
Figure 11 displays the architecture of the timers.  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
78  
Timer Block  
Timer  
Control  
Data  
Bus  
Block  
Control  
16-Bit  
Interrupt,  
PWM,  
Timer  
Reload Register  
Interrupt  
and  
Timer Output  
Control  
Timer  
Output  
System  
Clock  
16-Bit Counter  
with Prescaler  
Timer  
Input  
Gate  
Input  
16-Bit  
PWM/Compare  
Capture  
Input  
Figure 11. Timer Block Diagram  
Operation  
The timers are 16-bit up-counters. Minimum time-out delay is set by loading the value  
0001Hinto the Timer Reload High and Low Byte registers and setting the prescale value  
to 1. Maximum time-out delay is set by loading the value 0000Hinto the Timer Reload  
High and Low Byte registers and setting the prescale value to 128. If the Timer reaches  
FFFFH, the timer rolls over to 0000Hand continues counting.  
Timer Operating Modes  
The timers can be configured to operate in the following modes:  
ONE-SHOT Mode  
In ONE-SHOT mode, the timer counts up to the 16-bit Reload value stored in the Timer  
Reload High and Low Byte registers. The timer input is the system clock. Upon reaching  
the Reload value, the timer generates an interrupt and the count value in the Timer High  
and Low Byte registers is reset to 0001H. Then, the timer is automatically disabled and  
stops counting.  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
for one system clock cycle (from Low to High or from High to Low) upon timer Reload. If  
it is desired to have the Timer Output make a permanent state change upon  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
79  
One-Shot time-out, first set the TPOLbit in the Timer Control 1 Register to the start value  
before beginning ONE-SHOT mode. Then, after starting the timer, set TPOLto the oppo-  
site bit value.  
Follow the steps below for configuring a timer for ONE-SHOT mode and initiating the  
count:  
1. Write to the Timer Control 1 register to:  
Disable the timer  
Configure the timer for ONE-SHOT mode  
Set the prescale value  
If using the Timer Output alternate function, set the initial output level (High or  
Low)  
2. Write to the Timer High and Low Byte registers to set the starting count value  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value  
4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to  
the relevant interrupt registers  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function  
6. Write to the Timer Control 1 register to enable the timer and initiate counting  
In ONE-SHOT mode, the system clock always provides the timer input. The timer period  
is given by the following equation:  
(Reload Value – Start Value) × Prescale  
ONE-SHOT Mode Time-Out Period (s) = ------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
CONTINUOUS Mode  
In CONTINUOUS mode, the timer counts up to the 16-bit Reload value stored in the  
Timer Reload High and Low Byte registers. The timer input is the system clock. Upon  
reaching the Reload value, the timer generates an interrupt, the count value in the Timer  
High and Low Byte registers is reset to 0001Hand counting resumes. Also, if the Timer  
Output alternate function is enabled, the Timer Output pin changes state (from Low to  
High or from High to Low) upon timer Reload.  
Follow the steps below for configuring a timer for CONTINUOUS mode and initiating the  
count:  
1. Write to the Timer Control 1 register to:  
Disable the timer  
Configure the timer for CONTINUOUS mode  
Set the prescale value  
If using the Timer Output alternate function, set the initial output level (High or  
Low)  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
80  
2. Write to the Timer High and Low Byte registers to set the starting count value (usually  
0001H), affecting only the first pass in CONTINUOUS mode. After the first timer  
Reload in CONTINUOUS mode, counting always begins at the reset value of 0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to  
the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control 1 register to enable the timer and initiate counting.  
In CONTINUOUS mode, the system clock always provides the timer input. The timer  
period is given by the following equation:  
Reload Value × Prescale  
CONTINUOUS Mode Time-Out Period (s) = ------------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001His loaded into the Timer High and Low Byte  
registers, the ONE-SHOT mode equation must be used to determine the first time-out  
period.  
COUNTER Mode  
In COUNTER mode, the timer counts input transitions from a GPIO port pin. The timer  
input is taken from the GPIO Port pin Timer Input alternate function. The TPOLbit in the  
Timer Control 1 Register selects whether the count occurs on the rising edge or the falling  
edge of the Timer Input signal. In COUNTER mode, the prescaler is disabled.  
Caution: The input frequency of the Timer Input signal must not exceed one-fourth the  
system clock frequency.  
Upon reaching the Reload value stored in the Timer Reload High and Low Byte registers,  
the timer generates an interrupt, the count value in the Timer High and Low Byte registers  
is reset to 0001Hand counting resumes. Also, if the Timer Output alternate function is  
enabled, the Timer Output pin changes state (from Low to High or from High to Low) at  
timer Reload.  
Follow the steps below for configuring a timer for COUNTER mode and initiating the  
count:  
1. Write to the Timer Control 1 register to:  
Disable the timer  
Configure the timer for COUNTER mode  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
81  
Select either the rising edge or falling edge of the Timer Input signal for the count.  
This also sets the initial logic level (High or Low) for the Timer Output alternate  
function. However, the Timer Output function does not have to be enabled  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
only affects the first pass in COUNTER mode. After the first timer Reload in  
COUNTER mode, counting always begins at the reset value of 0001H. Generally, in  
COUNTER mode the Timer High and Low Byte registers must be written with the  
value 0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to  
the relevant interrupt registers.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
7. Write to the Timer Control 1 register to enable the timer.  
In COUNTER mode, the number of Timer Input transitions since the timer start is given  
by the following equation:  
COUNTER Mode Timer Input Transitions = Current Count Value – Start Value  
PWM Mode  
In PWM mode, the timer outputs a Pulse-Width Modulator (PWM) output signal through  
a GPIO Port pin. The timer input is the system clock. The timer first counts up to the 16-  
bit PWM match value stored in the Timer PWM High and Low Byte registers. When the  
timer count value matches the PWM value, the Timer Output toggles. The timer continues  
counting until it reaches the Reload value stored in the Timer Reload High and Low Byte  
registers. Upon reaching the Reload value, the timer generates an interrupt, the count  
value in the Timer High and Low Byte registers is reset to 0001Hand counting resumes.  
If the TPOLbit in the Timer Control 1 register is set to 1, the Timer Output signal begins  
as a High (1) and then transitions to a Low (0) when the timer value matches the PWM  
value. The Timer Output signal returns to a High (1) after the timer reaches the Reload  
value and is reset to 0001H.  
If the TPOLbit in the Timer Control 1 register is set to 0, the Timer Output signal begins  
as a Low (0) and then transitions to a High (1) when the timer value matches the PWM  
value. The Timer Output signal returns to a Low (0) after the timer reaches the Reload  
value and is reset to 0001H.  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
82  
Follow the steps below for configuring a timer for PWM mode and initiating the PWM  
operation:  
1. Write to the Timer Control 1 register to:  
Disable the timer  
Configure the timer for PWM mode  
Set the prescale value  
Set the initial logic level (High or Low) and PWM High/Low transition for the  
Timer Output alternate function  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H). This only affects the first pass in PWM mode. After the first timer  
reset in PWM mode, counting always begins at the reset value of 0001H.  
3. Write to the PWM High and Low Byte registers to set the PWM value.  
4. Write to the Timer Reload High and Low Byte registers to set the Reload value (PWM  
period). The Reload value must be greater than the PWM value.  
5. If desired, enable the timer interrupt and set the timer interrupt priority by writing to  
the relevant interrupt registers.  
6. Configure the associated GPIO port pin for the Timer Output alternate function.  
7. Write to the Timer Control 1 register to enable the timer and initiate counting.  
The PWM period is given by the following equation:  
Reload Value × Prescale  
PWM Period (s) = ------------------------------------------------------------------------  
System Clock Frequency (Hz)  
If an initial starting value other than 0001His loaded into the Timer High and Low Byte  
registers, the ONE-SHOT mode equation must be used to determine the first PWM time-  
out period.  
If TPOLis set to 0, the ratio of the PWM output High time to the total period is given by:  
Reload Value – PWM Value  
--------------------------------------------------------------------  
PWM Output High Time Ratio (%) =  
× 100  
Reload Value  
If TPOLis set to 1, the ratio of the PWM output High time to the total period is given by:  
PWM Value  
--------------------------------  
Reload Value  
PWM Output High Time Ratio (%) =  
× 100  
CAPTURE Mode  
In CAPTURE mode, the current timer count value is recorded when the desired external  
Timer Input transition occurs. The Capture count value is written to the Timer PWM High  
and Low Byte Registers. The timer input is the system clock. The TPOLbit in the Timer  
Control 1 register determines if the Capture occurs on a rising edge or a falling edge of the  
Timer Input signal. When the Capture event occurs, an interrupt is generated and the timer  
continues counting.  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
83  
The timer continues counting up to the 16-bit Reload value stored in the Timer Reload  
High and Low Byte registers. Upon reaching the Reload value, the timer generates an  
interrupt and continues counting.  
Follow the steps below for configuring a timer for CAPTURE mode and initiating the  
count:  
1. Write to the Timer Control 1 register to:  
Disable the timer  
Configure the timer for CAPTURE mode.  
Set the prescale value.  
Set the Capture edge (rising or falling) for the Timer Input.  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H).  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. Clear the Timer PWM High and Low Byte registers to 0000H. This allows the  
software to determine if interrupts were generated by either a capture event or a  
reload. If the PWM High and Low Byte registers still contain 0000Hafter the  
interrupt, then the interrupt was generated by a Reload.  
5. If desired, enable the timer interrupt and set the timer interrupt priority by writing to  
the relevant interrupt registers.  
6. Configure the associated GPIO port pin for the Timer Input alternate function.  
7. Write to the Timer Control 1 register to enable the timer and initiate counting.  
In CAPTURE mode, the elapsed time from timer start to Capture event can be calculated  
using the following equation:  
(Capture Value – Start Value) × Prescale  
Capture Elapsed Time (s) = --------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
COMPARE Mode  
In COMPARE mode, the timer counts up to the 16-bit maximum Compare value stored in  
the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon  
reaching the Compare value, the timer generates an interrupt and counting continues (the  
timer value is not reset to 0001H). Also, if the Timer Output alternate function is enabled,  
the Timer Output pin changes state (from Low to High or from High to Low) upon Com-  
pare.  
If the Timer reaches FFFFH, the timer rolls over to 0000Hand continue counting.  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
84  
Follow the steps below for configuring a timer for COMPARE mode and initiating the  
count:  
1. Write to the Timer Control 1 register to:  
Disable the timer  
Configure the timer for COMPARE mode  
Set the prescale value  
Set the initial logic level (High or Low) for the Timer Output alternate function, if  
desired  
2. Write to the Timer High and Low Byte registers to set the starting count value.  
3. Write to the Timer Reload High and Low Byte registers to set the Compare value.  
4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to  
the relevant interrupt registers.  
5. If using the Timer Output function, configure the associated GPIO port pin for the  
Timer Output alternate function.  
6. Write to the Timer Control 1 register to enable the timer and initiate counting.  
In COMPARE mode, the system clock always provides the timer input. The Compare time  
is given by the following equation:  
(Compare Value – Start Value) × Prescale  
COMPARE Mode Time (s) = -----------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
GATED Mode  
In GATED mode, the timer counts only when the Timer Input signal is in its active state  
(asserted), as determined by the TPOLbit in the Timer Control 1 register. When the Timer  
Input signal is asserted, counting begins. A timer interrupt is generated when the Timer  
Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal  
deassertion generated the interrupt, read the associated GPIO input value and compare to  
the value stored in the TPOLbit.  
The timer counts up to the 16-bit Reload value stored in the Timer Reload High and Low  
Byte registers. The timer input is the system clock. When reaching the Reload value, the  
timer generates an interrupt, the count value in the Timer High and Low Byte registers is  
reset to 0001Hand counting resumes (assuming the Timer Input signal is still asserted).  
Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state  
(from Low to High or from High to Low) at timer reset.  
Follow the steps below for configuring a timer for GATED mode and initiating the count:  
1. Write to the Timer Control 1 register to:  
Disable the timer  
Configure the timer for GATED mode  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
85  
Set the prescale value  
2. Write to the Timer High and Low Byte registers to set the starting count value. This  
only affects the first pass in GATED mode. After the first timer reset in GATED mode,  
counting always begins at the reset value of 0001H.  
3. Write to the Timer Reload High and Low Byte registers to set the Reload value.  
4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to  
the relevant interrupt registers.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
6. Write to the Timer Control 1 register to enable the timer.  
7. Assert the Timer Input signal to initiate the counting.  
CAPTURE/COMPARE Mode  
In CAPTURE/COMPARE mode, the timer begins counting on the first external Timer  
Input transition. The desired transition (rising edge or falling edge) is set by the TPOLbit  
in the Timer Control 1 Register. The timer input is the system clock.  
Every subsequent desired transition (after the first) of the Timer Input signal captures the  
current count value. The Capture value is written to the Timer PWM High and Low Byte  
Registers. When the Capture event occurs, an interrupt is generated, the count value in the  
Timer High and Low Byte registers is reset to 0001H, and counting resumes.  
If no Capture event occurs, the timer counts up to the 16-bit Compare value stored in the  
Timer Reload High and Low Byte registers. Upon reaching the Compare value, the timer  
generates an interrupt, the count value in the Timer High and Low Byte registers is reset to  
0001H and counting resumes.  
Follow the steps below for configuring a timer for CAPTURE/COMPARE mode and initi-  
ating the count:  
1. Write to the Timer Control 1 register to:  
Disable the timer  
Configure the timer for CAPTURE/COMPARE mode  
Set the prescale value  
Set the Capture edge (rising or falling) for the Timer Input  
2. Write to the Timer High and Low Byte registers to set the starting count value  
(typically 0001H).  
3. Write to the Timer Reload High and Low Byte registers to set the Compare value.  
4. If desired, enable the timer interrupt and set the timer interrupt priority by writing to  
the relevant interrupt registers.  
5. Configure the associated GPIO port pin for the Timer Input alternate function.  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
86  
6. Write to the Timer Control 1 register to enable the timer.  
7. Counting begins on the first appropriate transition of the Timer Input signal. No  
interrupt is generated by this first edge.  
In m/COMPARE mode, the elapsed time from timer start to Capture event can be calcu-  
lated using the following equation:  
(Capture Value – Start Value) × Prescale  
--------------------------------------------------------------------------------------------------  
System Clock Frequency (Hz)  
Capture Elapsed Time (s) =  
Reading the Timer Count Values  
The current count value in the timers can be read while counting (enabled). This capability  
has no effect on timer operation. When the timer is enabled and the Timer High Byte  
register is read, the contents of the Timer Low Byte register are placed in a holding  
register. A subsequent read from the Timer Low Byte register returns the value in the  
holding register. This operation allows accurate reads of the full 16-bit timer count value  
while enabled. When the timers are not enabled, a read from the Timer Low Byte register  
returns the actual value in the counter.  
Timer Output Signal Operation  
Timer Output is a GPIO Port pin alternate function. Generally, the Timer Output is toggled  
every time the counter is reloaded.  
Timer Control Register Definitions  
Timers 0-2 are available in all packages. Timer 3 is only available in the 64-, 68-, and  
80-pin packages.  
Timer 0-3 High and Low Byte Registers  
The Timer 0-3 High and Low Byte (TxH and TxL) registers (see Table 39 and Table 40 on  
page 87) contain the current 16-bit timer count value. When the timer is enabled, a read  
from TxH causes the value in TxL to be stored in a temporary holding register. A read  
from TMRL always returns this temporary register when the timers are enabled. When the  
timer is disabled, reads from the TMRL reads the register directly.  
Writing to the Timer High and Low Byte registers while the timer is enabled is not  
recommended. There are no temporary holding registers available for write operations, so  
simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers  
are written during counting, the 8-bit written value is placed in the counter (High or Low  
Byte) at the next clock edge. The counter continues counting from the new value.  
Timer 3 is unavailable in the 44-pin packages.  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
87  
Table 39. Timer 0-3 High Byte Register (TxH)  
BITS  
7
6
5
4
3
2
2
1
1
0
TH  
0
FIELD  
RESET  
R/W  
R/W  
F00H, F08H, F10H, F18H  
ADDR  
Table 40. Timer 0-3 Low Byte Register (TxL)  
BITS  
7
6
5
4
3
0
TL  
FIELD  
RESET  
R/W  
0
1
R/W  
F01H, F09H, F11H, F19H  
ADDR  
TH and TL—Timer High and Low Bytes  
These 2 bytes, {TMRH[7:0], TMRL[7:0]}, contain the current 16-bit timer count value.  
Timer Reload High and Low Byte Registers  
The Timer 0-3 Reload High and Low Byte (TxRH and TxRL) registers (see Table 41and  
Table 42 on page 88) store a 16-bit reload value, {TRH[7:0], TRL[7:0]}. Values written to  
the Timer Reload High Byte register are stored in a temporary holding register. When a  
write to the Timer Reload Low Byte register occurs, the temporary holding register value  
is written to the Timer High Byte register. This operation allows simultaneous updates of  
the 16-bit Timer Reload value.  
In COMPARE mode, the Timer Reload High and Low Byte registers store the 16-bit  
Compare value.  
Table 41. Timer 0-3 Reload High Byte Register (TxRH)  
BITS  
7
6
5
4
3
2
1
0
TRH  
1
FIELD  
RESET  
R/W  
R/W  
F02H, F0AH, F12H, F1AH  
ADDR  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
88  
Table 42. Timer 0-3 Reload Low Byte Register (TxRL)  
BITS  
7
6
5
4
3
2
1
0
TRL  
1
FIELD  
RESET  
R/W  
R/W  
F03H, F0BH, F13H, F1BH  
ADDR  
TRH and TRL—Timer Reload Register High and Low  
These two bytes form the 16-bit Reload value, {TRH[7:0], TRL[7:0]}. This value sets the  
maximum count value which initiates a timer reload to 0001H. In COMPARE mode, these  
two byte form the 16-bit Compare value.  
Timer 0-3 PWM High and Low Byte Registers  
The Timer 0-3 PWM High and Low Byte (TxPWMH and TxPWML) registers (see  
Table 43 and Table 44 on page 88) are used for Pulse-Width Modulator (PWM) opera-  
tions. These registers also store the Capture values for the Capture and Capture/COM-  
PARE modes.  
Table 43. Timer 0-3 PWM High Byte Register (TxPWMH)  
BITS  
7
6
5
4
3
2
1
0
PWMH  
0
FIELD  
RESET  
R/W  
R/W  
F04H, F0CH, F14H, F1CH  
ADDR  
Table 44. Timer 0-3 PWM Low Byte Register (TxPWML)  
BITS  
7
6
5
4
3
2
1
0
PWML  
0
FIELD  
RESET  
R/W  
R/W  
F05H, F0DH, F15H, F1DH  
ADDR  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
89  
PWMH and PWML—Pulse-Width Modulator High and Low Bytes  
These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the  
current 16-bit timer count. When a match occurs, the PWM output changes state. The  
PWM output value is set by the TPOLbit in the Timer Control 1 Register (TxCTL1) regis-  
ter.  
The TxPWMH and TxPWML registers also store the 16-bit captured timer value when  
operating in CAPTURE or CAPTURE/COMPARE modes.  
Timer 0-3 Control 0 Registers  
The Timer 0-3 Control 0 (TxCTL0) registers (see Table 45 and Table 46) allow cascading  
of the Timers.  
Table 45. Timer 0-3 Control 0 Register (TxCTL0)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
CSC  
Reserved  
FIELD  
RESET  
R/W  
0
R/W  
F06H, F0EH, F16H, F1EH  
ADDR  
CSC—Cascade Timers  
0 = Timer Input signal comes from the pin.  
1 = For Timer 0, Input signal is connected to Timer 3 output.  
For Timer 1, Input signal is connected to Timer 0 output.  
For Timer 2, Input signal is connected to Timer 1 output.  
For Timer 3, Input signal is connected to Timer 2 output.  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
90  
Timer 0-3 Control 1 Registers  
The Timer 0-3 Control 1 (TxCTL1) registers enable/disable the timers, set the prescaler  
value, and determine the timer operating mode.  
Table 46. Timer 0-3 Control 1 Register (TxCTL1)  
BITS  
7
6
5
4
3
2
1
0
TEN  
TPOL  
PRES  
TMODE  
FIELD  
RESET  
R/W  
0
R/W  
F07H, F0FH, F17H, F1FH  
ADDR  
TEN—Timer Enable  
0 = Timer is disabled.  
1 = Timer enabled to count.  
TPOL—Timer Input/Output Polarity  
Operation of this bit is a function of the current operating mode of the timer.  
ONE-SHOT mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
CONTINUOUS mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
COUNTER mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
0 = Count occurs on the rising edge of the Timer Input signal.  
1 = Count occurs on the falling edge of the Timer Input signal.  
PWM mode  
0 = Timer Output is forced Low (0) when the timer is disabled. When enabled,  
the Timer Output is forced High (1) upon PWM count match and forced  
Low (0) upon Reload.  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
91  
1 = Timer Output is forced High (1) when the timer is disabled. When enabled, the  
Timer Output is forced Low (0) upon PWM count match and forced High (1) upon  
Reload.  
CAPTURE mode  
0 = Count is captured on the rising edge of the Timer Input signal.  
1 = Count is captured on the falling edge of the Timer Input signal.  
COMPARE mode  
When the timer is disabled, the Timer Output signal is set to the value of this bit.  
When the timer is enabled, the Timer Output signal is complemented upon timer  
Reload.  
GATED mode  
0 = Timer counts when the Timer Input signal is High (1) and interrupts are  
generated on the falling edge of the Timer Input.  
1 = Timer counts when the Timer Input signal is Low (0) and interrupts are  
generated on the rising edge of the Timer Input.  
CAPTURE/COMPARE mode  
0 = Counting is started on the first rising edge of the Timer Input signal. The  
current count is captured on subsequent rising edges of the Timer Input signal.  
1 = Counting is started on the first falling edge of the Timer Input signal. The  
current count is captured on subsequent falling edges of the Timer Input signal.  
When the Timer Output alternate function TxOUT on a GPIO port pin is en-  
abled, TxOUT will change to whatever state the TPOL bit is in. The timer does  
not need to be enabled for that to happen. Also, the Port data direction sub reg-  
ister is not needed to be set to output on TxOUT. Changing the TPOL bit with  
the timer enabled and running does not immediately change the TxOUT.  
Caution:  
PRES—Prescale value.  
The timer input clock is divided by 2PRES, where PRES can be set from 0 to 7. The  
prescaler is reset each time the Timer is disabled. This insures proper clock division  
each time the Timer is restarted.  
000 = Divide by 1  
001 = Divide by 2  
010 = Divide by 4  
011 = Divide by 8  
100 = Divide by 16  
101 = Divide by 32  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
92  
110 = Divide by 64  
111 = Divide by 128  
TMODE—TIMER mode  
000 = ONE-SHOT mode  
001 = CONTINUOUS mode  
010 = COUNTER mode  
011 = PWM mode  
100 = CAPTURE mode  
101 = COMPARE mode  
110 = GATED mode  
111 = CAPTURE/COMPARE mode  
PS019921-0308  
Timers  
Z8 Encore! XP® F64XX Series  
Product Specification  
93  
Watchdog Timer  
The Watchdog Timer (WDT) helps protect against corrupt or unreliable software, power  
faults, and other system-level problems which may place the Z8 Encore! XP into unsuit-  
able operating states. The features of Watchdog Timer include:  
On-chip RC oscillator.  
A selectable time-out response.  
WDT Time-out response: Reset or interrupt.  
24-bit programmable time-out value.  
Operation  
The Watchdog Timer (WDT) is a retriggerable one-shot timer that resets or interrupts the  
Z8 Encore! XP® F64XX Series devices when the WDT reaches its terminal count. The  
Watchdog Timer uses its own dedicated on-chip RC oscillator as its clock source. The  
Watchdog Timer has only two modes of operation—ON and OFF. Once enabled, it always  
counts and must be refreshed to prevent a time-out. An enable can be performed by exe-  
cuting the WDT instruction or by setting the WDT_AOOption Bit. The WDT_AObit  
enables the Watchdog Timer to operate all the time, even if a WDT instruction has not  
been executed.  
The Watchdog Timer is a 24-bit reloadable downcounter that uses three 8-bit registers in  
the eZ8CPU register space to set the reload value. The nominal WDT time-out period is  
given by the following equation:  
WDT Reload Value  
-----------------------------------------------  
10  
WDT Time-out Period (ms) =  
where the WDT reload value is the decimal value of the 24-bit value given by  
{WDTU[7:0], WDTH[7:0], WDTL[7:0]} and the typical Watchdog Timer RC oscillator  
frequency is 10 kHz. The Watchdog Timer cannot be refreshed once it reaches 000002H.  
The WDT Reload Value must not be set to values below 000004H. Table 47 provides  
information on approximate time-out delays for the minimum and maximum WDT reload  
values.  
PS019921-0308  
Watchdog Timer  
Z8 Encore! XP® F64XX Series  
Product Specification  
94  
Table 47. Watchdog Timer Approximate Time-Out Delays  
Approximate Time-Out Delay  
(with 10 kHz typical WDT oscillator frequency)  
WDT Reload Value WDT Reload Value  
(Hex)  
000004  
FFFFFF  
(Decimal)  
4
Typical  
400 µs  
Description  
Minimum time-out delay  
Maximum time-out delay  
16,777,215  
1677.5 s  
Watchdog Timer Refresh  
When first enabled, the Watchdog Timer is loaded with the value in the Watchdog Timer  
Reload registers. The Watchdog Timer then counts down to 000000Hunless a WDT  
instruction is executed by the eZ8CPU. Execution of the WDT instruction causes the  
downcounter to be reloaded with the WDT Reload value stored in the Watchdog Timer  
Reload registers. Counting resumes following the reload operation.  
When the Z8 Encore! XP® F64XX Series devices are operating in DEBUG Mode  
(through the On-Chip Debugger), the Watchdog Timer is continuously refreshed to pre-  
vent spurious Watchdog Timer time-outs.  
Watchdog Timer Time-Out Response  
The Watchdog Timer times out when the counter reaches 000000H. A time-out of the  
Watchdog Timer generates either an interrupt or a Reset. The WDT_RESOption Bit  
determines the time-out response of the Watchdog Timer. For information on  
programming of the WDT_RESOption Bit, see Option Bits on page 191.  
WDT Interrupt in Normal Operation  
If configured to generate an interrupt when a time-out occurs, the Watchdog Timer issues  
an interrupt request to the interrupt controller and sets the WDTstatus bit in the Watchdog  
Timer Control register. If interrupts are enabled, the eZ8 CPU responds to the interrupt  
request by fetching the Watchdog Timer interrupt vector and executing code from the  
vector address. After time-out and interrupt generation, the Watchdog Timer counter rolls  
over to its maximum value of FFFFFHand continues counting. The Watchdog Timer  
counter is not automatically returned to its Reload Value.  
WDT Interrupt in STOP Mode  
If configured to generate an interrupt when a time-out occurs and the Z8 Encore! XP  
F64XX Series devices are in STOP mode, the Watchdog Timer automatically initiates a  
Stop Mode Recovery and generates an interrupt request. Both the WDTstatus bit and the  
STOPbit in the Watchdog Timer Control register are set to 1 following WDT time-out in  
PS019921-0308  
Watchdog Timer  
Z8 Encore! XP® F64XX Series  
Product Specification  
95  
STOP mode. For more information on Stop Mode Recovery, see Reset and Stop Mode  
Recovery on page 45.  
If interrupts are enabled, following completion of the Stop Mode Recovery the eZ8 CPU  
responds to the interrupt request by fetching the Watchdog Timer interrupt vector and exe-  
cuting code from the vector address.  
WDT Reset in Normal Operation  
If configured to generate a Reset when a time-out occurs, the Watchdog Timer forces the  
device into the Reset state. The WDTstatus bit in the Watchdog Timer Control register is  
set to 1. For more information on Reset, see Reset and Stop Mode Recovery on page 45.  
WDT Reset in STOP Mode  
If enabled in STOP mode and configured to generate a Reset when a time-out occurs and  
the device is in STOP mode, the Watchdog Timer initiates a Stop Mode Recovery. Both  
the WDTstatus bit and the STOPbit in the Watchdog Timer Control register are set to 1  
following WDT time-out in STOP mode. Default operation is for the WDT and its RC  
oscillator to be enabled during STOP mode.  
WDT RC Disable in STOP Mode  
To minimize power consumption in STOP Mode, the WDT and its RC oscillator can be  
disabled in STOP mode. The following sequence configures the WDT to be disabled when  
the Z8 Encore! XP® F64XX Series devices enter STOP Mode following execution of a  
STOP instruction:  
1. Write 55Hto the Watchdog Timer Control register (WDTCTL).  
2. Write AAHto the Watchdog Timer Control register (WDTCTL).  
3. Write 81Hto the Watchdog Timer Control register (WDTCTL) to configure the WDT  
and its oscillator to be disabled during STOP Mode. Alternatively, write 00Hto the  
Watchdog Timer Control register (WDTCTL) as the third step in this sequence to  
reconfigure the WDT and its oscillator to be enabled during STOP mode.  
This sequence only affects WDT operation in STOP mode.  
Watchdog Timer Reload Unlock Sequence  
Writing the unlock sequence to the Watchdog Timer (WDTCTL) Control register address  
unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) to  
allow changes to the time-out period. These write operations to the WDTCTL register  
address produce no effect on the bits in the WDTCTL register. The locking mechanism  
prevents spurious writes to the Reload registers. Follow the steps below to unlock the  
Watchdog Timer Reload Byte registers (WDTU, WDTH, and WDTL) for write access.  
1. Write 55Hto the Watchdog Timer Control register (WDTCTL).  
PS019921-0308  
Watchdog Timer  
Z8 Encore! XP® F64XX Series  
Product Specification  
96  
2. Write AAHto the Watchdog Timer Control register (WDTCTL).  
3. Write the Watchdog Timer Reload Upper Byte register (WDTU).  
4. Write the Watchdog Timer Reload High Byte register (WDTH).  
5. Write the Watchdog Timer Reload Low Byte register (WDTL).  
All steps of the Watchdog Timer Reload Unlock sequence must be written in the order just  
listed. There must be no other register writes between each of these operations. If a regis-  
ter write occurs, the lock state machine resets and no further writes can occur, unless the  
sequence is restarted. The value in the Watchdog Timer Reload registers is loaded into the  
counter when the Watchdog Timer is first enabled and every time a WDT instruction is  
executed.  
Watchdog Timer Control Register Definitions  
Watchdog Timer Control Register  
The Watchdog Timer Control (WDTCTL) register (Table 48) is a Read-Only register that  
indicates the source of the most recent Reset event, indicates a Stop Mode Recovery event,  
and indicates a Watchdog Timer time-out. Reading this register resets the upper four bits  
to 0.  
Writing the 55H, AAHunlock sequence to the Watchdog Timer Control (WDTCTL) regis-  
ter address unlocks the three Watchdog Timer Reload Byte registers (WDTU, WDTH, and  
WDTL) to allow changes to the time-out period. These write operations to the WDTCTL  
register address produce no effect on the bits in the WDTCTL register. The locking mech-  
anism prevents spurious writes to the Reload registers.  
Table 48. Watchdog Timer Control Register (WDTCTL)  
BITS  
7
6
5
4
3
2
1
0
POR  
STOP  
WDT  
EXT  
Reserved  
SM  
FIELD  
RESET  
R/W  
See descriptions below  
0
R
FF0H  
ADDR  
PS019921-0308  
Watchdog Timer  
Z8 Encore! XP® F64XX Series  
Product Specification  
97  
Reset or Stop Mode Recovery Event  
Power-On Reset  
Reset using RESET pin assertion  
Reset using Watchdog Timer time-out  
POR STOP WDT EXT  
1
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
1
0
1
0
0
0
0
0
Reset using the On-Chip Debugger (OCDCTL[1] set to 1) 1  
Reset from STOP Mode using DBG Pin driven Low  
Stop Mode Recovery using GPIO pin transition  
Stop Mode Recovery using Watchdog Timer time-out  
1
0
0
POR—Power-On Reset Indicator  
If this bit is set to 1, a Power-On Reset event occurred. This bit is reset to 0 if a WDT time-  
out or Stop Mode Recovery occurs. This bit is also reset to 0 when the register is read.  
STOP—Stop Mode Recovery Indicator  
If this bit is set to 1, a Stop Mode Recovery occurred. If the STOPand WDTbits are both  
set to 1, the Stop Mode Recovery occurred due to a WDT time-out. If the STOPbit is 1  
and the WDTbit is 0, the Stop Mode Recovery was not caused by a WDT time-out. This bit  
is reset by a Power-On Reset or a WDT time-out that occurred while not in STOP mode.  
Reading this register also resets this bit.  
WDT—Watchdog Timer Time-Out Indicator  
If this bit is set to 1, a WDT time-out occurred. A Power-On Reset resets this pin. A Stop  
Mode Recovery from a change in an input pin also resets this bit. Reading this register  
resets this bit.  
EXT—External Reset Indicator  
If this bit is set to 1, a Reset initiated by the external RESET pin occurred. A Power-On  
Reset or a Stop Mode Recovery from a change in an input pin resets this bit. Reading this  
register resets this bit.  
Reserved  
These bits are reserved and must be 0.  
SM—STOP Mode Configuration Indicator  
0 = Watchdog Timer and its internal RC oscillator will continue to operate in STOP Mode.  
1 = Watchdog Timer and its internal RC oscillator will be disabled in STOP Mode.  
Watchdog Timer Reload Upper, High and Low Byte Registers  
The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) regis-  
ters (see Table 49 on page 98 through Table 51 on page 98) form the 24-bit reload value  
that is loaded into the Watchdog Timer when a WDT instruction executes. The 24-bit  
reload value is {WDTU[7:0], WDTH[7:0], WDTL[7:0]}. Writing to these registers sets  
the desired Reload Value. Reading from these registers returns the current Watchdog  
Timer count value.  
PS019921-0308  
Watchdog Timer  
Z8 Encore! XP® F64XX Series  
Product Specification  
98  
Caution: The 24-bit WDT Reload Value must not be set to a value less than 000004H.  
Table 49. Watchdog Timer Reload Upper Byte Register (WDTU)  
BITS  
7
6
5
4
3
2
1
0
WDTU  
1
FIELD  
RESET  
R/W  
R/W*  
FF1H  
ADDR  
Note: R/W* - Read returns the current WDT count value. Write sets the desired Reload Value.  
WDTU—WDT Reload Upper Byte  
Most significant byte, Bits[23:16], of the 24-bit WDT reload value.  
Table 50. Watchdog Timer Reload High Byte Register (WDTH)  
BITS  
7
6
5
4
3
2
1
0
WDTH  
1
FIELD  
RESET  
R/W  
R/W*  
FF2H  
ADDR  
Note: R/W* - Read returns the current WDT count value. Write sets the desired Reload Value.  
WDTH—WDT Reload High Byte  
Middle byte, Bits[15:8], of the 24-bit WDT reload value.  
Table 51. Watchdog Timer Reload Low Byte Register (WDTL)  
BITS  
7
6
5
4
3
2
1
0
WDTL  
1
FIELD  
RESET  
R/W  
R/W*  
FF3H  
ADDR  
Note: R/W* - Read returns the current WDT count value. Write sets the desired Reload Value.  
WDTL—WDT Reload Low  
Least significant byte, Bits[7:0], of the 24-bit WDT reload value.  
PS019921-0308  
Watchdog Timer  
Z8 Encore! XP® F64XX Series  
Product Specification  
99  
UART  
The Universal Asynchronous Receiver/Transmitter (UART) is a full-duplex communica-  
tion channel capable of handling asynchronous data transfers. The UART uses a single  
8-bit data mode with selectable parity. Features of the UART include:  
8-bit asynchronous data transfer  
Selectable even- and odd-parity generation and checking  
Option of one or two Stop bits  
Separate transmit and receive interrupts  
Framing, parity, overrun and break detection  
Separate transmit and receive enables  
16-bit Baud Rate Generator (BRG)  
Selectable MULTIPROCESSOR (9-bit) mode with three configurable interrupt  
schemes  
Baud Rate Generator timer mode  
Driver Enable output for external bus transceivers  
Architecture  
The UART consists of three primary functional blocks: Transmitter, Receiver, and Baud  
rate generator. The UART’s transmitter and receiver function independently, but employ  
the same baud rate and data format. Figure 12 on page 100 displays the UART architec-  
ture.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
100  
Parity Checker  
Receive Shifter  
Receiver Control  
with address compare  
RXD  
Receive Data  
Register  
Control Registers  
System Bus  
Transmit Data  
Register  
Status Register  
Baud Rate  
Generator  
Transmit Shift  
Register  
TXD  
Transmitter Control  
Parity Generator  
CTS  
DE  
Figure 12. UART Block Diagram  
Operation  
Data Format  
The UART always transmits and receives data in an 8-bit data format, least-significant bit  
first. An even or odd parity bit can be optionally added to the data stream. Each character  
begins with an active Low Start bit and ends with either 1 or 2 active High Stop bits.  
Figure 13 and Figure 14 on page 101 displays the asynchronous data format employed by  
the UART without parity and with parity, respectively.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
101  
Data Field  
Stop Bit(s)  
msb  
Idle State  
of Line  
lsb  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Bit7  
1
2
Figure 13. UART Asynchronous Data Format without Parity  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
2
Figure 14. UART Asynchronous Data Format with Parity  
Transmitting Data using the Polled Method  
Follow the steps below to transmit data using the polled method of operation:  
1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO Port pins for  
alternate function operation.  
3. If MULTIPROCESSOR mode is desired, write to the UART Control 1 register to  
enable MULTIPROCESSOR (9-bit) mode functions.  
Set the MULTIPROCESSOR Mode Select (MPEN) to Enable  
MULTIPROCESSOR mode.  
4. Write to the UART Control 0 register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission  
If parity is desired and MULTIPROCESSOR mode is not enabled, set the parity  
enable bit (PEN) and select either Even or Odd parity (PSEL).  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
102  
Set or clear the CTSEbit to enable or disable control from the remote receiver  
using the CTS pin.  
5. Check the TDREbit in the UART Status 0 register to determine if the Transmit Data  
register is empty (indicated by a 1). If empty, continue to step 6. If the Transmit Data  
register is full (indicated by a 0), continue to monitor the TDREbit until the Transmit  
Data register becomes available to receive new data.  
6. Write the UART Control 1 register to select the outgoing address bit.  
7. Set the MULTIPROCESSOR Bit Transmitter (MPBT) if sending an address byte, clear  
it if sending a data byte.  
8. Write the data byte to the UART Transmit Data register. The transmitter automatically  
transfers the data to the Transmit Shift register and transmits the data.  
9. If desired and MULTIPROCESSOR mode is enabled, make any changes to the  
MULTIPROCESSOR Bit Transmitter (MPBT) value.  
10. To transmit additional bytes, return to step 5.  
Transmitting Data using the Interrupt-Driven Method  
The UART transmitter interrupt indicates the availability of the Transmit Data register to  
accept new data for transmission. Follow the steps below to configure the UART for inter-  
rupt-driven data transmission:  
1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO Port pins for  
alternate function operation.  
3. Execute a DI instruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Transmitter interrupt and  
set the desired priority.  
5. If MULTIPROCESSOR mode is desired, write to the UART Control 1 register to  
enable MULTIPROCESSOR (9-bit) mode functions.  
6. Set the MULTIPROCESSOR Mode Select (MPEN) to Enable MULTIPROCESSOR  
mode.  
7. Write to the UART Control 0 register to:  
Set the transmit enable bit (TEN) to enable the UART for data transmission.  
Enable parity, if desired and if MULTIPROCESSOR mode is not enabled, and  
select either even or odd parity.  
Set or clear the CTSEbit to enable or disable control from the remote receiver via  
the CTS pin.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
103  
8. Execute an EI instruction to enable interrupts.  
The UART is now configured for interrupt-driven data transmission. Because the UART  
Transmit Data register is empty, an interrupt is generated immediately. When the UART  
Transmit interrupt is detected, the associated interrupt service routine performs the follow-  
ing:  
1. Write the UART Control 1 register to select the outgoing address bit:  
Set the MULTIPROCESSOR Bit Transmitter (MPBT) if sending an address byte,  
clear it if sending a data byte.  
2. Write the data byte to the UART Transmit Data register. The transmitter automatically  
transfers the data to the Transmit Shift register and transmits the data.  
3. Clear the UART Transmit interrupt bit in the applicable Interrupt Request register.  
4. Execute the IRET instruction to return from the interrupt-service routine and wait for  
the Transmit Data register to again become empty.  
Receiving Data using the Polled Method  
Follow the steps below to configure the UART for polled data reception:  
1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO Port pins for  
alternate function operation.  
3. Write to the UART Control 1 register to enable MULTIPROCESSOR mode functions,  
if desired.  
4. Write to the UART Control 0 register to:  
Set the receive enable bit (REN) to enable the UART for data reception.  
Enable parity, if desired and if MULTIPROCESSOR mode is not enabled, and  
select either even or odd parity.  
5. Check the RDAbit in the UART Status 0 register to determine if the Receive Data  
register contains a valid data byte (indicated by a 1). If RDAis set to 1 to indicate  
available data, continue to step 6. If the Receive Data register is empty (indicated by a  
0), continue to monitor the RDA bit awaiting reception of the valid data.  
6. Read data from the UART Receive Data register. If operating in MULTIPROCESSOR  
(9-bit) mode, further actions may be required depending on the MULTIPROCESSOR  
Mode bits MPMD[1:0].  
7. Return to step 5 to receive additional data.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
104  
Receiving Data using the Interrupt-Driven Method  
The UART Receiver interrupt indicates the availability of new data (as well as error con-  
ditions). Follow the steps below to configure the UART receiver for interrupt-driven oper-  
ation:  
1. Write to the UART Baud Rate High and Low Byte registers to set the desired baud  
rate.  
2. Enable the UART pin functions by configuring the associated GPIO Port pins for  
alternate function operation.  
3. Execute a DIinstruction to disable interrupts.  
4. Write to the Interrupt control registers to enable the UART Receiver interrupt and set  
the desired priority.  
5. Clear the UART Receiver interrupt in the applicable Interrupt Request register.  
6. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-bit) mode  
functions, if desired.  
Set the MULTIPROCESSOR Mode Select (MPEN) to Enable  
MULTIPROCESSOR mode.  
Set the MULTIPROCESSOR Mode Bits, MPMD[1:0],to select the desired  
address matching scheme.  
Configure the UART to interrupt on received data and errors or errors only  
(interrupt on errors only is unlikely to be useful for Z8 Encore! XP devices  
without a DMA block).  
7. Write the device address to the Address Compare Register (automatic multiprocessor  
modes only).  
8. Write to the UART Control 0 register to:  
Set the receive enable bit (REN) to enable the UART for data reception.  
Enable parity, if desired and if MULTIPROCESSOR mode is not enabled, and  
select either even or odd parity.  
9. Execute an EIinstruction to enable interrupts.  
The UART is now configured for interrupt-driven data reception. When the UART  
Receiver interrupt is detected, the associated interrupt service routine performs the follow-  
ing:  
1. Check the UART Status 0 register to determine the source of the interrupt - error,  
break, or received data.  
2. If the interrupt was caused by data available, read the data from the UART Receive  
Data register. If operating in MULTIPROCESSOR (9-bit) mode, further actions may  
be required depending on the MULTIPROCESSOR Mode bits MPMD[1:0].  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
105  
3. Clear the UART Receiver interrupt in the applicable Interrupt Request register.  
4. Execute the IRET instruction to return from the interrupt-service routine and await  
more data.  
Clear To Send (CTS) Operation  
The CTS pin, if enabled by the CTSE bit of the UART Control 0 register, performs flow  
control on the outgoing transmit datastream. The Clear To Send (CTS) input pin is sam-  
pled one system clock before beginning any new character transmission. To delay trans-  
mission of the next data character, an external receiver must deassert CTS at least one  
system clock cycle before a new data transmission begins. For multiple character trans-  
missions, this would typically be done during Stop Bit transmission. If CTS deasserts in  
the middle of a character transmission, the current character is sent completely.  
MULTIPROCESSOR (9-bit) Mode  
The UART has a MULTIPROCESSOR (9-bit) mode that uses an extra (9th) bit for selec-  
tive communication when a number of processors share a common UART bus. In MULTI-  
PROCESSOR mode (also referred to as 9-Bit mode), the multiprocessor bit (MP) is  
transmitted immediately following the 8-bits of data and immediately preceding the Stop  
bit(s) as displayed in Figure 15. The character format is:  
Data Field  
Stop Bit(s)  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
MP  
1
2
Figure 15. UART Asynchronous MULTIPROCESSOR Mode Data Format  
In MULTIPROCESSOR (9-bit) mode, the Parity bit location (9th bit) becomes the MUL-  
TIPROCESSOR control bit. The UART Control 1 and Status 1 registers provide MULTI-  
PROCESSOR (9-bit) mode control and status information. If an automatic address  
matching scheme is enabled, the UART Address Compare register holds the network  
address of the device.  
MULTIPROCESSOR (9-bit) Mode Receive Interrupts  
When MULTIPROCESSOR mode is enabled, the UART only processes frames addressed  
to it. The determination of whether a frame of data is addressed to the UART can be made  
in hardware, software or some combination of the two, depending on the multiprocessor  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
106  
configuration bits. In general, the address compare feature reduces the load on the CPU,  
since it does not need to access the UART when it receives data directed to other devices  
on the multi-node network. The following three MULTIPROCESSOR modes are avail-  
able in hardware:  
Interrupt on all address bytes.  
Interrupt on matched address bytes and correctly framed data bytes.  
Interrupt only on correctly framed data bytes.  
These modes are selected with MPMD[1:0]in the UART Control 1 Register. For all  
MULTIPROCESSOR modes, bit MPENof the UART Control 1 Register must be set to 1.  
The first scheme is enabled by writing 01b to MPMD[1:0]. In this mode, all incoming  
address bytes cause an interrupt, while data bytes never cause an interrupt. The interrupt  
service routine must manually check the address byte that caused triggered the interrupt. If  
it matches the UART address, the software clears MPMD[0]. At this point, each new  
incoming byte interrupts the CPU. The software is then responsible for determining the  
end of the frame. It checks for end-of-frame by reading the MPRXbit of the UART Status  
1 Register for each incoming byte. If MPRX=1, a new frame has begun. If the address of  
this new frame is different from the UART’s address, then set MPMD[0]to 1 causing the  
UART interrupts to go inactive until the next address byte. If the new frame’s address  
matches the UART’s, the data in the new frame is processed as well.  
The second scheme is enabled by setting MPMD[1:0]to 10b and writing the UART’s  
address into the UART Address Compare Register. This mode introduces more hardware  
control, interrupting only on frames that match the UART’s address. When an incoming  
address byte does not match the UART’s address, it is ignored. All successive data bytes in  
this frame are also ignored. When a matching address byte occurs, an interrupt is issued  
and further interrupts now occur on each successive data byte. The first data byte in the  
frame contains the NEWFRM=1 in the UART Status 1 Register. When the next address byte  
occurs, the hardware compares it to the UART’s address. If there is a match, the interrupts  
continue sand the NEWFRMbit is set for the first byte of the new frame. If there is no  
match, then the UART ignores all incoming bytes until the next address match.  
The third scheme is enabled by setting MPMD[1:0]to 11b and by writing the UART’s  
address into the UART Address Compare Register. This mode is identical to the second  
scheme, except that there are no interrupts on address bytes. The first data byte of each  
frame is still accompanied by a NEWFRMassertion.  
External Driver Enable  
The UART provides a Driver Enable (DE) signal for off-chip bus transceivers. This feature  
reduces the software overhead associated with using a GPIO pin to control the transceiver  
when communicating on a multi-transceiver bus, such as RS-485.  
Driver Enable is an active High signal that envelopes the entire transmitted data frame  
including parity and Stop bits as displayed in Figure 16. The Driver Enable signal asserts  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
107  
when a byte is written to the UART Transmit Data register. The Driver Enable signal  
asserts at least one UART bit period and no greater than two UART bit periods before the  
Start bit is transmitted. This timing allows a setup time to enable the transceiver. The  
Driver Enable signal deasserts one system clock period after the last Stop bit is transmit-  
ted. This one system clock delay allows both time for data to clear the transceiver before  
disabling it, as well as the ability to determine if another character follows the current  
character. In the event of back to back characters (new data must be written to the Trans-  
mit Data Register before the previous character is completely transmitted) the DEsignal is  
not deasserted between characters. The DEPOLbit in the UART Control Register 1 sets the  
polarity of the Driver Enable signal.  
1
DE  
0
Data Field  
Stop Bit  
Idle State  
of Line  
lsb  
msb  
Bit7  
1
0
Start  
Bit0  
Bit1  
Bit2  
Bit3  
Bit4  
Bit5  
Bit6  
Parity  
1
Figure 16. UART Driver Enable Signal Timing (shown with 1 Stop Bit and Parity)  
The Driver Enable to Start bit setup time is calculated as follows:  
1
2
-------------------------------------  
-------------------------------------  
DE to Start Bit Setup Time (s) ≤  
Baud Rate (Hz)  
Baud Rate (Hz)  
UART Interrupts  
The UART features separate interrupts for the transmitter and the receiver. In addition,  
when the UART primary functionality is disabled, the Baud Rate Generator can also func-  
tion as a basic timer with interrupt capability.  
Transmitter Interrupts  
The transmitter generates a single interrupt when the Transmit Data Register Empty bit  
(TDRE) is set to 1. This indicates that the transmitter is ready to accept new data for trans-  
mission. The TDREinterrupt occurs after the Transmit shift register has shifted the first bit  
of data out. At this point, the Transmit Data register may be written with the next character  
to send. This provides 7 bit periods of latency to load the Transmit Data register before the  
Transmit shift register completes shifting the current character. Writing to the UART  
Transmit Data register clears the TDREbit to 0.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
108  
Receiver Interrupts  
The receiver generates an interrupt when any of the following occurs:  
A data byte has been received and is available in the UART Receive Data register.  
This interrupt can be disabled independent of the other receiver interrupt sources. The  
received data interrupt occurs once the receive character has been received and placed  
in the Receive Data register. Software must respond to this received data available  
condition before the next character is completely received to avoid an overrun error.  
In MULTIPROCESSOR mode (MPEN = 1), the receive data interrupts are dependent on  
Note:  
the multiprocessor configuration and the most recent address byte.  
A break is received  
An overrun is detected  
A data framing error is detected  
UART Overrun Errors  
When an overrun error condition occurs the UART prevents overwriting of the valid data  
currently in the Receive Data register. The Break Detect and Overrun status bits are not  
displayed until after the valid data has been read.  
After the valid data has been read, the UART Status 0 register is updated to indicate the  
overrun condition (and Break Detect, if applicable). The RDAbit is set to 1 to indicate that  
the Receive Data register contains a data byte. However, because the overrun error  
occurred, this byte may not contain valid data and should be ignored. The BRKDbit indi-  
cates if the overrun was caused by a break condition on the line. After reading the status  
byte indicating an overrun error, the Receive Data register must be read again to clear the  
error bits is the UART Status 0 register. Updates to the Receive Data register occur only  
when the next data word is received.  
UART Data and Error Handling Procedure  
Figure 17 on page 109 displays the recommended procedure for use in UART receiver  
interrupt service routines.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
109  
Receiver  
Ready  
Receiver  
Interrupt  
Read Status  
No  
Errors?  
Yes  
Read Data which  
clears RDA bit and  
resets error bits  
Read Data  
Discard Data  
Figure 17. UART Receiver Interrupt Service Routine Flow  
Baud Rate Generator Interrupts  
If the Baud Rate Generator interrupt enable is set, the UART Receiver interrupt asserts  
when the UART Baud Rate Generator reloads. This action allows the Baud Rate Genera-  
tor to function as an additional counter if the UART functionality is not employed.  
UART Baud Rate Generator  
The UART Baud Rate Generator creates a lower frequency baud rate clock for data trans-  
mission. The input to the Baud Rate Generator is the system clock. The UART Baud Rate  
High and Low Byte registers combine to create a 16-bit baud rate divisor value  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
110  
(BRG[15:0]) that sets the data transmission rate (baud rate) of the UART. The UART data  
rate is calculated using the following equation:  
System Clock Frequency (Hz)  
------------------------------------------------------------------------------------------  
UART Data Rate (bits/s) =  
16 × UART Baud Rate Divisor Value  
When the UART is disabled, the Baud Rate Generator can function as a basic 16-bit timer  
with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt  
on time-out, complete the following procedure:  
1. Disable the UART by clearing the RENand TENbits in the UART Control 0 register  
to 0.  
2. Load the desired 16-bit count value into the UART Baud Rate High and Low Byte  
registers.  
3. Enable the Baud Rate Generator timer function and associated interrupt by setting the  
BRGCTLbit in the UART Control 1 register to 1.  
When configured as a general purpose timer, the interrupt interval is calculated using the  
following equation:  
Interrupt Interval(s) = System Clock Period (s) × BRG[15:0]  
UART Control Register Definitions  
The UART control registers support the UART and the associated Infrared Encoder/  
Decoders. For more information on the infrared operation, see Infrared Encoder/Decoder  
on page 121.  
UART Transmit Data Register  
Data bytes written to the UART Transmit Data register (Table 52) are shifted out on the  
TXDx pin. The Write-only UART Transmit Data register shares a Register File address  
with the Read-only UART Receive Data register.  
Table 52. UART Transmit Data Register (UxTXD)  
BITS  
7
6
5
4
3
2
1
0
TXD  
X
FIELD  
RESET  
R/W  
W
F40H and F48H  
ADDR  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
111  
TXD—Transmit Data  
UART transmitter data byte to be shifted out through the TXDx pin.  
UART Receive Data Register  
Data bytes received through the RXDx pin are stored in the UART Receive Data register  
(Table 53). The Read-only UART Receive Data register shares a Register File address  
with the Write-only UART Transmit Data register.  
Table 53. UART Receive Data Register (UxRXD)  
BITS  
7
6
5
4
3
2
1
0
RXD  
X
FIELD  
RESET  
R/W  
R
F40H and F48H  
ADDR  
RXD—Receive Data  
UART receiver data byte from the RXDx pin  
UART Status 0 Register  
The UART Status 0 and Status 1 registers (Table 54 and Table 55 on page 113) identify the  
current UART operating configuration and status.  
Table 54. UART Status 0 Register (UxSTAT0)  
BITS  
7
6
5
4
3
2
1
0
RDA  
PE  
OE  
FE  
BRKD  
TDRE  
TXE  
CTS  
FIELD  
RESET  
R/W  
0
1
X
R
F41H and F49H  
ADDR  
RDA—Receive Data Available  
This bit indicates that the UART Receive Data register has received data. Reading the  
UART Receive Data register clears this bit.  
0 = The UART Receive Data register is empty.  
1 = There is a byte in the UART Receive Data register.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
112  
PE—Parity Error  
This bit indicates that a parity error has occurred. Reading the UART Receive Data regis-  
ter clears this bit.  
0 = No parity error occurred.  
1 = A parity error occurred.  
OE—Overrun Error  
This bit indicates that an overrun error has occurred. An overrun occurs when new data is  
received and the UART Receive Data register has not been read. If the RDA bit is reset to  
0, then reading the UART Receive Data register clears this bit.  
0 = No overrun error occurred.  
1 = An overrun error occurred.  
FE—Framing Error  
This bit indicates that a framing error (no Stop bit following data reception) was detected.  
Reading the UART Receive Data register clears this bit.  
0 = No framing error occurred.  
1 = A framing error occurred.  
BRKD—Break Detect  
This bit indicates that a break occurred. If the data bits, parity/multiprocessor bit, and Stop  
bit(s) are all zeros then this bit is set to 1. Reading the UART Receive Data register clears  
this bit.  
0 = No break occurred.  
1 = A break occurred.  
TDRE—Transmitter Data Register Empty  
This bit indicates that the UART Transmit Data register is empty and ready for additional  
data. Writing to the UART Transmit Data register resets this bit.  
0 = Do not write to the UART Transmit Data register.  
1 = The UART Transmit Data register is ready to receive an additional byte to be transmit-  
ted.  
TXE—Transmitter Empty  
This bit indicates that the transmit shift register is empty and character transmission is fin-  
ished.  
0 = Data is currently transmitting.  
1 = Transmission is complete.  
CTS—CTS signal  
When this bit is read it returns the level of the CTS signal.  
UART Status 1 Register  
This register contains multiprocessor control and status bits.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
113  
Table 55. UART Status 1 Register (UxSTAT1)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
NEWFRM  
MPRX  
FIELD  
RESET  
R/W  
0
R
R/W  
R
F44H and F4CH  
ADDR  
Reserved—Must be 0.  
NEWFRM—Status bit denoting the start of a new frame. Reading the UART Receive  
Data register resets this bit to 0.  
0 = The current byte is not the first data byte of a new frame.  
1 = The current byte is the first data byte of a new frame.  
MPRX—Multiprocessor Receive  
Returns the value of the last multiprocessor bit received. Reading from the UART Receive  
Data register resets this bit to 0.  
UART Control 0 and Control 1 Registers  
The UART Control 0 and Control 1 registers (see Table 56 and Table 57 on page 114) con-  
figure the properties of the UART’s transmit and receive operations. The UART Control  
registers must not been written while the UART is enabled.  
Table 56. UART Control 0 Register (UxCTL0)  
BITS  
7
6
5
4
3
2
1
0
TEN  
REN  
CTSE  
PEN  
PSEL  
SBRK  
STOP  
LBEN  
FIELD  
RESET  
R/W  
0
R/W  
F42H and F4AH  
ADDR  
TEN—Transmit Enable  
This bit enables or disables the transmitter. The enable is also controlled by the CTS signal  
and the CTSEbit. If the CTS signal is low and the CTSEbit is 1, the transmitter is  
enabled.  
0 = Transmitter disabled.  
1 = Transmitter enabled.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
114  
REN—Receive Enable  
This bit enables or disables the receiver.  
0 = Receiver disabled.  
1 = Receiver enabled.  
CTSE—CTS Enable  
0 = The CTS signal has no effect on the transmitter.  
1 = The UART recognizes the CTS signal as an enable control from the transmitter.  
PEN—Parity Enable  
This bit enables or disables parity. Even or odd is determined by the PSELbit. It is over-  
ridden by the MPENbit.  
0 = Parity is disabled.  
1 = The transmitter sends data with an additional parity bit and the receiver receives an  
additional parity bit.  
PSEL—Parity Select  
0 = Even parity is transmitted and expected on all received data.  
1 = Odd parity is transmitted and expected on all received data.  
SBRK—Send Break  
This bit pauses or breaks data transmission. Sending a break interrupts any transmission in  
progress, so ensure that the transmitter has finished sending data before setting this bit.  
0 = No break is sent.  
1 = The output of the transmitter is zero.  
STOP—Stop Bit Select  
0 = The transmitter sends one stop bit.  
1 = The transmitter sends two stop bits.  
LBEN—Loop Back Enable  
0 = Normal operation.  
1 = All transmitted data is looped back to the receiver.  
Table 57. UART Control 1 Register (UxCTL1)  
BITS  
7
6
5
4
3
2
1
0
MPMD[1]  
MPEN  
MPMD[0]  
MPBT  
DEPOL BRGCTL  
RDAIRQ  
IREN  
FIELD  
RESET  
R/W  
0
R/W  
F43H and F4BH  
ADDR  
MPMD[1:0]—MULTIPROCESSOR Mode  
If MULTIPROCESSOR (9-bit) mode is enabled,  
00 = The UART generates an interrupt request on all received bytes (data and address).  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
115  
01 = The UART generates an interrupt request only on received address bytes.  
10 = The UART generates an interrupt request when a received address byte matches  
the value stored in the Address Compare Register and on all successive data  
bytes until an address mismatch occurs.  
11 = The UART generates an interrupt request on all received data bytes for which  
the most recent address byte matched the value in the Address Compare Register.  
MPEN—MULTIPROCESSOR (9-bit) Enable  
This bit is used to enable MULTIPROCESSOR (9-bit) mode.  
0 = Disable MULTIPROCESSOR (9-bit) mode.  
1 = Enable MULTIPROCESSOR (9-bit) mode.  
MPBT—MULTIPROCESSOR Bit Transmit  
This bit is applicable only when MULTIPROCESSOR (9-bit) mode is enabled.  
0 = Send a 0 in the multiprocessor bit location of the data stream (9th bit).  
1 = Send a 1 in the multiprocessor bit location of the data stream (9th bit).  
DEPOL—Driver Enable Polarity  
0 = DEsignal is Active High.  
1 = DEsignal is Active Low.  
BRGCTL—Baud Rate Control  
This bit causes different UART behavior depending on whether the UART receiver is  
enabled (REN = 1 in the UART Control 0 Register).  
When the UART receiver is not enabled, this bit determines whether the Baud Rate Gener-  
ator issues interrupts.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value  
1 = The Baud Rate Generator generates a receive interrupt when it counts down to 0.  
Reads from the Baud Rate High and Low Byte registers return the current BRG count  
value.  
When the UART receiver is enabled, this bit allows reads from the Baud Rate Registers to  
return the BRG count value instead of the Reload Value.  
0 = Reads from the Baud Rate High and Low Byte registers return the BRG Reload Value.  
1 = Reads from the Baud Rate High and Low Byte registers return the current BRG  
count value. Unlike the Timers, there is no mechanism to latch the High Byte  
when the Low Byte is read.  
RDAIRQ—Receive Data Interrupt Enable  
0 = Received data and receiver errors generates an interrupt request to the Interrupt  
Controller.  
1 = Received data does not generate an interrupt request to the Interrupt Controller.  
Only receiver errors generate an interrupt request.  
IREN—Infrared Encoder/Decoder Enable  
0 = Infrared Encoder/Decoder is disabled. UART operates normally operation.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
116  
1 = Infrared Encoder/Decoder is enabled. The UART transmits and receives data  
through the Infrared Encoder/Decoder.  
UART Address Compare Register  
The UART Address Compare register (Table 58) stores the multi-node network address of  
the UART. When the MPMD[1] bit of UART Control Register 0 is set, all incoming  
address bytes are compared to the value stored in the Address Compare register. Receive  
interrupts and RDA assertions only occur in the event of a match.  
Table 58. UART Address Compare Register (UxADDR)  
BITS  
7
6
5
4
3
2
1
0
COMP_ADDR  
FIELD  
RESET  
R/W  
0
R/W  
F45H and F4DH  
ADDR  
COMP_ADDR—Compare Address  
This 8-bit value is compared to the incoming address bytes.  
UART Baud Rate High and Low Byte Registers  
The UART Baud Rate High and Low Byte registers (see Table 59 and Table 60 on  
page 117) combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data  
transmission rate (baud rate) of the UART. To configure the Baud Rate Generator as a  
timer with interrupt on time-out, complete the following procedure:  
1. Disable the UART by clearing the RENand TENbits in the UART Control 0 register  
to 0.  
2. Load the desired 16-bit count value into the UART Baud Rate High and Low Byte  
registers.  
3. Enable the Baud Rate Generator timer function and associated interrupt by setting the  
BRGCTLbit in the UART Control 1 register to 1.  
When configured as a general purpose timer, the UART BRG interrupt interval is calcu-  
lated using the following equation:  
UART BRG Interrupt Interval(s) = System Clock Period (s) × BRG[15:0]  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
117  
Table 59. UART Baud Rate High Byte Register (UxBRH)  
BITS  
7
6
5
4
3
2
2
1
1
0
0
BRH  
1
FIELD  
RESET  
R/W  
R/W  
F46H and F4EH  
ADDR  
Table 60. UART Baud Rate Low Byte Register (UxBRL)  
BITS  
7
6
5
4
3
BRL  
1
FIELD  
RESET  
R/W  
R/W  
F47H and F4FH  
ADDR  
For a given UART data rate, the integer baud rate divisor value is calculated using the  
following equation:  
System Clock Frequency (Hz)  
------------------------------------------------------------------------  
UART Baud Rate Divisor Value (BRG) = Round  
16 × UART Data Rate (bits/s)  
The baud rate error relative to the desired baud rate is calculated using the following  
equation:  
Actual Data Rate – Desired Data Rate  
------------------------------------------------------------------------------------------  
Desired Data Rate  
UART Baud Rate Error (%) = 100 ×  
For reliable communication, the UART baud rate error must never exceed 5 percent.  
Table 61 provides information on data rate errors for popular baud rates and commonly  
used crystal oscillator frequencies.  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
118  
Table 61. UART Baud Rates  
20.0 MHz System Clock  
18.432 MHz System Clock  
Desired  
Rate  
BRG  
Desired Rate BRG Divisor Actual Rate Error  
Divisor  
Actual Rate Error  
(kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
1
(kHz)  
1250.0  
625.0  
250.0  
113.6  
56.8  
(%)  
0.00  
0.00  
0.00  
-1.36  
-1.36  
-1.36  
0.16  
0.16  
0.16  
-0.03  
-0.03  
0.02  
-0.01  
(kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
1
(kHz)  
1152.0  
576.0  
230.4  
115.2  
57.6  
(%)  
-7.84%  
-7.84%  
-7.84%  
0.00  
2
2
5
5
11  
10  
22  
20  
0.00  
38.4  
33  
37.9  
38.4  
30  
38.4  
0.00  
19.2  
65  
19.2  
19.2  
60  
19.2  
0.00  
9.60  
130  
260  
521  
1042  
2083  
4167  
9.62  
9.60  
120  
240  
480  
960  
1920  
3840  
9.60  
0.00  
4.80  
4.81  
4.80  
4.80  
0.00  
2.40  
2.40  
2.40  
2.40  
0.00  
1.20  
1.20  
1.20  
1.20  
0.00  
0.60  
0.60  
0.60  
0.60  
0.00  
0.30  
0.30  
0.30  
0.30  
0.00  
16.667 MHz System Clock  
11.0592 MHz System Clock  
Desired  
Rate  
BRG  
Desired Rate BRG Divisor Actual Rate Error  
Divisor  
Actual Rate Error  
(kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(kHz)  
1041.69  
520.8  
260.4  
115.7  
57.87  
38.6  
(%)  
-16.67  
-16.67  
4.17  
(kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(kHz)  
N/A  
(%)  
N/A  
1
2
N/A  
1
691.2  
230.4  
115.2  
57.6  
38.4  
19.2  
9.60  
4.80  
2.40  
10.59  
-7.84  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
4
3
9
0.47  
6
18  
27  
54  
109  
217  
434  
0.47  
12  
18  
36  
72  
144  
288  
38.4  
0.47  
38.4  
19.2  
19.3  
0.47  
19.2  
9.60  
9.56  
-0.45  
-0.83  
0.01  
9.60  
4.80  
4.80  
4.80  
2.40  
2.40  
2.40  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
119  
Table 61. UART Baud Rates (Continued)  
1.20  
0.60  
0.30  
868  
1736  
3472  
1.20  
0.60  
0.30  
0.01  
0.01  
0.01  
1.20  
0.60  
0.30  
576  
1152  
2304  
1.20  
0.60  
0.30  
0.00  
0.00  
0.00  
10.0 MHz System Clock  
5.5296 MHz System Clock  
Desired  
Rate  
BRG  
Desired Rate BRG Divisor Actual Rate Error  
Divisor  
Actual Rate Error  
(kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
N/A  
1
(kHz)  
N/A  
(%)  
N/A  
(kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(kHz)  
N/A  
(%)  
N/A  
N/A  
N/A  
1
625.0  
208.33  
125.0  
56.8  
0.00  
-16.67  
8.51  
-1.36  
1.73  
0.16  
0.16  
0.16  
-0.03  
-0.03  
-0.03  
0.2  
N/A  
N/A  
3
345.6  
115.2  
57.6  
38.4  
19.2  
9.60  
4.80  
2.40  
1.20  
0.60  
0.30  
38.24  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
5
3
11  
6
38.4  
16  
39.1  
38.4  
9
19.2  
33  
18.9  
19.2  
18  
9.60  
65  
9.62  
4.81  
2.40  
1.20  
0.60  
0.30  
9.60  
36  
4.80  
130  
260  
521  
1042  
2083  
4.80  
72  
2.40  
2.40  
144  
288  
576  
1152  
1.20  
1.20  
0.60  
0.60  
0.30  
0.30  
3.579545 MHz System Clock  
1.8432 MHz System Clock  
Desired  
Rate  
BRG  
Desired Rate BRG Divisor Actual Rate Error  
Divisor  
Actual Rate Error  
(kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(kHz)  
N/A  
(%)  
N/A  
(kHz)  
1250.0  
625.0  
250.0  
115.2  
57.6  
(Decimal)  
(kHz)  
N/A  
(%)  
N/A  
N/A  
N/A  
0.00  
0.00  
0.00  
0.00  
N/A  
N/A  
1
N/A  
N/A  
N/A  
1
N/A  
N/A  
N/A  
223.72  
111.9  
55.9  
-10.51  
-2.90  
-2.90  
-2.90  
-2.90  
N/A  
2
115.2  
57.6  
38.4  
19.2  
4
2
38.4  
6
37.3  
38.4  
3
19.2  
12  
18.6  
19.2  
6
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
120  
Table 61. UART Baud Rates (Continued)  
9.60  
4.80  
2.40  
1.20  
0.60  
0.30  
23  
47  
9.73  
4.76  
2.41  
1.20  
0.60  
0.30  
1.32  
-0.83  
0.23  
9.60  
4.80  
2.40  
1.20  
0.60  
0.30  
12  
24  
9.60  
4.80  
2.40  
1.20  
0.60  
0.30  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
93  
48  
186  
373  
746  
0.23  
96  
-0.04  
-0.04  
192  
384  
PS019921-0308  
UART  
Z8 Encore! XP® F64XX Series  
Product Specification  
121  
Infrared Encoder/Decoder  
The Z8 Encore! XP® F64XX Series products contain two fully-functional, high-perfor-  
mance UART to Infrared Encoder/Decoders (Endecs). Each Infrared Endec is integrated  
with an on-chip UART to allow easy communication between the Z8 Encore! XP®  
F64XX Series and IrDA Physical Layer Specification, Version 1.3-compliant infrared  
transceivers. Infrared communication provides secure, reliable, low-cost, point-to-point  
communication between PCs, PDAs, cell phones, printers, and other infrared enabled  
devices.  
Architecture  
Figure 18 displays the architecture of the Infrared Endec.  
System  
Clock  
Zilog  
ZHX1810  
RxD  
RXD  
TXD  
RXD  
Infrared  
Encoder/Decoder  
(Endec)  
TxD  
TXD  
Infrared  
Transceiver  
UART  
I/O  
Baud Rate  
Clock  
Interrupt  
Data  
Signal Address  
Figure 18. Infrared Data Communication System Block Diagram  
Operation  
When the Infrared Endec is enabled, the transmit data from the associated on-chip UART  
is encoded as digital signals in accordance with the IrDA standard and output to the infra-  
red transceiver via the TXD pin. Likewise, data received from the infrared transceiver is  
passed to the Infrared Endec via the RXD pin, decoded by the Infrared Endec, and then  
passed to the UART. Communication is half-duplex, which means simultaneous data  
transmission and reception is not allowed.  
PS019921-0308  
Infrared Encoder/Decoder  
Z8 Encore! XP® F64XX Series  
Product Specification  
122  
The baud rate is set by the UART’s Baud Rate Generator and supports IrDA standard baud  
rates from 9600 baud to 115.2 Kbaud. Higher baud rates are possible, but do not meet  
IrDA specifications. The UART must be enabled to use the Infrared Endec. The Infrared  
Endec data rate is calculated using the following equation:  
System Clock Frequency (Hz)  
------------------------------------------------------------------------------------------  
Infrared Data Rate (bits/s) =  
16 × UART Baud Rate Divisor Value  
Transmitting IrDA Data  
The data to be transmitted using the infrared transceiver is first sent to the UART. The  
UART’s transmit signal (TXD) and baud rate clock are used by the IrDA to generate the  
modulation signal (IR_TXD) that drives the infrared transceiver. Each UART/Infrared  
data bit is 16-clock wide. If the data to be transmitted is 1, the IR_TXD signal remains low  
for the full 16-clock period. If the data to be transmitted is 0, a 3-clock high pulse is output  
following a 7-clock low period. After the 3-clock high pulse, a 6-clock low pulse is output  
to complete the full 16-clock data period. Figure 19 displays IrDA data transmission.  
When the Infrared Endec is enabled, the UART’s TXD signal is internal to the Z8 Encore!  
XP® F64XX Series products while the IR_TXD signal is output through the TXD pin.  
16-clock  
period  
Baud Rate  
Clock  
UART’s  
TXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
3-clock  
pulse  
IR_TXD  
7-clock  
delay  
Figure 19. Infrared Data Transmission  
Receiving IrDA Data  
Data received from the infrared transceiver via the IR_RXD signal through the RXDpin is  
decoded by the Infrared Endec and passed to the UART. The UART’s baud rate clock is  
used by the Infrared Endec to generate the demodulated signal (RXD) that drives the  
UART. Each UART/Infrared data bit is 16-clocks wide. Figure 20 displays data reception.  
PS019921-0308  
Infrared Encoder/Decoder  
Z8 Encore! XP® F64XX Series  
Product Specification  
123  
When the Infrared Endec is enabled, the UART’s RXD signal is internal to the Z8 Encore!  
XP® F64XX Series products while the IR_RXD signal is received through the RXDpin.  
16-clock  
period  
Baud Rate  
Clock  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
IR_RXD  
min. 1.6µs  
pulse  
UART’s  
RXD  
Start Bit = 0  
Data Bit 0 = 1  
Data Bit 1 = 0  
Data Bit 2 = 1  
Data Bit 3 = 1  
8-clock  
delay  
16-clock  
period  
16-clock  
period  
16-clock  
period  
16-clock  
period  
Figure 20. Infrared Data Reception  
Caution: The system clock frequency must be at least 1.0 MHz to ensure proper recep-  
tion of the 1.6 µs minimum width pulses allowed by the IrDA standard.  
Endec Receiver Synchronization  
The IrDA receiver uses a local baud rate clock counter (0 to 15 clock periods) to generate  
an input stream for the UART and to create a sampling window for detection of incoming  
pulses. The generated UART input (UART RXD) is delayed by 8 baud rate clock periods  
with respect to the incoming IrDA data stream. When a falling edge in the input data  
stream is detected, the Endec counter is reset. When the count reaches a value of 8, the  
UART RXD value is updated to reflect the value of the decoded data. When the count  
reaches 12 baud clock periods, the sampling window for the next incoming pulse opens.  
The window remains open until the count again reaches 8 (or in other words 24 baud clock  
periods since the previous pulse was detected). This gives the Endec a sampling window  
of minus four baudrate clocks to plus eight baudrate clocks around the expected time of an  
incoming pulse. If an incoming pulse is detected inside this window this process is  
repeated. If the incoming data is a logical 1 (no pulse), the Endec returns to the initial state  
and waits for the next falling edge. As each falling edge is detected, the Endec clock  
counter is reset, resynchronizing the Endec to the incoming signal. This action allows the  
Endec to tolerate jitter and baud rate errors in the incoming data stream. Resynchronizing  
the Endec does not alter the operation of the UART, which ultimately receives the data.  
The UART is only synchronized to the incoming data stream when a Start bit is received.  
PS019921-0308  
Infrared Encoder/Decoder  
Z8 Encore! XP® F64XX Series  
Product Specification  
124  
Infrared Encoder/Decoder Control Register Definitions  
All Infrared Endec configuration and status information is set by the UART control regis-  
ters as defined in UART Control Register Definitions on page 110.  
Caution: To prevent spurious signals during IrDA data transmission, set the IREN bit  
in the UARTx Control 1 register to 1 to enable the Infrared Encoder/Decoder  
before enabling the GPIO Port alternate function for the corresponding pin.  
PS019921-0308  
Infrared Encoder/Decoder  
Z8 Encore! XP® F64XX Series  
Product Specification  
125  
Serial Peripheral Interface  
The Serial Peripheral Interface is a synchronous interface allowing several SPI-type  
devices to be interconnected. SPI-compatible devices include EEPROMs, Analog-to-  
Digital Converters, and ISDN devices. Features of the SPI include:  
Full-duplex, synchronous, character-oriented communication  
Four-wire interface  
Data transfers rates up to a maximum of one-half the system clock frequency  
Error detection  
Dedicated Baud Rate Generator  
Architecture  
The SPI may be configured as either a Master (in single or multi-master systems) or a  
Slave as displayed in Figure 21 through Figure 23.  
SPI Master  
To Slave’s SS Pin  
From Slave  
SS  
8-bit Shift Register  
Bit 0 Bit 7  
MISO  
MOSI  
SCK  
To Slave  
To Slave  
Baud Rate  
Generator  
Figure 21. SPI Configured as a Master in a Single Master, Single Slave System  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
126  
VCC  
SPI Master  
SS  
To Slave #2’s SS Pin  
To Slave #1’s SS Pin  
From Slave  
GPIO  
GPIO  
8-bit Shift Register  
Bit 0  
Bit 7  
MISO  
MOSI  
To Slave  
To Slave  
SCK  
Baud Rate  
Generator  
Figure 22. SPI Configured as a Master in a Single Master, Multiple Slave System  
SPI Slave  
From Master  
SS  
8-bit Shift Register  
Bit 7 Bit 0  
MISO  
MOSI  
To Master  
From Master  
SCK  
From Master  
Figure 23. SPI Configured as a Slave  
Operation  
The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire  
interface (serial clock, transmit, receive and Slave select). The SPI block consists of a  
transmit/receive shift register, a Baud Rate (clock) Generator and a control unit.  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
127  
During an SPI transfer, data is sent and received simultaneously by both the Master and  
the Slave SPI devices. Separate signals are required for data and the serial clock. When an  
SPI transfer occurs, a multi-bit (typically 8-bit) character is shifted out one data pin and an  
multi-bit character is simultaneously shifted in on a second data pin. An 8-bit shift register  
in the Master and another 8-bit shift register in the Slave are connected as a circular buffer.  
The SPI shift register is single-buffered in the transmit and receive directions. New data to  
be transmitted cannot be written into the shift register until the previous transmission is  
complete and receive data (if valid) has been read.  
SPI Signals  
The four basic SPI signals are:  
Master-In/Slave-Out  
Master-Out/Slave-In  
Serial Clock  
Slave Select  
Each signal is described in both Master and Slave modes.  
Master-In/Slave-Out  
The Master-In/Slave-Out (MISO) pin is configured as an input in a Master device and as  
an output in a Slave device. It is one of the two lines that transfer serial data, with the most  
significant bit sent first. The MISO pin of a Slave device is placed in a high-impedance  
state if the Slave is not selected. When the SPI is not enabled, this signal is in a high-  
impedance state.  
Master-Out/Slave-In  
The Master-Out/Slave-In (MOSI) pin is configured as an output in a Master device and as  
an input in a Slave device. It is one of the two lines that transfer serial data, with the most  
significant bit sent first. When the SPI is not enabled, this signal is in a high-impedance  
state.  
Serial Clock  
The Serial Clock (SCK) synchronizes data movement both in and out of the device  
through its MOSI and MISO pins. In MASTER mode, the SPI’s Baud Rate Generator cre-  
ates the serial clock. The Master drives the serial clock out its own SCK pin to the Slave’s  
SCK pin. When the SPI is configured as a Slave, the SCK pin is an input and the clock sig-  
nal from the Master synchronizes the data transfer between the Master and Slave devices.  
Slave devices ignore the SCK signal, unless the SS pin is asserted. When configured as a  
slave, the SPI block requires a minimum SCK period of greater than or equal to 8 times  
the system (XIN) clock period.  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
128  
The Master and Slave are each capable of exchanging a character of data during a  
sequence of NUMBITS clock cycles (see NUMBITS field in the SPI Mode Register on  
page 136). In both Master and Slave SPI devices, data is shifted on one edge of the SCK  
and is sampled on the opposite edge where data is stable. Edge polarity is determined by  
the SPI phase and polarity control.  
Slave Select  
The active Low Slave Select (SS) input signal selects a Slave SPI device. SS must be Low  
prior to all data communication to and from the Slave device. SS must stay Low for the  
full duration of each character transferred. The SS signal may stay Low during the transfer  
of multiple characters or may deassert between each character.  
When the SPI is configured as the only Master in an SPI system, the SS pin can be set as  
either an input or an output. Other GPIO output pins can also be employed to select exter-  
nal SPI Slave devices.  
When the SPI is configured as one Master in a multi-master SPI system, the SS pin must  
be set as an input. The SS input signal on the Master must be High. If the SS signal goes  
Low (indicating another Master is driving the SPI bus), a Collision error Flag is set in the  
SPI Status register.  
SPI Clock Phase and Polarity Control  
The SPI supports four combinations of serial clock phase and polarity using two bits in the  
SPI Control register. The clock polarity bit, CLKPOL, selects an active high or active Low  
clock and has no effect on the transfer format. Table 62 lists the SPI Clock Phase and  
Polarity Operation parameters. The clock phase bit, PHASE, selects one of two fundamen-  
tally different transfer formats. For proper data transmission, the clock phase and polarity  
must be identical for the SPI Master and the SPI Slave. The Master always places data on  
the MOSI line a half-cycle before the receive clock edge (SCK signal), in order for the  
Slave to latch the data.  
Table 62. SPI Clock Phase (PHASE) and Clock Polarity (CLKPOL) Operation  
SCK Transmit  
Edge  
SCK Receive  
Edge  
SCK Idle  
State  
PHASE  
CLKPOL  
0
0
1
1
0
1
0
1
Falling  
Rising  
Rising  
Falling  
Rising  
Falling  
Falling  
Rising  
Low  
High  
Low  
High  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
129  
Transfer Format PHASE Equals Zero  
Figure 24 displays the timing diagram for an SPI transfer in which PHASEis cleared to 0.  
The two SCK waveforms show polarity with CLKPOLreset to 0 and with CLKPOLset to  
one. The diagram may be interpreted as either a Master or Slave timing diagram because  
the SCK Master-In/Slave-Out (MISO) and Master-Out/Slave-In (MOSI) pins are directly  
connected between the Master and the Slave.  
SCK  
(CLKPOL = 0)  
SCK  
(CLKPOL = 1)  
MOSI  
Bit7  
Bit7  
Bit6  
Bit6  
Bit5  
Bit5  
Bit4  
Bit4  
Bit3  
Bit3  
Bit2  
Bit2  
Bit1  
Bit1  
Bit0  
Bit0  
MISO  
Input Sample Time  
SS  
Figure 24. SPI Timing When PHASEis 0  
Transfer Format PHASE Equals One  
Figure 25 on page 130 displays the timing diagram for an SPI transfer in which PHASEis  
one. Two waveforms are depicted for SCK, one for CLKPOLreset to 0 and another for  
CLKPOLset to 1.  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
130  
SCK  
(CLKPOL = 0)  
SCK  
(CLKPOL = 1)  
MOSI  
Bit7  
Bit7  
Bit6  
Bit6  
Bit5  
Bit5  
Bit4  
Bit4  
Bit3  
Bit3  
Bit2  
Bit2  
Bit1  
Bit1  
Bit0  
Bit0  
MISO  
Input Sample Time  
SS  
Figure 25. SPI Timing When PHASEis 1  
Multi-Master Operation  
In a multi-master SPI system, all SCK pins are tied together, all MOSI pins are tied  
together and all MISO pins are tied together. All SPI pins must then be configured in  
OPEN-DRAIN mode to prevent bus contention. At any one time, only one SPI device is  
configured as the Master and all other SPI devices on the bus are configured as Slaves.  
The Master enables a single Slave by asserting the SS pin on that Slave only. Then, the  
single Master drives data out its SCK and MOSI pins to the SCK and MOSI pins on the  
Slaves (including those which are not enabled). The enabled Slave drives data out its  
MISO pin to the MISO Master pin.  
For a Master device operating in a multi-master system, if the SS pin is configured as an  
input and is driven Low by another Master, the COLbit is set to 1 in the SPI Status Regis-  
ter. The COLbit indicates the occurrence of a multi-master collision (mode fault error con-  
dition).  
Slave Operation  
The SPI block is configured for SLAVE mode operation by setting the SPIEN bit to 1 and  
the MMEN bit to 0 in the SPICTL register and setting the SSIO bit to 0 in the SPIMODE  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
131  
register. The IRQE, PHASE, CLKPOL, WOR bits in the SPICTL register and the NUM-  
BITS field in the SPIMODE register must be set to be consistent with the other SPI  
devices. The STR bit in the SPICTL register may be used if desired to force a “startup”  
interrupt. The BIRQ bit in the SPICTL register and the SSV bit in the SPIMODE register  
are not used in SLAVE mode. The SPI baud rate generator is not used in SLAVE mode so  
the SPIBRH and SPIBRL registers need not be initialized.  
If the slave has data to send to the master, the data must be written to the SPIDAT register  
before the transaction starts (first edge of SCK when SS is asserted). If the SPIDAT  
register is not written prior to the slave transaction, the MISO pin outputs whatever value  
is currently in the SPIDAT register.  
Due to the delay resulting from synchronization of the SPI input signals to the internal  
system clock, the maximum SPICLK baud rate that can be supported in SLAVE mode is  
the system clock frequency (XIN) divided by 8. This rate is controlled by the SPI master.  
Error Detection  
The SPI contains error detection logic to support SPI communication protocols and  
recognize when communication errors have occurred. The SPI Status register indicates  
when a data transmission error has been detected.  
Overrun (Write Collision)  
An overrun error (write collision) indicates a write to the SPI Data register was attempted  
while a data transfer is in progress (in either MASTER or SLAVE modes). An overrun sets  
the OVRbit in the SPI Status register to 1. Writing a 1 to OVRclears this error Flag. The  
data register is not altered when a write occurs while data transfer is in progress.  
Mode Fault (Multi-Master Collision)  
A mode fault indicates when more than one Master is trying to communicate at the same  
time (a multi-master collision). The mode fault is detected when the enabled Master’s SS  
pin is asserted. A mode fault sets the COLbit in the SPI Status register to 1. Writing a 1 to  
COLclears this error Flag.  
Slave Mode Abort  
In SLAVE mode of operation if the SS pin deasserts before all bits in a character have  
been transferred, the transaction is aborted. When this condition occurs the ABT bit is set  
in the SPISTAT register as well as the IRQ bit (indicating the transaction is complete). The  
next time SS asserts, the MISO pin outputs SPIDAT[7], regardless of where the previous  
transaction left off. Writing a 1 to ABT clears this error Flag.  
SPI Interrupts  
When SPI interrupts are enabled, the SPI generates an interrupt after character transmis-  
sion/reception completes in both MASTER and SLAVE modes. A character can be  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
132  
defined to be 1 through 8 bits by the NUMBITSfield in the SPI Mode register. In slave  
mode it is not necessary for SS to deassert between characters to generate the interrupt.  
The SPI in Slave mode can also generate an interrupt if the SS signal deasserts prior to  
transfer of all the bits in a character (see description of slave abort error above). Writing a  
1 to the IRQbit in the SPI Status Register clears the pending SPI interrupt request. The  
IRQ bit must be cleared to 0 by the Interrupt Service Routine to generate future interrupts.  
To start the transfer process, an SPI interrupt may be forced by software writing a 1 to the  
STR bit in the SPICTL register.  
If the SPI is disabled, an SPI interrupt can be generated by a Baud Rate Generator time-  
out. This timer function must be enabled by setting the BIRQ bit in the SPICTL register.  
This Baud Rate Generator time-out does not set the IRQ bit in the SPISTAT register, just  
the SPI interrupt bit in the interrupt controller.  
SPI Baud Rate Generator  
In SPI Master mode, the Baud Rate Generator creates a lower frequency serial clock  
(SCK) for data transmission synchronization between the Master and the external Slave.  
The input to the Baud Rate Generator is the system clock. The SPI Baud Rate High and  
Low Byte registers combine to form a 16-bit reload value, BRG[15:0], for the SPI Baud  
Rate Generator. The SPI baud rate is calculated using the following equation:  
System Clock Frequency (Hz)  
------------------------------------------------------------------------  
SPI Baud Rate (bits/s) =  
2 × BRG[15:0]  
Minimum baud rate is obtained by setting BRG[15:0] to 0000Hfor a clock divisor value  
of (2 X 65536 = 131072).  
When the SPI is disabled, the Baud Rate Generator can function as a basic 16-bit timer  
with interrupt on time-out. Follow the steps below to configure the Baud Rate Generator  
as a timer with interrupt on time-out:  
1. Disable the SPI by clearing the SPIENbit in the SPI Control register to 0.  
2. Load the desired 16-bit count value into the SPI Baud Rate High and Low Byte  
registers.  
3. Enable the Baud Rate Generator timer function and associated interrupt by setting the  
BIRQbit in the SPI Control register to 1.  
When configured as a general purpose timer, the interrupt interval is calculated using the  
following equation:  
Interrupt Interval (s) = System Clock Period (s) × BRG[15:0]  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
133  
SPI Control Register Definitions  
SPI Data Register  
The SPI Data register (Table 63) stores both the outgoing (transmit) data and the incoming  
(receive) data. Reads from the SPI Data register always return the current contents of the  
8-bit shift register. Data is shifted out starting with bit 7. The last bit received resides in bit  
position 0.  
With the SPI configured as a Master, writing a data byte to this register initiates the data  
transmission. With the SPI configured as a Slave, writing a data byte to this register loads  
the shift register in preparation for the next data transfer with the external Master. In either  
the Master or Slave modes, if a transmission is already in progress, writes to this register  
are ignored and the Overrun error Flag, OVR, is set in the SPI Status register.  
When the character length is less than 8 bits (as set by the NUMBITSfield in the SPI Mode  
register), the transmit character must be left justified in the SPI Data register. A received  
character of less than 8 bits is right justified (last bit received is in bit position 0). For  
example, if the SPI is configured for 4-bit characters, the transmit characters must be writ-  
ten to SPIDATA[7:4] and the received characters are read from SPIDATA[3:0].  
Table 63. SPI Data Register (SPIDATA)  
BITS  
7
6
5
4
3
2
1
0
DATA  
X
FIELD  
RESET  
R/W  
R/W  
F60H  
ADDR  
DATA—Data  
Transmit and/or receive data.  
SPI Control Register  
The SPI Control register (see Table 64 on page 134) configures the SPI for transmit and  
receive operations.  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
134  
Table 64. SPI Control Register (SPICTL)  
BITS  
7
6
5
4
3
2
1
0
IRQE  
STR  
BIRQ  
PHASE  
CLKPOL  
WOR  
MMEN  
SPIEN  
FIELD  
RESET  
R/W  
0
R/W  
F61H  
ADDR  
IRQE—Interrupt Request Enable  
0 = SPI interrupts are disabled. No interrupt requests are sent to the Interrupt Controller.  
1 = SPI interrupts are enabled. Interrupt requests are sent to the Interrupt Controller.  
STR—Start an SPI Interrupt Request  
0 = No effect.  
1 = Setting this bit to 1 also sets the IRQbit in the SPI Status register to 1. Setting this  
bit forces the SPI to send an interrupt request to the Interrupt Control. This bit can  
be used by software for a function similar to transmit buffer empty in a UART.  
Writing a 1 to the IRQbit in the SPI Status register clears this bit to 0.  
BIRQ—BRG Timer Interrupt Request  
If the SPI is enabled, this bit has no effect. If the SPI is disabled:  
0 = The Baud Rate Generator timer function is disabled.  
1 = The Baud Rate Generator timer function and time-out interrupt are enabled.  
PHASE—Phase Select  
Sets the phase relationship of the data to the clock. For more information on operation of  
the PHASEbit, see SPI Clock Phase and Polarity Control on page 128.  
CLKPOL—Clock Polarity  
0 = SCK idles Low (0).  
1 = SCK idle High (1).  
WOR—Wire-OR (OPEN-DRAIN) Mode Enabled  
0 = SPI signal pins not configured for open-drain.  
1 = All four SPI signal pins (SCK, SS, MISO, MOSI) configured for open-drain function.  
This setting is typically used for multi-master and/or multi-slave configurations.  
MMEN—SPI Master Mode Enable  
0 = SPI configured in Slave mode.  
1 = SPI configured in Master mode.  
SPIEN—SPI Enable  
0 = SPI disabled.  
1 = SPI enabled.  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
135  
SPI Status Register  
The SPI Status register (Table 65) indicates the current state of the SPI. All bits revert to  
their reset state if the SPIEN bit in the SPICTL register = 0.  
Table 65. SPI Status Register (SPISTAT)  
BITS  
7
6
5
4
3
2
1
0
IRQ  
OVR  
COL  
ABT  
Reserved  
TXST  
SLAS  
FIELD  
RESET  
R/W  
0
1
R/W*  
R
F62H  
ADDR  
Note: R/W* = Read access. Write a 1 to clear the bit to 0.  
IRQ—Interrupt Request  
If SPIEN = 1, this bit is set if the STR bit in the SPICTL register is set, or upon completion  
of an SPI master or slave transaction. This bit does not set if SPIEN = 0 and the SPI Baud  
Rate Generator is used as a timer to generate the SPI interrupt.  
0 = No SPI interrupt request pending.  
1 = SPI interrupt request is pending.  
OVR—Overrun  
0 = An overrun error has not occurred.  
1 = An overrun error has been detected.  
COL—Collision  
0 = A multi-master collision (mode fault) has not occurred.  
1 = A multi-master collision (mode fault) has been detected.  
ABT—Slave mode transaction abort  
This bit is set if the SPI is configured in slave mode, a transaction is occurring and SS  
deasserts before all bits of a character have been transferred as defined by the NUMBITS  
field of the SPIMODE register. The IRQ bit also sets, indicating the transaction has com-  
pleted.  
0 = A slave mode transaction abort has not occurred.  
1 = A slave mode transaction abort has been detected.  
Reserved—Must be 0.  
TXST—Transmit Status  
0 = No data transmission currently in progress.  
1 = Data transmission currently in progress.  
SLAS—Slave Select  
If SPI enabled as a Slave,  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
136  
0 = SS input pin is asserted (Low).  
1 = SS input is not asserted (High).  
If SPI enabled as a Master, this bit is not applicable.  
SPI Mode Register  
The SPI Mode register (Table 66) configures the character bit width and the direction and  
value of the SS pin.  
Table 66. SPI Mode Register (SPIMODE)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
R
DIAG  
NUMBITS[2:0]  
SSIO  
SSV  
FIELD  
RESET  
R/W  
0
R/W  
F63H  
ADDR  
Reserved—Must be 0.  
DIAG—Diagnostic Mode Control bit  
This bit is for SPI diagnostics. Setting this bit allows the Baud Rate Generator value to be  
read using the SPIBRH and SPIBRL register locations.  
0 = Reading SPIBRH, SPIBRL returns the value in the SPIBRH and SPIBRL registers  
1 = Reading SPIBRH returns bits [15:8] of the SPI Baud Rate Generator; and reading  
SPIBRL returns bits [7:0] of the SPI Baud Rate Counter. The Baud Rate Counter  
High and Low byte values are not buffered.  
Exercise caution if reading the values while the BRG is counting.  
Caution:  
NUMBITS[2:0]—Number of Data Bits Per Character to Transfer  
This field contains the number of bits to shift for each character transfer. For information  
on valid bit positions when the character length is less than 8-bits, see SPI Data Register  
description.  
000 = 8 bits  
001 = 1 bit  
010 = 2 bits  
011 = 3 bits  
100 = 4 bits  
101 = 5 bits  
110 = 6 bits  
111 = 7 bits  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
137  
SSIO—Slave Select I/O  
0 = SS pin configured as an input.  
1 = SS pin configured as an output (Master mode only).  
SSV—Slave Select Value  
If SSIO = 1 and SPI configured as a Master:  
0 = SS pin driven Low (0).  
1 = SS pin driven High (1).  
This bit has no effect if SSIO= 0 or SPI configured as a Slave.  
SPI Diagnostic State Register  
The SPI Diagnostic State register (Table 67) provides observability of internal state. This  
is a read only register used for SPI diagnostics.  
Table 67. SPI Diagnostic State Register (SPIDST)  
BITS  
7
6
5
4
3
2
1
0
SCKEN  
TCKEN  
SPISTATE  
FIELD  
RESET  
R/W  
0
R
F64H  
ADDR  
SCKEN—Shift Clock Enable  
0 = The internal Shift Clock Enable signal is deasserted  
1 = The internal Shift Clock Enable signal is asserted (shift register is updates on next  
system clock)  
TCKEN—Transmit Clock Enable  
0 = The internal Transmit Clock Enable signal is deasserted.  
1 = The internal Transmit Clock Enable signal is asserted. When this is asserted the  
serial data out is updated on the next system clock (MOSI or MISO).  
SPISTATE—SPI State Machine  
Defines the current state of the internal SPI State Machine.  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
138  
SPI Baud Rate High and Low Byte Registers  
The SPI Baud Rate High and Low Byte registers (Table 68 and Table 69) combine to form  
a 16-bit reload value, BRG[15:0], for the SPI Baud Rate Generator.  
When configured as a general purpose timer, the SPI BRG interrupt interval is calculated  
using the following equation:  
SPI BRG Interrupt Interval (s) = System Clock Period (s) × BRG[15:0]  
Table 68. SPI Baud Rate High Byte Register (SPIBRH)  
BITS  
7
6
5
4
3
2
1
0
BRH  
1
FIELD  
RESET  
R/W  
R/W  
F66H  
ADDR  
BRH = SPI Baud Rate High Byte  
Most significant byte, BRG[15:8], of the SPI Baud Rate Generator’s reload value.  
Table 69. SPI Baud Rate Low Byte Register (SPIBRL)  
BITS  
7
6
5
4
3
2
1
0
BRL  
1
FIELD  
RESET  
R/W  
R/W  
F67H  
ADDR  
BRL = SPI Baud Rate Low Byte  
Least significant byte, BRG[7:0], of the SPI Baud Rate Generator’s reload value.  
PS019921-0308  
Serial Peripheral Interface  
Z8 Encore! XP® F64XX Series  
Product Specification  
139  
I2C Controller  
The I2C Controller makes the Z8 Encore! XP® F64XX Series products bus-compatible  
with the I2C protocol. The I2C Controller consists of two bidirectional bus lines—a serial  
data signal (SDA) and a serial clock signal (SCL). Features of the I2C Controller include:  
Transmit and Receive Operation in MASTER mode  
Maximum data rate of 400 kbit/sec  
7- and 10-bit addressing modes for Slaves  
Unrestricted number of data bytes transmitted per transfer  
The I2C Controller in the Z8 Encore! XP F64XX Series products does not operate in  
SLAVE mode.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
140  
Architecture  
Figure 26 displays the architecture of the I2C Controller.  
SDA  
SCL  
Shift  
ISHIFT  
Load  
I2CDATA  
Baud Rate Generator  
I2CBRH  
I2CBRL  
Receive  
Tx/Rx State Machine  
I2CSTAT  
I2CCTL  
Register Bus  
I2C Interrupt  
Figure 26. I2C Controller Block Diagram  
Operation  
The I2C Controller operates in MASTER mode to transmit and receive data. Only a single  
master is supported. Arbitration between two masters must be accomplished in software.  
I2C supports the following operations:  
Master transmits to a 7-bit slave  
Master transmits to a 10-bit slave  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
141  
Master receives from a 7-bit slave  
Master receives from a 10-bit slave  
SDA and SCL Signals  
I2C sends all addresses, data and acknowledge signals over the SDA line, most-significant  
bit first. SCL is the common clock for the I2C Controller. When the SDA and SCL pin  
alternate functions are selected for their respective GPIO ports, the pins are automatically  
configured for open-drain operation.  
The master (I2C) is responsible for driving the SCL clock signal, although the clock signal  
can become skewed by a slow slave device. During the low period of the clock, the slave  
pulls the SCL signal Low to suspend the transaction. The master releases the clock at the  
end of the low period and notices that the clock remains low instead of returning to a high  
level. When the slave releases the clock, the I2C Controller continues the transaction. All  
data is transferred in bytes and there is no limit to the amount of data transferred in one  
operation. When transmitting data or acknowledging read data from the slave, the SDA  
signal changes in the middle of the low period of SCL and is sampled in the middle of the  
high period of SCL.  
I2C Interrupts  
The I2C Controller contains four sources of interrupts—Transmit, Receive, Not  
Acknowledge and baud rate generator. These four interrupt sources are combined into a  
single interrupt request signal to the Interrupt Controller. The Transmit interrupt is enabled  
by the IEN and TXI bits of the Control register. The Receive and Not Acknowledge  
interrupts are enabled by the IEN bit of the Control register. The baud rate generator  
interrupt is enabled by the BIRQ and IEN bits of the Control register.  
Not Acknowledge interrupts occur when a Not Acknowledge condition is received from  
the slave or sent by the I2C Controller and neither the STARTor STOPbit is set. The Not  
Acknowledge event sets the NCKI bit of the I2C Status register and can only be cleared by  
setting the STARTor STOPbit in the I2C Control register. When this interrupt occurs, the  
I2C Controller waits until either the STOP or START bit is set before performing any  
action. In an interrupt service routine, the NCKI bit should always be checked prior to  
servicing transmit or receive interrupt conditions because it indicates the transaction is  
being terminated.  
Receive interrupts occur when a byte of data has been received by the I2C Controller  
(master reading data from slave). This procedure sets the RDRF bit of the I2C Status  
register. The RDRF bit is cleared by reading the I2C Data register. The RDRF bit is set  
during the acknowledge phase. The I2C Controller pauses after the acknowledge phase  
until the receive interrupt is cleared before performing any other action.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
142  
Transmit interrupts occur when the TDRE bit of the I2C Status register sets and the TXI  
bit in the I2C Control register is set. Transmit interrupts occur under the following condi-  
tions when the transmit data register is empty:  
The I2C Controller is enabled.  
The first bit of the byte of an address is shifting out and the RDbit of the I2C Status  
register is deasserted.  
The first bit of a 10-bit address shifts out.  
The first bit of write data shifts out.  
Note: Writing to the I2C Data register always clears the TRDE bit to 0. When TDRE is asserted,  
the I2C Controller pauses at the beginning of the Acknowledge cycle of the byte currently  
shifting out until the Data register is written with the next value to send or the STOP or  
START bits are set indicating the current byte is the last one to send.  
The fourth interrupt source is the baud rate generator. If the I2C Controller is disabled  
(IEN bit in the I2CCTL register = 0) and the BIRQ bit in the I2CCTL register = 1, an inter-  
rupt is generated when the baud rate generator counts down to 1. This allows the I2C baud  
rate generator to be used by software as a general purpose timer when IEN = 0.  
2
Software Control of I C Transactions  
Software can control I2C transactions by using the I2C Controller interrupt, by polling the  
I2C Status register or by DMA. Note that not all products include a DMA Controller.  
To use interrupts, the I2C interrupt must be enabled in the Interrupt Controller. The TXI bit  
in the I2C Control register must be set to enable transmit interrupts.  
To control transactions by polling, the interrupt bits (TDRE, RDRF and NCKI) in the I2C  
Status register should be polled. The TDRE bit asserts regardless of the state of the TXI  
bit.  
Either or both transmit and receive data movement can be controlled by the DMA  
Controller. The DMA Controller channel(s) must be initialized to select the I2C transmit  
and receive requests. Transmit DMA requests require that the TXI bit in the I2C Control  
register be set.  
Caution: A transmit (write) DMA operation hangs if the slave responds with a Not  
Acknowledge before the last byte has been sent. After receiving the Not  
Acknowledge, the I2C Controller sets the NCKI bit in the Status register and  
pauses until either the STOP or START bits in the Control register are set.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
143  
In order for a receive (read) DMA transaction to send a Not Acknowledge  
on the last byte, the receive DMA must be set up to receive n-1 bytes, then  
software must set the NAK bit and receive the last (nth) byte directly.  
Start and Stop Conditions  
The master (I2C) drives all Start and Stop signals and initiates all transactions. To start a  
transaction, the I2C Controller generates a START condition by pulling the SDA signal  
Low while SCL is High. To complete a transaction, the I2C Controller generates a Stop  
condition by creating a low-to-high transition of the SDA signal while the SCL signal is  
high. The START and STOP bits in the I2C Control register control the sending of the  
Start and Stop conditions. A master is also allowed to end one transaction and begin a new  
one by issuing a Restart. This is accomplished by setting the START bit at the end of a  
transaction, rather than the STOP bit. Note that the Start condition not sent until the  
START bit is set and data has been written to the I2C Data register.  
Master Write and Read Transactions  
The following sections provide a recommended procedure for performing I2C write and  
read transactions from the I2C Controller (master) to slave I2C devices. In general  
software should rely on the TDRE, RDRF and NCKI bits of the status register (these bits  
generate interrupts) to initiate software actions. When using interrupts or DMA, the TXI  
bit is set to start each transaction and cleared at the end of each transaction to eliminate a  
‘trailing’ Transmit interrupt.  
Caution should be used in using the ACK status bit within a transaction because it is  
difficult for software to tell when it is updated by hardware.  
When writing data to a slave, the I2C pauses at the beginning of the Acknowledge cycle if  
the data register has not been written with the next value to be sent (TDRE bit in the I2C  
Status register = 1). In this scenario where software is not keeping up with the I2C bus  
(TDRE asserted longer than one byte time), the Acknowledge clock cycle for byte n is  
delayed until the Data register is written with byte n + 1, and appears to be grouped with  
the data clock cycles for byte n+1. If either the START or STOP bit is set, the I2C does not  
pause prior to the Acknowledge cycle because no additional data is sent.  
When a Not Acknowledge condition is received during a write (either during the address  
or data phases), the I2C Controller generates the Not Acknowledge interrupt (NCKI = 1)  
and pause until either the STOP or START bit is set. Unless the Not Acknowledge was  
received on the last byte, the Data register will already have been written with the next  
address or data byte to send. In this case the FLUSH bit of the Control register should be  
set at the same time the STOP or START bit is set to remove the stale transmit data and  
enable subsequent Transmit interrupts.  
When reading data from the slave, the I2C pauses after the data Acknowledge cycle until  
the receive interrupt is serviced and the RDRF bit of the status register is cleared by  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
144  
reading the I2C Data register. Once the I2C data register has been read, the I2C reads the  
next data byte.  
Address Only Transaction with a 7-bit Address  
In the situation where software determines if a slave with a 7-bit address is responding  
without sending or receiving data, a transaction can be done which only consists of an  
address phase. Figure 27 displays this ‘address only’ transaction to determine if a slave  
with a 7-bit address will acknowledge. As an example, this transaction can be used after a  
‘write’ has been done to a EEPROM to determine when the EEPROM completes its inter-  
nal write operation and is once again responding to I2C transactions. If the slave does not  
Acknowledge, the transaction can be repeated until the slave does Acknowledge.  
S
Slave Address W = 0 A/A  
P
Figure 27. 7-Bit Address Only Transaction Format  
Follow the steps below for an address only transaction to a 7-bit addressed slave:  
1. Software asserts the IENbit in the I2C Control register.  
2. Software asserts the TXIbit of the I2C Control register to enable Transmit interrupts.  
3. The I2C interrupt asserts, because the I2C Data register is empty (TDRE = 1)  
4. Software responds to the TDREbit by writing a 7-bit slave address plus write bit (=0)  
to the I2C Data register. As an alternative this could be a read operation instead of a  
write operation.  
5. Software sets the START and STOP bits of the I2C Control register and clears the TXI  
bit.  
6. The I2C Controller sends the START condition to the I2C slave.  
7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data  
register.  
8. Software polls the STOP bit of the I2C Control register. Hardware deasserts the STOP  
bit when the address only transaction is completed.  
9. Software checks the ACK bit of the I2C Status register. If the slave acknowledged, the  
ACK bit is = 1. If the slave does not acknowledge, the ACK bit is = 0. The NCKI  
interrupt does not occur in the not acknowledge case because the STOP bit was set.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
145  
Write Transaction with a 7-Bit Address  
Figure 28 displays the data transfer format for a 7-bit addressed slave. Shaded regions  
indicate data transferred from the I2C Controller to slaves and unshaded regions indicate  
data transferred from the slaves to the I2C Controller.  
S
Slave Address W = 0  
A
Data  
A
Data  
A
Data  
A/A P/S  
Figure 28. 7-Bit Addressed Slave Data Transfer Format  
Follow the steps below for a transmit operation to a 7-bit addressed slave:  
1. Software asserts the IENbit in the I2C Control register.  
2. Software asserts the TXIbit of the I2C Control register to enable Transmit interrupts.  
3. The I2C interrupt asserts, because the I2C Data register is empty  
4. Software responds to the TDREbit by writing a 7-bit slave address plus write bit (=0)  
to the I2C Data register.  
5. Software asserts the START bit of the I2C Control register.  
6. The I2C Controller sends the START condition to the I2C slave.  
7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data  
register.  
8. After one bit of address has been shifted out by the SDA signal, the Transmit interrupt  
is asserted (TDRE = 1).  
9. Software responds by writing the transmit data into the I2C Data register.  
10. The I2C Controller shifts the rest of the address and write bit out by the SDA signal.  
11. If the I2C slave sends an acknowledge (by pulling the SDA signal low) during the next  
high period of SCL the I2C Controller sets the ACKbit in the I2C Status register.  
Continue with step 12.  
If the slave does not acknowledge, the Not Acknowledge interrupt occurs (NCKI bit is  
set in the Status register, ACK bit is cleared). Software responds to the Not  
Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI bit.  
The I2C Controller sends the STOP condition on the bus and clears the STOP and  
NCKI bits. The transaction is complete (ignore the following steps).  
12. The I2C Controller loads the contents of the I2C Shift register with the contents of the  
I2C Data register.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
146  
13. The I2C Controller shifts the data out of using the SDA signal. After the first bit is  
sent, the Transmit interrupt is asserted.  
14. If more bytes remain to be sent, return to step 9.  
15. Software responds by setting the STOPbit of the I2C Control register (or START bit  
to initiate a new transaction). In the STOP case, software clears the TXIbit of the I2C  
Control register at the same time.  
16. The I2C Controller completes transmission of the data on the SDA signal.  
17. The slave may either Acknowledge or Not Acknowledge the last byte. Because either  
the STOP or START bit is already set, the NCKI interrupt does not occur.  
18. The I2C Controller sends the STOP (or RESTART) condition to the I2C bus. The  
STOP or START bit is cleared.  
Address Only Transaction with a 10-bit Address  
In the situation where software wants to determine if a slave with a 10-bit address is  
responding without sending or receiving data, a transaction can be done which only con-  
sists of an address phase. Figure 29 displays this ‘address only’ transaction to determine if  
a slave with 10-bit address will acknowledge. As an example, this transaction can be used  
after a ‘write’ has been done to a EEPROM to determine when the EEPROM completes its  
internal write operation and is once again responding to I2C transactions. If the slave does  
not Acknowledge the transaction can be repeated until the slave is able to Acknowledge.  
Slave Address  
1st 7 bits  
Slave Address  
2nd Byte  
S
W = 0 A/A  
A/A P  
Figure 29. 10-Bit Address Only Transaction Format  
Follow the steps below for an address only transaction to a 10-bit addressed slave:  
1. Software asserts the IENbit in the I2C Control register.  
2. Software asserts the TXIbit of the I2C Control register to enable Transmit interrupts.  
3. The I2C interrupt asserts, because the I2C Data register is empty (TDRE = 1)  
4. Software responds to the TDREinterrupt by writing the first slave address byte. The  
least-significant bit must be 0 for the write operation.  
5. Software asserts the START bit of the I2C Control register.  
6. The I2C Controller sends the START condition to the I2C slave.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
147  
7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data  
register.  
8. After one bit of address is shifted out by the SDA signal, the Transmit interrupt is  
asserted.  
9. Software responds by writing the second byte of address into the contents of the I2C  
Data register.  
10. The I2C Controller shifts the rest of the first byte of address and write bit out the SDA  
signal.  
11. If the I2C slave sends an acknowledge by pulling the SDA signal low during the next  
high period of SCL the I2C Controller sets the ACKbit in the I2C Status register.  
Continue with step 12.  
If the slave does not acknowledge the first address byte, the I2C Controller sets the  
NCKIbit and clears the ACK bit in the I2C Status register. Software responds to the  
Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI  
bit. The I2C Controller sends the STOP condition on the bus and clears the STOP and  
NCKI bits. The transaction is complete (ignore following steps).  
12. The I2C Controller loads the I2C Shift register with the contents of the I2C Data  
register (2nd byte of address).  
13. The I2C Controller shifts the second address byte out the SDA signal. After the first  
bit has been sent, the Transmit interrupt is asserted.  
14. Software responds by setting the STOP bit in the I2C Control register. The TXI bit can  
be cleared at the same time.  
15. Software polls the STOP bit of the I2C Control register. Hardware deasserts the STOP  
bit when the transaction is completed (STOP condition has been sent).  
16. Software checks the ACK bit of the I2C Status register. If the slave acknowledged, the  
ACK bit is = 1. If the slave does not acknowledge, the ACK bit is = 0. The NCKI  
interrupt do not occur because the STOP bit was set.  
Write Transaction with a 10-Bit Address  
Figure 30 displays the data transfer format for a 10-bit addressed slave. Shaded regions  
indicate data transferred from the I2C Controller to slaves and unshaded regions indicate  
data transferred from the slaves to the I2C Controller.  
Slave Address  
1st 7 bits  
Slave Address  
2nd Byte  
S
W = 0 A  
A Data A Data A/A P/S  
Figure 30. 10-Bit Addressed Slave Data Transfer Format  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
148  
The first seven bits transmitted in the first byte are 11110XX. The two bits XXare the two  
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the  
read/write control bit (=0). The transmit operation is carried out in the same manner as 7-  
bit addressing.  
Follow the steps below for a transmit operation on a 10-bit addressed slave:  
1. Software asserts the IENbit in the I2C Control register.  
2. Software asserts the TXIbit of the I2C Control register to enable Transmit interrupts.  
3. The I2C interrupt asserts because the I2C Data register is empty.  
4. Software responds to the TDREinterrupt by writing the first slave address byte to the  
I2C Data register. The least-significant bit must be 0 for the write operation.  
5. Software asserts the START bit of the I2C Control register.  
6. The I2C Controller sends the START condition to the I2C slave.  
7. The I2C Controller loads the I2C Shift register with the contents of the I2C Data  
register.  
8. After one bit of address is shifted out by the SDA signal, the Transmit interrupt is  
asserted.  
9. Software responds by writing the second byte of address into the contents of the I2C  
Data register.  
10. The I2C Controller shifts the rest of the first byte of address and write bit out the SDA  
signal.  
11. If the I2C slave acknowledges the first address byte by pulling the SDA signal low  
during the next high period of SCL, the I2C Controller sets the ACKbit in the I2C  
Status register. Continue with step 12.  
If the slave does not acknowledge the first address byte, the I2C Controller sets the  
NCKIbit and clears the ACK bit in the I2C Status register. Software responds to the  
Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI  
bit. The I2C Controller sends the STOP condition on the bus and clears the STOP and  
NCKI bits. The transaction is complete (ignore the following steps).  
12. The I2C Controller loads the I2C Shift register with the contents of the I2C Data  
register.  
13. The I2C Controller shifts the second address byte out the SDA signal. After the first  
bit has been sent, the Transmit interrupt is asserted.  
14. Software responds by writing a data byte to the I2C Data register.  
15. The I2C Controller completes shifting the contents of the shift register on the SDA  
signal.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
149  
16. If the I2C slave sends an acknowledge by pulling the SDA signal low during the next  
high period of SCL, the I2C Controller sets the ACKbit in the I2C Status register.  
Continue with step 17.  
If the slave does not acknowledge the second address byte or one of the data bytes, the  
I2C Controller sets the NCKIbit and clears the ACK bit in the I2C Status register.  
Software responds to the Not Acknowledge interrupt by setting the STOP and FLUSH  
bits and clearing the TXI bit. The I2C Controller sends the STOP condition on the bus  
and clears the STOP and NCKI bits. The transaction is complete (ignore the following  
steps).  
17. The I2C Controller shifts the data out by the SDA signal. After the first bit is sent, the  
Transmit interrupt is asserted.  
18. If more bytes remain to be sent, return to step 14.  
19. If the last byte is currently being sent, software sets the STOPbit of the I2C Control  
register (or START bit to initiate a new transaction). In the STOP case, software also  
clears the TXIbit of the I2C Control register at the same time.  
20. The I2C Controller completes transmission of the last data byte on the SDA signal.  
21. The slave may either Acknowledge or Not Acknowledge the last byte. Because either  
the STOP or START bit is already set, the NCKI interrupt does not occur.  
22. The I2C Controller sends the STOP (or RESTART) condition to the I2C bus and clears  
the STOP (or START) bit.  
Read Transaction with a 7-Bit Address  
Figure 31 displays the data transfer format for a read operation to a 7-bit addressed slave.  
The shaded regions indicate data transferred from the I2C Controller to slaves and  
unshaded regions indicate data transferred from the slaves to the I2C Controller.  
S
Slave Address  
R = 1  
A
Data  
A
Data  
A
P/S  
Figure 31. Receive Data Transfer Format for a 7-Bit Addressed Slave  
Follow the steps below for a read operation to a 7-bit addressed slave:  
1. Software writes the I2C Data register with a 7-bit slave address plus the read bit (=1).  
2. Software asserts the START bit of the I2C Control register.  
3. If this is a single byte transfer, Software asserts the NAKbit of the I2C Control register  
so that after the first byte of data has been read by the I2C Controller, a Not  
Acknowledge is sent to the I2C slave.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
150  
4. The I2C Controller sends the START condition.  
5. The I2C Controller shifts the address and read bit out the SDA signal.  
6. If the I2C slave acknowledges the address by pulling the SDA signal Low during the  
next high period of SCL, the I2C Controller sets the ACK bit in the I2C Status register.  
Continue with step 7.  
If the slave does not acknowledge, the Not Acknowledge interrupt occurs (NCKI bit is  
set in the Status register, ACK bit is cleared). Software responds to the Not  
Acknowledge interrupt by setting the STOP bit and clearing the TXI bit. The I2C  
Controller sends the STOP condition on the bus and clears the STOP and NCKI bits.  
The transaction is complete (ignore the following steps).  
7. The I2C Controller shifts in the byte of data from the I2C slave on the SDA signal. The  
I2C Controller sends a Not Acknowledge to the I2C slave if the NAK bit is set (last  
byte), else it sends an Acknowledge.  
8. The I2C Controller asserts the Receive interrupt (RDRF bit set in the Status register).  
9. Software responds by reading the I2C Data register which clears the RDRF bit. If there  
is only one more byte to receive, set the NAK bit of the I2C Control register.  
10. If there are more bytes to transfer, return to step 7.  
11. After the last byte is shifted in, a Not Acknowledge interrupt is generated by the I2C  
Controller.  
12. Software responds by setting the STOPbit of the I2C Control register.  
13. A STOP condition is sent to the I2C slave, the STOP and NCKI bits are cleared.  
Read Transaction with a 10-Bit Address  
Figure 32 displays the read transaction format for a 10-bit addressed slave. The shaded  
regions indicate data transferred from the I2C Controller to slaves and unshaded regions  
indicate data transferred from the slaves to the I2C Controller.  
Slave Address  
1st 7 bits  
Slave Address  
2nd Byte  
Slave Address  
1st 7 bits  
S
W=0 A  
A S  
R=1 A Data A Data A P  
Figure 32. Receive Data Format for a 10-Bit Addressed Slave  
The first seven bits transmitted in the first byte are 11110XX. The two bits XXare the two  
most-significant bits of the 10-bit address. The lowest bit of the first byte transferred is the  
write control bit.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
151  
Follow the steps below for the data transfer for a read operation to a 10-bit addressed  
slave:  
1. Software writes 11110B followed by the two address bits and a 0 (write) to the I2C  
Data register.  
2. Software asserts the STARTand TXI bits of the I2C Control register.  
3. The I2C Controller sends the Start condition.  
4. The I2C Controller loads the I2C Shift register with the contents of the I2C Data  
register.  
5. After the first bit has been shifted out, a Transmit interrupt is asserted.  
6. Software responds by writing the lower eight bits of address to the I2C Data register.  
7. The I2C Controller completes shifting of the two address bits and a 0 (write).  
8. If the I2C slave acknowledges the first address byte by pulling the SDA signal low  
during the next high period of SCL, the I2C Controller sets the ACKbit in the I2C  
Status register. Continue with step 9.  
If the slave does not acknowledge the first address byte, the I2C Controller sets the  
NCKIbit and clears the ACK bit in the I2C Status register. Software responds to the  
Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI  
bit. The I2C Controller sends the STOP condition on the bus and clears the STOP and  
NCKI bits. The transaction is complete (ignore following steps).  
9. The I2C Controller loads the I2C Shift register with the contents of the I2C Data  
register (second address byte).  
10. The I2C Controller shifts out the second address byte. After the first bit is shifted, the  
I2C Controller generates a Transmit interrupt.  
11. Software responds by setting the STARTbit of the I2C Control register to generate a  
repeated START and by clearing the TXI bit.  
12. Software responds by writing 11110Bfollowed by the 2-bit slave address and a 1  
(read) to the I2C Data register.  
13. If only one byte is to be read, software sets the NAK bit of the I2C Control register.  
14. After the I2C Controller shifts out the 2nd address byte, the I2C slave sends an  
acknowledge by pulling the SDA signal low during the next high period of SCL, the  
I2C Controller sets the ACKbit in the I2C Status register. Continue with step 15.  
If the slave does not acknowledge the second address byte, the I2C Controller sets the  
NCKIbit and clears the ACK bit in the I2C Status register. Software responds to the  
Not Acknowledge interrupt by setting the STOP and FLUSH bits and clearing the TXI  
bit. The I2C Controller sends the STOP condition on the bus and clears the STOP and  
NCKI bits. The transaction is complete (ignore the following steps).  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
152  
15. The I2C Controller sends the repeated START condition.  
16. The I2C Controller loads the I2C Shift register with the contents of the I2C Data  
register (third address transfer).  
17. The I2C Controller sends 11110Bfollowed by the two most significant bits of the  
slave read address and a 1 (read).  
18. The I2C slave sends an acknowledge by pulling the SDA signal Low during the next  
high period of SCL  
If the slave were to Not Acknowledge at this point (this should not happen because the  
slave did acknowledge the first two address bytes), software would respond by setting  
the STOP and FLUSH bits and clearing the TXI bit. The I2C Controller sends the  
STOP condition on the bus and clears the STOP and NCKI bits. The transaction is  
complete (ignore the following steps).  
19. The I2C Controller shifts in a byte of data from the I2C slave on the SDA signal. The  
I2C Controller sends a Not Acknowledge to the I2C slave if the NAK bit is set (last  
byte), else it sends an Acknowledge.  
20. The I2C Controller asserts the Receive interrupt (RDRF bit set in the Status register).  
21. Software responds by reading the I2C Data register which clears the RDRF bit. If there  
is only one more byte to receive, set the NAK bit of the I2C Control register.  
22. If there are one or more bytes to transfer, return to step 19.  
23. After the last byte is shifted in, a Not Acknowledge interrupt is generated by the I2C  
Controller.  
24. Software responds by setting the STOPbit of the I2C Control register.  
25. A STOP condition is sent to the I2C slave and the STOP and NCKI bits are cleared.  
2
I C Control Register Definitions  
2
I C Data Register  
The I2C Data register (see Table 70 on page 153) holds the data that is to be loaded into  
the I2C Shift register during a write to a slave. This register also holds data that is loaded  
from the I2C Shift register during a read from a slave. The I2C Shift Register is not acces-  
sible in the Register File address space, but is used only to buffer incoming and outgoing  
data.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
153  
Table 70. I2C Data Register (I2CDATA)  
BITS  
7
6
5
4
3
2
1
0
DATA  
0
FIELD  
RESET  
R/W  
R/W  
F50H  
ADDR  
I2C Status Register  
The Read-only I2C Status register (Table 71) indicates the status of the I2C Controller.  
Table 71. I2C Status Register (I2CSTAT)  
BITS  
7
6
5
4
3
2
1
0
TDRE  
RDRF  
ACK  
10B  
RD  
TAS  
DSS  
NCKI  
FIELD  
RESET  
R/W  
1
0
R
F51H  
ADDR  
TDRE—Transmit Data Register Empty  
When the I2C Controller is enabled, this bit is 1 when the I2C Data register is empty.  
When this bit is set, an interrupt is generated if the TXI bit is set, except when the I2C  
Controller is shifting in data during the reception of a byte or when shifting an address and  
the RDbit is set. This bit is cleared by writing to the I2CDATA register.  
RDRF—Receive Data Register Full  
This bit is set = 1 when the I2C Controller is enabled and the I2C Controller has received a  
byte of data. When asserted, this bit causes the I2C Controller to generate an interrupt.  
This bit is cleared by reading the I2C Data register (unless the read is performed using exe-  
cution of the On-Chip Debugger’s Read Register command).  
ACK—Acknowledge  
This bit indicates the status of the Acknowledge for the last byte transmitted or received.  
When set, this bit indicates that an Acknowledge occurred for the last byte transmitted or  
received. This bit is cleared when IEN = 0 or when a Not Acknowledge occurred for the  
last byte transmitted or received. It is not reset at the beginning of each transaction and is  
not reset when this register is read.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
154  
Caution: Software must be cautious in making decisions based on this bit within a trans-  
action because software cannot tell when the bit is updated by hardware. In the  
case of write transactions, the I2C pauses at the beginning of the Acknowledge  
cycle if the next transmit data or address byte has not been written (TDRE = 1)  
and STOP and START = 0. In this case the ACK bit is not updated until the  
transmit interrupt is serviced and the Acknowledge cycle for the previous byte  
completes. For examples of how the ACK bit can be used, see Address Only  
Transaction with a 7-bit Address on page 144 and Address Only Transaction  
with a 10-bit Address on page 146.  
10B—10-Bit Address  
This bit indicates whether a 10- or 7-bit address is being transmitted. After the STARTbit  
is set, if the five most-significant bits of the address are 11110B, this bit is set. When set,  
it is reset once the first byte of the address has been sent.  
RD—Read  
This bit indicates the direction of transfer of the data. It is active high during a read. The  
status of this bit is determined by the least-significant bit of the I2C Shift register after the  
STARTbit is set.  
TAS—Transmit Address State  
This bit is active high while the address is being shifted out of the I2C Shift register.  
DSS—Data Shift State  
This bit is active high while data is being shifted to or from the I2C Shift register.  
NCKI—NACK Interrupt  
This bit is set high when a Not Acknowledge condition is received or sent and neither the  
START nor the STOP bit is active. When set, this bit generates an interrupt that can only  
be cleared by setting the STARTor STOPbit, allowing you to specify whether to perform  
a STOPor a repeated START.  
I2C Control Register  
The I2C Control register (Table 72) enables the I2C operation.  
2
Table 72. I C Control Register (I2CCTL)  
BITS  
7
6
5
4
3
2
1
0
IEN  
START  
STOP  
BIRQ  
TXI  
NAK  
FLUSH  
FILTEN  
FIELD  
RESET  
R/W  
0
R/W  
R/W1  
R/W1  
R/W  
R/W  
R/W1  
W1  
R/W  
F52H  
ADDR  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
155  
IEN—I2C Enable  
1 = The I2C transmitter and receiver are enabled.  
0 = The I2C transmitter and receiver are disabled.  
START—Send Start Condition  
This bit sends the Start condition. Once asserted, it is cleared by the I2C Controller after it  
sends the START condition or if the IENbit is deasserted. If this bit is 1, it cannot be  
cleared to 0 by writing to the register. After this bit is set, the Start condition is sent if there  
is data in the I2C Data or I2C Shift register. If there is no data in one of these registers, the  
I2C Controller waits until the Data register is written. If this bit is set while the I2C  
Controller is shifting out data, it generates a START condition after the byte shifts and the  
acknowledge phase completes. If the STOPbit is also set, it also waits until the STOP  
condition is sent before the sending the START condition.  
STOP—Send Stop Condition  
This bit causes the I2C Controller to issue a Stop condition after the byte in the I2C Shift  
register has completed transmission or after a byte has been received in a receive  
operation. Once set, this bit is reset by the I2C Controller after a Stop condition has been  
sent or by deasserting the IENbit. If this bit is 1, it cannot be cleared to 0 by writing to the  
register.  
BIRQ—Baud Rate Generator Interrupt Request  
This bit allows the I2C Controller to be used as an additional timer when the I2C  
Controller is disabled. This bit is ignored when the I2C Controller is enabled.  
1 = An interrupt occurs every time the baud rate generator counts down to one.  
0 = No baud rate generator interrupt occurs.  
TXI—Enable TDRE interrupts  
This bit enables the transmit interrupt when the I2C Data register is empty (TDRE = 1).  
1 = Transmit interrupt (and DMA transmit request) is enabled.  
0 = Transmit interrupt (and DMA transmit request) is disabled.  
NAK—Send NAK  
This bit sends a Not Acknowledge condition after the next byte of data has been read from  
the I2C slave. Once asserted, it is deasserted after a Not Acknowledge is sent or the IEN  
bit is deasserted. If this bit is 1, it cannot be cleared to 0 by writing to the register.  
FLUSH—Flush Data  
Setting this bit to 1 clears the I2C Data register and sets the TDRE bit to 1. This bit allows  
flushing of the I2C Data register when a Not Acknowledge interrupt is received after the  
data has been sent to the I2C Data register. Reading this bit always returns 0.  
FILTEN—I2C Signal Filter Enable  
This bit enables low-pass digital filters on the SDA and SCL input signals. These filters  
reject any input pulse with periods less than a full system clock cycle. The filters introduce  
a 3-system clock cycle latency on the inputs.  
1 = low-pass filters are enabled.  
0 = low-pass filters are disabled.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
156  
I2C Baud Rate High and Low Byte Registers  
The I2C Baud Rate High and Low Byte registers (Tables 73 and 73) combine to form a  
16-bit reload value, BRG[15:0], for the I2C Baud Rate Generator.  
When the I2C is disabled, the Baud Rate Generator can function as a basic 16-bit timer  
with interrupt on time-out. To configure the Baud Rate Generator as a timer with interrupt  
on time-out, complete the following procedure:  
1. Disable the I2C by clearing the IENbit in the I2C Control register to 0.  
2. Load the desired 16-bit count value into the I2C Baud Rate High and Low Byte  
registers.  
3. Enable the Baud Rate Generator timer function and associated interrupt by setting the  
BIRQbit in the I2C Control register to 1.  
When configured as a general purpose timer, the interrupt interval is calculated using the  
following equation:  
Interrupt Interval (s) = System Clock Period (s) × BRG[15:0]  
Table 73. I2C Baud Rate High Byte Register (I2CBRH)  
BITS  
7
6
5
4
3
2
1
0
BRH  
FFH  
FIELD  
RESET  
R/W  
R/W  
F53H  
ADDR  
BRH = I2C Baud Rate High Byte  
Most significant byte, BRG[15:8], of the I2C Baud Rate Generator’s reload value.  
Note: If the DIAG bit in the I2C Diagnostic Control Register is set to 1, a read of the I2CBRH  
register returns the current value of the I2C Baud Rate Counter[15:8].  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
157  
Table 74. I2C Baud Rate Low Byte Register (I2CBRL)  
BITS  
7
6
5
4
3
2
1
0
BRL  
FFH  
R/W  
F54H  
FIELD  
RESET  
R/W  
ADDR  
BRL = I2C Baud Rate Low Byte  
Least significant byte, BRG[7:0], of the I2C Baud Rate Generator’s reload value.  
Note: If the DIAG bit in the I2C Diagnostic Control Register is set to 1, a read of the I2CBRL  
register returns the current value of the I2C Baud Rate Counter[7:0].  
I2C Diagnostic State Register  
The I2C Diagnostic State register (Table 75) provides observability of internal state. This  
is a read only register used for I2C diagnostics and manufacturing test.  
Table 75. I2C Diagnostic State Register (I2CDST)  
BITS  
7
6
5
4
3
2
1
0
SCLIN  
SDAIN  
STPCNT  
TXRXSTATE  
FIELD  
RESET  
R/W  
X
0
R
F55H  
ADDR  
SCLIN—Value of Serial Clock input signal  
SDAIN—Value of the Serial Data input signal  
STPCNT—Value of the internal Stop Count control signal  
TXRXSTATE—Value of the internal I2C state machine  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
158  
TXRXSTATE  
0_0000  
0_0001  
0_0010  
0_0011  
0_0100  
0_0101  
0_0110  
0_0111  
0_1000  
0_1001  
0_1010  
0_1011  
State Description  
Idle State  
START State  
Send/Receive data bit 7  
Send/Receive data bit 6  
Send/Receive data bit 5  
Send/Receive data bit 4  
Send/Receive data bit 3  
Send/Receive data bit 2  
Send/Receive data bit 1  
Send/Receive data bit 0  
Data Acknowledge State  
Second half of data Acknowledge State used only for not  
acknowledge  
0_1100  
0_1101  
0_1110  
First part of STOP state  
Second part of STOP state  
10-bit addressing: Acknowledge State for 2nd address byte  
7-bit addressing: Address Acknowledge State  
0_1111  
10-bit address: Bit 0 (Least significant bit) of 2nd address byte  
7-bit address: Bit 0 (Least significant bit) (R/W) of address byte  
1_0000  
1_0001  
1_0010  
1_0011  
1_0100  
1_0101  
1_0110  
1_0111  
1_1000  
1_1001  
10-bit addressing: Bit 7 (Most significant bit) of 1st address byte  
10-bit addressing: Bit 6 of 1st address byte  
10-bit addressing: Bit 5 of 1st address byte  
10-bit addressing: Bit 4 of 1st address byte  
10-bit addressing: Bit 3 of 1st address byte  
10-bit addressing: Bit 2 of 1st address byte  
10-bit addressing: Bit 1 of 1st address byte  
10-bit addressing: Bit 0 (R/W) of 1st address byte  
10-bit addressing: Acknowledge state for 1st address byte  
10-bit addressing: Bit 7 of 2nd address byte  
7-bit addressing: Bit 7 of address byte  
1_1010  
1_1011  
1_1100  
10-bit addressing: Bit 6 of 2nd address byte  
7-bit addressing: Bit 6 of address byte  
10-bit addressing: Bit 5 of 2nd address byte  
7-bit addressing: Bit 5 of address byte  
10-bit addressing: Bit 4 of 2nd address byte  
7-bit addressing: Bit 4 of address byte  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
159  
TXRXSTATE  
State Description  
1_1101  
10-bit addressing: Bit 3 of 2nd address byte  
7-bit addressing: Bit 3 of address byte  
1_1110  
1_1111  
10-bit addressing: Bit 2 of 2nd address byte  
7-bit addressing: Bit 2 of address byte  
10-bit addressing: Bit 1 of 2nd address byte  
7-bit addressing: Bit 1 of address byte  
I2C Diagnostic Control Register  
The I2C Diagnostic register (Table 76) provides control over diagnostic modes. This regis-  
ter is a read/write register used for I2C diagnostics.  
Table 76. I2C Diagnostic Control Register (I2CDIAG)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
DIAG  
FIELD  
RESET  
R/W  
0
R
R/W  
F56H  
ADDR  
DIAG = Diagnostic Control Bit - Selects read back value of the Baud Rate Reload regis-  
ters.  
0 = NORMAL mode. Reading the Baud Rate High and Low Byte registers returns the  
baud rate reload value.  
1 = DIAGNOSTIC mode. Reading the Baud Rate High and Low Byte registers returns  
the baud rate counter value.  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
160  
PS019921-0308  
I2C Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
161  
Direct Memory Access Controller  
The Z8 Encore! XP® F64XX Series Direct Memory Access (DMA) Controller provides  
three independent Direct Memory Access channels. Two of the channels (DMA0 and  
DMA1) transfer data between the on-chip peripherals and the Register File. The third  
channel (DMA_ADC) controls the ADC operation and transfers SINGLE-SHOT mode  
ADC output data to the Register File.  
Operation  
DMA0 and DMA1 Operation  
DMA0 and DMA1, referred to collectively as DMAx, transfer data either from the on-chip  
peripheral control registers to the Register File, or from the Register File to the on-chip  
peripheral control registers. The sequence of operations in a DMAx data transfer is:  
1. DMAx trigger source requests a DMA data transfer.  
2. DMAx requests control of the system bus (address and data) from the eZ8 CPU.  
3. After the eZ8 CPU acknowledges the bus request, DMAx transfers either a single byte  
or a two-byte word (depending upon configuration) and then returns system bus  
control back to the eZ8 CPU.  
4. If Current Address equals End Address:  
DMAx reloads the original Start Address  
If configured to generate an interrupt, DMAx sends an interrupt request to the  
Interrupt Controller  
If configured for single-pass operation, DMAx resets the DENbit in the DMAx  
Control register to 0 and the DMA is disabled.  
If Current Address does not equal End Address, the Current Address increments by 1  
(single-byte transfer) or 2 (two-byte word transfer).  
Configuring DMA0 and DMA1 for Data Transfer  
Follow the steps below to configure and enable DMA0 or DMA1:  
1. Write to the DMAx I/O Address register to set the Register File address identifying the  
on-chip peripheral control register. The upper nibble of the 12-bit address for on-chip  
peripheral control registers is always FH. The full address is {FH, DMAx_IO[7:0]}.  
2. Determine the 12-bit Start and End Register File addresses. The 12-bit Start Address  
is given by {DMAx_H[3:0], DMA_START[7:0]}. The 12-bit End Address is given by  
{DMAx_H[7:4], DMA_END[7:0]}.  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
162  
3. Write the Start and End Register File address high nibbles to the DMAx End/Start  
Address High Nibble register.  
4. Write the lower byte of the Start Address to the DMAx Start/Current Address register.  
5. Write the lower byte of the End Address to the DMAx End Address register.  
6. Write to the DMAx Control register to complete the following:  
Select loop or single-pass mode operation  
Select the data transfer direction (either from the Register File RAM to the on-  
chip peripheral control register; or from the on-chip peripheral control register to  
the Register File RAM)  
Enable the DMAx interrupt request, if desired  
Select Word or Byte mode  
Select the DMAx request trigger  
Enable the DMAx channel  
DMA_ADC Operation  
DMA_ADC transfers data from the ADC to the Register File. The sequence of operations  
in a DMA_ADC data transfer is:  
1. ADC completes conversion on the current ADC input channel and signals the DMA  
controller that two-bytes of ADC data are ready for transfer.  
2. DMA_ADC requests control of the system bus (address and data) from the eZ8 CPU.  
3. After the eZ8 CPU acknowledges the bus request, DMA_ADC transfers the two-byte  
ADC output value to the Register File and then returns system bus control back to the  
eZ8 CPU.  
4. If the current ADC Analog Input is the highest numbered input to be converted:  
DMA_ADC resets the ADC Analog Input number to 0 and initiates data  
conversion on ADC Analog Input 0.  
If configured to generate an interrupt, DMA_ADC sends an interrupt request to  
the Interrupt Controller  
If the current ADC Analog Input is not the highest numbered input to be converted,  
DMA_ADC initiates data conversion in the next higher numbered ADC Analog Input.  
Configuring DMA_ADC for Data Transfer  
Follow the steps below to configure and enable DMA_ADC:  
1. Write the DMA_ADC Address register with the 7 most-significant bits of the Register  
File address for data transfers.  
2. Write to the DMA_ADC Control register to complete the following:  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
163  
Enable the DMA_ADC interrupt request, if desired  
Select the number of ADC Analog Inputs to convert  
Enable the DMA_ADC channel  
Caution: When using the DMA_ADC to perform conversions on multiple ADC inputs,  
the Analog-to-Digital Converter must be configured for SINGLE-SHOT mode.  
If the ADC_IN field in the DMA_ADC Control Register is greater than 000b,  
the ADC must be in SINGLE-SHOT mode.  
CONTINUOUS mode operation of the ADC can only be used in conjunction  
with DMA_ADC if the ADC_IN field in the DMA_ADC Control Register is re-  
set to 000b to enable conversion on ADC Analog Input 0 only.  
DMA Control Register Definitions  
DMAx Control Register  
The DMAx Control register (see Table 77 on page 163) enables and selects the mode of  
operation for DMAx.  
Table 77. DMAx Control Register (DMAxCTL)  
BITS  
7
6
5
4
3
2
1
0
DEN  
DLE  
DDIR  
IRQEN  
WSEL  
RSS  
FIELD  
RESET  
R/W  
0
R/W  
FB0H, FB8H  
ADDR  
DEN—DMAx Enable  
0 = DMAx is disabled and data transfer requests are disregarded.  
1 = DMAx is enabled and initiates a data transfer upon receipt of a request from the  
trigger source.  
DLE—DMAx Loop Enable  
0 = DMAx reloads the original Start Address and is then disabled after the End  
Address data is transferred.  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
164  
1 = DMAx, after the End Address data is transferred, reloads the original Start  
Address and continues operating.  
DDIR—DMAx Data Transfer Direction  
0 = Register File on-chip peripheral control register.  
1 = on-chip peripheral control register Register File.  
IRQEN—DMAx Interrupt Enable  
0 = DMAx does not generate any interrupts.  
1 = DMAx generates an interrupt when the End Address data is transferred.  
WSEL—Word Select  
0 = DMAx transfers a single byte per request.  
1 = DMAx transfers a two-byte word per request. The address for the on-chip  
peripheral control register must be an even address.  
RSS—Request Trigger Source Select  
The Request Trigger Source Select field determines the peripheral that can initiate a DMA  
transfer. The corresponding interrupts do not need to be enabled within the Interrupt Con-  
troller to initiate a DMA transfer. However, if the Request Trigger Source can enable or  
disable the interrupt request sent to the Interrupt Controller, the interrupt request must be  
enabled within the Request Trigger Source block.  
000 = Timer 0.  
001 = Timer 1.  
010 = Timer 2.  
011 = Timer 3.  
100 = DMA0 Control register: UART0 Received Data register contains valid data.  
DMA1 Control register: UART0 Transmit Data register empty.  
101 = DMA0 Control register: UART1 Received Data register contains valid data. DMA1  
Control register: UART1 Transmit Data register empty.  
110 = DMA0 Control register: I2C Receiver Interrupt. DMA1 Control register: I2C  
Transmitter Interrupt register empty.  
111 = Reserved.  
DMAx I/O Address Register  
The DMAx I/O Address register (Table 78) contains the low byte of the on-chip peripheral  
address for data transfer. The full 12-bit Register File address is given by {FH,  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
165  
DMAx_IO[7:0]}. When the DMA is configured for two-byte word transfers, the  
DMAx I/O Address register must contain an even numbered address.  
Table 78. DMAx I/O Address Register (DMAxIO)  
BITS  
7
6
5
4
3
2
1
0
DMA_IO  
X
FIELD  
RESET  
R/W  
R/W  
FB1H, FB9H  
ADDR  
DMA_IO—DMA on-chip peripheral control register address  
This byte sets the low byte of the on-chip peripheral control register address on Register  
File Page FH(addresses F00Hto FFFH).  
DMAx Address High Nibble Register  
The DMAx Address High register (Table 79) specifies the upper four bits of address for  
the Start/Current and End Addresses of DMAx.  
Table 79. DMAx Address High Nibble Register (DMAxH)  
BITS  
7
6
5
4
3
2
1
0
DMA_END_H  
DMA_START_H  
FIELD  
RESET  
R/W  
X
R/W  
FB2H, FBAH  
ADDR  
DMA_END_H—DMAx End Address High Nibble  
These bits, used with the DMAx End Address Low register, form a 12-bit End Address.  
The full 12-bit address is given by {DMA_END_H[3:0], DMA_END[7:0]}.  
DMA_START_H—DMAx Start/Current Address High Nibble  
These bits, used with the DMAx Start/Current Address Low register, form a 12-bit  
Start/Current Address. The full 12-bit address is given by {DMA_START_H[3:0],  
DMA_START[7:0]}.  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
166  
DMAx Start/Current Address Low Byte Register  
The DMAx Start/Current Address Low register, in conjunction with the DMAx Address  
High Nibble register, forms a 12-bit Start/Current Address. Writes to this register set the  
Start Address for DMA operations. Each time the DMA completes a data transfer, the  
12-bit Start/Current Address increments by either 1 (single-byte transfer) or 2 (two-byte  
word transfer). Reads from this register return the low byte of the Current Address to be  
used for the next DMA data transfer.  
Table 80. DMAx Start/Current Address Low Byte Register (DMAxSTART)  
BITS  
7
6
5
4
3
2
1
0
DMA_START  
X
FIELD  
RESET  
R/W  
R/W  
FB3H, FBBH  
ADDR  
DMA_START—DMAx Start/Current Address Low  
These bits, with the four lower bits of the DMAx_H register, form the 12-bit Start/Current  
address. The full 12-bit address is given by {DMA_START_H[3:0], DMA_START[7:0]}.  
DMAx End Address Low Byte Register  
The DMAx End Address Low Byte register (Table 80), in conjunction with the DMAx_H  
register (Table 81), forms a 12-bit End Address.  
Table 81. DMAx End Address Low Byte Register (DMAxEND)  
BITS  
7
6
5
4
3
2
1
0
DMA_END  
FIELD  
RESET  
R/W  
X
R/W  
FB4H, FBCH  
ADDR  
DMA_END—DMAx End Address Low  
These bits, with the four upper bits of the DMAx_H register, form a 12-bit address. This  
address is the ending location of the DMAx transfer. The full 12-bit address is given by  
{DMA_END_H[3:0], DMA_END[7:0]}.  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
167  
DMA_ADC Address Register  
The DMA_ADC Address register (Table 83) points to a block of the Register File to store  
ADC conversion values as displayed in Table 82. This register contains the seven most-  
significant bits of the 12-bit Register File addresses. The five least-significant bits are cal-  
culated from the ADC Analog Input number (5-bit base address is equal to twice the ADC  
Analog Input number). The 10-bit ADC conversion data is stored as two bytes with the  
most significant byte of the ADC data stored at the even numbered Register File address.  
Table 82 provides an example of the Register File addresses if the DMA_ADC Address  
register contains the value 72H.  
Table 82. DMA_ADC Register File Address Example  
1
ADC Analog Input  
Register File Address (Hex)  
720H-721H  
0
1
722H-723H  
2
724H-725H  
3
726H-727H  
4
728H-729H  
5
72AH-72BH  
72CH-72DH  
72EH-72FH  
730H-731H  
6
7
8
9
732H-733H  
10  
11  
734H-735H  
736H-737H  
1DMAA_ADDR set to 72H.  
Table 83. DMA_ADC Address Register (DMAA_ADDR)  
BITS  
7
6
5
4
3
2
1
0
DMAA_ADDR  
Reserved  
FIELD  
RESET  
R/W  
X
R/W  
FBDH  
ADDR  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
168  
DMAA_ADDR—DMA_ADC Address  
These bits specify the seven most-significant bits of the 12-bit Register File addresses  
used for storing the ADC output data. The ADC Analog Input Number defines the five  
least-significant bits of the Register File address. Full 12-bit address is  
{DMAA_ADDR[7:1], 4-bit ADC Analog Input Number, 0}.  
Reserved  
This bit is reserved and must be 0.  
DMA_ADC Control Register  
The DMA_ADC Control register (Table 84 on page 168) enables and sets options (DMA  
enable and interrupt enable) for ADC operation.  
Table 84. DMA_ADC Control Register (DMAACTL)  
BITS  
7
6
5
4
3
2
1
0
DAEN  
IRQEN  
Reserved  
ADC_IN  
FIELD  
RESET  
R/W  
0
R/W  
FBEH  
ADDR  
DAEN—DMA_ADC Enable  
0 = DMA_ADC is disabled and the ADC Analog Input Number (ADC_IN) is reset to 0.  
1 = DMA_ADC is enabled.  
IRQEN—Interrupt Enable  
0 = DMA_ADC does not generate any interrupts.  
1 = DMA_ADC generates an interrupt after transferring data from the last ADC Analog  
Input specified by the ADC_IN field.  
Reserved  
These bits are reserved and must be 0.  
ADC_IN—ADC Analog Input Number  
These bits set the number of ADC Analog Inputs to be used in the continuous update  
(data conversion followed by DMA data transfer). The conversion always begins with  
ADC Analog Input 0 and then progresses sequentially through the other selected ADC  
Analog Inputs.  
0000 = ADC Analog Input 0 updated.  
0001 = ADC Analog Inputs 0-1 updated.  
0010 = ADC Analog Inputs 0-2 updated.  
0011 = ADC Analog Inputs 0-3 updated.  
0100 = ADC Analog Inputs 0-4 updated.  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
169  
0101 = ADC Analog Inputs 0-5 updated.  
0110 = ADC Analog Inputs 0-6 updated.  
0111 = ADC Analog Inputs 0-7 updated.  
1000 = ADC Analog Inputs 0-8 updated.  
1001 = ADC Analog Inputs 0-9 updated.  
1010 = ADC Analog Inputs 0-10 updated.  
1011 = ADC Analog Inputs 0-11 updated.  
1100-1111 = Reserved.  
DMA Status Register  
The DMA Status register (Table 85 on page 169) indicates the DMA channel that gener-  
ated the interrupt and the ADC Analog Input that is currently undergoing conversion.  
Reads from this register reset the Interrupt Request Indicator bits (IRQA, IRQ1, and  
IRQ0) to 0. Therefore, software interrupt service routines that read this register must pro-  
cess all three interrupt sources from the DMA.  
Table 85. DMA_ADC Status Register (DMAA_STAT)  
BITS  
7
6
5
4
3
2
1
0
CADC[3:0]  
Reserved  
IRQA  
IRQ1  
IRQ0  
FIELD  
RESET  
R/W  
0
R
FBFH  
ADDR  
CADC[3:0]—Current ADC Analog Input  
This field identifies the Analog Input that the ADC is currently converting.  
Reserved  
This bit is reserved and must be 0.  
IRQA—DMA_ADC Interrupt Request Indicator  
This bit is automatically reset to 0 each time a read from this register occurs.  
0 = DMA_ADC is not the source of the interrupt from the DMA Controller.  
1 = DMA_ADC completed transfer of data from the last ADC Analog Input and generated  
an interrupt.  
IRQ1—DMA1 Interrupt Request Indicator  
This bit is automatically reset to 0 each time a read from this register occurs.  
0 = DMA1 is not the source of the interrupt from the DMA Controller.  
1 = DMA1 completed transfer of data to/from the End Address and generated an interrupt.  
IRQ0—DMA0 Interrupt Request Indicator  
This bit is automatically reset to 0 each time a read from this register occurs.  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
170  
0 = DMA0 is not the source of the interrupt from the DMA Controller.  
1 = DMA0 completed transfer of data to/from the End Address and generated an interrupt.  
PS019921-0308  
Direct Memory Access Controller  
Z8 Encore! XP® F64XX Series  
Product Specification  
171  
Analog-to-Digital Converter  
The Analog-to-Digital Converter (ADC) converts an analog input signal to a 10-bit binary  
number. The features of the sigma-delta ADC include:  
12 analog input sources are multiplexed with general-purpose I/O ports  
Interrupt upon conversion complete  
Internal voltage reference generator  
Direct Memory Access (DMA) controller can automatically initiate data conversion  
and transfer of the data from 1 to 12 of the analog inputs  
Architecture  
Figure 33 displays the three major functional blocks (converter, analog multiplexer, and  
voltage reference generator) of the ADC. The ADC converts an analog input signal to its  
digital representation. The 12-input analog multiplexer selects one of the 12 analog input  
sources. The ADC requires an input reference voltage for the conversion. The voltage  
reference for the conversion may be input through the external VREF pin or generated  
internally by the voltage reference generator.  
PS019921-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F64XX Series  
Product Specification  
172  
VREF  
Internal Voltage  
Reference Generator  
Analog Input  
Multiplexer  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
ANA5  
ANA6  
ANA7  
ANA8  
ANA9  
ANA10  
ANA11  
Analog-to-Digital  
Converter  
Reference Input  
Analog Input  
ANAIN[3:0]  
Figure 33. Analog-to-Digital Converter Block Diagram  
The sigma-delta ADC architecture provides alias and image attenuation below the ampli-  
tude resolution of the ADC in the frequency range of DC to one-half the ADC clock rate  
(one-fourth the system clock rate). The ADC provides alias free conversion for frequen-  
cies up to one-half the ADC clock rate. Thus the sigma-delta ADC exhibits high noise  
immunity making it ideal for embedded applications. In addition, monotonicity (no miss-  
ing codes) is guaranteed by design.  
Operation  
Automatic Power-Down  
If the ADC is idle (no conversions in progress) for 160 consecutive system clock cycles,  
portions of the ADC are automatically powered-down. From this power-down state, the  
ADC requires 40 system clock cycles to power-up. The ADC powers up when a conver-  
sion is requested using the ADC Control register.  
PS019921-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F64XX Series  
Product Specification  
173  
Single-Shot Conversion  
When configured for single-shot conversion, the ADC performs a single analog-to-digital  
conversion on the selected analog input channel. After completion of the conversion, the  
ADC shuts down. Follow the steps below for setting up the ADC and initiating a single-  
shot conversion:  
1. Enable the desired analog inputs by configuring the general-purpose I/O pins for  
alternate function. This configuration disables the digital input and output drivers.  
2. Write to the ADC Control register to configure the ADC and begin the conversion.  
The bit fields in the ADC Control register can be written simultaneously:  
Write to the ANAIN[3:0]field to select one of the 12 analog input sources.  
Clear CONTto 0 to select a single-shot conversion.  
Write to the VREFbit to enable or disable the internal voltage reference generator.  
Set CENto 1 to start the conversion.  
3. CENremains 1 while the conversion is in progress. A single-shot conversion requires  
5129 system clock cycles to complete. If a single-shot conversion is requested from an  
ADC powered-down state, the ADC uses 40 additional clock cycles to power-up  
before beginning the 5129 cycle conversion.  
4. When the conversion is complete, the ADC control logic performs the following  
operations:  
10-bit data result written to {ADCD_H[7:0], ADCD_L[7:6]}.  
CENresets to 0 to indicate the conversion is complete.  
An interrupt request is sent to the Interrupt Controller.  
5. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically  
powered-down.  
Continuous Conversion  
When configured for continuous conversion, the ADC continuously performs an analog-  
to-digital conversion on the selected analog input. Each new data value over-writes the  
previous value stored in the ADC Data registers. An interrupt is generated after each con-  
version.  
Caution: In CONTINUOUS mode, you must be aware that ADC updates are limited by  
the input signal bandwidth of the ADC and the latency of the ADC and its dig-  
ital filter. Step changes at the input are not seen at the next output from the  
ADC. The response of the ADC (in all modes) is limited by the input signal  
bandwidth and the latency.  
PS019921-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F64XX Series  
Product Specification  
174  
Follow the steps below for setting up the ADC and initiating continuous conversion:  
1. Enable the desired analog input by configuring the general-purpose I/O pins for  
alternate function. This disables the digital input and output driver.  
2. Write to the ADC Control register to configure the ADC for continuous conversion.  
The bit fields in the ADC Control register may be written simultaneously:  
Write to the ANAIN[3:0]field to select one of the 12 analog input sources.  
Set CONTto 1 to select continuous conversion.  
Write to the VREFbit to enable or disable the internal voltage reference generator.  
Set CENto 1 to start the conversions.  
3. When the first conversion in continuous operation is complete (after 5129 system  
clock cycles, plus the 40 cycles for power-up, if necessary), the ADC control logic  
performs the following operations:  
CENresets to 0 to indicate the first conversion is complete. CENremains 0 for all  
subsequent conversions in continuous operation.  
An interrupt request is sent to the Interrupt Controller to indicate the conversion is  
complete.  
4. Thereafter, the ADC writes a new 10-bit data result to {ADCD_H[7:0],  
ADCD_L[7:6]} every 256 system clock cycles. An interrupt request is sent to the  
Interrupt Controller when each conversion is complete.  
5. To disable continuous conversion, clear the CONTbit in the ADC Control register  
to 0.  
DMA Control of the ADC  
The Direct Memory Access (DMA) Controller can control operation of the ADC includ-  
ing analog input selection and conversion enable. For more information on the DMA and  
configuring for ADC operations, see Direct Memory Access Controller on page 161.  
PS019921-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F64XX Series  
Product Specification  
175  
ADC Control Register Definitions  
ADC Control Register  
The ADC Control register selects the analog input channel and initiates the analog-to-dig-  
ital conversion.  
Table 86. ADC Control Register (ADCCTL)  
BITS  
7
6
5
4
3
2
1
0
CEN  
Reserved  
VREF  
CONT  
ANAIN[3:0]  
FIELD  
RESET  
R/W  
0
1
0
R/W  
F70H  
ADDR  
CEN—Conversion Enable  
0 = Conversion is complete. Writing a 0 produces no effect. The ADC automatically clears  
this bit to 0 when a conversion has been completed.  
1 = Begin conversion. Writing a 1 to this bit starts a conversion. If a conversion is already  
in progress, the conversion restarts. This bit remains 1 until the conversion is complete.  
Reserved—Must be 0.  
VREF  
0 = Internal voltage reference generator enabled. The VREF pin should be left uncon-  
nected (or capacitively coupled to analog ground) if the internal voltage reference is  
selected as the ADC reference voltage.  
1 = Internal voltage reference generator disabled. An external voltage reference must be  
provided through the VREF pin.  
CONT  
0 = Single-shot conversion. ADC data is output once at completion of the 5129 system  
clock cycles.  
1 = Continuous conversion. ADC data updated every 256 system clock cycles.  
ANAIN—Analog Input Select  
These bits select the analog input for conversion. For information on the Port pins avail-  
able with each package style, see Signal and Pin Descriptions on page 7. Do not enable  
unavailable analog inputs.  
0000 = ANA0  
0001 = ANA1  
0010 = ANA2  
0011 = ANA3  
0100 = ANA4  
PS019921-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F64XX Series  
Product Specification  
176  
0101 = ANA5  
0110 = ANA6  
0111 = ANA7  
1000 = ANA8  
1001 = ANA9  
1010 = ANA10  
1011 = ANA11  
11XX = Reserved.  
ADC Data High Byte Register  
The ADC Data High Byte register (Table 87) contains the upper eight bits of the 10-bit  
ADC output. During a single-shot conversion, this value is invalid. Access to the ADC  
Data High Byte register is read-only. The full 10-bit ADC result is given by  
{ADCD_H[7:0], ADCD_L[7:6]}. Reading the ADC Data High Byte register latches data  
in the ADC Low Bits register.  
Table 87. ADC Data High Byte Register (ADCD_H)  
BITS  
7
6
5
4
3
2
1
0
ADCD_H  
FIELD  
RESET  
R/W  
X
R
F72H  
ADDR  
ADCD_H—ADC Data High Byte  
This byte contains the upper eight bits of the 10-bit ADC output. These bits are not valid  
during a single-shot conversion. During a continuous conversion, the last conversion out-  
put is held in this register. These bits are undefined after a Reset.  
ADC Data Low Bits Register  
The ADC Data Low Bits register (Table 88) contains the lower two bits of the conversion  
value. The data in the ADC Data Low Bits register is latched each time the ADC Data  
High Byte register is read. Reading this register always returns the lower two bits of the  
conversion last read into the ADC High Byte register. Access to the ADC Data Low Bits  
register is read-only. The full 10-bit ADC result is given by {ADCD_H[7:0],  
ADCD_L[7:6]}.  
PS019921-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F64XX Series  
Product Specification  
177  
Table 88. ADC Data Low Bits Register (ADCD_L)  
BITS  
7
6
5
4
3
2
1
0
ADCD_L  
Reserved  
FIELD  
RESET  
R/W  
X
R
F73H  
ADDR  
ADCD_L—ADC Data Low Bits  
These are the least significant two bits of the 10-bit ADC output. These bits are undefined  
after a Reset.  
Reserved  
These bits are reserved and are always undefined.  
PS019921-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F64XX Series  
Product Specification  
178  
PS019921-0308  
Analog-to-Digital Converter  
Z8 Encore! XP® F64XX Series  
Product Specification  
179  
Flash Memory  
The products in the Z8 Encore! XP® F64XX Series feature up to 64 KB (65,536 bytes) of  
non-volatile Flash memory with read/write/erase capability. The Flash memory can be  
programmed and erased in-circuit by either user code or through the On-Chip Debugger.  
The Flash memory array is arranged in 512 byte per page. The 512 byte page is the  
minimum Flash block size that can be erased. The Flash memory is also divided into 8  
sectors which can be protected from programming and erase operations on a per sector  
basis.  
Table 89 describes the Flash memory configuration for each device in the Z8 Encore! XP  
F64XX Series. Table 90 on page 180 lists the sector address ranges. Figure 34 on  
page 180 displays the Flash memory arrangement.  
Table 89. Flash Memory Configurations  
Pages  
per  
Number  
Flash Memory  
Addresses  
Number of  
Sectors  
Part Number  
Z8F162x  
Z8F242x  
Z8F322x  
Z8F482x  
Z8F642x  
Flash Size of Pages  
Sector Size  
2K (2048)  
4K (4096)  
4K (4096)  
8K (8192)  
8K (8192)  
Sector  
16K (16,384)  
24K (24,576)  
32K (32,768)  
48K (49,152)  
64K (65,536)  
32  
48  
0000H - 3FFFH  
0000H - 5FFFH  
0000H - 7FFFH  
0000H - BFFFH  
0000H - FFFFH  
8
6
8
6
8
4
8
64  
8
96  
16  
16  
128  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
180  
Table 90. Flash Memory Sector Addresses  
Flash Sector Address Ranges  
Z8F242x Z8F322x Z8F482x  
Sector Number  
Z8F162x  
Z8F642x  
0
1
2
3
4
5
6
7
0000H-07FFH 0000H-0FFFH 0000H-0FFFH 0000H-1FFFH 0000H-1FFFH  
0800H-0FFFH 1000H-1FFFH 1000H-1FFFH 2000H-3FFFH 2000H-3FFFH  
1000H-17FFH 2000H-2FFFH 2000H-2FFFH 4000H-5FFFH 4000H-5FFFH  
1800H-1FFFH 3000H-3FFFH 3000H-3FFFH 6000H-7FFFH 6000H-7FFFH  
2000H-27FFH 4000H-4FFFH 4000H-4FFFH 8000H-9FFFH 8000H-9FFFH  
2800H-2FFFH 5000H-5FFFH 5000H-5FFFH A000H-BFFFH A000H-BFFFH  
3000H-37FFH  
3800H-3FFFH  
N/A  
N/A  
6000H-6FFFH  
7000H-7FFFH  
N/A  
N/A  
C000H-DFFFH  
E000H-FFFFH  
64 KB Flash  
Program Memory  
Addresses  
FFFFH  
FE00H  
FDFFH  
FC00H  
FBFFH  
FA00H  
128 Pages  
512 Bytes per Page  
05FFH  
0400H  
03FFH  
0200H  
01FFH  
0000H  
Figure 34. Flash Memory Arrangement  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
181  
Information Area  
Table 91 describes the Z8 Encore! XP® F64XX Series Information Area. This 512 byte  
Information Area is accessed by setting bit 7 of the Page Select Register to 1. When access  
is enabled, the Information Area is mapped into Flash Memory and overlays the 512 bytes  
at addresses FE00Hto FFFFH. When the Information Area access is enabled, LDC instruc-  
tions return data from the Information Area. CPU instruction fetches always comes from  
Flash Memory regardless of the Information Area access bit. Access to the Information  
Area is read-only.  
Table 91. Z8 Encore! XP F64XX Series Information Area Map  
Flash Memory Address (Hex)  
FE00H-FE3FH  
Function  
Reserved  
FE40H-FE53H  
Part Number  
20-character ASCII alphanumeric code  
Left justified and filled with zeros  
FE54H-FFFFH  
Reserved  
Operation  
The Flash Controller provides the proper signals and timing for Byte Programming, Page  
Erase, and Mass Erase of the Flash memory. The Flash Controller contains a protection  
mechanism, via the Flash Control register (FCTL), to prevent accidental programming or  
erasure. The following subsections provide details on the various operations (Lock,  
Unlock, Sector Protect, Byte Programming, Page Erase, and Mass Erase).  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
182  
Timing Using the Flash Frequency Registers  
Before performing a program or erase operation on the Flash memory, you must first  
configure the Flash Frequency High and Low Byte registers. The Flash Frequency  
registers allow programming and erasure of the Flash with system clock frequencies  
ranging from 20 kHz through 20 MHz (the valid range is limited to the device operating  
frequencies).  
The Flash Frequency High and Low Byte registers combine to form a 16-bit value,  
FFREQ, to control timing for Flash program and erase operations. The 16-bit Flash  
Frequency value must contain the system clock frequency in kHz. This value is calculated  
using the following equation:.  
System Clock Frequency (Hz)  
------------------------------------------------------------------------  
1000  
FFREQ[15:0] =  
Flash programming and erasure are not supported for system clock frequencies  
below 20 kHz, above 20 MHz, or outside of the device operating frequency  
range. The Flash Frequency High and Low Byte registers must be loaded with  
the correct value to insure proper Flash programming and erase operations.  
Caution:  
Flash Read Protection  
The user code contained within the Flash memory can be protected from external access.  
Programming the Flash Read Protect Option Bit prevents reading of user code by the On-  
Chip Debugger or by using the Flash Controller Bypass mode. For more information, see  
Option Bits on page 191 and On-Chip Debugger on page 195.  
Flash Write/Erase Protection  
The Z8 Encore! XP® F64XX Series provides several levels of protection against acciden-  
tal program and erasure of the Flash memory contents. This protection is provided by the  
Flash Controller unlock mechanism, the Flash Sector Protect register, and the Flash Write  
Protect option bit.  
Flash Controller Unlock Mechanism  
At Reset, the Flash Controller locks to prevent accidental program or erasure of the Flash  
memory. To program or erase the Flash memory, the Flash controller must be unlocked.  
After unlocking the Flash Controller, the Flash can be programmed or erased. Any value  
written by user code to the Flash Control register or Page Select Register out of sequence  
will lock the Flash Controller.  
Follow the steps below to unlock the Flash Controller from user code:  
1. Write 00Hto the Flash Control register to reset the Flash Controller.  
2. Write the page to be programmed or erased to the Page Select register.  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
183  
3. Write the first unlock command 73Hto the Flash Control register.  
4. Write the second unlock command 8CHto the Flash Control register.  
5. Re-write the page written in step 2 to the Page Select register.  
Flash Sector Protection  
The Flash Sector Protect register can be configured to prevent sectors from being  
programmed or erased. Once a sector is protected, it cannot be unprotected by user code.  
The Flash Sector Protect register is cleared after reset and any previously written  
protection values is lost. User code must write this register in their initialization routine if  
they want to enable sector protection.  
The Flash Sector Protect register shares its Register File address with the Page Select  
register. The Flash Sector Protect register is accessed by writing the Flash Control register  
with 5EH. Once the Flash Sector Protect register is selected, it can be accessed at the Page  
Select Register address. When user code writes the Flash Sector Protect register, bits can  
only be set to 1. Thus, sectors can be protected, but not unprotected, via register write  
operations. Writing a value other than 5EHto the Flash Control register de-selects the  
Flash Sector Protect register and re-enables access to the Page Select register.  
Follow the steps below to setup the Flash Sector Protect register from user code:  
1. Write 00Hto the Flash Control register to reset the Flash Controller.  
2. Write 5EHto the Flash Control register to select the Flash Sector Protect register.  
3. Read and/or write the Flash Sector Protect register which is now at Register File  
address FF9H.  
4. Write 00Hto the Flash Control register to return the Flash Controller to its reset state.  
Flash Write Protection Option Bit  
The Flash Write Protect option bit can be enabled to block all program and erase opera-  
tions from user code. For more information, see Option Bits on page 191.  
Byte Programming  
When the Flash Controller is unlocked, writes to Flash Memory from user code will pro-  
gram a byte into the Flash if the address is located in the unlocked page. An erased Flash  
byte contains all ones (FFH). The programming operation can only be used to change bits  
from one to zero. To change a Flash bit (or multiple bits) from zero to one requires a Page  
Erase or Mass Erase operation.  
Byte Programming can be accomplished using the eZ8 CPU’s LDC or LDCI instructions.  
For a description of the LDC and LDCI instructions, refer to eZ8CPU Core User Man-  
ual (UM0128).  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
184  
While the Flash Controller programs the Flash memory, the eZ8 CPU idles but the system  
clock and on-chip peripherals continue to operate. Interrupts that occur when a Program-  
ming operation is in progress are serviced once the Programming operation is complete.  
To exit Programming mode and lock the Flash Controller, write 00Hto the Flash Control  
register.  
User code cannot program Flash Memory on a page that lies in a protected sector. When  
user code writes memory locations, only addresses located in the unlocked page are pro-  
grammed. Memory writes outside of the unlocked page are ignored.  
Each memory location must not be programmed more than twice before an  
erase occurs.  
Caution:  
Follow the steps below to program the Flash from user code:  
1. Write 00Hto the Flash Control register to reset the Flash Controller.  
2. Write the page of memory to be programmed to the Page Select register.  
3. Write the first unlock command 73Hto the Flash Control register.  
4. Write the second unlock command 8CHto the Flash Control register.  
5. Re-write the page written in step 2 to the Page Select register.  
6. Write Flash Memory using LDC or LDCI instructions to program the Flash.  
7. Repeat step 6 to program additional memory locations on the same page.  
8. Write 00Hto the Flash Control register to lock the Flash Controller.  
Page Erase  
The Flash memory can be erased one page (512 bytes) at a time. Page Erasing the Flash  
memory sets all bytes in that page to the value FFH. The Page Select register identifies the  
page to be erased. While the Flash Controller executes the Page Erase operation, the eZ8  
CPU idles but the system clock and on-chip peripherals continue to operate. The eZ8 CPU  
resumes operation after the Page Erase operation completes. Interrupts that occur when  
the Page Erase operation is in progress are serviced once the Page Erase operation is com-  
plete. When the Page Erase operation is complete, the Flash Controller returns to its  
locked state. Only pages located in unprotected sectors can be erased.  
Follow the steps below to perform a Page Erase operation:  
1. Write 00Hto the Flash Control register to reset the Flash Controller.  
2. Write the page to be erased to the Page Select register.  
3. Write the first unlock command 73Hto the Flash Control register.  
4. Write the second unlock command 8CHto the Flash Control register.  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
185  
5. Re-write the page written in step 2 to the Page Select register.  
6. Write the Page Erase command 95Hto the Flash Control register.  
Mass Erase  
The Flash memory cannot be Mass Erased by user code.  
Flash Controller Bypass  
The Flash Controller can be bypassed and the control signals for the Flash memory  
brought out to the GPIO pins. Bypassing the Flash Controller allows faster Programming  
algorithms by controlling the Flash programming signals directly.  
Flash Controller Bypass is recommended for gang programming applications and large  
volume customers who do not require in-circuit programming of the Flash memory.  
For more information on bypassing the Flash Controller, refer to Third-Party Flash Pro-  
gramming Support for Z8 Encore! available for download at www.zilog.com.  
Flash Controller Behavior in Debug Mode  
The following changes in behavior of the Flash Controller occur when the Flash Control-  
ler is accessed using the On-Chip Debugger:  
The Flash Write Protect option bit is ignored.  
The Flash Sector Protect register is ignored for programming and erase operations.  
Programming operations are not limited to the page selected in the Page Select  
register.  
Bits in the Flash Sector Protect register can be written to one or zero.  
The second write of the Page Select register to unlock the Flash Controller is not  
necessary.  
The Page Select register can be written when the Flash Controller is unlocked.  
The Mass Erase command is enabled through the Flash Control register.  
For security reasons, Flash controller allows only a single page to be opened for  
write/erase. When writing multiple Flash pages, the Flash controller must go  
through the unlock sequence again to select another page.  
Caution:  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
186  
Flash Control Register Definitions  
Flash Control Register  
The Flash Control register (Table 92) unlocks the Flash Controller for programming and  
erase operations, or to select the Flash Sector Protect register.  
The Write-only Flash Control Register shares its Register File address with the Read-only  
Flash Status Register.  
Table 92. Flash Control Register (FCTL)  
BITS  
7
6
5
4
3
2
1
0
FCMD  
0
FIELD  
RESET  
R/W  
W
FF8H  
ADDR  
FCMD—Flash Command  
73H = First unlock command.  
8CH = Second unlock command.  
95H = Page erase command.  
63H = Mass erase command  
5EH = Flash Sector Protect register select.  
* All other commands, or any command out of sequence, lock the Flash Controller.  
Flash Status Register  
The Flash Status register (Table 93) indicates the current state of the Flash Controller. This  
register can be read at any time. The Read-only Flash Status Register shares its Register  
File address with the Write-only Flash Control Register.  
Table 93. Flash Status Register (FSTAT)  
BITS  
7
6
5
4
3
2
1
0
Reserved  
FSTAT  
FIELD  
RESET  
R/W  
0
R
FF8H  
ADDR  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
187  
Reserved  
These bits are reserved and must be 0.  
FSTAT—Flash Controller Status  
00_0000 = Flash Controller locked  
00_0001 = First unlock command received  
00_0010 = Second unlock command received  
00_0011 = Flash Controller unlocked  
00_0100 = Flash Sector Protect register selected  
00_1xxx = Program operation in progress  
01_0xxx = Page erase operation in progress  
10_0xxx = Mass erase operation in progress  
Page Select Register  
The Page Select (FPS) register (Table 94) selects one of the 128 available Flash memory  
pages to be erased or programmed. Each Flash Page contains 512 bytes of Flash memory.  
During a Page Erase operation, all Flash memory locations with the 7 most significant bits  
of the address given by the PAGE field are erased to FFH.  
The Page Select register shares its Register File address with the Flash Sector Protect Reg-  
ister. The Page Select register cannot be accessed when the Flash Sector Protect register is  
enabled.  
Table 94. Page Select Register (FPS)  
BITS  
7
6
5
4
3
2
1
0
INFO_EN  
PAGE  
FIELD  
RESET  
R/W  
0
R/W  
FF9H  
ADDR  
INFO_EN—Information Area Enable  
0 = Information Area is not selected.  
1 = Information Area is selected. The Information area is mapped into the Flash Memory  
address space at addresses FE00Hthrough FFFFH.  
PAGE—Page Select  
This 7-bit field selects the Flash memory page for Programming and Page Erase opera-  
tions. Flash Memory Address[15:9] = PAGE[6:0].  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
188  
Flash Sector Protect Register  
The Flash Sector Protect register (Table 95) protects Flash memory sectors from being  
programmed or erased from user code. The Flash Sector Protect register shares its Regis-  
ter File address with the Page Select register. The Flash Sector protect register can be  
accessed only after writing the Flash Control register with 5EH.  
User code can only write bits in this register to 1 (bits cannot be cleared to 0 by user code).  
Table 95. Flash Sector Protect Register (FPROT)  
BITS  
7
6
5
4
3
2
1
0
SECT7  
SECT6  
SECT5  
SECT4  
SECT3  
SECT2  
SECT1  
SECT0  
FIELD  
RESET  
R/W  
0
R/W1  
FF9H  
ADDR  
Note: R/W1 = Register is accessible for Read operations. Register can be written to 1 only (via user code).  
SECTn—Sector Protect  
0 = Sector n can be programmed or erased from user code.  
1 = Sector n is protected and cannot be programmed or erased from user code.  
* User code can only write bits from 0 to 1.  
Flash Frequency High and Low Byte Registers  
The Flash Frequency High and Low Byte registers (Table 96 and Table 97) combine to  
form a 16-bit value, FFREQ, to control timing for Flash program and erase operations.  
The 16-bit Flash Frequency registers must be written with the system clock frequency in  
kHz for Program and Erase operations. Calculate the Flash Frequency value using the fol-  
lowing equation:  
System Clock Frequency  
-----------------------------------------------------------  
FFREQ[15:0] = {FFREQH[7:0],FFREQL[7:0]} =  
1000  
Flash programming and erasure is not supported for system clock frequencies be-  
low 20 kHz, above 20 MHz, or outside of the valid operating frequency range for  
the device. The Flash Frequency High and Low Byte registers must be loaded  
with the correct value to insure proper program and erase times.  
Caution:  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
189  
Table 96. Flash Frequency High Byte Register (FFREQH)  
BITS  
7
6
5
4
3
2
2
1
1
0
0
FFREQH  
0
FIELD  
RESET  
R/W  
R/W  
FFAH  
ADDR  
Table 97. Flash Frequency Low Byte Register (FFREQL)  
BITS  
7
6
5
4
3
FFREQL  
0
FIELD  
RESET  
R/W  
R/W  
FFBH  
ADDR  
FFREQH and FFREQL—Flash Frequency High and Low Bytes  
These 2 bytes, {FFREQH[7:0], FFREQL[7:0]}, contain the 16-bit Flash Frequency value.  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
190  
PS019921-0308  
Flash Memory  
Z8 Encore! XP® F64XX Series  
Product Specification  
191  
Option Bits  
Option Bits allow user configuration of certain aspects of the Z8 Encore! XP® F64XX  
Series operation. The feature configuration data is stored in the Flash Memory and read  
during Reset. The features available for control via the Option Bits are:  
Watchdog Timer time-out response selection–interrupt or Reset.  
Watchdog Timer enabled at Reset.  
The ability to prevent unwanted read access to user code in Flash Memory.  
The ability to prevent accidental programming and erasure of the user code in Flash  
Memory.  
Voltage Brownout configuration-always enabled or disabled during STOP mode to  
reduce STOP mode power consumption.  
Oscillator mode selection-for high, medium, and low power crystal oscillators, or  
external RC oscillator.  
Operation  
Option Bit Configuration By Reset  
Each time the Option Bits are programmed or erased, the device must be Reset for the  
change to take place. During any reset operation (System Reset, Reset, or Stop Mode  
Recovery), the Option Bits are automatically read from the Flash Memory and written to  
Option Configuration registers. The Option Configuration registers control operation of  
the devices within the Z8 Encore! XP F64XX Series. Option Bit control is established  
before the device exits Reset and the eZ8 CPU begins code execution. The Option Config-  
uration registers are not part of the Register File and are not accessible for read or write  
access.  
Option Bit Address Space  
The first two bytes of Flash Memory at addresses 0000H(see Table 98 on page 192) and  
0001H(see Table 99 on page 193) are reserved for the user Option Bits. The byte at Flash  
Memory address 0000Hconfigures user options. The byte at Flash Memory address  
0001His reserved for future use and must remain unprogrammed.  
PS019921-0308  
Option Bits  
Z8 Encore! XP® F64XX Series  
Product Specification  
192  
Flash Memory Address 0000H  
Table 98. Flash Option Bits At Flash Memory Address 0000H  
BITS  
7
6
5
4
3
2
1
0
WDT_RE WDT_AO  
S
OSC_SEL[1:0]  
VBO_AO  
RP  
Reserved  
FWP  
FIELD  
RESET  
R/W  
U
R/W  
Program Memory 0000H  
ADDR  
Note: U = Unchanged by Reset. R/W = Read/Write.  
WDT_RES—Watchdog Timer Reset  
0 = Watchdog Timer time-out generates an interrupt request. Interrupts must be globally  
enabled for the eZ8 CPU to acknowledge the interrupt request.  
1 = Watchdog Timer time-out causes a Short Reset. This setting is the default for unpro-  
grammed (erased) Flash.  
WDT_AO—Watchdog Timer Always On  
0 = Watchdog Timer is automatically enabled upon application of system power. Watch-  
dog Timer can not be disabled except during STOP Mode (if configured to power down  
during STOP mode).  
1 = Watchdog Timer is enabled upon execution of the WDT instruction. Once enabled, the  
Watchdog Timer can only be disabled by a Reset or Stop Mode Recovery. This setting is  
the default for unprogrammed (erased) Flash.  
OSC_SEL[1:0]—Oscillator Mode Selection  
00 = On-chip oscillator configured for use with external RC networks (<4 MHz).  
01 = Minimum power for use with very low frequency crystals (32 kHz to 1.0 MHz).  
10 = Medium power for use with medium frequency crystals or ceramic resonators  
(0.5 MHz to 10.0 MHz).  
11 = Maximum power for use with high frequency crystals (8.0 MHz to 20.0 MHz). This  
setting is the default for unprogrammed (erased) Flash.  
VBO_AO—Voltage Brownout Protection Always On  
0 = Voltage Brownout Protection is disabled in STOP mode to reduce total power  
consumption.  
1 = Voltage Brownout Protection is always enabled including during STOP mode.  
This setting is the default for unprogrammed (erased) Flash.  
RP—Read Protect  
0 = User program code is inaccessible. Limited control features are available through  
PS019921-0308  
Option Bits  
Z8 Encore! XP® F64XX Series  
Product Specification  
193  
the On-Chip Debugger.  
1 = User program code is accessible. All On-Chip Debugger commands are enabled. This  
setting is the default for unprogrammed (erased) Flash.  
Reserved  
These Option Bits are reserved for future use and must always be 1.This setting is the  
default for unprogrammed (erased) Flash.  
FWP—Flash Write Protect (Flash version only)  
FWP Description  
0
Programming, Page Erase, and Mass Erase through User Code is disabled.  
Mass Erase is available through the On-Chip Debugger.  
1
Programming, and Page Erase are enabled for all of Flash Program Memory.  
Flash Memory Address 0001H  
Table 99. Options Bits at Flash Memory Address 0001H  
BITS  
7
6
5
4
3
2
1
0
Reserved  
U
FIELD  
RESET  
R/W  
R/W  
Program Memory 0001H  
ADDR  
Note: U = Unchanged by Reset. R = Read-Only. R/W = Read/Write.  
Reserved  
These Option Bits are reserved for future use and must always be 1. This setting is the  
default for unprogrammed (erased) Flash.  
PS019921-0308  
Option Bits  
Z8 Encore! XP® F64XX Series  
Product Specification  
194  
PS019921-0308  
Option Bits  
Z8 Encore! XP® F64XX Series  
Product Specification  
195  
On-Chip Debugger  
The Z8 Encore! XP® F64XX Series products contain an integrated On-Chip Debugger  
(OCD) that provides advanced debugging features including:  
Reading and writing of the Register File  
Reading and writing of Program and Data Memory  
Setting of Breakpoints  
Execution of eZ8 CPU instructions  
Architecture  
The On-Chip Debugger consists of four primary functional blocks: transmitter, receiver,  
auto-baud generator, and debug controller. Figure 35 displays the architecture of the  
On-Chip Debugger.  
eZ8TM CPU  
Control  
System  
Clock  
Auto-Baud  
Detector/Generator  
Transmitter  
Receiver  
Debug Controller  
DBG  
Pin  
Figure 35. On-Chip Debugger Block Diagram  
Operation  
OCD Interface  
The On-Chip Debugger uses the DBG pin for communication with an external host. This  
one-pin interface is a bi-directional open-drain interface that transmits and receives data.  
Data transmission is half-duplex, in that transmit and receive cannot occur simultaneously.  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
196  
The serial data on the DBG pin is sent using the standard asynchronous data format  
defined in RS-232. This pin can interface the Z8 Encore! XP® F64XX Series products to  
the serial port of a host PC using minimal external hardware.Two different methods for  
connecting the DBG pin to an RS-232 interface are depicted in Figure 36 and Figure 37 on  
page 196.  
Caution: For operation of the On-Chip Debugger, all power pins (VDD and AVDD) must  
be supplied with power, and all ground pins (VSS and AVSS) must be properly  
grounded. The DBG pin is open-drain and must always be connected to VDD  
through an external pull-up resistor to ensure proper operation.  
V
DD  
RS-232  
10 kΩ  
Transceiver  
Diode  
RS-232 TX  
RS-232 RX  
DBG Pin  
Figure 36. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (1)  
V
DD  
RS-232  
10 kΩ  
Transceiver  
Open-Drain  
Buffer  
RS-232 TX  
RS-232 RX  
DBG Pin  
Figure 37. Interfacing the On-Chip Debugger’s DBG Pin with an RS-232 Interface (2)  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
197  
DEBUG Mode  
The operating characteristics of the Z8 Encore! XP® F64XX Series devices in DEBUG  
mode are:  
The eZ8 CPU fetch unit stops, idling the eZ8 CPU, unless directed by the OCD to  
execute specific instructions.  
The system clock operates unless in STOP mode.  
All enabled on-chip peripherals operate unless in STOP mode.  
Automatically exits HALT mode.  
Constantly refreshes the Watchdog Timer, if enabled.  
Entering DEBUG Mode  
The device enters DEBUG mode following any of the following operations:  
Writing the DBGMODEbit in the OCD Control Register to 1 using the OCD interface.  
eZ8 CPU execution of a BRK (Breakpoint) instruction (when enabled).  
If the DBG pin is Low when the device exits Reset, the On-Chip Debugger  
automatically puts the device into DEBUG mode.  
Exiting DEBUG Mode  
The device exits DEBUG mode following any of the following operations:  
Clearing the DBGMODEbit in the OCD Control Register to 0.  
Power-On Reset  
Voltage Brownout reset  
Asserting the RESET pin Low to initiate a Reset.  
Driving the DBG pin Low while the device is in STOP mode initiates a system reset.  
OCD Data Format  
The OCD interface uses the asynchronous data format defined for RS-232. Each character  
is transmitted as 1 Start bit, 8 data bits (least-significant bit first), and 1 Stop bit  
(see Figure 38).  
START  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
STOP  
Figure 38. OCD Data Format  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
198  
OCD Auto-Baud Detector/Generator  
To run over a range of baud rates (bits per second) with various system clock frequencies,  
the On-Chip Debugger has an Auto-Baud Detector/Generator. After a reset, the OCD is  
idle until it receives data. The OCD requires that the first character sent from the host is  
the character 80H. The character 80Hhas eight continuous bits Low (one Start bit plus 7  
data bits). The Auto-Baud Detector measures this period and sets the OCD Baud Rate  
Generator accordingly.  
The Auto-Baud Detector/Generator is clocked by the system clock. The minimum baud  
rate is the system clock frequency divided by 512. For optimal operation, the maximum  
recommended baud rate is the system clock frequency divided by 8. The theoretical maxi-  
mum baud rate is the system clock frequency divided by 4. This theoretical maximum is  
possible for low noise designs with clean signals. Table 100 lists minimum and recom-  
mended maximum baud rates for sample crystal frequencies.  
Table 100. OCD Baud-Rate Limits  
System Clock  
Recommended Maximum Baud  
Rate (kbits/s)  
Minimum Baud Rate  
(kbits/s)  
Frequency (MHz)  
20.0  
2500  
125.0  
4.096  
39.1  
1.96  
0.064  
1.0  
0.032768 (32 kHz)  
If the OCD receives a Serial Break (nine or more continuous bits Low) the Auto-Baud  
Detector/Generator resets. The Auto-Baud Detector/Generator can then be reconfigured  
by sending 80H.  
OCD Serial Errors  
The On-Chip Debugger can detect any of the following error conditions on the DBG pin:  
Serial Break (a minimum of nine continuous bits Low).  
Framing Error (received Stop bit is Low).  
Transmit Collision (OCD and host simultaneous transmission detected by the OCD).  
When the OCD detects one of these errors, it aborts any command currently in progress,  
transmits a Serial Break 4096 system clock cycles long back to the host, and resets the  
Auto-Baud Detector/Generator. A Framing Error or Transmit Collision may be caused by  
the host sending a Serial Break to the OCD. Because of the open-drain nature of the  
interface, returning a Serial Break break back to the host only extends the length of the  
Serial Break if the host releases the Serial Break early.  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
199  
The host transmits a Serial Break on the DBG pin when first connecting to the Z8 Encore!  
XP® F64XX Series devices or when recovering from an error. A Serial Break from the  
host resets the Auto-Baud Generator/Detector but does not reset the OCD Control register.  
A Serial Break leaves the device in DEBUG mode if that is the current mode. The OCD is  
held in Reset until the end of the Serial Break when the DBG pin returns High. Because of  
the open-drain nature of the DBG pin, the host can send a Serial Break to the OCD even if  
the OCD is transmitting a character.  
Breakpoints  
Execution Breakpoints are generated using the BRK instruction (opcode 00H). When the  
eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If Breakpoints are  
enabled, the OCD idles the eZ8 CPU and enters DEBUG mode. If Breakpoints are not  
enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP.  
If breakpoints are enabled, the OCD can be configured to automatically enter DEBUG  
mode, or to loop on the break instruction. If the OCD is configured to loop on the BRK  
instruction, then the CPU is still enabled to service DMA and interrupt requests.  
The loop on BRK instruction can be used to service interrupts in the background. For  
interrupts to be serviced in the background, there cannot be any breakpoints in the inter-  
rupt service routine. Otherwise, the CPU stops on the breakpoint in the interrupt routine.  
For interrupts to be serviced in the background, interrupts must also be enabled. Debug-  
ging software should not automatically enable interrupts when using this feature, since  
interrupts are typically disabled during critical sections of code where interrupts should  
not occur (such as adjusting the stack pointer or modifying shared data).  
Software can poll the IDLE bit of the OCDSTAT register to determine if the OCD is loop-  
ing on a BRK instruction. When software wants to stop the CPU on the BRK instruction it  
is looping on, software should not set the DBGMODE bit of the OCDCTL register. The  
CPU may have vectored to and be in the middle of an interrupt service routine when this  
bit gets set. Instead, software must clear the BRKLP bit. This action allows the CPU to  
finish the interrupt service routine it may be in and return the BRK instruction. When the  
CPU returns to the BRK instruction it was previously looping on, it automatically sets the  
DBGMODE bit and enter DEBUG mode.  
Software detects that the majority of the OCD commands are still disabled when the  
eZ8TM CPU is looping on a BRK instruction. The eZ8 CPU must be stopped and the part  
must be in DEBUG mode before these commands can be issued.  
Breakpoints in Flash Memory  
The BRK instruction is opcode 00H, which corresponds to the fully programmed state of a  
byte in Flash memory. To implement a Breakpoint, write 00Hto the desired address, over-  
writing the current instruction. To remove a Breakpoint, the corresponding page of Flash  
memory must be erased and reprogrammed with the original data.  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
200  
On-Chip Debugger Commands  
The host communicates to the On-Chip Debugger by sending OCD commands using the  
DBG interface. During normal operation, only a subset of the OCD commands are avail-  
able. In DEBUG mode, all OCD commands become available unless the user code and  
control registers are protected by programming the Read Protect Option Bit (RP). The  
Read Protect Option Bit prevents the code in memory from being read out of the Z8  
Encore! XP® F64XX Series products. When this option is enabled, several of the OCD  
commands are disabled. Table 101 contains a summary of the On-Chip Debugger com-  
mands. Each OCD command is described in detail in the bulleted list following Table 101.  
Table 101 indicates those commands that operate when the device is not in DEBUG mode  
(normal operation) and those commands that are disabled by programming the Read Pro-  
tect Option Bit.  
Table 101. On-Chip Debugger Commands  
Enabled when  
NOT in DEBUG  
mode?  
Command  
Byte  
Disabled by  
Debug Command  
Read Protect Option Bit  
Read OCD Revision  
00H  
02H  
Yes  
Yes  
-
-
Read OCD Status  
Register  
Read Runtime Counter  
03H  
04H  
-
-
Write OCD Control  
Register  
Yes  
Cannot clear DBGMODEbit  
Read OCD Control  
Register  
05H  
Yes  
-
Write Program Counter  
Read Program Counter  
Write Register  
06H  
07H  
08H  
-
-
-
Disabled  
Disabled  
Only writes of the Flash Memory Control  
registers are allowed. Additionally, only  
the Mass Erase command is allowed to  
be written to the Flash Control register.  
Read Register  
09H  
0AH  
0BH  
0CH  
0DH  
-
-
-
-
-
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Write Program Memory  
Read Program Memory  
Write Data Memory  
Read Data Memory  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
201  
Table 101. On-Chip Debugger Commands (Continued)  
Enabled when  
Command  
Byte  
NOT in DEBUG  
mode?  
Disabled by  
Debug Command  
Read Protect Option Bit  
Read Program Memory  
CRC  
0EH  
-
-
Reserved  
0FH  
10H  
-
-
-
-
-
-
Step Instruction  
Stuff Instruction  
Execute Instruction  
Reserved  
Disabled  
Disabled  
Disabled  
-
11H  
12H  
13H - FFH  
In the following list of OCD Commands, data and commands sent from the host to the On-  
Chip Debugger are identified by ‘DBG Command/Data’. Data sent from the On-Chip  
Debugger back to the host is identified by ‘DBG Data’  
Read OCD Revision (00H)—The Read OCD Revision command determines the  
version of the On-Chip Debugger. If OCD commands are added, removed, or  
changed, this revision number changes.  
DBG 00H  
DBG OCDREV[15:8] (Major revision number)  
DBG OCDREV[7:0] (Minor revision number)  
Read OCD Status Register (02H)—The Read OCD Status Register command reads  
the OCDSTAT register.  
DBG 02H  
DBG OCDSTAT[7:0]  
Write OCD Control Register (04H)—The Write OCD Control Register command  
writes the data that follows to the OCDCTL register. When the Read Protect Option  
Bit is enabled, the DBGMODEbit (OCDCTL[7]) can only be set to 1, it cannot be  
cleared to 0 and the only method of putting the device back into normal operating  
mode is to reset the device.  
DBG 04H  
DBG OCDCTL[7:0]  
Read OCD Control Register (05H)—The Read OCD Control Register command  
reads the value of the OCDCTL register.  
DBG 05H  
DBG OCDCTL[7:0]  
Write Program Counter (06H)—The Write Program Counter command writes the  
data that follows to the eZ8 CPU’s Program Counter (PC). If the device is not in  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
202  
DEBUG mode or if the Read Protect Option Bit is enabled, the Program Counter (PC)  
values are discarded.  
DBG 06H  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
Read Program Counter (07H)—The Read Program Counter command reads the  
value in the eZ8 CPU’s Program Counter (PC). If the device is not in DEBUG mode  
or if the Read Protect Option Bit is enabled, this command returns FFFFH.  
DBG 07H  
DBG ProgramCounter[15:8]  
DBG ProgramCounter[7:0]  
Write Register (08H)—The Write Register command writes data to the Register File.  
Data can be written 1-256 bytes at a time (256 bytes can be written by setting size to  
zero). If the device is not in DEBUG mode, the address and data values are discarded.  
If the Read Protect Option Bit is enabled, then only writes to the Flash Control  
Registers are allowed and all other register write data values are discarded.  
DBG 08H  
DBG {4’h0,Register Address[11:8]}  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1-256 data bytes  
Read Register (09H)—The Read Register command reads data from the Register  
File. Data can be read 1-256 bytes at a time (256 bytes can be read by setting size to  
zero). If the device is not in DEBUG mode or if the Read Protect Option Bit is  
enabled, this command returns FFHfor all the data values.  
DBG 09H  
DBG {4’h0,Register Address[11:8]  
DBG Register Address[7:0]  
DBG Size[7:0]  
DBG 1-256 data bytes  
Write Program Memory (0AH)—The Write Program Memory command writes data  
to Program Memory. This command is equivalent to the LDC and LDCI instructions.  
Data can be written 1-65536 bytes at a time (65536 bytes can be written by setting size  
to zero). The on-chip Flash Controller must be written to and unlocked for the  
programming operation to occur. If the Flash Controller is not unlocked, the data is  
discarded. If the device is not in DEBUG mode or if the Read Protect Option Bit is  
enabled, the data is discarded.  
DBG 0AH  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
203  
Read Program Memory (0BH)—The Read Program Memory command reads data  
from Program Memory. This command is equivalent to the LDC and LDCI  
instructions. Data can be read 1-65536 bytes at a time (65536 bytes can be read by  
setting size to zero). If the device is not in DEBUG mode or if the Read Protect Option  
Bit is enabled, this command returns FFHfor the data.  
DBG 0BH  
DBG Program Memory Address[15:8]  
DBG Program Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Write Data Memory (0CH)—The Write Data Memory command writes data to Data  
Memory. This command is equivalent to the LDE and LDEI instructions. Data can be  
written 1-65536 bytes at a time (65536 bytes can be written by setting size to zero). If  
the device is not in DEBUG mode or if the Read Protect Option Bit is enabled, the  
data is discarded.  
DBG 0CH  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Data Memory (0DH)—The Read Data Memory command reads from Data  
Memory. This command is equivalent to the LDE and LDEI instructions. Data can be  
read 1-65536 bytes at a time (65536 bytes can be read by setting size to zero). If the  
device is not in DEBUG mode, this command returns FFHfor the data.  
DBG 0DH  
DBG Data Memory Address[15:8]  
DBG Data Memory Address[7:0]  
DBG Size[15:8]  
DBG Size[7:0]  
DBG 1-65536 data bytes  
Read Program Memory CRC (0EH)—The Read Program Memory CRC command  
computes and returns the CRC (cyclic redundancy check) of Program Memory using  
the 16-bit CRC-CCITT polynomial. If the device is not in DEBUG mode, this  
command returns FFFFHfor the CRC value. Unlike most other OCD Read  
commands, there is a delay from issuing of the command until the OCD returns the  
data. The OCD reads the Program Memory, calculates the CRC value, and returns the  
result. The delay is a function of the Program Memory size and is approximately equal  
to the system clock period multiplied by the number of bytes in the Program Memory.  
DBG 0EH  
DBG CRC[15:8]  
DBG CRC[7:0]  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
204  
Step Instruction (10H)—The Step Instruction command steps one assembly  
instruction at the current Program Counter (PC) location. If the device is not in  
DEBUG mode or the Read Protect Option Bit is enabled, the OCD ignores this  
command.  
DBG 10H  
Stuff Instruction (11H)—The Stuff Instruction command steps one assembly  
instruction and allows specification of the first byte of the instruction. The remaining  
0-4 bytes of the instruction are read from Program Memory. This command is useful  
for stepping over instructions where the first byte of the instruction has been  
overwritten by a Breakpoint. If the device is not in DEBUG mode or the Read Protect  
Option Bit is enabled, the OCD ignores this command.  
DBG 11H  
DBG opcode[7:0]  
Execute Instruction (12H)—The Execute Instruction command allows sending an  
entire instruction to be executed to the eZ8 CPU. This command can also step over  
Breakpoints. The number of bytes to send for the instruction depends on the opcode. If  
the device is not in DEBUG mode or the Read Protect Option Bit is enabled, the OCD  
ignores this command  
DBG 12H  
DBG 1-5 byte opcode  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
205  
On-Chip Debugger Control Register Definitions  
OCD Control Register  
The OCD Control register (Table 102) controls the state of the On-Chip Debugger. This  
register enters or exits DEBUG mode and enables the BRK instruction.  
A ‘reset and stop’ function can be achieved by writing 81Hto this register. A ‘reset and  
go’ function can be achieved by writing 41Hto this register. If the device is in DEBUG  
mode, a ‘run’ function can be implemented by writing 40Hto this register.  
Table 102. OCD Control Register (OCDCTL)  
BITS  
7
6
5
4
3
2
1
0
DBGMODE BRKEN DBGACK BRKLOOP  
Reserved  
RST  
FIELD  
RESET  
R/W  
0
R/W  
R
R/W  
DBGMODE—DEBUG Mode  
Setting this bit to 1 causes the device to enter DEBUG mode. When in DEBUG mode, the  
eZ8 CPU stops fetching new instructions. Clearing this bit causes the eZ8 CPU to start  
running again. This bit is automatically set when a BRK instruction is decoded and Break-  
points are enabled. If the Read Protect Option Bit is enabled, this bit can only be cleared  
by resetting the device, it cannot be written to 0.  
0 = TheZ8 Encore! XP® F64XX Series device is operating in NORMAL mode.  
1 = The Z8 Encore! XP® F64XX Series device is in DEBUG mode.  
BRKEN—Breakpoint Enable  
This bit controls the behavior of the BRK instruction (opcode 00H). By default, Break-  
points are disabled and the BRK instruction behaves like a NOP. If this bit is set to 1 and a  
BRK instruction is decoded, the OCD takes action dependent upon the BRKLOOP bit.  
0 = BRK instruction is disabled.  
1 = BRK instruction is enabled.  
DBGACK—Debug Acknowledge  
This bit enables the debug acknowledge feature. If this bit is set to 1, then the OCD sends  
an Debug Acknowledge character (FFH) to the host when a Breakpoint occurs.  
0 = Debug Acknowledge is disabled.  
1 = Debug Acknowledge is enabled.  
BRKLOOP—Breakpoint Loop  
This bit determines what action the OCD takes when a BRK instruction is decoded if  
breakpoints are enabled (BRKEN is 1). If this bit is 0, then the DBGMODE bit is automat-  
ically set to 1 and the OCD entered DEBUG mode. If BRKLOOP is set to 1, then the  
eZ8 CPU loops on the BRK instruction.  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
206  
0 = BRK instruction sets DBGMODE to 1.  
1 = eZ8 CPU loops on BRK instruction.  
Reserved  
These bits are reserved and must be 0.  
RST—Reset  
Setting this bit to 1 resets the Z8 Encore! XP® F64XX Series devices. The devices go  
through a normal Power-On Reset sequence with the exception that the On-Chip Debug-  
ger is not reset. This bit is automatically cleared to 0 when the reset finishes.  
0 = No effect  
1 = Reset the Z8 Encore! XP® F64XX Series device  
OCD Status Register  
The OCD Status register (Table 103) reports status information about the current state of  
the debugger and the system.  
Table 103. OCD Status Register (OCDSTAT)  
BITS  
7
6
5
4
3
2
1
0
IDLE  
HALT  
RPEN  
Reserved  
FIELD  
RESET  
R/W  
0
R
IDLE—CPU idling  
This bit is set if the part is in DEBUG mode (DBGMODE is 1), or if a BRK instruction  
occurred since the last time OCDCTL was written. This can be used to determine if the  
CPU is running or if it is idling.  
0 = The eZ8 CPU is running.  
1 = The eZ8 CPU is either stopped or looping on a BRK instruction.  
HALT—HALT Mode  
0 = The device is not in HALT mode.  
1 = The device is in HALT mode.  
RPEN—Read Protect Option Bit Enabled  
0 = The Read Protect Option Bit is disabled (1).  
1 = The Read Protect Option Bit is enabled (0), disabling many OCD commands.  
Reserved  
These bits are always 0.  
PS019921-0308  
On-Chip Debugger  
Z8 Encore! XP® F64XX Series  
Product Specification  
207  
On-Chip Oscillator  
The products in the Z8 Encore! XP® F64XX Series feature an on-chip oscillator for use  
with external crystals with frequencies from 32 kHz to 20 MHz. In addition, the oscillator  
can support external RC networks with oscillation frequencies up to 4 MHz or ceramic  
resonators with oscillation frequencies up to 20 MHz. This oscillator generates the pri-  
mary system clock for the internal eZ8CPU and the majority of the on-chip peripherals.  
Alternatively, the XIN input pin can also accept a CMOS-level clock input signal (32 kHz–  
20 MHz). If an external clock generator is used, the XOUT pin must be left unconnected.  
When configured for use with crystal oscillators or external clock drivers, the frequency of  
the signal on the XIN input pin determines the frequency of the system clock (that is, no  
internal clock divider). In RC operation, the system clock is driven by a clock divider  
(divide by 2) to ensure 50% duty cycle.  
Operating Modes  
The Z8 Encore! XP F64XX Series products support four different oscillator modes:  
On-chip oscillator configured for use with external RC networks (<4 MHz).  
Minimum power for use with very low frequency crystals (32 kHz to 1.0 MHz).  
Medium power for use with medium frequency crystals or ceramic resonators  
(0.5 MHz to 10.0 MHz).  
Maximum power for use with high frequency crystals or ceramic resonators  
(8.0 MHz to 20.0 MHz).  
The oscillator mode is selected through user-programmable Option Bits. For more infor-  
mation, see Option Bits on page 191.  
Crystal Oscillator Operation  
Figure 39 on page 208 displays a recommended configuration for connection with an  
external fundamental-mode, parallel-resonant crystal operating at 20 MHz. Recommended  
20 MHz crystal specifications are provided in Table 104 on page 208. Resistor R1 is  
optional and limits total power dissipation by the crystal. The printed circuit board layout  
must add no more than 4 pF of stray capacitance to either the XIN or XOUT pins. If oscilla-  
tion does not occur, reduce the values of capacitors C1 and C2 to decrease loading.  
PS019921-0308  
On-Chip Oscillator  
Z8 Encore! XP® F64XX Series  
Product Specification  
208  
On-Chip Oscillator  
XIN  
XOUT  
R1 = 220  
Crystal  
C1 = 22 pF  
C2 = 22 pF  
Figure 39. Recommended 20 MHz Crystal Oscillator Configuration  
Table 104. Recommended Crystal Oscillator Specifications (20 MHz Operation)  
Parameter  
Frequency  
Resonance  
Mode  
Value  
Units  
Comments  
20  
MHz  
Parallel  
Fundamental  
Series Resistance (R )  
25  
20  
7
pF  
Maximum  
Maximum  
Maximum  
Maximum  
S
Load Capacitance (C )  
L
Shunt Capacitance (C )  
pF  
0
Drive Level  
1
mW  
PS019921-0308  
On-Chip Oscillator  
Z8 Encore! XP® F64XX Series  
Product Specification  
209  
Oscillator Operation with an External RC Network  
The External RC oscillator mode is applicable to timing insensitive applications.  
Figure 40 displays a recommended configuration for connection with an external resistor-  
capacitor (RC) network.  
V
DD  
R
C
X
IN  
Figure 40. Connecting the On-Chip Oscillator to an External RC Network  
An external resistance value of 45 kis recommended for oscillator operation with an  
external RC network. The minimum resistance value to ensure operation is 40 kΩ. The  
typical oscillator frequency can be estimated from the values of the resistor (R in k) and  
capacitor (C in pF) elements using the following equation:  
6
1×10  
--------------------------------------------------------  
Oscillator Frequency (kHz) =  
(0.4 × R × C) + (4 × C)  
Figure 41 displays the typical (3.3 V and 25 °C) oscillator frequency as a function of the  
capacitor (C in pF) employed in the RC network assuming a 45 kexternal resistor. For  
very small values of C, the parasitic capacitance of the oscillator XIN pin and the printed  
circuit board should be included in the estimation of the oscillator frequency.  
It is possible to operate the RC oscillator using only the parasitic capacitance of the pack-  
age and printed circuit board. To minimize sensitivity to external parasitics, external  
capacitance values in excess of 20 pF are recommended.  
PS019921-0308  
On-Chip Oscillator  
Z8 Encore! XP® F64XX Series  
Product Specification  
210  
4000  
3750  
3500  
3250  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
500  
250  
0
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500  
C (pF)  
Figure 41. Typical RC Oscillator Frequency as a Function of the External Capacitance with  
a 45 kResistor  
Caution: When using the external RC oscillator mode, the oscillator may stop oscillat-  
ing if the power supply drops below 2.7 V, but before the power supply drops to  
the voltage brown-out threshold. The oscillator will resume oscillation as soon  
as the supply voltage exceeds 2.7 V.  
PS019921-0308  
On-Chip Oscillator  
Z8 Encore! XP® F64XX Series  
Product Specification  
211  
Electrical Characteristics  
Absolute Maximum Ratings  
Stresses greater than those listed in Table 105 may cause permanent damage to the device.  
These ratings are stress ratings only. Operation of the device at any condition outside those  
indicated in the operational sections of these specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
For improved reliability, unused inputs must be tied to one of the supply voltages (VDD or  
VSS).  
Table 105. Absolute Maximum Ratings  
Parameter  
Minimum Maximum Units  
Notes  
Ambient temperature under bias  
Storage temperature  
-40  
-65  
-0.3  
-0.3  
-5  
+125  
+150  
+5.5  
+3.6  
+5  
C
C
Voltage on any pin with respect to V  
V
1
SS  
Voltage on V pin with respect to V  
V
DD  
SS  
Maximum current on input and/or inactive output pin  
Maximum output current from active output pin  
80-Pin QFP Maximum Ratings at –40 °C to 70 °C  
Total power dissipation  
µA  
mA  
-25  
+25  
550  
150  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
80-Pin QFP Maximum Ratings at 70 °C to 125 °C  
Total power dissipation  
200  
56  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
68-Pin PLCC Maximum Ratings at –40 °C to 70 °C  
Total power dissipation  
1000  
275  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
68-Pin PLCC Maximum Ratings at  
7
0 °C to 125 °C  
Total power dissipation  
500  
140  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
64-Pin LQFP Maximum Ratings at –40 °C to 70 °C  
Total power dissipation  
1000  
mW  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
212  
Table 105. Absolute Maximum Ratings (Continued)  
Parameter  
Minimum Maximum Units  
Notes  
Maximum current into V or out of V  
275  
mA  
DD  
SS  
64-Pin LQFP Maximum Ratings at 70 °C to 125 °C  
Total power dissipation  
540  
150  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
44-Pin PLCC Maximum Ratings at –40 °C to 70 °C  
Total power dissipation  
750  
200  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
44-Pin PLCC Maximum Ratings at 70 °C to 125 °C  
Total power dissipation  
295  
83  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
44-Pin LQFP Maximum Ratings at –40 °C to 70 °C  
Total power dissipation  
750  
200  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
44-Pin LQFP Maximum Ratings at 70 °C to 125 °C  
Total power dissipation  
360  
100  
mW  
mA  
Maximum current into V or out of V  
DD  
SS  
Note: This voltage applies to all pins except the following: VDD, AVDD, pins supporting analog input (Ports B and H),  
RESET, and where noted otherwise.  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
213  
DC Characteristics  
Table 106 lists the DC characteristics of the Z8 Encore! XP® F64XX Series products. All  
voltages are referenced to VSS, the primary system ground.  
Table 106. DC Characteristics  
T = –40 °C to 125 °C  
A
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
V
Supply Voltage  
3.0  
3.6  
V
V
DD  
IL1  
Low Level Input Voltage  
-0.3  
0.3*V  
For all input pins except  
RESET, DBG, XIN  
DD  
V
V
Low Level Input Voltage  
-0.3  
0.2*V  
5.5  
V
V
For RESET, DBG, and XIN.  
IL2  
DD  
High Level Input Voltage 0.7*V  
Port A, C, D, E, F, and G  
pins.  
IH1  
DD  
V
V
V
High Level Input Voltage 0.7*V  
High Level Input Voltage 0.8*V  
V
V
+0.3  
+0.3  
V
V
V
Port B and H pins.  
IH2  
IH3  
OL1  
DD  
DD  
DD  
RESET, DBG, and XIN pins  
DD  
Low Level Output  
2.4  
0.4  
I
= 2 mA; VDD = 3.0 V  
OL  
Voltage Standard Drive  
High Output Drive disabled.  
I = -2 mA; VDD = 3.0 V  
OH  
V
V
High Level Output  
V
V
OH1  
OL2  
Voltage Standard Drive  
High Output Drive disabled.  
= 20 mA; VDD = 3.3 V  
Low Level Output  
Voltage High Drive  
0.6  
I
OL  
High Output Drive enabled  
T = -40 °C to +70 °C  
A
V
V
V
V
High Level Output  
Voltage  
2.4  
0.6  
V
V
V
I
= -20 mA; VDD = 3.3 V  
OH  
OH2  
OL3  
OH3  
RAM  
High Output Drive enabled;  
T = -40 °C to +70 °C  
High Drive  
A
Low Level Output  
Voltage  
I
= 15 mA; VDD = 3.3 V  
OL  
High Output Drive enabled;  
T = +70 °C to +105 °C  
High Drive  
A
High Level Output  
Voltage  
2.4  
I
= 15 mA; VDD = 3.3 V  
OH  
High Output Drive enabled;  
T = +70 °C to +105 °C  
High Drive  
A
RAM Data Retention  
Input Leakage Current  
0.7  
-5  
V
I
+5  
µA  
V
V
= 3.6 V;  
DD  
IN  
IL  
1
= VDD or VSS  
I
Tri-State Leakage  
Current  
-5  
+5  
µA  
V
= 3.6 V  
DD  
TL  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
214  
Table 106. DC Characteristics (Continued)  
T = –40 °C to 125 °C  
A
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
2
C
GPIO Port Pad  
Capacitance  
8.0  
pF  
PAD  
2
2
C
C
XIN Pad Capacitance  
XOUT Pad Capacitance  
Weak Pull-up Current  
8.0  
9.5  
pF  
pF  
XIN  
XOUT  
I
I
30  
100  
11  
350  
mA V = 3.0 - 3.6 V  
DD  
PU  
Active Mode Supply  
Current  
16  
12  
mA V = 3.6 V, Fsysclk = 20  
DDA  
DD  
MHz  
(See Figure 42 on  
page 216 and Figure 43  
on page 217) GPIO pins  
configured as outputs  
V
= 3.3 V  
DD  
9
4
3
11  
9
mA V = 3.6 V, Fsysclk = 10  
DD  
MHz  
DD  
V
= 3.3 V  
I
HALT Mode Supply  
Current  
7
5
mA V = 3.6 V, Fsysclk = 20  
DDH  
DD  
MHz  
(See Figure 44 on  
page 218 and Figure 45  
on page 219) GPIO pins  
configured as outputs  
V
= 3.3 V  
DD  
5
4
mA V = 3.6 V, Fsysclk = 10  
DD  
MHz  
DD  
V
= 3.3 V  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
215  
Table 106. DC Characteristics (Continued)  
T = –40 °C to 125 °C  
A
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
I
Stop Mode Supply  
Current  
520  
700  
µA  
V
= 3.6 V, VBO and WDT  
DD  
DDS  
Enabled  
(See Figure 46 and  
Figure 47) GPIO pins  
configured as outputs  
650  
25  
V
V
= 3.3 V  
DD  
10  
µA  
= 3.6 V, T = 0 to 70 ºC  
DD  
A
VBO  
Disabled  
20  
WDT  
Enabled  
V
V
= 3.3 V  
DD  
DD  
80  
70  
µA  
µA  
= 3.6 V, T = 40 to  
A
+105 ºC  
Disabled  
Enabled  
VBO  
WDT  
V
V
= 3.3 V  
DD  
250  
150  
= 3.6 V, T = 40 to  
A
DD  
+125 ºC  
Disabled  
Enabled  
VBO  
WDT  
V
= 3.3 V  
DD  
1This condition excludes all pins that have on-chip pull-ups, when driven Low.  
2These values are provided for design guidance only and are not tested in production.  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
216  
Figure 42 displays the typical active mode current consumption while operating at 25 ºC  
versus the system clock frequency. All GPIO pins are configured as outputs and driven  
High.  
stics  
15  
12  
9
6
3
0
0
5
10  
15  
20  
System Clock Frequency (MHz)  
3.0V  
3.3V  
3.6V  
Figure 42. Typical Active Mode Idd Versus System Clock Frequency  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
217  
Figure 43 displays the maximum active mode current consumption across the full operat-  
ing temperature range of the device and versus the system clock frequency. All GPIO pins  
are configured as outputs and driven High.  
stics  
15  
12  
9
6
3
0
0
5
10  
15  
20  
System Clock Frequency (MHz)  
3.0V  
3.3V  
3.6V  
Figure 43. Maximum Active Mode Idd Versus System Clock Frequency  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
218  
Figure 44 displays the typical current consumption in HALT mode while operating at  
25 ºC versus the system clock frequency. All GPIO pins are configured as outputs and  
driven High.  
5
4
3
2
1
0
0
5
10  
15  
20  
System Clock Frequency (MHz)  
3.0V  
3.3V  
3.6V  
Figure 44. Typical HALT Mode Idd Versus System Clock Frequency  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
219  
Figure 44 displays the maximum HALT mode current consumption across the full operat-  
ing temperature range of the device and versus the system clock frequency. All GPIO pins  
are configured as outputs and driven High.  
6
5
4
3
2
1
0
0
5
10  
15  
20  
System Clock Frequency (MHz)  
3.0V 3.3V 3.6V  
Figure 45. Maximum HALT Mode Icc Versus System Clock Frequency  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
220  
Figure 46 displays the maximum current consumption in STOP mode with the VBO and  
Watchdog Timer enabled versus the power supply voltage. All GPIO pins are configured  
as outputs and driven High.  
700  
650  
600  
550  
500  
450  
400  
3.0  
3.2  
3.4  
3.6  
Vdd (V)  
-40/105C  
0/70C  
25C Typical  
Figure 46. Maximum STOP Mode Idd with VBO enabled versus Power Supply Voltage  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
221  
Figure 47 displays the maximum current consumption in STOP mode with the VBO dis-  
abled and Watchdog Timer enabled versus the power supply voltage. All GPIO pins are  
configured as outputs and driven High. Disabling the Watchdog Timer and its internal RC  
oscillator in STOP mode will provide some additional reduction in STOP mode current  
consumption. This small current reduction would be indistinquishable on the scale of  
Figure 47.  
120.00  
100.00  
80.00  
60.00  
40.00  
20.00  
0.00  
3.0  
3.2  
3.4  
3.6  
Vdd (V)  
0/70C  
25C Typical  
-40/105C  
-40/+125C  
Figure 47. Maximum STOP Mode Idd with VBO Disabled versus Power Supply Voltage  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
222  
On-Chip Peripheral AC and DC Electrical Characteristics  
Table 107. Power-On Reset and Voltage Brownout Electrical Characteristics and Timing  
T = –40 °C to 125 °C  
A
1
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
V
Power-On Reset  
Voltage Threshold  
2.40  
2.30  
50  
2.70  
2.60  
100  
2.90  
2.85  
V
V
= V  
POR  
DD  
POR  
V
Voltage Brownout Reset  
Voltage Threshold  
V
V
= V  
VBO  
DD  
VBO  
V
to V  
mV  
V
POR  
VBO  
hysteresis  
Starting V voltage to  
V
DD  
SS  
ensure valid Power-On  
Reset.  
T
Power-On Reset Analog  
Delay  
50  
µs  
V
> V  
; T  
Digital  
ANA  
ANA  
DD  
POR POR  
Reset delay follows T  
T
Power-On Reset Digital  
Delay  
6.6  
ms  
66 WDT Oscillator cycles  
(10 kHz) + 16 System Clock  
cycles (20 MHz)  
POR  
T
T
Voltage Brownout Pulse  
Rejection Period  
10  
µs  
V
< V  
to generate a  
VBO  
VBO  
DD  
Reset.  
Time for VDD to  
0.10  
100  
ms  
RAMP  
transition from V to  
SS  
V
to ensure valid  
POR  
Reset  
1
Data in the typical column is from characterization at 3.3 V and 0 °C. These values are provided for design guidance  
only and are not tested in production.  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
223  
Table 108. External RC Oscillator Electrical Characteristics and Timing  
T = –40 °C to 125 °C  
A
1
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
1
V
Operating Voltage  
Range  
2.70  
40  
0
45  
20  
200  
1000  
4
V
DD  
R
External Resistance from  
XIN to VDD  
kΩ  
V
= V  
DD VBO  
EXT  
EXT  
OSC  
C
External Capacitance  
from XIN to VSS  
pF  
F
External RC Oscillation  
Frequency  
MHz  
1
When using the external RC oscillator mode, the oscillator may stop oscillating if the power supply drops below  
2.7 V, but before the power supply drops to the voltage brown-out threshold. The oscillator will resume oscillation as  
soon as the supply voltage exceeds 2.7 V.  
Table 109. Reset and Stop Mode Recovery Pin Timing  
T = –40 °C to 125 °C  
A
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
T
RESET pin assertion to  
initiate a system reset.  
4
T
Not in STOP Mode.  
CLK  
period.  
RESET  
CLK  
T
= System Clock  
T
Stop Mode Recovery  
pin Pulse Rejection  
Period  
10  
20  
40  
ns  
RESET, DBG, and GPIO  
pins configured as SMR  
sources.  
SMR  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
224  
Table 110 list the Flash Memory electrical characteristics and timing.  
Table 110. Flash Memory Electrical Characteristics and Timing  
V
A
= 3.0–3.6 V  
DD  
T = –40 °C to 125 °C  
Parameter  
Minimum Typical Maximum Units Notes  
Flash Byte Read Time  
Flash Byte Program Time  
Flash Page Erase Time  
Flash Mass Erase Time  
50  
20  
10  
200  
40  
ns  
µs  
ms  
ms  
Writes to Single Address  
Before Next Erase  
2
Flash Row Program Time  
8
ms  
Cumulative program time for  
single row cannot exceed limit  
before next erase. This  
parameter is only an issue  
when bypassing the Flash  
Controller.  
Data Retention  
100  
years 25 °C  
Endurance, –40 °C to 105 °C  
Endurance, 106 °C to 125 °C  
10,000  
1,000  
cycles Program/erase cycles  
cycles Program/erase cycles  
Table 111 lists the Watchdog Timer electrical characteristics and timing.  
Table 111. Watchdog Timer Electrical Characteristics and Timing  
V
A
= 3.0–3.6 V  
DD  
T = –40 °C to 125 °C  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
F
WDT Oscillator Frequency  
5
10  
20  
5
kHz  
WDT  
WDT  
I
WDT Oscillator Current  
< 1  
µA  
including internal RC oscillator  
Table 112 provides electrical characteristics and timing information for the Analog-to-  
Digital Converter. Figure 48 displays the input frequency response of the ADC.  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
225  
Table 112. Analog-to-Digital Converter Electrical Characteristics and Timing  
V
A
= 3.0 V–3.6 V  
DD  
T = –40 °C to 125 °C  
Symbol Parameter  
Minimum Typical Maximum Units Conditions  
Resolution  
10  
bits External V  
= 3.0 V;  
REF  
Differential Nonlinearity  
-1.0  
+1.0  
lsb  
Guaranteed by design  
(DNL)  
Integral Nonlinearity (INL)  
DC Offset Error  
DC Offset Error  
-3.0  
-35  
-50  
+1.0  
3.0  
25  
25  
lsb  
External V = 3.0 V  
REF  
mV  
mV 44-pin LQFP, 44-pin  
PLCC, and 68-pin  
PLCC packages.  
V
Internal Reference  
Voltage  
1.9  
2.0  
78  
2.4  
V
V
A
= 3.0 V - 3.6 V  
DD  
REF  
T = -40 °C to 105 °C  
VC  
Voltage Coefficient of  
Internal Reference  
Voltage  
mV/V V  
variation as a  
REF  
REF  
REF  
function of AVDD.  
TC  
Temperature Coefficient  
of Internal Reference  
Voltage  
1
mV/°C  
Single-Shot Conversion  
Period  
5129  
256  
cycles System clock cycles  
cycles System clock cycles  
Continuous Conversion  
Period  
R
Analog Source  
Impedance  
150  
Recommended  
S
Zin  
Input Impedance  
150  
kΩ  
V
External Reference  
Voltage  
AVDD  
40.0  
V
AVDD <= VDD. When  
using an external  
reference voltage,  
decoupling  
REF  
capacitance should be  
placed from VREF to  
AVSS.  
I
Current draw into VREF  
pin when driving with  
external source.  
25.0  
µA  
REF  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
226  
ADC Magnitude Transfer Function (Linear Scale)  
1
0.9  
0.8  
-3 dB  
-6 dB  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
5
10  
15  
20  
25  
30  
Frequency (kHz)  
Figure 48. Analog-to-Digital Converter Frequency Response  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
227  
AC Characteristics  
The section provides information on the AC characteristics and timing. All AC timing  
information assumes a standard load of 50 pF on all outputs. Table 113 lists the Z8  
Encore! XP® F64XX Series AC characteristics and timing.  
Table 113. AC Characteristics  
V
A
= 3.0 V–3.6V  
DD  
T = –40 °C to 125 °C  
Symbol Parameter  
Minimum Maximum Units Conditions  
F
F
System Clock Frequency  
20.0  
20.0  
MHz Read-only from Flash memory.  
sysclk  
0.032768  
MHz Program or erasure of the  
Flash memory.  
Crystal Oscillator Frequency 0.032768  
20.0  
MHz System clock frequencies  
below the crystal oscillator  
minimum require an external  
clock driver.  
XTAL  
T
Crystal Oscillator Clock  
Period  
50  
ns  
T
= 1/F  
sysclk  
XIN  
CLK  
T
T
T
System Clock High Time  
System Clock Low Time  
System Clock Rise Time  
20  
20  
ns  
ns  
ns  
XINH  
XINL  
XINR  
3
3
T
= 50 ns. Slower rise times  
CLK  
can be tolerated with longer  
clock periods.  
T
System Clock Fall Time  
ns  
T
= 50 ns. Slower fall times  
CLK  
XINF  
can be tolerated with longer  
clock periods.  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
228  
General-Purpose I/O Port Input Data Sample Timing  
Figure 49 displays timing of the GPIO Port input sampling. Table 114 lists the GPIO port  
input timing.  
TCLK  
System  
Clock  
Port Value  
Changes to 0  
GPIO Pin  
Input Value  
GPIO Input  
Data Latch  
0 Latched  
Into Port Input  
Data Register  
GPIO Data Register  
Value 0 Read  
GPIO Data  
Read on Data Bus  
by eZ8 CPU  
Figure 49. Port Input Sample Timing  
Table 114. GPIO Port Input Timing  
Delay (ns)  
Parameter Abbreviation  
Min  
Max  
T
T
T
Port Input Transition to XIN Fall Setup Time  
(Not pictured)  
5
S_PORT  
H_PORT  
SMR  
XIN Fall to Port Input Transition Hold Time  
(Not pictured)  
6
GPIO Port Pin Pulse Width to Insure Stop Mode  
Recovery  
1 µs  
(for GPIO Port Pins enabled as SMR sources)  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
229  
General-Purpose I/O Port Output Timing  
Figure 50 and Table 115 provide timing information for GPIO Port pins.  
TCLK  
XIN  
T1  
T2  
Port Output  
Figure 50. GPIO Port Output Timing  
Table 115. GPIO Port Output Timing  
Delay (ns)  
Parameter Abbreviation  
GPIO Port pins  
Minimum Maximum  
T
T
XIN Rise to Port Output Valid Delay  
XIN Rise to Port Output Hold Time  
2
20  
1
2
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
230  
On-Chip Debugger Timing  
Figure 51 and Table 116 provide timing information for the DBG pin. The DBG pin tim-  
ing specifications assume a 4 µs maximum rise and fall time.  
TCLK  
XIN  
T1  
T2  
T4  
DBG  
(Output)  
Output Data  
T3  
DBG  
(Input)  
Input Data  
Figure 51. On-Chip Debugger Timing  
Table 116. On-Chip Debugger Timing  
Delay (ns)  
Parameter Abbreviation  
DBG  
Minimum  
Maximum  
T
T
T
T
XIN Rise to DBG Valid Delay  
XIN Rise to DBG Output Hold Time  
DBG to XIN Rise Input Setup Time  
DBG to XIN Rise Input Hold Time  
DBG frequency  
2
30  
1
2
3
4
10  
5
System Clock/4  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
231  
SPI Master Mode Timing  
Figure 52 and Table 117 provide timing information for SPI Master mode pins. Timing is  
shown with SCK rising edge used to source MOSI output data, SCK falling edge used to  
sample MISO input data. Timing on the SS output pin(s) is controlled by software.  
SCK  
T1  
MOSI  
(Output)  
Output Data  
T2  
T3  
MISO  
(Input)  
Input Data  
Figure 52. SPI Master Mode Timing  
Table 117. SPI Master Mode Timing  
Delay (ns)  
Parameter Abbreviation  
SPI Master  
Min  
Max  
T
T
T
SCK Rise to MOSI output Valid Delay  
-5  
20  
0
+5  
1
2
3
MISO input to SCK (receive edge) Setup Time  
MISO input to SCK (receive edge) Hold Time  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
232  
SPI Slave Mode Timing  
Figure 53 and Table 118 provide timing information for the SPI slave mode pins. Timing  
is shown with SCK rising edge used to source MISO output data, SCK falling edge used to  
sample MOSI input data.  
SCK  
T1  
MISO  
(Output)  
Output Data  
T2  
T3  
MOSI  
(Input)  
Input Data  
T4  
SS  
(Input)  
Figure 53. SPI Slave Mode Timing  
Table 118. SPI Slave Mode Timing  
Delay (ns)  
Parameter Abbreviation  
SPI Slave  
Minimum Maximum  
T
SCK (transmit edge) to MISO output Valid Delay  
2 * Xin  
period  
3 * Xin  
period +  
20 nsec  
1
T
T
MOSI input to SCK (receive edge) Setup Time  
MOSI input to SCK (receive edge) Hold Time  
0
2
3
3 * Xin  
period  
T
SS input assertion to SCK setup  
1 * Xin  
period  
4
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
233  
2
I C Timing  
Figure 54 and Table 119 provide timing information for I2C pins.  
SCL  
(Output)  
T1  
SDA  
(Output)  
Output Data  
T3  
T2  
Input Data  
SDA  
(Input)  
Figure 54. I2C Timing  
Table 119. I2C Timing  
Delay (ns)  
Parameter Abbreviation  
Minimum Maximum  
2
I C  
T
T
T
SCL Fall to SDA output delay  
SCL period/4  
1
2
3
SDA Input to SCL rising edge Setup Time  
SDA Input to SCL falling edge Hold Time  
0
0
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
234  
UART Timing  
Figure 55 and Table 120 provide timing information for UART pins for the case where the  
Clear To Send input pin (CTS) is used for flow control. In this example, it is assumed that  
the Driver Enable polarity has been configured to be Active Low and is represented here  
by DE. The CTS to DE assertion delay (T1) assumes the UART Transmit Data register has  
been loaded with data prior to CTS assertion.  
CTS  
(Input)  
T
1
DE  
(Output)  
T
T
3
2
TXD  
(Output)  
Stop  
Start  
Bit 0  
Bit 1  
Bit 7 Parity  
End of  
Stop Bit(s)  
Figure 55. UART Timing with CTS  
Table 120. UART Timing with CTS  
Delay (ns)  
Parameter Abbreviation  
Minimum  
Maximum  
T
T
T
CTS Fall to DE Assertion Delay  
2 * XIN period 2 * XIN period  
+ 1 Bit period  
1
2
3
DE Assertion to TXD Falling Edge (Start)  
Delay  
1 Bit period  
1 Bit period +  
1 * XIN period  
End of Stop Bit(s) to DE Deassertion Delay 1 * XIN period 2 * XIN period  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
235  
Figure 56 and Table 121 provide timing information for UART pins for the case where the  
Clear To Send input signal (CTS) is not used for flow control. In this example, it is  
assumed that the Driver Enable polarity has been configured to be Active Low and is  
represented here by DE. DE asserts after the UART Transmit Data Register has been  
written. DE remains asserted for multiple characters as long as the Transmit Data register  
is written with the next character before the current character has completed.  
DE  
(Output)  
T
T
2
1
TXD  
(Output)  
Stop  
Start  
Bit 0  
Bit 1  
Bit 7 Parity  
End of  
Stop Bit(s)  
Figure 56. UART Timing without CTS  
Table 121. UART Timing without CTS  
Delay (ns)  
Parameter Abbreviation  
Minimum  
Maximum  
T
DE Assertion to TXD Falling Edge (Start)  
Delay  
1 Bit period  
1 Bit period +  
1 * XIN period  
1
T
End of Stop Bit(s) to DE Deassertion Delay 1 * XIN period 2 * XIN period  
2
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
236  
PS019921-0308  
Electrical Characteristics  
Z8 Encore! XP® F64XX Series  
Product Specification  
237  
eZ8CPU Instruction Set  
Assembly Language Programming Introduction  
The eZ8 CPU assembly language provides a means for writing an application program  
without having to be concerned with actual memory addresses or machine instruction  
formats. A program written in assembly language is called a source program. Assembly  
language allows the use of symbolic addresses to identify memory locations. It also allows  
mnemonic codes (opcodes and operands) to represent the instructions themselves. The  
opcodes identify the instruction while the operands represent memory locations, registers,  
or immediate data values.  
Each assembly language program consists of a series of symbolic commands called  
statements. Each statement can contain labels, operations, operands and comments.  
Labels can be assigned to a particular instruction step in a source program. The label  
identifies that step in the program as an entry point for use by other instructions.  
The assembly language also includes assembler directives that supplement the machine  
instruction. The assembler directives, or pseudo-ops, are not translated into a machine  
instruction. Rather, the pseudo-ops are interpreted as directives that control or assist the  
assembly process.  
The source program is processed (assembled) by the assembler to obtain a machine  
language program called the object code. The object code is executed by the eZ8 CPU. An  
example segment of an assembly language program is detailed in the following example.  
Assembly Language Source Program Example  
JP START  
; Everything after the semicolon is a comment.  
START:  
; A label called “START”. The first instruction (JP START) in this  
; example causes program execution to jump to the point within the  
; program where the STARTlabel occurs.  
LD R4, R7  
; A Load (LD) instruction with two operands. The first operand,  
; Working Register R4, is the destination. The second operand,  
; Working Register R7, is the source. The contents of R7 is  
; written into R4.  
LD 234H, #%01 ; Another Load (LD) instruction with two operands.  
; The first operand, Extended Mode Register Address 234H,  
; identifies the destination. The second operand, Immediate Data  
; value 01H, is the source. The value 01His written into the  
; Register at address 234H.  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
238  
Assembly Language Syntax  
For proper instruction execution, eZ8 CPU assembly language syntax requires that the  
operands be written as ‘destination, source’. After assembly, the object code usually has  
the operands in the order ‘source, destination’, but ordering is opcode-dependent. The fol-  
lowing instruction examples illustrate the format of some basic assembly instructions and  
the resulting object code produced by the assembler. This binary format must be followed  
if you prefer manual program coding or intend to implement your own assembler.  
Example 1: If the contents of Registers 43H and 08H are added and the result is stored in  
43H, the assembly syntax and resulting object code is:  
Assembly Language Syntax Example 1  
ADD  
43H,  
08H  
(ADD dst, src)  
(OPC src, dst)  
Assembly Language  
Code  
04  
08  
43  
Object Code  
Example 2: In general, when an instruction format requires an 8-bit register address, that  
address can specify any register location in the range 0–255 or, using Escaped Mode  
Addressing, a Working Register R0 - R15. If the contents of Register 43H and Working  
Register R8 are added and the result is stored in 43H, the assembly syntax and resulting  
object code is:  
Assembly Language Syntax Example 2  
ADD  
43H,  
R8  
(ADD dst, src)  
(OPC src, dst)  
Assembly Language  
Code  
04  
E8  
43  
Object Code  
Refer to the device-specific Product Specification to determine the exact register file range  
available. The register file size varies, depending on the device type.  
eZ8 CPU Instruction Notation  
In the eZ8 CPU Instruction Summary and Description sections, the operands, condition  
codes, status Flags, and address modes are represented by a notational shorthand that is  
described in Table 122.  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
239  
.
Table 122. Notational Shorthand  
Notation Description  
Operand Range  
b
Bit  
b
b represents a value from 0 to 7 (000B to 111B).  
cc  
Condition Code  
Refer to Condition Codes overview in the eZ8  
CPU User Manual.  
DA  
ER  
Direct Address  
Addrs  
Reg  
Addrs. represents a number in the range of  
0000H to FFFFH  
Extended Addressing Register  
Reg. represents a number in the range of 000H to  
FFFH  
IM  
Ir  
Immediate Data  
#Data  
@Rn  
Data is a number between 00H to FFH  
n = 0 –15  
Indirect Working Register  
Indirect Register  
IR  
@Reg  
Reg. represents a number in the range of 00H to  
FFH  
Irr  
Indirect Working Register Pair  
Indirect Register Pair  
@RRp  
@Reg  
p = 0, 2, 4, 6, 8, 10, 12, or 14  
IRR  
Reg. represents an even number in the range  
00H to FEH  
p
Polarity  
p
Polarity is a single bit binary value of either 0B or  
1B.  
r
Working Register  
Register  
Rn  
n = 0 – 15  
R
Reg  
Reg. represents a number in the range of 00H to  
FFH  
RA  
Relative Address  
X
X represents an index in the range of +127 to  
-128 which is an offset relative to the address of  
the next instruction  
rr  
Working Register Pair  
Register Pair  
RRp  
Reg  
p = 0, 2, 4, 6, 8, 10, 12, or 14  
RR  
Reg. represents an even number in the range of  
00H to FEH  
Vector  
X
Vector Address  
Indexed  
Vector  
#Index  
Vector represents a number in the range of 00H  
to FFH  
The register or register pair to be indexed is offset  
by the signed Index value (#Index) in a +127 to  
-128 range.  
Table 123 contains additional symbols that are used throughout the Instruction Summary  
and Instruction Set Description sections.  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
240  
Table 123. Additional Symbols  
Symbol  
dst  
src  
@
Definition  
Destination Operand  
Source Operand  
Indirect Address Prefix  
Stack Pointer  
SP  
PC  
FLAGS  
RP  
#
Program Counter  
Flags Register  
Register Pointer  
Immediate Operand Prefix  
Binary Number Suffix  
Hexadecimal Number Prefix  
Hexadecimal Number Suffix  
B
%
H
Assignment of a value is indicated by an arrow. For example,  
dst dst + src  
indicates the source data is added to the destination data and the result is stored in the des-  
tination location.  
Condition Codes  
The C, Z, S and V Flags control the operation of the conditional jump (JP cc and JR cc)  
instructions. Sixteen frequently useful functions of the Flag settings are encoded in a 4-bit  
field called the condition code (cc), which forms Bits 7:4 of the conditional jump instruc-  
tions. The condition codes are summarized in Table 124. Some binary condition codes can  
be created using more than one assembly code mnemonic. The result of the Flag test oper-  
ation decides if the conditional jump is executed.  
Table 124. Condition Codes  
Assembly  
Binary Hex Mnemonic  
Definition  
Always False  
Less Than  
Flag Test Operation  
0000  
0001  
0010  
0
1
2
F
LT  
LE  
(S XOR V) = 1  
(Z OR (S XOR V)) = 1  
Less Than or Equal  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
241  
Table 124. Condition Codes (Continued)  
Assembly  
Binary Hex Mnemonic  
Definition  
Unsigned Less Than or Equal  
Flag Test Operation  
0011  
0100  
0101  
0110  
0110  
0111  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1110  
1111  
1111  
3
4
ULE  
OV  
(C OR Z) = 1  
Overflow  
Minus  
V = 1  
5
Ml  
S = 1  
6
Z
Zero  
Z = 1  
6
EQ  
Equal  
Z = 1  
7
C
Carry  
C = 1  
7
ULT  
T (or blank)  
GE  
Unsigned Less Than  
Always True  
Greater Than or Equal  
Greater Than  
Unsigned Greater Than  
No Overflow  
Plus  
C = 1  
8
9
(S XOR V) = 0  
A
B
C
D
E
E
F
F
GT  
(Z OR (S XOR V)) = 0  
UGT  
NOV  
PL  
(C = 0 AND Z = 0) = 1  
V = 0  
S = 0  
Z = 0  
Z = 0  
C = 0  
C = 0  
NZ  
Non-Zero  
NE  
Not Equal  
NC  
No Carry  
UGE  
Unsigned Greater Than or Equal  
eZ8 CPU Instruction Classes  
eZ8 CPU instructions can be divided functionally into the following groups:  
Arithmetic  
Bit Manipulation  
Block Transfer  
CPU Control  
Load  
Logical  
Program Control  
Rotate and Shift  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
242  
Table 125 through Table 132 contain the instructions belonging to each group and the  
number of operands required for each instruction. Some instructions appear in more than  
one table as these instruction can be considered as a subset of more than one category.  
Within these tables, the source operand is identified as ’src’, the destination operand  
is ’dst’ and a condition code is ’cc’.  
Table 125. Arithmetic Instructions  
Mnemonic  
ADC  
Operands  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst, src  
dst  
Instruction  
Add with Carry  
ADCX  
ADD  
Add with Carry using Extended Addressing  
Add  
ADDX  
CP  
Add using Extended Addressing  
Compare  
CPC  
Compare with Carry  
CPCX  
CPX  
Compare with Carry using Extended Addressing  
Compare using Extended Addressing  
Decimal Adjust  
DA  
DEC  
dst  
Decrement  
DECW  
INC  
dst  
Decrement Word  
dst  
Increment  
INCW  
MULT  
SBC  
dst  
Increment Word  
dst  
Multiply  
dst, src  
dst, src  
dst, src  
dst, src  
Subtract with Carry  
SBCX  
SUB  
Subtract with Carry using Extended Addressing  
Subtract  
SUBX  
Subtract using Extended Addressing  
Table 126. Bit Manipulation Instructions  
Mnemonic  
BCLR  
Operands Instruction  
bit, dst  
Bit Clear  
BIT  
p, bit, dst  
bit, dst  
Bit Set or Clear  
Bit Set  
BSET  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
243  
Table 126. Bit Manipulation Instructions (Continued)  
Mnemonic  
BSWAP  
CCF  
Operands Instruction  
dst  
Bit Swap  
Complement Carry Flag  
Reset Carry Flag  
Set Carry Flag  
RCF  
SCF  
TCM  
dst, src  
dst, src  
dst, src  
dst, src  
Test Complement Under Mask  
TCMX  
TM  
Test Complement Under Mask using Extended Addressing  
Test Under Mask  
TMX  
Test Under Mask using Extended Addressing  
Table 127. Block Transfer Instructions  
Mnemonic  
Operands  
Instruction  
LDCI  
dst, src  
Load Constant to/from Program Memory and Auto-  
Increment Addresses  
LDEI  
dst, src  
Load External Data to/from Data Memory and Auto-  
Increment Addresses  
Table 128. CPU Control Instructions  
Mnemonic Operands  
Instruction  
ATM  
CCF  
DI  
src  
Atomic Execution  
Complement Carry Flag  
Disable Interrupts  
Enable Interrupts  
HALT Mode  
EI  
HALT  
NOP  
RCF  
SCF  
SRP  
No Operation  
Reset Carry Flag  
Set Carry Flag  
Set Register Pointer  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
244  
Table 128. CPU Control Instructions  
Mnemonic Operands  
Instruction  
STOP  
WDT  
STOP Mode  
Watchdog Timer  
Refresh  
Table 129. Load Instructions  
Mnemonic Operands Instruction  
CLR  
LD  
dst  
Clear  
Load  
dst, src  
dst, src  
dst, src  
LDC  
LDCI  
Load Constant to/from Program Memory  
Load Constant to/from Program Memory and Auto-Increment  
Addresses  
LDE  
dst, src  
dst, src  
Load External Data to/from Data Memory  
LDEI  
Load External Data to/from Data Memory and Auto-Increment  
Addresses  
LDWX  
LDX  
dst, src  
dst, src  
Load Word using Extended Addressing  
Load using Extended Addressing  
LEA  
dst, X(src) Load Effective Address  
POP  
dst  
dst  
src  
src  
Pop  
POPX  
PUSH  
PUSHX  
Pop using Extended Addressing  
Push  
Push using Extended Addressing  
Table 130. Logical Instructions  
Mnemonic Operands Instruction  
AND  
ANDX  
COM  
OR  
dst, src  
dst, src  
dst  
Logical AND  
Logical AND using Extended Addressing  
Complement  
dst, src  
dst, src  
Logical OR  
ORX  
Logical OR using Extended Addressing  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
245  
Table 130. Logical Instructions (Continued)  
Mnemonic Operands Instruction  
XOR  
dst, src  
dst, src  
Logical Exclusive OR  
XORX  
Logical Exclusive OR using Extended  
Addressing  
Table 131. Program Control Instructions  
Mnemonic  
BRK  
Operands  
Instruction  
On-Chip Debugger Break  
BTJ  
p, bit, src, DA Bit Test and Jump  
BTJNZ  
BTJZ  
CALL  
DJNZ  
IRET  
JP  
bit, src, DA  
bit, src, DA  
dst  
Bit Test and Jump if Non-Zero  
Bit Test and Jump if Zero  
Call Procedure  
dst, src, RA Decrement and Jump Non-Zero  
Interrupt Return  
Jump  
dst  
dst  
DA  
DA  
JP cc  
JR  
Jump Conditional  
Jump Relative  
Jump Relative Conditional  
Return  
JR cc  
RET  
TRAP  
vector  
Software Trap  
Table 132. Rotate and Shift Instructions  
Mnemonic Operands  
Instruction  
BSWAP  
RL  
dst  
dst  
dst  
dst  
dst  
dst  
Bit Swap  
Rotate Left  
RLC  
RR  
Rotate Left through Carry  
Rotate Right  
RRC  
SRA  
Rotate Right through Carry  
Shift Right Arithmetic  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
246  
Table 132. Rotate and Shift Instructions (Continued)  
Mnemonic Operands  
Instruction  
SRL  
dst  
dst  
Shift Right Logical  
Swap Nibbles  
SWAP  
eZ8 CPU Instruction Summary  
Table 133 summarizes the eZ8 CPU instructions. The table identifies the addressing  
modes employed by the instruction, the effect upon the Flags register, the number of CPU  
clock cycles required for the instruction fetch, and the number of CPU clock cycles  
required for the instruction execution.  
.
Table 133. eZ8 CPU Instruction Summary  
Address  
Mode  
Flags  
Assembly  
Opcode(s)  
(Hex)  
Fetch Instr.  
Mnemonic  
Symbolic Operation dst  
src  
r
C
Z
S
V
D
H Cycles Cycles  
ADC dst, src dst dst + src + C  
r
r
12  
13  
14  
15  
16  
17  
18  
19  
02  
03  
04  
05  
06  
07  
08  
09  
*
*
*
*
0
*
2
2
3
3
3
3
4
4
2
2
3
3
3
3
4
4
3
4
3
4
3
4
3
3
3
4
3
4
3
4
3
3
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
r
R
IR  
ER  
ER  
r
ADCX dst, src dst dst + src + C  
ADD dst, src dst dst + src  
*
*
*
*
*
*
*
*
0
0
*
*
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ADDX dst, src dst dst + src  
*
*
*
*
0
*
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
247  
Table 133. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
r
C
Z
S
V
D
H Cycles Cycles  
AND dst, src dst dst AND src  
r
r
52  
53  
54  
55  
56  
57  
58  
59  
2F  
-
*
*
0
-
-
2
2
3
3
3
3
4
4
1
3
4
3
4
3
4
3
3
2
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
ANDX dst, src dst dst AND src  
-
-
*
-
*
-
0
-
-
-
-
-
ATM  
Block all interrupt and  
DMA requests during  
execution of the next  
3 instructions  
BCLR bit, dst dst[bit] 0  
BIT p, bit, dst dst[bit] p  
r
r
E2  
E2  
00  
E2  
D5  
F6  
F7  
F6  
F7  
F6  
F7  
D4  
D6  
-
-
-
-
-
-
*
-
-
-
-
-
*
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
1
2
2
3
3
3
3
3
3
2
3
2
2
1
2
2
3
4
3
4
3
4
6
3
BRK  
Debugger Break  
-
-
BSET bit, dst dst[bit] 1  
r
-
-
BSWAP dst  
dst[7:0] dst[0:7]  
R
X
-
0
-
BTJ p, bit, src, if src[bit] = p  
r
Ir  
r
dst  
PC PC + X  
BTJNZ bit,  
src, dst  
if src[bit] = 1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PC PC + X  
Ir  
r
BTJZ bit, src, if src[bit] = 0  
dst  
PC PC + X  
Ir  
CALL dst  
SP SP -2  
@SP PC  
PC dst  
IRR  
DA  
CCF  
C ~C  
EF  
B0  
B1  
*
-
-
-
-
-
-
-
-
-
-
-
1
2
2
2
2
3
CLR dst  
dst 00H  
R
IR  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
248  
Table 133. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
C
Z
S
V
D
H Cycles Cycles  
COM dst  
dst ~dst  
R
IR  
r
60  
61  
-
*
*
0
-
-
2
2
2
2
3
3
3
3
3
3
4
4
4
4
5
5
4
4
2
2
2
2
2
2
1
2
2
3
3
4
3
4
3
4
3
4
3
4
3
4
3
3
3
3
2
3
2
3
5
6
2
3
CP dst, src  
dst - src  
r
A2  
*
*
*
*
-
-
r
Ir  
A3  
R
R
A4  
R
IR  
IM  
IM  
r
A5  
R
A6  
IR  
r
A7  
CPC dst, src dst - src - C  
1F A2  
1F A3  
1F A4  
1F A5  
1F A6  
1F A7  
1F A8  
1F A9  
A8  
*
*
*
*
-
-
r
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
ER  
IM  
R
IR  
ER  
ER  
ER  
ER  
R
CPCX dst, src dst - src - C  
CPX dst, src dst - src  
*
*
*
-
*
*
*
*
*
*
*
*
*
*
*
*
-
-
-
-
-
-
-
-
-
-
A9  
DA dst  
DEC dst  
DECW dst  
DI  
dst DA(dst)  
dst dst - 1  
dst dst - 1  
IRQCTL[7] 0  
40  
X
*
IR  
R
41  
30  
IR  
RR  
IRR  
31  
80  
-
*
81  
8F  
-
-
-
-
-
-
-
-
-
-
-
-
DJNZ dst, RA dst dst – 1  
if dst 0  
r
0A-FA  
PC PC + X  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
249  
Table 133. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
IRQCTL[7] 1  
src  
C
-
Z
-
S
-
V
-
D
-
H Cycles Cycles  
EI  
9F  
7F  
-
-
-
1
1
2
2
1
2
2
1
2
2
2
3
2
5
6
5
HALT  
INC dst  
HALT Mode  
-
-
-
-
-
dst dst + 1  
R
IR  
20  
-
*
*
*
-
21  
r
0E-FE  
A0  
INCW dst  
IRET  
dst dst + 1  
RR  
IRR  
-
*
*
*
*
*
*
-
-
A1  
FLAGS @SP  
SP SP + 1  
PC @SP  
BF  
*
*
*
SP SP + 2  
IRQCTL[7] 1  
JP dst  
PC dst  
DA  
IRR  
DA  
8D  
C4  
-
-
-
-
-
-
-
-
-
-
-
-
3
2
3
2
3
2
JP cc, dst  
if cc is true  
0D-FD  
PC dst  
JR dst  
PC PC + X  
DA  
DA  
8B  
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
2
JR cc, dst  
if cc is true  
0B-FB  
PC PC + X  
LD dst, rc  
dst src  
r
r
IM  
X(r)  
r
0C-FC  
C7  
D7  
E3  
-
-
-
-
-
-
2
3
3
2
3
3
3
3
2
3
2
3
4
3
2
4
2
3
3
3
X(r)  
r
Ir  
R
R
E4  
R
IR  
IM  
IM  
r
E5  
R
E6  
IR  
Ir  
E7  
F3  
IR  
R
F5  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
250  
Table 133. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
Irr  
Irr  
r
C
Z
S
V
D
H Cycles Cycles  
LDC dst, src dst src  
r
C2  
C5  
D2  
C3  
D3  
-
-
-
-
-
-
2
2
2
2
2
5
9
5
9
9
Ir  
Irr  
Ir  
LDCI dst, src dst src  
r r + 1  
Irr  
Ir  
-
-
-
-
-
-
Irr  
rr rr + 1  
LDE dst, src dst src  
r
Irr  
r
82  
92  
83  
93  
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
2
5
5
9
9
Irr  
Ir  
LDEI dst, src dst src  
r r + 1  
Irr  
Ir  
Irr  
rr rr + 1  
LDWX dst, src dst src  
LDX dst, src dst src  
ER  
r
ER  
ER  
ER  
IRR  
IRR  
X(rr)  
r
1F E8  
84  
-
-
-
-
-
-
5
3
3
3
3
3
3
3
3
3
3
4
4
3
3
2
4
2
3
4
5
4
4
2
3
4
5
2
2
3
5
8
-
-
-
-
-
-
Ir  
85  
R
86  
IR  
87  
r
88  
X(rr)  
ER  
ER  
IRR  
IRR  
ER  
ER  
r
89  
r
94  
Ir  
95  
R
96  
IR  
97  
ER  
IM  
E8  
E9  
98  
LEA dst,  
X(src)  
dst src + X  
X(r)  
X(rr)  
-
-
-
-
-
-
rr  
99  
MULT dst  
NOP  
dst[15:0] ←  
RR  
F4  
-
-
-
-
-
-
-
-
-
-
-
-
dst[15:8] * dst[7:0]  
No operation  
0F  
1
2
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
251  
Table 133. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
r
C
Z
S
V
D
H Cycles Cycles  
OR dst, src  
dst dst OR src  
r
r
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
D8  
-
*
*
0
-
-
2
2
3
3
3
3
4
4
2
2
3
3
4
3
4
3
4
3
3
2
3
2
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
R
ORX dst, src dst dst OR src  
-
-
*
-
*
-
0
-
-
-
-
-
POP dst  
dst @SP  
SP SP + 1  
IR  
ER  
POPX dst  
PUSH src  
dst @SP  
-
-
-
-
-
-
-
-
-
-
-
-
SP SP + 1  
SP SP – 1  
@SP src  
R
IR  
70  
71  
2
2
3
3
2
3
2
2
IM  
ER  
1F 70  
C8  
PUSHX src  
SP SP – 1  
@SP src  
-
-
-
-
-
-
RCF  
RET  
C 0  
CF  
AF  
0
-
-
-
-
-
-
-
-
-
-
-
1
1
2
4
PC @SP  
SP SP + 2  
RL dst  
R
90  
91  
*
*
*
*
-
-
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
IR  
dst  
RLC dst  
RR dst  
R
10  
11  
*
*
*
*
*
*
*
*
-
-
-
-
2
2
2
3
C
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
R
E0  
E1  
2
2
2
3
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
252  
Table 133. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
C
Z
S
V
D
H Cycles Cycles  
RRC dst  
R
C0  
C1  
*
*
*
*
-
-
2
2
2
3
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
IR  
SBC dst, src dst dst – src - C  
r
r
r
32  
33  
34  
35  
36  
37  
38  
39  
DF  
D0  
D1  
*
*
*
*
*
*
1
*
2
2
3
3
3
3
4
4
1
2
2
3
4
3
4
3
4
3
3
2
2
3
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
SBCX dst, src dst dst – src - C  
*
*
1
*
SCF  
C 1  
1
*
-
-
-
-
-
-
-
SRA dst  
R
*
*
0
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
C
C
IR  
SRL dst  
R
1F C0  
1F C1  
*
*
0
*
-
-
3
3
2
3
0
D7 D6 D5 D4 D3 D2 D1 D0  
dst  
IR  
SRP src  
STOP  
RP src  
IM  
01  
6F  
22  
23  
24  
25  
26  
27  
28  
29  
-
-
*
-
-
*
-
-
*
-
-
*
-
-
-
-
*
2
1
2
2
3
3
3
3
4
4
2
2
3
4
3
4
3
4
3
3
STOP Mode  
SUB dst, src dst dst – src  
r
r
r
1
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
SUBX dst, src dst dst – src  
*
*
*
*
1
*
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
253  
Table 133. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
C
Z
S
V
D
H Cycles Cycles  
SWAP dst  
dst[7:4] dst[3:0]  
R
IR  
r
F0  
F1  
62  
63  
64  
65  
66  
67  
68  
69  
72  
73  
74  
75  
76  
77  
78  
79  
F2  
X
*
*
X
-
-
2
2
2
2
3
3
3
3
4
4
2
2
3
3
3
3
4
4
2
2
3
3
4
3
4
3
4
3
3
3
4
3
4
3
4
3
3
6
TCM dst, src (NOT dst) AND src  
r
Ir  
-
*
*
0
-
-
r
R
R
R
IR  
R
IM  
IM  
ER  
IM  
r
IR  
ER  
ER  
r
TCMX dst, src (NOT dst) AND src  
-
-
*
*
*
*
0
0
-
-
-
-
TM dst, src  
dst AND src  
r
Ir  
R
R
R
IR  
R
IM  
IM  
ER  
IM  
Vector  
IR  
ER  
ER  
TMX dst, src dst AND src  
-
-
*
-
*
-
0
-
-
-
-
-
TRAP Vector SP SP – 2  
@SP PC  
SP SP – 1  
@SP FLAGS  
PC @Vector  
WDT  
5F  
-
-
-
-
-
-
1
2
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
254  
Table 133. eZ8 CPU Instruction Summary (Continued)  
Address  
Mode  
Flags  
Assembly  
Mnemonic  
Opcode(s)  
(Hex)  
Fetch Instr.  
Symbolic Operation dst  
src  
r
C
Z
S
V
D
H Cycles Cycles  
XOR dst, src dst dst XOR src  
r
r
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
-
*
*
0
-
-
2
2
3
3
3
3
4
4
3
4
3
4
3
4
3
3
Ir  
R
R
R
IR  
IM  
IM  
ER  
IM  
R
IR  
ER  
ER  
XORX dst, src dst dst XOR src  
-
*
*
0
-
-
0 = Reset to 0  
1 = Set to 1  
Flags Notation: * = Value is a function of the result of the operation.  
- = Unaffected  
X = Undefined  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
255  
Flags Register  
The Flags Register contains the status information regarding the most recent arithmetic,  
logical, bit manipulation or rotate and shift operation. The Flags Register contains six bits  
of status information that are set or cleared by CPU operations. Four of the bits  
(C, V, Z and S) can be tested for use with conditional jump instructions. Two Flags (H and  
D) cannot be tested and are used for Binary-Coded Decimal (BCD) arithmetic.  
The two remaining bits, User Flags (F1 and F2), are available as general-purpose status  
bits. User Flags are unaffected by arithmetic operations and must be set or cleared by  
instructions. The User Flags cannot be used with conditional Jumps. They are undefined at  
initial power-up and are unaffected by Reset. Figure 57 displays the Flags and their bit  
positions in the Flags Register.  
Bit  
7
Bit  
0
C
Z
S
V
D
H F2 F1 Flags Register  
User Flags  
Half Carry Flag  
Decimal Adjust Flag  
Overflow Flag  
Sign Flag  
Zero Flag  
Carry Flag  
U = Undefined  
Figure 57. Flags Register  
Interrupts, the Software Trap (TRAP) instruction, and Illegal Instruction Traps all write  
the value of the Flags Register to the stack. Executing an Interrupt Return (IRET) instruc-  
tion restores the value saved on the stack into the Flags Register.  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
256  
PS019921-0308  
eZ8 CPU Instruction Set  
Z8 Encore! XP® F64XX Series  
Product Specification  
257  
Opcode Maps  
A description of the opcode map data and the abbreviations are provided in Figure 58 and  
Table 134 on page 258. Figure 59 on page 259 and Figure 60 on page 260 provide  
information on each of the eZ8TM CPU instructions.  
Opcode  
Lower Nibble  
Fetch Cycles  
Instruction Cycles  
4
3.3  
CP  
Opcode  
Upper Nibble  
A
R2,R1  
First Operand  
Second Operand  
After Assembly  
After Assembly  
Figure 58. Opcode Map Cell Description  
PS019921-0308  
Opcode Maps  
Z8 Encore! XP® F64XX Series  
Product Specification  
258  
Table 134. Opcode Map Abbreviations  
Abbreviation  
Description  
Bit position  
Abbreviation  
Description  
b
IRR  
Indirect Register Pair  
Polarity (0 or 1)  
cc  
X
Condition code  
p
r
8-bit signed index or  
displacement  
4-bit Working Register  
DA  
ER  
Destination address  
R
8-bit register  
Extended Addressing register r1, R1, Ir1, Irr1, IR1,  
rr1, RR1, IRR1, ER1  
Destination address  
IM  
Immediate data value  
r2, R2, Ir2, Irr2, IR2,  
rr2, RR2, IRR2, ER2  
Source address  
Ir  
Indirect Working Register  
Indirect register  
RA  
rr  
Relative  
IR  
Irr  
Working Register Pair  
Register Pair  
Indirect Working Register Pair RR  
PS019921-0308  
Opcode Maps  
Z8 Encore! XP® F64XX Series  
Product Specification  
259  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
1.2  
2.2  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
2.3  
2.2  
JR  
cc,X  
2.2  
LD  
3.2  
JP  
1.2  
INC  
r1  
1.2  
BRK SRP ADD ADD ADD ADD ADD ADD ADDX ADDX DJNZ  
NOP  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
IM  
2.3  
r1,r2  
2.3  
r1,Ir2  
2.4  
R2,R1  
3.3  
IR2,R1  
3.4  
R1,IM  
3.3  
IR1,IM ER2,ER1 IM,ER1  
3.4 4.3 4.3  
r1,X  
r1,IM  
cc,DA  
2.2  
RLC  
R1  
2.2  
INC  
R1  
See 2nd  
Opcode  
Map  
RLC ADC ADC ADC ADC ADC ADC ADCX ADCX  
IR1  
r1,r2  
2.3  
r1,Ir2  
2.4  
R2,R1  
3.3  
IR2,R1  
3.4  
R1,IM  
3.3  
IR1,IM ER2,ER1 IM,ER1  
3.4 4.3 4.3  
2.3  
INC  
IR1  
1,2  
ATM  
SUB SUB SUB SUB SUB SUB SUBX SUBX  
r1,r2  
2.3  
r1,Ir2  
2.4  
R2,R1  
3.3  
IR2,R1  
3.4  
R1,IM  
3.3  
IR1,IM ER2,ER1 IM,ER1  
3.4 4.3 4.3  
2.2  
2.3  
DEC DEC SBC SBC SBC SBC SBC SBC SBCX SBCX  
R1  
IR1  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
DA  
R1  
2.3  
DA  
IR1  
2.3  
OR  
r1,r2  
2.4  
OR  
r1,Ir2  
3.3  
OR  
3.4  
OR  
3.3  
OR  
3.4  
OR  
4.3  
4.3  
ORX ORX  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
1.2  
WDT  
POP POP AND AND AND AND AND AND ANDX ANDX  
R1  
2.2  
IR1  
2.3  
r1,r2  
2.3  
r1,Ir2  
2.4  
R2,R1  
3.3  
IR2,R1  
3.4  
R1,IM  
3.3  
IR1,IM ER2,ER1 IM,ER1  
3.4 4.3 4.3  
1.2  
STOP  
COM COM TCM TCM TCM TCM TCM TCM TCMX TCMX  
R1  
2.2  
IR1  
2.3  
r1,r2  
2.3  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.4  
TM  
3.3  
TM  
3.4  
TM  
3.3  
TM  
3.4  
TM  
4.3  
4.3  
1.2  
HALT  
PUSH PUSH TM  
TMX TMX  
R2  
2.5  
IR2  
2.6  
r1,r2  
2.5  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.9  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
LDX  
3.4  
LDX  
3.4  
LDX  
1.2  
DI  
DECW DECW LDE LDEI LDX  
RR1  
IRR1  
r1,Irr2  
2.5  
Ir1,Irr2 r1,ER2 Ir1,ER2 IRR2,R1 IRR2,IR1 r1,rr2,X rr1,r2,X  
2.9  
2.2  
RL  
R1  
2.3  
RL  
IR1  
3.2  
3.3  
LDX  
3.4  
LDX  
3.5  
LDX  
3.3  
LEA  
3.5  
LEA  
1.2  
EI  
LDE LDEI LDX  
r2,Irr1  
Ir2,Irr1 r2,ER1 Ir2,ER1 R2,IRR1 IR2,IRR1 r1,r2,X rr1,rr2,X  
2.5  
2.6  
2.3  
CP  
r1,r2  
2.4  
CP  
3.3  
CP  
3.4  
CP  
3.3  
CP  
3.4  
CP  
4.3  
CPX  
4.3  
CPX  
1.4  
RET  
INCW INCW  
RR1  
IRR1  
2.3  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
CLR  
R1  
2.3  
2.4  
3.3  
3.4  
3.3  
3.4  
4.3  
4.3  
1.5  
IRET  
CLR XOR XOR XOR XOR XOR XOR XORX XORX  
IR1  
2.3  
r1,r2  
2.5  
r1,Ir2  
2.9  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
3.4 3.2  
2.2  
2.3  
JP  
2.9  
1.2  
RCF  
RRC RRC LDC LDCI  
LDC  
LD PUSHX  
R1  
2.2  
IR1  
2.3  
r1,Irr2  
2.5  
Ir1,Irr2  
2.9  
IRR1  
Ir1,Irr2  
r1,r2,X  
ER2  
2.6  
2.2  
3.3  
3.4  
LD  
3.2  
POPX  
ER1  
4.2  
LDX  
1.2  
SCF  
SRA SRA  
LDC LDCI CALL BSWAP CALL  
R1  
IR1  
r2,Irr1  
Ir2,Irr1  
IRR1  
R1  
DA  
r2,r1,X  
2.2  
RR  
R1  
2.3  
RR  
IR1  
2.2  
2.3  
LD  
3.2  
LD  
3.3  
LD  
3.2  
LD  
3.3  
LD  
4.2  
LDX  
1.2  
CCF  
BIT  
p,b,r1  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
2.2  
2.3  
2.6  
2.3  
LD  
2.8  
MULT  
RR1  
3.3  
LD  
3.3  
BTJ  
3.4  
BTJ  
SWAP SWAP TRAP  
R1  
IR1  
Vector  
Ir1,r2  
R2,IR1 p,b,r1,X p,b,Ir1,X  
Figure 59. First Opcode Map  
PS019921-0308  
Opcode Maps  
Z8 Encore! XP® F64XX Series  
Product Specification  
260  
Lower Nibble (Hex)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
3,2  
PUSH  
IM  
3.3  
3.4  
4.3  
4.4  
4.3  
4.4  
5.3  
5.3  
CPC CPC CPC CPC CPC CPC CPCX CPCX  
r1,r2  
r1,Ir2  
R2,R1  
IR2,R1  
R1,IM  
IR1,IM ER2,ER1 IM,ER1  
3.2  
SRL  
R1  
3.3  
SRL  
IR1  
5,4  
LDWX  
ER2,ER1  
Figure 60. Second Opcode Map after 1FH  
PS019921-0308  
Opcode Maps  
Z8 Encore! XP® F64XX Series  
Product Specification  
261  
Packaging  
Figure 61 displays the 44-pin Low Profile Quad Flat Package (LQFP) available for the  
Z8X1621, Z8X2421, Z8X3221, Z8X4821, and Z8X6421 devices.  
A
HD  
D
A2  
A1  
E
HE  
DETAIL A  
LE  
c
b
e
L
0-7°  
Figure 61. 44-Lead Low-Profile Quad Flat Package (LQFP)  
PS019921-0308  
Packaging  
Z8 Encore! XP® F64XX Series  
Product Specification  
262  
Figure 62 displays the 44-pin Plastic Lead Chip Carrier (PLCC) package available for the  
Z8X1621, Z8X2421, Z8X3221, Z8X4821, and Z8X6421 devices.  
A
D
A1  
D1  
0.71/0.51  
.028/.020  
45°  
6
1
40  
MILLIMETER  
INCH  
SYMBOL  
7
39  
29  
MIN  
MAX  
MIN  
MAX  
0.180  
0.115  
0.695  
0.656  
0.630  
e
A
A1  
4.27  
4.57  
0.168  
0.095  
0.685  
0.650  
0.600  
0.51/0.36  
2.41  
2.92  
0.020/0.014  
M
E1 E  
D/E  
D1/E1  
D2  
17.40  
16.51  
15.24  
17.65  
16.66  
16.00  
0.81/0.66  
0.032/0.026  
17  
e
1.27 BSC  
0.050 BSC  
18  
28  
R 1.14/0.64  
0.045/0.025  
NOTES:  
1. CONTROLLING DIMENSION : INCH  
2. LEADS ARE COPLANAR WITHIN 0.004".  
3. DIMENSION : MM  
INCH  
Figure 62. 44-Lead Plastic Lead Chip Carrier Package (PLCC)  
Figure 62 displays the 64-pin Low-Profile Quad Flat Package (LQFP) available for the  
Z8X1622, Z8X2422, Z8X3222, Z8X4822, and Z8X6422 devices.  
A
HD  
D
A2  
A1  
E
HE  
DETAIL A  
LE  
c
e
b
L
0-7°  
Figure 63. 64-Lead Low-Profile Quad Flat Package (LQFP)  
PS019921-0308  
Packaging  
Z8 Encore! XP® F64XX Series  
Product Specification  
263  
Figure 64 displays the 68-pin Plastic Lead Chip Carrier (PLCC) package available for the  
Z8X1622, Z8X2422, Z8X3222, Z8X4822, and Z8X6422 devices.  
Figure 64. 68-Lead Plastic Lead Chip Carrier Package (PLCC)  
PS019921-0308  
Packaging  
Z8 Encore! XP® F64XX Series  
Product Specification  
264  
Figure 65 displays the 80-pin Quad Flat Package (QFP) available for the Z8X4823 and  
Z8X6423 devices.  
HD  
A2  
D
MILLIMETER  
INCH  
A1  
64  
41  
SYMBOL  
MIN  
MAX  
0.38  
MIN  
.004  
.102  
.012  
.005  
.933  
.783  
.697  
.547  
MAX  
.015  
.110  
.018  
.008  
.951  
.791  
.715  
.555  
A1  
A2  
b
0.10  
65  
40  
2.60  
2.80  
0.30  
0.45  
c
0.13  
0.20  
E
HE  
HD  
D
23.70  
19.90  
17.70  
13.90  
24.15  
20.10  
18.15  
14.10  
HE  
E
80  
25  
e
0.80 BSC  
.0315 BSC  
.028 .043  
L
0.70  
1.10  
c
1
24  
b
DETAIL A  
e
NOTES:  
CONTROLLING DIMENSIONS : MILLIMETER  
LEAD COPLANARITY : MAX .10  
2.  
.004"  
L
0-10°  
DETAIL A  
Figure 65. 80-Lead Quad-Flat Package (QFP)  
PS019921-0308  
Packaging  
Z8 Encore! XP® F64XX Series  
Product Specification  
265  
Ordering Information  
Z8F642x with 64 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0 °C to 70 °C  
Z8F6421AN020SC  
Z8F6421VN020SC  
Z8F6422AR020SC  
Z8F6422VS020SC  
Z8F6423FT020SC  
64 KB 4 KB 31 23  
64 KB 4 KB 31 23  
64 KB 4 KB 46 24  
64 KB 4 KB 46 24  
64 KB 4 KB 60 24  
3
3
4
4
4
8
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
QFP 80-pin package  
8
12  
12  
12  
Extended Temperature: –40 °C to +105 °C  
Z8F6421AN020EC  
Z8F6421VN020EC  
Z8F6422AR020EC  
Z8F6422VS020EC  
Z8F6423FT020EC  
64 KB 4 KB 31 23  
3
3
4
4
4
8
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
QFP 80-pin package  
64 KB 4 KB 31 23  
64 KB 4 KB 46 24  
64 KB 4 KB 46 24  
64 KB 4 KB 60 24  
8
12  
12  
12  
Automotive/Industrial Temperature: –40 °C to +125 °C  
Z8F6421AN020AC  
Z8F6421VN020AC  
Z8F6422AR020AC  
Z8F6422VS020AC  
Z8F6423FT020AC  
64 KB 4 KB 31 23  
64 KB 4 KB 31 23  
64 KB 4 KB 46 24  
64 KB 4 KB 46 24  
64 KB 4 KB 60 24  
3
3
4
4
4
8
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
QFP 80-pin package  
8
12  
12  
12  
PS019921-0308  
Ordering Information  
Z8 Encore! XP® F64XX Series  
Product Specification  
266  
Z8F482x with 48 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0 °C to 70 °C  
Z8F4821AN020SC  
Z8F4821VN020SC  
Z8F4822AR020SC  
Z8F4822VS020SC  
Z8F4823FT020SC  
48 KB 4 KB 31 23  
48 KB 4 KB 31 23  
48 KB 4 KB 46 24  
48 KB 4 KB 46 24  
48 KB 4 KB 60 24  
3
3
4
4
4
8
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
QFP 80-pin package  
8
12  
12  
12  
Extended Temperature: –40 °C to +105 °C  
Z8F4821AN020EC  
Z8F4821VN020EC  
Z8F4822AR020EC  
Z8F4822VS020EC  
Z8F4823FT020EC  
48 KB 4 KB 31 23  
3
3
4
4
4
8
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
QFP 80-pin package  
48 KB 4 KB 31 23  
48 KB 4 KB 46 24  
48 KB 4 KB 46 24  
48 KB 4 KB 60 24  
8
12  
12  
12  
Automotive/Industrial Temperature: –40 °C to +125 °C  
Z8F4821AN020AC  
Z8F4821VN020AC  
Z8F4822AR020AC  
Z8F4822VS020AC  
Z8F4823FT020AC  
48 KB 4 KB 31 23  
48 KB 4 KB 31 23  
48 KB 4 KB 46 24  
48 KB 4 KB 46 24  
48 KB 4 KB 60 24  
3
3
4
4
4
8
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
QFP 80-pin package  
8
12  
12  
12  
PS019921-0308  
Ordering Information  
Z8 Encore! XP® F64XX Series  
Product Specification  
267  
Z8F322x with 32 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0 °C to 70 °C  
Z8F3221AN020SC  
Z8F3221VN020SC  
Z8F3222AR020SC  
Z8F3222VS020SC  
32 KB 2 KB 31 23  
32 KB 2 KB 31 23  
32 KB 2 KB 46 24  
32 KB 2 KB 46 24  
3
3
4
4
8
8
1
1
1
1
1
1
1
1
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
12  
12  
Extended Temperature: –40 °C to 105 °C  
Z8F3221AN020EC  
Z8F3221VN020EC  
Z8F3222AR020EC  
Z8F3222VS020EC  
32 KB 2 KB 31 23  
3
3
4
4
8
8
1
1
1
1
1
1
1
1
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
32 KB 2 KB 31 23  
32 KB 2 KB 46 24  
32 KB 2 KB 46 24  
12  
12  
Automotive/Industrial Temperature: –40 °C to 125°C  
Z8F3221AN020AC  
Z8F3221VN020AC  
Z8F3222AR020AC  
Z8F3222VS020AC  
32 KB 2 KB 31 23  
32 KB 2 KB 31 23  
32 KB 2 KB 46 24  
32 KB 2 KB 46 24  
3
3
4
4
8
8
1
1
1
1
1
1
1
1
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
12  
12  
PS019921-0308  
Ordering Information  
Z8 Encore! XP® F64XX Series  
Product Specification  
268  
Z8F242x with 24 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0 °C to 70 °C  
Z8F2421AN020SC  
Z8F2421VN020SC  
Z8F2422AR020SC  
Z8F2422VS020SC  
24 KB 2 KB 31 23  
24 KB 2 KB 31 23  
24 KB 2 KB 46 24  
24 KB 2 KB 46 24  
3
3
4
4
8
8
1
1
1
1
1
1
1
1
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
12  
12  
Extended Temperature: –40 °C to 105 °C  
Z8F2421AN020EC  
Z8F2421VN020EC  
Z8F2422AR020EC  
Z8F2422VS020EC  
24 KB 2 KB 31 23  
3
3
4
4
8
8
1
1
1
1
1
1
1
1
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
24 KB 2 KB 31 23  
24 KB 2 KB 46 24  
24 KB 2 KB 46 24  
12  
12  
Automotive/Industrial Temperature: –40 °C to 125 °C  
Z8F2421AN020AC  
Z8F2421VN020AC  
Z8F2422AR020AC  
Z8F2422VS020AC  
24 KB 2 KB 31 23  
24 KB 2 KB 31 23  
24 KB 2 KB 46 24  
24 KB 2 KB 46 24  
3
3
4
4
8
8
1
1
1
1
1
1
1
1
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
12  
12  
PS019921-0308  
Ordering Information  
Z8 Encore! XP® F64XX Series  
Product Specification  
269  
Z8F162x with 16 KB Flash, 10-Bit Analog-to-Digital Converter  
Standard Temperature: 0 °C to 70 °C  
Z8F1621AN020SC  
Z8F1621VN020SC  
Z8F1622AR020SC  
Z8F1622VS020SC  
16 KB 2 KB 31 23  
16 KB 2 KB 31 23  
16 KB 2 KB 46 24  
16 KB 2 KB 46 24  
3
3
4
4
8
8
1
1
1
1
1
1
1
1
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
12  
12  
Extended Temperature: –40 °C to +105 °C  
Z8F1621AN020EC  
Z8F1621VN020EC  
Z8F1622AR020EC  
Z8F1622VS020EC  
16 KB 2 KB 31 23  
3
3
4
4
8
8
1
1
1
1
1
1
1
1
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
16 KB 2 KB 31 23  
16 KB 2 KB 46 24  
16 KB 2 KB 46 24  
12  
12  
Automotive/Industrial Temperature: –40 °C to +125 °C  
Z8F1621AN020AC  
Z8F1621VN020AC  
Z8F1622AR020AC  
Z8F1622VS020AC  
Z8F64200100KITG  
ZUSBSC00100ZACG  
16 KB 2 KB 31 23  
16 KB 2 KB 31 23  
16 KB 2 KB 46 24  
16 KB 2 KB 46 24  
3
3
4
4
8
8
1
1
1
1
1
1
1
1
2
2
2
2
LQFP 44-pin package  
PLCC 44-pin package  
LQFP 64-pin package  
PLCC 68-pin package  
Development Kit  
12  
12  
USB Smart Cable  
Accessory Kit  
ZUSBOPTSC01ZACG  
ZENETSC0100ZACG  
Opto-Isolated USB Smart  
Cable Accessory Kit  
Ethernet Smart Cable  
Accessory Kit  
Note: Replace C with G for lead-free packaging.  
For technical and customer support, hardware and software development tools, refer to  
the Zilog® website at www.zilog.com. The latest released version of ZDS can be  
downloaded from this website.  
PS019921-0308  
Ordering Information  
Z8 Encore! XP® F64XX Series  
Product Specification  
270  
Part Number Suffix Designations  
Z8  
F
64 21  
A
N 020 S  
C
Environmental Flow  
C = Plastic Standard  
G = Lead Free Package  
Temperature Range (°C)  
S = Standard, 0 to 70  
E = Extended, –40 to +105  
A = Automotive/Industrial, –40 to +125  
Speed  
020 = 20 MHz  
Pin Count  
N = 44 pins  
R = 64 pins  
S = 68 pins  
T = 80 pins  
Package  
A = LQFP  
F = QFP  
P = PDIP  
V = PLCC  
Device Type  
21 = Devices with 29 or 31 I/O Lines, 23  
Interrupts, 3 Timers and 8 ADC channels  
22 = Devices with 46 I/O Lines, 24 Interrupts,  
4 Timers and 12 ADC channels  
23 = Devices with 60 I/O Lines, 24 Interrupts,  
4 Timers and 12 ADC channels  
Memory Size  
64 KB Flash, 4 KB RAM  
48 KB Flash, 4 KB RAM  
32 KB Flash, 2 KB RAM  
24 KB Flash, 2 KB RAM  
16 KB Flash, 2 KB RAM  
Memory Type  
F = Flash  
Device Family  
PS019921-0308  
Ordering Information  
Z8 Encore! XP® F64XX Series  
Product Specification  
271  
Example: Part number Z8F6421AN020SC is an 8-bit microcontroller product in an LQFP  
package, using 44 pins, operating with a maximum 20 MHz external clock frequency over  
a 0 ºC to +70 ºC temperature range and built using the Plastic-Standard environmental  
flow.  
PS019921-0308  
Ordering Information  
Z8 Encore! XP® F64XX Series  
Product Specification  
272  
PS019921-0308  
Ordering Information  
Z8 Encore! XP® F64XX Series  
Product Specification  
273  
Index  
address space 17  
ADDX 242  
Symbols  
# 240  
analog signals 14  
% 240  
@ 240  
analog-to-digital converter (ADC) 171  
AND 244  
ANDX 244  
arithmetic instructions 242  
assembly language programming 237  
assembly language syntax 238  
Numerics  
10-bit ADC 4  
44-lead low-profile quad flat package 261  
44-lead plastic lead chip carrier package 262  
64-lead low-profile quad flat package 262  
68-lead plastic lead chip carrier package 263  
80-lead quad flat package 264  
B
B 240  
b 239  
baud rate generator, UART 109  
BCLR 242  
A
absolute maximum ratings 211  
AC characteristics 227  
ADC 242  
binary number suffix 240  
BIT 242  
architecture 171  
bit 239  
automatic power-down 172  
block diagram 172  
clear 242  
manipulation instructions 242  
set 242  
set or clear 242  
swap 243  
continuous conversion 173  
control register 175  
control register definitions 175  
data high byte register 176  
data low bits register 176  
DMA control 174  
test and jump 245  
test and jump if non-zero 245  
test and jump if zero 245  
bit jump and test if non-zero 245  
bit swap 245  
electrical characteristics and timing 225  
operation 172  
single-shot conversion 173  
ADCCTL register 175  
ADCDH register 176  
ADCDL register 176  
ADCX 242  
block diagram 3  
block transfer instructions 243  
BRK 245  
BSET 242  
ADD 242  
BSWAP 243, 245  
add - extended addressing 242  
add with carry 242  
BTJ 245  
BTJNZ 245  
add with carry - extended addressing 242  
additional symbols 240  
BTJZ 245  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
274  
DECW 242  
C
destination operand 240  
device, port availability 53  
DI 243  
CALL procedure 245  
capture mode 91  
capture/compare mode 91  
cc 239  
direct address 239  
direct memory access controller 161  
disable interrupts 243  
CCF 243  
characteristics, electrical 211  
clear 244  
DJNZ 245  
DMA  
clock phase (SPI) 128  
CLR 244  
address high nibble register 165  
configuring DMA0-1 data transfer 161  
configuring for DMA_ADC data transfer 162  
control of ADC 174  
control register 163  
control register definitions 163  
controller 5  
COM 244  
compare 91  
compare - extended addressing 242  
compare mode 91  
compare with carry 242  
compare with carry - extended addressing 242  
complement 244  
DMA_ADC address register 167  
DMA_ADC control register 168  
DMA_ADC operation 162  
end address low byte register 166  
I/O address register 164  
operation 161  
complement carry flag 243  
condition code 239  
continuous conversion (ADC) 173  
continuous mode 90  
control register definition, UART 110  
control register, I2C 154  
counter modes 90  
start/current address low byte register 166  
status register 169  
DMAA_STAT register 169  
DMAACTL register 168  
DMAxCTL register 163  
DMAxEND register 166  
DMAxH register 165  
CP 242  
CPC 242  
CPCX 242  
CPU and peripheral overview 3  
CPU control instructions 243  
CPX 242  
DMAxI/O address (DMAxIO) 165  
DMAxIO register 165  
DMAxSTART register 166  
dst 240  
Customer Feedback Form 287  
customer feedback form 271  
D
E
DA 239, 242  
EI 243  
data register, I2C 152  
DC characteristics 213  
debugger, on-chip 195  
DEC 242  
electrical characteristics 211  
ADC 225  
flash memory and timing 224  
GPIO input data sample timing 228  
watch-dog timer 224  
enable interrupt 243  
ER 239  
decimal adjust 242  
decrement 242  
decrement and jump non-zero 245  
decrement word 242  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
275  
extended addressing register 239  
external pin reset 49  
GPIO 4, 53  
alternate functions 54  
external RC oscillator 223  
eZ8 CPU features 3  
architecture 53  
control register definitions 56  
input data sample timing 228  
interrupts 56  
eZ8 CPU instruction classes 241  
eZ8 CPU instruction notation 238  
eZ8 CPU instruction set 237  
eZ8 CPU instruction summary 246  
port A-H address registers 57  
port A-H alternate function sub-registers 59  
port A-H control registers 58  
port A-H data direction sub-registers 59  
port A-H high drive enable sub-registers 60  
port A-H input data registers 62  
port A-H output control sub-registers 60  
port A-H output data registers 62  
port A-H Stop Mode Recovery sub-registers 61  
port availability by device 53  
port input timing 228  
F
FCTL register 186  
features, Z8 Encore! 1  
first opcode map 259  
FLAGS 240  
flags register 240  
flash  
port output timing 229  
controller 4  
option bit address space 191  
option bit configuration - reset 191  
program memory address 0001H 193  
flash memory  
H
H 240  
arrangement 180  
HALT 243  
byte programming 183  
code protection 182  
configurations 179  
halt mode 51, 243  
hexadecimal number prefix/suffix 240  
control register definitions 186  
controller bypass 185  
electrical characteristics and timing 224  
flash control register 186  
flash status register 186  
frequency high and low byte registers 188  
mass erase 185  
I
I2C 4  
10-bit address read transaction 150  
10-bit address transaction 147  
10-bit addressed slave data transfer format 147  
10-bit receive data format 150  
7-bit address transaction 145  
7-bit address, reading a transaction 149  
7-bit addressed slave data transfer format 144,  
145, 146  
operation 181  
operation timing 182  
page erase 184  
page select register 187  
FPS register 187  
7-bit receive data transfer format 149  
baud high and low byte registers 156, 157, 159  
C status register 153  
FSTAT register 186  
control register definitions 152  
controller 139  
G
gated mode 91  
controller signals 13  
general-purpose I/O 53  
interrupts 141  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
276  
operation 140  
SDA and SCL signals 141  
stop and start conditions 143  
I2CBRH register 156, 157, 159  
I2CBRL register 157  
I2CCTL register 154  
I2CDATA register 153  
I2CSTAT register 153  
IM 239  
COM 244  
CP 242  
CPC 242  
CPCX 242  
CPU control 243  
CPX 242  
DA 242  
DEC 242  
DECW 242  
DI 243  
immediate data 239  
immediate operand prefix 240  
INC 242  
DJNZ 245  
EI 243  
increment 242  
HALT 243  
INC 242  
increment word 242  
INCW 242  
INCW 242  
IRET 245  
JP 245  
indexed 239  
indirect address prefix 240  
indirect register 239  
indirect register pair 239  
indirect working register 239  
indirect working register pair 239  
infrared encoder/decoder (IrDA) 121  
instruction set, ez8 CPU 237  
instructions  
LD 244  
LDC 244  
LDCI 243, 244  
LDE 244  
LDEI 243  
LDX 244  
LEA 244  
ADC 242  
load 244  
ADCX 242  
logical 244  
MULT 242  
NOP 243  
OR 244  
ADD 242  
ADDX 242  
AND 244  
ANDX 244  
ORX 244  
POP 244  
arithmetic 242  
BCLR 242  
POPX 244  
program control 245  
PUSH 244  
PUSHX 244  
RCF 243  
BIT 242  
bit manipulation 242  
block transfer 243  
BRK 245  
BSET 242  
RET 245  
BSWAP 243, 245  
BTJ 245  
RL 245  
RLC 245  
BTJNZ 245  
rotate and shift 245  
RR 245  
BTJZ 245  
CALL 245  
RRC 245  
SBC 242  
SCF 243  
CCF 243  
CLR 244  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
277  
SRA 245  
operation 121  
SRL 246  
receiving data 122  
transmitting data 122  
IRET 245  
SRP 243  
STOP 244  
IRQ0 enable high and low bit registers 70  
IRQ1 enable high and low bit registers 71  
IRQ2 enable high and low bit registers 72  
IRR 239  
SUB 242  
SUBX 242  
SWAP 246  
TCM 243  
Irr 239  
TCMX 243  
TM 243  
TMX 243  
J
TRAP 245  
watch-dog timer refresh 244  
XOR 245  
JP 245  
jump, conditional, relative, and relative conditional  
245  
XORX 245  
instructions, eZ8 classes of 241  
interrupt control register 75  
interrupt controller 5, 63  
architecture 63  
L
LD 244  
interrupt assertion types 66  
interrupt vectors and priority 66  
operation 65  
LDC 244  
LDCI 243, 244  
LDE 244  
register definitions 67  
software interrupt assertion 66  
interrupt edge select register 74  
interrupt port select register 74  
interrupt request 0 register 67  
interrupt request 1 register 68  
interrupt request 2 register 69  
interrupt return 245  
interrupt vector listing 63  
interrupts  
LDEI 243, 244  
LDX 244  
LEA 244  
load 244  
load constant 243  
load constant to/from program memory 244  
load constant with auto-increment addresses 244  
load effective address 244  
load external data 244  
load external data to/from data memory and auto-  
increment addresses 243  
load external to/from data memory and auto-incre-  
ment addresses 244  
not acknowledge 141  
receive 141  
SPI 131  
transmit 141  
load instructions 244  
load using extended addressing 244  
logical AND 244  
UART 107  
introduction 1  
IR 239  
logical AND/extended addressing 244  
logical exclusive OR 245  
logical exclusive OR/extended addressing 245  
logical instructions 244  
logical OR 244  
Ir 239  
IrDA  
architecture 121  
block diagram 121  
control register definitions 124  
logical OR/extended addressing 244  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
278  
low power modes 51  
LQFP  
rr 239  
vector 239  
X 239  
44 lead 261  
64 lead 262  
notational shorthand 239  
M
O
master interrupt enable 65  
master-in, slave-out and-in 127  
memory  
OCD  
architecture 195  
auto-baud detector/generator 198  
baud rate limits 198  
program 17  
MISO 127  
block diagram 195  
mode  
breakpoints 199  
capture 91  
commands 200  
capture/compare 91  
continuous 90  
counter 90  
control register 205  
data format 197  
DBG pin to RS-232 Interface 196  
debug mode 197  
gated 91  
one-shot 90  
debugger break 245  
PWM 90  
interface 195  
modes 91  
serial errors 198  
MULT 242  
status register 206  
multiply 242  
timing 230  
multiprocessor mode, UART 105  
OCD commands  
execute instruction (12H) 204  
read data memory (0DH) 203  
read OCD control register (05H) 201  
read OCD revision (00H) 201  
read OCD status register (02H) 201  
read program counter (07H) 202  
read program memory (0BH) 203  
read program memory CRC (0EH) 203  
read register (09H) 202  
step instruction (10H) 204  
stuff instruction (11H) 204  
write data memory (0CH) 203  
write OCD control register (04H) 201  
write program counter (06H) 201  
write program memory (0AH) 202  
write register (08H) 202  
on-chip debugger 5  
N
NOP (no operation) 243  
not acknowledge interrupt 141  
notation  
b 239  
cc 239  
DA 239  
ER 239  
IM 239  
IR 239  
Ir 239  
IRR 239  
Irr 239  
p 239  
R 239  
r 239  
on-chip debugger (OCD) 195  
on-chip debugger signals 15  
on-chip oscillator 207  
RA 239  
RR 239  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
279  
one-shot mode 90  
opcode map  
program control instructions 245  
program counter 240  
program memory 17  
PUSH 244  
abbreviations 258  
cell description 257  
first 259  
push using extended addressing 244  
PUSHX 244  
second after 1FH 260  
Operational Description 99  
OR 244  
PWM mode 90  
PxADDR register 57  
PxCTL register 58  
ordering information 265  
ORX 244  
oscillator signals 14  
Q
QFP 264  
P
p 239  
packaging  
R
LQFP  
R 239  
44 lead 261  
r 239  
64 lead 262  
RA  
PLCC  
register address 239  
44 lead 262  
RCF 243  
receive  
68 lead 263  
10-bit data format (I2C) 150  
7-bit data transfer format (I2C) 149  
IrDA data 122  
QFP 264  
part number description 270  
part selection guide 2  
PC 240  
receive interrupt 141  
receiving UART data-interrupt-driven method 104  
receiving UART data-polled method 103  
register 136, 165, 239  
peripheral AC and DC electrical characteristics 222  
PHASE=0 timing (SPI) 129  
PHASE=1 timing (SPI) 130  
pin characteristics 15  
PLCC  
ADC control (ADCCTL) 175  
ADC data high byte (ADCDH) 176  
ADC data low bits (ADCDL) 176  
baud low and high byte (I2C) 156, 157, 159  
baud rate high and low byte (SPI) 138  
control (SPI) 133  
44 lead 262  
68-lead 263  
polarity 239  
POP 244  
control, I2C 154  
pop using extended addressing 244  
POPX 244  
data, SPI 133  
DMA status (DMAA_STAT) 169  
DMA_ADC address 167  
DMA_ADC control DMAACTL) 168  
DMAx address high nibble (DMAxH) 165  
DMAx control (DMAxCTL) 163  
DMAx end/address low byte (DMAxEND) 166  
DMAx start/current address low byte register  
port availability, device 53  
port input timing (GPIO) 228  
port output timing, GPIO 229  
power supply signals 15  
power-down, automatic (ADC) 172  
power-on and voltage brown-out 222  
power-on reset (POR) 47  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
280  
(DMAxSTART) 166  
and STOP mode characteristics 45  
flash control (FCTL) 186  
carry flag 243  
controller 5  
sources 46  
flash high and low byte (FFREQH and FRE-  
EQL) 188  
flash page select (FPS) 187  
RET 245  
flash status (FSTAT) 186  
return 245  
GPIO port A-H address (PxADDR) 57  
GPIO port A-H alternate function sub-registers  
59  
RL 245  
RLC 245  
rotate and shift instructions 245  
rotate left 245  
rotate left through carry 245  
rotate right 245  
rotate right through carry 245  
RP 240  
GPIO port A-H control address (PxCTL) 58  
GPIO port A-H data direction sub-registers 59  
I2C baud rate high (I2CBRH) 156, 157, 159  
I2C control (I2CCTL) 154  
I2C data (I2CDATA) 153  
RR 239, 245  
I2C status 153  
rr 239  
I2C status (I2CSTAT) 153  
RRC 245  
I2Cbaud rate low (I2CBRL) 157  
mode, SPI 136  
OCD control 205  
OCD status 206  
S
SPI baud rate high byte (SPIBRH) 138  
SPI baud rate low byte (SPIBRL) 138  
SPI control (SPICTL) 134  
SBC 242  
SCF 243  
SDA and SCL (IrDA) signals 141  
second opcode map after 1FH 260  
serial clock 127  
SPI data (SPIDATA) 133  
SPI status (SPISTAT) 135  
status, I2C 153  
serial peripheral interface (SPI) 125  
set carry flag 243  
status, SPI 135  
UARTx baud rate high byte (UxBRH) 117  
UARTx baud rate low byte (UxBRL) 117  
UARTx Control 0 (UxCTL0) 113, 116  
UARTx control 1 (UxCTL1) 114  
UARTx receive data (UxRXD) 111  
UARTx status 0 (UxSTAT0) 111  
UARTx status 1 (UxSTAT1) 113  
UARTx transmit data (UxTXD) 110  
watchdog timer control (WDTCTL) 96  
watchdog timer reload high byte (WDTH) 98  
watchdog timer reload low byte (WDTL) 98  
watchdog timer reload upper byte (WDTU) 98  
set register pointer 243  
shift right arithmetic 245  
shift right logical 246  
signal descriptions 13  
single-shot conversion (ADC) 173  
SIO 5  
slave data transfer formats (I2C) 147  
slave select 128  
software trap 245  
source operand 240  
SP 240  
SPI  
register file 17  
architecture 125  
register file address map 21  
register pair 239  
register pointer 240  
reset  
baud rate generator 132  
baud rate high and low byte register 138  
clock phase 128  
configured as slave 126  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
281  
control register 133  
control register definitions 133  
data register 133  
symbols, additional 240  
system and core resets 46  
error detection 131  
interrupts 131  
T
mode fault error 131  
mode register 136  
TCM 243  
TCMX 243  
multi-master operation 130  
operation 126  
Technical Support 287  
test complement under mask 243  
test complement under mask - extended addressing  
243  
overrun error 131  
signals 127  
single master, multiple slave system 126  
single master, single slave system 125  
status register 135  
test under mask 243  
test under mask - extended addressing 243  
timer signals 14  
timing, PHASE = 0 129  
timing, PHASE=1 130  
SPI controller signals 13  
SPI mode (SPIMODE) 136  
SPIBRH register 138  
SPIBRL register 138  
SPICTL register 134  
SPIDATA register 133  
SPIMODE register 136  
SPISTAT register 135  
SRA 245  
timers 5, 77  
architecture 77  
block diagram 78  
capture mode 82, 91  
capture/compare mode 85, 91  
compare mode 83, 91  
continuous mode 79, 90  
counter mode 80  
counter modes 90  
gated mode 84, 91  
one-shot mode 78, 90  
operating mode 78  
src 240  
SRL 246  
PWM mode 81, 90  
SRP 243  
reading the timer count values 86  
reload high and low byte registers 87  
timer control register definitions 86  
timer output signal operation 86  
timers 0-3  
stack pointer 240  
status register, I2C 153  
STOP 244  
STOP mode 51, 244  
Stop Mode Recovery  
sources 49  
control 0 registers 89  
control 1 registers 90  
high and low byte registers 86, 88  
TM 243  
using a GPIO port pin transition 50  
using watchdog timer time-out 50  
SUB 242  
TMX 243  
subtract 242  
transmit  
subtract - extended addressing 242  
subtract with carry 242  
subtract with carry - extended addressing 242  
SUBX 242  
IrDA data 122  
transmit interrupt 141  
transmitting UART data-interrupt-driven method  
102  
SWAP 246  
swap nibbles 246  
transmitting UART data-polled method 101  
TRAP 245  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
282  
electrical characteristics and timing 224  
interrupt in normal operation 94  
interrupt in STOP mode 94  
refresh 244  
U
UART 4  
architecture 99  
asynchronous data format without/with parity  
101  
reload unlock sequence 95  
reload upper, high and low registers 97  
reset 48  
baud rate generator 109  
baud rates table 118  
reset in normal operation 95  
reset in STOP mode 95  
time-out response 94  
control register definitions 110  
controller signals 14  
data format 100  
interrupts 107  
WDTCTL register 96  
WDTH register 98  
multiprocessor mode 105  
receiving data using interrupt-driven method  
104  
WDTL register 98  
working register 239  
working register pair 239  
WTDU register 98  
receiving data using the polled method 103  
transmitting data using the interrupt-driven  
method 102  
transmitting data using the polled method 101  
x baud rate high and low registers 116  
x control 0 and control 1 registers 113  
x status 0 and status 1 registers 111, 112  
UxBRH register 117  
X
X 239  
XOR 245  
XORX 245  
UxBRL register 117  
UxCTL0 register 113, 116  
UxCTL1 register 114  
Z
Z8 Encore!  
UxRXD register 111  
block diagram 3  
features 1  
UxSTAT0 register 111  
UxSTAT1 register 113  
introduction 1  
part selection guide 2  
UxTXD register 110  
V
vector 239  
voltage brownout reset (VBR) 47  
W
watchdog timer  
approximate time-out delay 94  
CNTL 48  
control register 96  
refresh 94  
PS019921-0308  
Index  
Z8 Encore! XP® F64XX Series  
Product Specification  
283  
Customer Support  
For answers to technical questions about the product, documentation, or any other issues  
with Zilog’s offerings, please visit Zilog’s Knowledge Base at  
http://www.zilog.com/kb.  
For any comments, detail technical questions, or reporting problems, please visit  
Zilog’s Technical Support at http://support.zilog.com.  
PS019921-0308  
Customer Support  

相关型号:

Z8F4821VN020EC

High Performance 8-Bit Microcontrollers Z8 Encore-R 64K Series
ZILOG

Z8F4821VN020EC

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PQCC44, PLASTIC, LCC-44
IXYS

Z8F4821VN020EG

IC MCU 8BIT 48KB FLASH 44PLCC
ZILOG

Z8F4821VN020SC

High Performance 8-Bit Microcontrollers Z8 Encore-R 64K Series
ZILOG

Z8F4822AR020AC

High Performance 8-Bit Microcontrollers Z8 Encore-R 64K Series
ZILOG

Z8F4822AR020AC

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PQFP64, LQFP-64
IXYS

Z8F4822AR020EC

High Performance 8-Bit Microcontrollers Z8 Encore-R 64K Series
ZILOG

Z8F4822AR020EC

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PQFP64, LQFP-64
IXYS

Z8F4822AR020EG

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PQFP64, LEAD FREE, LQFP-64
IXYS

Z8F4822AR020SC

High Performance 8-Bit Microcontrollers Z8 Encore-R 64K Series
ZILOG

Z8F4822AR020SC

Microcontroller, 8-Bit, FLASH, Z8 CPU, 20MHz, CMOS, PQFP64, LQFP-64
IXYS

Z8F4822AR020SG

High Performance 8-Bit Microcontrollers
ZILOG