250X14W472MV4TRC [JOHANSON]

Ceramic Capacitor, Multilayer, Ceramic, 25V, 20% +Tol, 20% -Tol, X7R, -/+15ppm/Cel TC, 0.0047uF, 0604,;
250X14W472MV4TRC
型号: 250X14W472MV4TRC
厂家: JOHANSON TECHNOLOGY INC.    JOHANSON TECHNOLOGY INC.
描述:

Ceramic Capacitor, Multilayer, Ceramic, 25V, 20% +Tol, 20% -Tol, X7R, -/+15ppm/Cel TC, 0.0047uF, 0604,

文件: 总6页 (文件大小:430K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
X2Y Filter & Decoupling  
capacitors  
The X2Y® Design - A Capacitive Circuit  
XꢀY® components share many common features with standard multi-layer ceramic capacitors (MLCC) for easy adoption by end-users.  
• Same component sizes (0603, 0805, 1206, etc.)  
• Same pick and place equipment  
• Same dielectric, electrode and termination materials  
• Same industry test standards for component reliability  
®
A standard multi-layer ceramic capacitor (MLCC) consists of opposing electrode layers A & B. The XꢀY design adds another set of electrode layers (G) which  
effectively surround each existing electrode of a two-terminal capacitor. The only external difference is two additional side terminations, creating a four-terminal  
capacitive circuit, which allows circuit designers a multitude of attachment options.  
G1  
B
A
G2  
X2Y® Circuit 1: Filtering  
®
When used in circuit 1 configuration the XꢀY filter capacitor is connected across two signal lines. Differential mode noise is filtered to ground by the two Y  
capacitors, A & B. Common mode noise is cancelled within the device.  
Experts agree that balance is the key to a “quiet” circuit. XꢀY® is a balanced circuit device with two equal  
halves, tightly matched in both phase and magnitude with respect to ground. Several advantages are  
gained by two balanced capacitors sharing a single ceramic component body.  
Signal 1  
Ground  
Signal ꢀ  
A
B
G1  
Gꢀ  
• Exceptional common mode rejection  
• Effect of voltage variation eliminated  
• Matched line-to-ground capacitance  
• Effects of aging & temperature are equal on both caps  
InAmp Input Filter Example  
®
In this example, a single Johanson XꢀY component was used to filter noise at the input of a DC  
instrumentation amplifier. This reduced component count by 3-to-1 and costs by over 70% vs.  
conventional filter components that included 1% film Y-capacitors.  
Parameter  
X2Y®  
10nF  
Discrete  
10nF, 2 @ 220 pF  
Comments  
DC offset shift  
< 0.1 µV  
91 dB  
< 0.1 µV  
9ꢀ dB  
Referred to input  
Common mode rejection  
Source: Analog Devices, “A Designer’s Guide to Instrumentation Amplifiers (2nd Edition)” by Charles Kitchin and Lew Counts  
Common Mode Choke Replacement  
In this example, a 5 µH common mode choke is replaced by an 0805, 1000pF  
XꢀY component acheiving superior EMI filtering by a component a fraction  
DC Motor EMI Reduction: A Superior Solution  
One XꢀY component has successfully replaced 7 discrete filter components  
while achieving superior EMI filtering.  
®
®
of the size and cost.  
No Filter  
CMC 5uH  
XꢀY® 1000pF  
Ambient  
Common Mode Choke  
9.0 x 6.0 x 5.0 mm  
XꢀY®  
ꢀ.0 x 1.3 x 1.0 mm  
www.johansondielectrics.com  
®
X2Y Filter & Decoupling  
capacitors  
X2Y® Circuit 2: Decoupling  
When used in circuit ꢀ configuration, A & B capacitors are placed in parallel effectively doubling the apparent capacitance while maintaining an ultra-low  
inductance. The low inductance advantages of the XꢀY® Capacitor Circuit enables high-performance bypass networks at reduced system cost.  
Power  
A
G1  
Gꢀ  
• Low ESL (device only and mounted)  
• Broadband performance  
• Lower via count, improves routing  
• Reduces component count  
• Lowers placement cost  
B
• Effective on PCB or package  
Ground  
Component Performance  
®
The XꢀY  
has short, multiple and opposing current paths  
resulting in lower device inductance.  
Mounted Performance  
Mutual coupling from  
opposing polarity vias  
lowers inductance when  
mounted on a PCB.  
SYSTEM PERFORMANCE  
1:5 MLCC Replacement Example  
®
104 MLCs  
0402 47nF  
20 X2Y  
0603 100nF  
Transfer Impedance  
seen by FPGA  
®
XꢀY’s proven technology enables end-users to use one XꢀY  
capacitor to replace five conventional MLCCs in a typical high  
performance IC bypass design. Vias are nearly cut in half, board  
space is reduced and savings are in dollars per PCB.  
3
www.johansondielectrics.com  
®
X2Y Filter & Decoupling  
capacitors  
XꢀY® filter capacitors employ a unique, patented low inductance design featuring two balanced capacitors  
that are immune to temperature, voltage and aging performance differences.  
These components offer superior decoupling and EMI filtering performance, virtually eliminate parasitics,  
and can replace multiple capacitors and inductors saving board space and reducing assembly costs.  
AdvAntAges  
ApplicAtions  
• One device for EMI suppression or decoupling  
• Replace up to 7 components with one XꢀY  
• Differential and common mode attenuation  
• Matched capacitance line to ground, both lines  
• Low inductance due to cancellation effect  
• FPGA / ASIC / µ-P Decoupling  
• DDR Memory Decoupling  
• Amplifier FIlter & Decoupling  
• High Speed Data Filtering  
• Cellular Handsets  
Equivalent Circuits  
Cross-sectional View  
Dimensional View  
A
B
G
CB  
EB  
A
G1  
G2  
T
B
W
L
G
Circuit 1  
(Y Cap.)  
Circuit ꢀ  
(ꢀ*Y Cap.)  
SIZE  
EIA  
Order  
Code  
(JDI)  
50  
0402  
X07  
X7R  
6.3  
50  
NPO  
100  
50  
0603  
X14  
X7R  
ꢀ5  
10  
6.3  
100  
50  
NPO  
0805  
X15  
100  
50  
X7R  
NPO  
X7R  
50  
1206  
X18  
100  
50  
100  
50  
1210  
X41  
X7R  
X7R  
X7R  
= RoHS NPO  
= RoHS X7R  
100  
50  
1410  
X44  
100  
50  
1812  
X43  
Circuit 1 (Balanced Filtering) = A (or B) to G Circuit ꢀ (Decoupling) = A + B to G  
[A to B capacitance = 1/ꢀ C1]  
Rated voltage is for A or B to ground. A to B rating is ꢀ X Vrated Contact the factory for other voltage ratings and capacitance values.  
www.johansondielectrics.com  
®
X2Y Filter & Decoupling  
capacitors  
Power  
Signal 1  
A
B
A
Filtering  
Decoupling  
Circuit 2 S21  
Power-to-Ground  
G1  
Gꢀ  
G1  
Gꢀ  
Ground  
Circuit 1 S21  
Signal-to-Ground  
B
Ground  
Signal ꢀ  
Additional test data and related information available at www.johansondielectrics.com/xꢀy/  
MecHAnicAl  
cHArActeristics  
0402 (X07)  
0603 (X14)  
0805 (X15)  
1206 (X18)  
1210 (X41)  
1410 (X44)  
1812 (X43)  
IN  
mm  
IN  
mm  
IN  
mm  
IN  
mm  
IN  
mm  
IN  
mm  
IN  
mm  
0.045  
0.003  
1.143  
0.076  
0.064  
0.005  
1.626  
0.127  
0.080  
0.008  
2.032  
0.203  
0.124  
0.010  
3.150  
0.254  
0.125  
0.010  
3.175  
0.254  
0.140  
0.010  
3.556  
0.254  
0.174  
0.010  
4.420  
0.254  
L
0.024  
0.003  
0.610  
0.076  
0.035  
0.005  
0.889  
0.127  
0.050  
0.008  
1.270  
0.203  
0.063  
0.010  
1.600  
0.254  
0.098  
0.010  
2.489  
0.254  
0.098  
0.010  
2.490  
0.254  
0.125  
0.010  
3.175  
0.254  
W
T
0.020  
max  
0.508  
max  
0.026  
max  
0.660  
max  
0.040  
max  
1.016  
max  
0.050  
max  
1.270  
max  
0.070  
max  
1.778  
max  
0.070  
max  
1.778  
max  
0.090  
max  
2.286  
max  
0.008  
0.003  
0.203  
0.076  
0.009  
0.004  
0.229  
0.102  
0.009  
0.004  
0.229  
0.102  
0.009  
0.004  
0.229  
0.102  
0.009  
0.005  
0.229  
0.127  
0.009  
0.005  
0.229  
0.127  
0.009  
0.005  
0.229  
0.127  
EB  
CB  
0.010  
0.003  
0.305  
0.076  
0.018  
0.004  
0.457  
0.102  
0.022  
0.005  
0.559  
0.127  
0.040  
0.005  
1.016  
0.127  
0.045  
0.005  
1.143  
0.127  
0.045  
0.005  
1.143  
0.127  
0.045  
0.005  
1.143  
0.127  
How to  
o
rder X2Y® eMi Filter  
cApAcitors  
500  
X18  
W
473  
M
V
4
E
VOLTAGE  
CASE SIZE  
DIELECTRIC  
CAPACITANCE  
TOLERANCE  
TERMINATION  
TAPE MODIFIER  
V = Ni barrier w/  
1st two digits are  
6R3 = 6.3 V  
N = NPO  
W = X7R  
M
=
ꢀ0%  
Code  
Tape  
Embossed  
Embossed  
Paper  
Reel  
7”  
X07 = 0ꢁ0ꢀ  
X1ꢁ = 0603  
X15 = 0805  
X18 = 1ꢀ06  
Xꢁ1 = 1ꢀ10  
Xꢁ3 = 181ꢀ  
Xꢁꢁ = 1ꢁ10  
100% Sn Plating  
significant; third digit  
denotes number of  
zeros.  
ꢀ50  
500  
=
=
ꢀ5 V  
50 V  
E
U
T
13”  
7”  
101 = 100 V  
MARKING  
ꢁ = Unmarked  
R
Paper  
13”  
ꢁ7ꢁ = 0.ꢁ7 µF  
105 = 1.00 µF  
Tape specs. per EIA RSꢁ81  
P/N written: 500X18Wꢁ73MVꢁE  
5
www.johansondielectrics.com  
®
X2Y Filter & Decoupling  
capacitors  
solder  
pAd  
recoMMendAtions  
0402 (X07)  
IN mm  
0603 (X14)  
0805 (X15)  
1206 (X18)  
1210 (X41)  
1410 (X44)  
1812 (X43)  
IN  
mm  
IN  
mm  
1.27  
0.89  
1.27  
0.56  
2.03  
3.05  
IN  
mm  
1.65  
1.02  
2.03  
1.02  
3.05  
4.06  
IN  
mm  
IN  
mm  
IN  
mm  
X
Y
G
V
0.020  
0.020  
0.024  
0.015  
0.039  
0.064  
0.51  
0.51  
0.61  
0.38  
0.99  
1.63  
0.035  
0.025  
0.040  
0.020  
0.060  
0.090  
0.89  
0.64  
1.02  
0.51  
1.52  
2.29  
0.050  
0.035  
0.050  
0.022  
0.080  
0.120  
0.065  
0.040  
0.080  
0.040  
0.120  
0.160  
0.100  
0.040  
0.080  
0.045  
0.160  
0.160  
2.54  
1.02  
2.03  
1.14  
4.06  
4.06  
0.100  
0.040  
0.100  
0.045  
0.160  
0.180  
2.54  
1.02  
2.54  
1.14  
4.06  
4.57  
0.125  
0.040  
0.130  
0.045  
0.190  
0.210  
3.18  
1.02  
3.30  
1.14  
4.83  
5.33  
U
Z
Use of solder mask beneath component is not recommended.  
Z
Z
U
U
X
X
V
V
V
V
Y
G
Y
G
Good Layout  
Poor Layout  
Figure 1  
optiMizing X2Y perForMAnce witH  
proper  
AttAcHMent  
tecHniques  
XꢀY® capacitors excel in low inductance performance for a myriad of applications including EMI/RFI filtering, power supply bypass  
/ decoupling. How the capacitor is attached to the application PCB is every bit as important as the capacitor itself. Proper attention  
to pad layout and via placement insures superior device performance. Poor PCB layouts squander performance, requiring more  
capacitors, and more vias to do the same job. Figure 1 compares the XꢀY® recommended layout against a poor layout. Because  
of its long extents from device terminals to vias, and the wide via separation, the poor layout shown performs badly. It exhibits  
approximately ꢀ00% L1 inductance, and 150% Lꢀ inductance compared to recommended XꢀY layouts.  
For further details on via placement and it’s effect on mounted inductance, please refer to XꢀY Attenuators, LLC. application note  
“Get the Most from XꢀY Capacitors with Proper Attachment Techniques” at www.xꢀy.com/bypass.htm  
®
XꢀY technology patents and registered trademark under license from XꢀY ATTENUATORS, LLC  
Johanson Dielectrics, Inc. reserves the right to make design and price changes without notice. All sales are subject to the terms  
and conditions printed on the back side of our sales order acknowledgment forms, including a limited warranty and remedies for  
non-conforming goods or defective goods. We will be pleased to provide a copy of these terms and conditions for your review.  
JOꢀANSON ꢀONG KONG LTD.  
JOꢀANSON EUROPE LTD.  
Unit E, 11/F., Phase 1, Kaiser Estate  
ꢁ1 Man Yue Street  
Hunghom, Kowloon, Hong Kong  
Tel: (85ꢀ) ꢀ33ꢁ 6310 • Fax: (85ꢀ) ꢀ33ꢁ 8858  
Acorn House, Old Kiln Road  
Flackwell Heath, Bucks HP10 9NR  
United Kingdom  
15191 Bledsoe Street  
Sylmar, California 913ꢁꢀ  
Tel (818) 36ꢁ-9800 • FAX (818) 36ꢁ-6100  
http://www.johansondielectrics.com  
Tel +ꢁꢁ-16ꢀ-853-115ꢁ • Fax +ꢁꢁ-16ꢀ-853-ꢀ703  
© ꢀ007 Publication XꢀY070ꢁ Printed in USA  

相关型号:

250X14W474MV4E

Data Line Filter, 1 Function(s), 25V, EIA STD PACKAGE SIZE 0603, 3 PIN
JOHANSON

250X14W474MV4T

Data Line Filter, 1 Function(s), 25V, EIA STD PACKAGE SIZE 0603, 3 PIN
JOHANSON

250X15N105MV4E

Data Line Filter, 1 Function(s), 25V, EIA STD PACKAGE SIZE 0805, 3 PIN
JOHANSON

250X15N105MV4T

Data Line Filter, 1 Function(s), 25V, EIA STD PACKAGE SIZE 0805, 3 PIN
JOHANSON

250X15N471MV4E

Data Line Filter, 1 Function(s), 25V,
JOHANSON

250X15N471MV4U

Data Line Filter, 1 Function(s), 25V
JOHANSON

250X15N473MV4E

Data Line Filter, 1 Function(s), 25V,
JOHANSON

250X15N473MV4U

Data Line Filter, 1 Function(s), 25V
JOHANSON

250X15N474MV4E

Data Line Filter, 1 Function(s), 25V, EIA STD PACKAGE SIZE 0805, 3 PIN
JOHANSON

250X15N474MV4T

Data Line Filter, 1 Function(s), 25V, EIA STD PACKAGE SIZE 0805, 3 PIN
JOHANSON

250X15W104MV4E

X2Y® FILTER & DECOUPLING CAPACITORS
JOHANSON

250X15W105MV4E

Data Line Filter, 1 Function(s), 25V, EIA STD PACKAGE SIZE 0805, 3 PIN
JOHANSON