T240A475M015RS [KEMET]

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 15V, 20% +Tol, 20% -Tol, 4.7uF, Through Hole Mount, AXIAL LEADED;
T240A475M015RS
型号: T240A475M015RS
厂家: KEMET CORPORATION    KEMET CORPORATION
描述:

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 15V, 20% +Tol, 20% -Tol, 4.7uF, Through Hole Mount, AXIAL LEADED

电容器
文件: 总23页 (文件大小:1380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
F-3113 5/06  
TANTALUM HIGH RELIABILITY CAPACITORS  
Tantalum High Reliability  
Capacitors  
Performance Information  
1
2-4  
GR500 Series  
T210  
T240  
T210 Performance Information  
GR500 Series  
5-8  
9-10  
11-13  
14-21  
T240 Performance Information  
Detailed Reliability Information  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500 HIGH RELIABILITY SOLID TANTALUM  
Introduction  
+125°C prior to the electrical testing which eliminates  
those capacitors failing to withstand this extreme  
change in environment.  
2. Surge Current — Each GR500 capacitor receives  
10 cycles @ -55°C, + 85°C. Each cycle consists of rated  
voltage charge for 4 1 seconds and a discharge for 4 1  
seconds. Total DC resistance (excluding the test capac-  
itor) is 1.0 ohms. The energy storage bank capacitor(s)  
is 100,000 F minimum.  
The solid tantalum capacitor has become an essential device  
in circuits requiring high capacitance-voltage product and  
extended environmental capability. The KEMET GR500  
Graded Reliability concept has made available state-of-the-  
art devices providing maximum assurance of meeting sys-  
tem reliability goals. All Graded Reliability capacitors  
receive meticulous attention from raw material selection  
through manufacture, final inspection and shipping. Having  
survived a very stringent quality control program, the result-  
ing capacitors meet or exceed the most critical requirements  
of space, satellite, missile and medical applications where  
failure is, at best, expensive, and at worst, fatal.  
3. Grading — This term is used to describe the tech-  
nique which defines the failure rate of KEMET Graded  
Reliability capacitors. Grading consists of placing  
GR500 capacitors in an oven at 85°C for a minimum of  
250 hours at a voltage greater than rated voltage. The  
technique is fundamentally based upon the oft-docu-  
mented fact that solid tantalum capacitors do not con-  
form to the exponential distribution of time-ordered fail-  
ures, but instead exhibit a constantly decreasing failure  
rate. The Weibull distribution provides a valuable tool  
for describing the behavior of solid tantalum capacitors,  
and experimental fits are made to this distribution in  
determining performance levels for each GR500 Series  
batch. Actual test data are provided with each shipment  
of capacitors to document the failure rate obtained.  
4. Electrical Testing — Each GR500 Series capacitor  
is tested at 25°C for leakage current at rated voltage, as  
well as capacitance and dissipation factor at 120 Hz.  
Since uniformity is generally a valid indicator of relia-  
bility, parametric distributions are graphically recorded  
for each lot. Parts which deviate from the normal popu-  
lation are discarded. Guaranteed maximum values are  
as detailed in Table 1.  
KEMET is, therefore, committed to the principle of the  
highest possible reliability in the manufacture and grading of  
its GR500 Series capacitors.  
The KEMET GR500 High Reliability concept disallows  
grouping of diverse ratings and production batches to deter-  
mine average failure rates. Instead, data from each and every  
capacitor batch are statistically fitted to determine failure  
rate on the basis of 100% life testing. Each homogeneous  
production batch is “gradedʼʼ as a single inspection lot, and  
documented evidence of failure rate achieved is supplied  
with the parts, providing assurance of the most sophisticated  
and accurate reliability measurement method in the industry.  
Basic Requirements  
A. Manufacturing Environment — It is of vital impor-  
tance that high reliability electronic components be manu-  
factured in an environment which provides commitment to  
the philosophy of high reliability production. GR500 Series  
capacitors are manufactured in a plant area that stresses this  
philosophy. Manufacturing and quality control personnel  
are selected for experience and competence. Extensive  
training in quality and reliability assurance techniques is  
provided, and motivation of personnel is heavily stressed.  
Raw material and in-process inspection techniques are  
especially rigid. The result is a capacitor product of inher-  
ently superior quality.  
5. ESR — Each GR500 capacitor is tested for ESR @  
100 KHz. See electrical specification tables.  
6. X-ray — Each GR500 Series capacitor is examined  
by X-ray in two planes with 90 degree rotation. Since  
assembly of the solid tantalum capacitor is a blind oper-  
ation, optical inspection cannot reveal internal defects  
such as loose solder balls or deficient anode solder  
bonding.  
B. Screening Test — All GR500 Series capacitors are sub-  
jected to a broad test program. Despite the most rigid of  
quality control procedures, some variation among batches of  
capacitors must be recognized. This fact is understandable  
when one considers the inherent differences which derive  
from the 16 to 1 ratio of operating voltages, the 20 to 1 ratio  
of physical sizes, and the 60,000 to 1 ratio among capaci-  
tance ratings. Maximum assurance of reliability is achieved  
by maintaining batch identity from the raw material with  
respect to capacitor sizes and ratings as well as material  
identification. Each batch is then subjected to extensive,  
non-destructive 100% screening tests as indicated below.  
1. Thermal Shock — Inherent variations exist among  
the temperature coefficients of expansion of the various  
materials required in the manufacture of solid tantalum  
capacitors. In worst-case combinations, individual  
capacitors will exhibit sensitivity to temperature excur-  
sions. Consequently, all GR500 Series capacitors  
undergo ten temperature cycles between -65°C and  
7. Hermeticity — Each GR500 capacitor receives her-  
meticity testing per MIL-STD-202, Method 112,  
Condition D. This test uses a fluorocarbon liquid at  
125°C 5°(257°F 9°F) at ambient pressure and detects  
gross leaks by the observation of bubbles.  
C. Sampling — In addition to the 100% screening tests,  
other tests are imposed on a sample basis to determine para-  
metric stability and resistance to environmental extremes.  
These tests are fully described in the GR500 Graded  
Reliability Specification.  
D. Available Special Testing — In addition to the standard  
testing outlined in this catalog, optional testing is available.  
1. 100% ESR testing at various frequencies  
2. 1 KHz DF  
3. Tightened DC leakage, Capacitance and Dissipation  
Factor limits.  
1
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T210  
DETAIL SPECIFICATION  
GR500/T210 Capacitors  
CAPACITOR OUTLINE DRAWINGS  
UNINSULATED  
INSULATED  
D
L
D
L
B
C
CASE  
SIZE  
0.005  
(.13)  
0.031  
(.79)  
0.010  
(.25)  
0.031  
(.79)  
0.001  
(.03)  
MAX.  
A
B
C
D
0.125  
(3.18)  
0.250  
(6.35)  
0.135  
(3.43)  
0.286  
(7.26)  
0.020  
(.51)  
0.422  
(10.72)  
0.175  
(4.45)  
0.438  
(11.13)  
0.185  
(4.70)  
0.474  
(12.04)  
0.020  
(.51)  
0.610  
(15.49)  
0.279  
(7.09)  
0.650  
(16.51)  
0.289  
(7.34)  
0.686  
(17.42)  
0.025  
(.64)  
0.822  
(20.88)  
0.341  
(8.66)  
0.750  
(19.05)  
0.351  
(8.92)  
0.786  
(19.96)  
0.025  
(.64)  
0.922  
(23.42)  
T210 ORDERING INFORMATION  
T 210 A 105 K 050 R S  
LEAD MATERIAL  
S—Standard  
TANTALUM  
SERIES  
(Solder coated nickel)  
210—GR500/J (KEMET) High Reliability;  
Solid Electrolyte. Graded; High  
Reliability; Hermetic Seal; Axial  
Lead; Polar  
GRADED FAILURE RATE  
M—1ꢀ/k hrs.  
CASE SIZE  
A/B/C/D  
P—0.1ꢀ/k hrs.  
R—0.01ꢀ/k hrs.  
S—0.001ꢀ/k hrs.  
PICOFARAD CODE  
First two digits represent significant figures.  
Third digit specifies number of zeros to follow.  
CAPACITANCE TOLERANCE  
VOLTAGE  
M— 20ꢀ  
K— 10ꢀ  
J— 5ꢀ  
at 85°C  
RATINGS & PART NUMBER REFERENCE  
NOMINAL  
CAPACI-  
TANCE  
(µF) 25C  
120 Hz  
MAXIMUM  
MAXIMUM  
ESR  
MAXIMUM  
OHMS  
NOMINAL  
CAPACI-  
TANCE  
MAXIMUM  
LEAKAGE CURRENT  
AT RATED VOLTS  
MAXIMUM  
DISSIPATION FACTOR  
(ꢀ) AT 120 Hz  
ESR  
MAXIMUM  
OHMS  
100 kHz  
+25°C  
GRADED  
FAILURE  
RATES  
LEAKAGE CURRENT  
AT RATED VOLTS  
DISSIPATION FACTOR  
(ꢀ) AT 120 Hz  
GRADED  
FAILURE  
RATES  
CASE  
SIZE  
PART NUMBER  
CASE  
SIZE  
PART NUMBER  
100 kHz  
+25°C  
(µF) 25C  
120 Hz  
+25°C  
(µA)  
+85°C  
(µA)  
+125°C  
(µA)  
-55  
+85°C  
+25°C  
(µA)  
+85°C  
(µA)  
+125°C  
(µA)  
-55  
+85°C  
+25°C  
+125°C  
+25°C  
+125°C  
6 VOLT RATING AT 85°C—4 VOLT RATING AT 125°C  
6 VOLT RATING AT 85°C—4 VOLT RATING AT 125°C  
(1)  
(2)  
(2)  
(2)  
(2)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
3.9  
4.7  
5.6  
6.8  
A
A
A
A
T210A395 006  
S
S
S
S
R,S  
R,S  
R,S  
R,S  
0.1  
0.1  
0.1  
0.1  
1.0  
1.0  
1.0  
1.0  
1.25  
1.25  
1.25  
1.25  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
6.0  
1.00  
0.90  
0.90  
0.80  
27.0  
33.0  
39.0  
47.0  
56.0  
B
B
B
B
B
T210B276 006  
S
S
S
S
S
R,S  
R,S  
R,S  
R,S  
R,S  
0.5  
0.5  
0.5  
0.5  
0.5  
5.0  
5.0  
5.0  
5.0  
5.0  
6.25  
6.25  
6.25  
6.25  
6.25  
4.0  
4.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
0.25  
0.24  
0.24  
0.24  
0.24  
(1)  
(1)  
T210A475 006  
T210B336 006  
(1)  
(1)  
T210A565 006  
T210B396 006  
(1)  
(1)  
T210A685 006  
T210B476 006  
(1)  
T210B566 006  
(1) To complete Part Number, insert Capacitance Tolerance Symbol in 9th character, M— 20ꢀ, K— 10ꢀ, J— 5ꢀ.  
(2) To complete Part Number, insert Failure Rate Symbol in the 13th character as shown above.  
2
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T210  
GR500/T210 Capacitors  
CAPACITOR OUTLINE DRAWINGS  
NOMINAL  
CAPACI-  
TANCE  
(µF) 25C  
120 Hz  
MAXIMUM  
MAXIMUM  
ESR  
MAXIMUM  
OHMS  
100 kHz  
+25°C  
NOMINAL  
CAPACI-  
TANCE  
(µF) 25C  
120 Hz  
MAXIMUM  
LEAKAGE CURRENT  
AT RATED VOLTS  
MAXIMUM  
DISSIPATION FACTOR  
(ꢀ) AT 120 Hz  
ESR  
MAXIMUM  
OHMS  
100 kHz  
+25°C  
GRADED  
FAILURE  
RATES  
LEAKAGE CURRENT  
AT RATED VOLTS  
DISSIPATION FACTOR  
(ꢀ) AT 120 Hz  
GRADED  
FAILURE  
RATES  
CASE  
SIZE  
PART NUMBER  
CASE  
SIZE  
PART NUMBER  
+25°C  
(µA)  
+85°C  
(µA)  
+125°C  
(µA)  
-55  
+85°C  
+25°C  
(µA)  
+85°C  
(µA)  
+125°C  
(µA)  
-55  
+85°C  
+25°C  
+125°C  
+25°C  
+125°C  
6 VOLT RATING AT 85°C—4 VOLT RATING AT 125°C  
20 VOLT RATING AT 85°C—13 VOLT RATING AT 125°C (CONT’D.)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
82.0  
100.0  
120.0  
150.0  
180.0  
220.0  
270.0  
330.0  
C
C
C
C
C
D
D
D
T210C826 006  
S
S
S
S
S
S
S
S
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
1.5  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
3.0  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
20.0 25.00  
20.0 25.00  
30.0 39.50  
5.0  
5.0  
5.0  
5.0  
5.0  
6.0  
6.0  
6.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.07  
0.06  
4.7  
5.6  
6.8  
B
B
B
B
B
B
B
C
C
C
C
C
C
D
D
D
D
T210B475 020  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
R,S  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
R,S  
R,S  
P,R  
P,R  
P,R  
P,R  
M,P  
M,P  
M,P  
M,P  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
3.0  
3.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
10.0 12.50  
10.0 12.50  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
20.0 25.00  
20.0 25.00  
30.0 37.50  
30.0 37.50  
6.25  
6.25  
6.25  
6.25  
6.25  
6.25  
6.25  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
0.51  
0.47  
0.43  
0.39  
0.35  
0.32  
0.29  
0.25  
0.25  
0.21  
0.19  
0.17  
0.16  
0.13  
0.12  
0.11  
0.10  
(1)  
(1)  
T210C107 006  
T210B565 020  
(1)  
(1)  
T210C127 006  
T210B685 020  
(1)  
(1)  
T210C157 006  
8.2  
T210B825 020  
(1)  
(1)  
T210C187 006  
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
56.0  
68.0  
82.0  
100.0  
T210B106 020  
(1)  
(1)  
T210D227 006  
T210B126 020  
(1)  
(1)  
T210D277 006  
T210B156 020  
(1)  
(1)  
T210D337 006  
T210C186 020  
(1)  
T210C226 020  
10 VOLT RATING AT 85°C—7 VOLT RATING AT 125°C  
(1)  
T210C276 020  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
2.7  
3.3  
3.9  
A
A
A
A
B
B
B
B
B
B
B
C
C
C
C
C
C
D
D
D
T210A275 010  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
0.1  
0.1  
0.1  
0.1  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.0  
2.0  
3.0  
1.0  
1.0  
1.0  
1.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
1.25  
1.25  
1.25  
1.25  
6.25  
6.25  
6.25  
6.25  
6.25  
6.25  
6.25  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
4.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
8.0  
8.0  
8.0  
8.0  
8.0  
1.20  
1.00  
1.00  
0.90  
0.32  
0.29  
0.27  
0.26  
0.25  
0.24  
0.24  
0.16  
0.15  
0.13  
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
(1)  
T210C336 020  
(1)  
T210A335 010  
(1)  
T210C396 020  
(1)  
T210A395 010  
(1)  
T210C476 020  
(1)  
4.7  
T210A475 010  
(1)  
T210D566 020  
(1)  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
56.0  
68.0  
82.0  
100.0  
120.0  
150.0  
180.0  
220.0  
T210B126 010  
(1)  
T210D686 020  
(1)  
T210B156 010  
(1)  
T210D826 020  
(1)  
T210B186 010  
(1)  
T210D107 020  
(1)  
T210B226 010  
35 VOLT RATING AT 85°C—23 VOLT RATING AT 125°C  
(1)  
T210B276 010  
(1)  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
T210B336 010  
0.82  
1.0  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
A
A
B
B
B
B
B
B
C
C
C
C
C
C
D
D
D
D
T210A824 035  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
M,P  
M,P  
R,S  
R,S  
P,R  
P,R  
P,R  
M,P  
M,P  
M,P  
M,P  
M,P  
0.1  
0.1  
0.25  
0.5  
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
2.0  
2.0  
3.0  
1.0  
1.0  
2.5  
5.0  
5.0  
5.0  
5.0  
5.0  
10.0 12.50  
10.0 12.50  
10.0 12.50  
10.0 12.50  
10.0 12.50  
10.0 12.50  
20.0 25.00  
20.0 25.00  
20.0 25.00  
30.0 37.50  
1.25  
1.25  
3.13  
6.25  
6.25  
6.25  
6.25  
6.25  
2.0  
2.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
6.0  
6.0  
1.60  
1.40  
0.68  
0.62  
0.56  
0.51  
0.47  
0.43  
0.36  
0.33  
0.30  
0.27  
0.25  
0.25  
0.18  
0.17  
0.15  
0.14  
(1)  
(1)  
T210B396 010  
T210A105 035  
(1)  
(1)  
T210C476 010  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
20.0 25.00  
20.0 25.00  
30.0 37.50  
T210B275 035  
(1)  
(1)  
T210C566 010  
T210B335 035  
(1)  
(1)  
T210C686 010  
T210B395 035  
(1)  
(1)  
T210C826 010  
T210B475 035  
(1)  
(1)  
T210C107 010  
T210B565 035  
(1)  
(1)  
T210C127 010  
T210B685 035  
(1)  
(1)  
T210D157 010  
T210C825 035  
(1)  
(1)  
T210D187 010  
T210C106 035  
(1)  
(1)  
T210D227 010  
T210C126 035  
(1)  
T210C156 035  
15 VOLT RATING AT 85°C—10 VOLT RATING AT 125°C  
(1)  
T210C186 035  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
5.6  
6.8  
8.2  
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
56.0  
68.0  
82.0  
100.0  
120.0  
150.0  
A
A
A
A
A
A
B
B
B
B
B
B
B
B
C
C
C
C
C
C
D
D
D
D
T210A125 015  
R,S  
R,S  
R,S  
R,S  
P,R  
P,R  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
P,R  
P,R  
R,S  
R,S  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
6.25  
6.25  
6.25  
6.25  
6.25  
6.25  
6.25  
6.25  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
5.0  
5.0  
5.0  
5.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
8.0  
8.0  
8.0  
8.0  
1.40  
1.30  
1.25  
1.20  
1.20  
1.00  
0.47  
0.43  
0.39  
0.35  
0.32  
0.29  
0.27  
0.26  
0.21  
0.19  
0.17  
0.16  
0.15  
0.13  
0.11  
0.10  
0.09  
0.09  
(1)  
T210C226 035  
(1)  
T210A155 015  
(1)  
T210D276 035  
(1)  
T210A185 015  
(1)  
T210D336 035  
(1)  
T210A225 015  
(1)  
T210D396 035  
(1)  
T210A275 015  
(1)  
T210D476 035  
(1)  
T210A335 015  
50 VOLT RATING AT 85°C—33 VOLT RATING AT 125°C  
(1)  
T210B565 015  
(1)  
(1)  
(2)  
T210B685 015  
0.0047  
0.0056  
0.0068  
0.0082  
0.01  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.1  
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
T210A472 050  
S
S
S
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
R,S  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
.63  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
30.00  
28.00  
26.00  
24.00  
22.00  
20.00  
18.00  
16.00  
14.00  
13.00  
12.00  
11.00  
10.00  
9.00  
8.00  
7.50  
7.00  
6.50  
5.50  
5.00  
4.00  
3.50  
(1)  
(1)  
(2)  
T210B825 015  
T210A562 050  
(1)  
(1)0  
(2)  
T210B106 015  
T210A682 50  
(1)  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
T210B126 015  
T210A822 050  
(1)  
(1)  
T210B156 015  
T210A103 050  
(1)  
(1)  
T210B186 015  
T210A123 050  
(1)  
(1)  
T210B226 015  
T210A153 050  
(1)  
(1)  
T210C276 015  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
20.0 25.00  
20.0 25.00  
20.0 25.00  
30.0 37.50  
T210A183 050  
(1)  
(1)  
T210C336 015  
T210A223 050  
(1)  
(1)  
T210C396 015  
T210A273 050  
(1)  
(1)  
T210C476 015  
T210A333 050  
(1)  
(1)  
T210C566 015  
T210A393 050  
(1)  
(1)  
T210C686 015  
1.5  
2.0  
2.0  
2.0  
T210A473 050  
(1)  
(1)  
T210D826 015  
T210A563 050  
(1)  
(1)  
T210D107 015  
T210A683 050  
(1)  
(1)  
T210D127 015  
T210A823 050  
(1)  
(1)  
T210D157 015  
3.0  
T210A104 050  
(1)  
T210A124 050  
20 VOLT RATING AT 85°C—13 VOLT RATING AT 125°C  
(1)  
T210A154 050  
1.2  
1.5  
1.8  
2.2  
A
A
A
A
T210A12510202S  
T210A15510202S  
T210A18510202S  
T210A22510202S  
P,R  
P,R  
P,R  
P,R  
0.25  
0.25  
0.25  
0.25  
2.5  
2.5  
2.5  
2.5  
3.13  
3.13  
3.13  
3.13  
3.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
4.0  
1.40  
1.30  
1.25  
1.20  
(1)  
T210A184 050  
(1)  
T210A224 050  
(1)  
T210A274 050  
(1)  
T210A334 050  
3.30  
3.30  
3.00  
2.50  
(1)  
T210A394 050  
(1) To complete Part Number, insert Capacitance Tolerance Symbol in 9th character, M— 20ꢀ,  
(1)  
T210A474 050  
K— 10ꢀ, J— 5ꢀ.  
(2) To complete Part Number, insert Failure Rate Symbol in the 13th character as shown on  
page 2.  
(1)  
0.56  
T210A564 050  
0.1  
3
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T210  
DETAIL SPECIFICATION  
GR500/T210 Capacitors  
NOMINAL  
CAPACI-  
TANCE  
(µF) 25°C  
120 Hz  
MAXIMUM  
LEAKAGE CURRENT  
AT RATED VOLTS  
MAXIMUM  
DISSIPATION FACTOR  
(ꢀ) AT 120 Hz  
ESR  
MAXIMUM  
OHMS  
NOMINAL  
CAPACI-  
TANCE  
MAXIMUM  
LEAKAGE CURRENT  
AT RATED VOLTS  
MAXIMUM  
DISSIPATION FACTOR  
(ꢀ) AT 120 Hz  
ESR  
MAXIMUM  
OHMS  
100 kHz  
+25°C  
GRADED  
FAILURE  
RATES  
GRADED  
FAILURE  
RATES  
CASE  
SIZE  
PART NUMBER  
CASE  
SIZE  
PART NUMBER  
100 kHz  
+25°C  
(µF) 25°C  
120 Hz  
+25°C  
(µA)  
+85°C  
(µA)  
+125°C  
(µA)  
-55  
+85°C  
+25°C  
(µA)  
+85°C  
(µA)  
+125°C  
(µA)  
-55  
+85°C  
+25°C  
+125°C  
+25°C  
+125°C  
75 VOLT RATING AT 85°C—50 VOLT RATING AT 125°C (CONT’D.)  
50 VOLT RATING AT 85°C—33 VOLT RATING AT 125°C (CONT’D.)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
B
B
B
B
B
C
C
C
C
C
D
D
T210B185 075  
S
S
S
S
S
S
S
S
S
S
S
S
P,R  
P,R  
M,P  
M,P  
M,P  
P,R  
0.5  
0.5  
0.5  
0.75  
0.75  
1.5  
1.5  
2.0  
2.0  
2.0  
2.5  
2.5  
5.0  
5.0  
5.0  
7.5  
7.5  
15.0 18.75  
15.0 18.75  
20.0 25.00  
20.0 25.00  
20.0 25.00  
25.0 31.25  
25.0 31.25  
6.25  
6.25  
6.25  
9.40  
9.40  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
5.0  
5.0  
5.0  
5.0  
0.92  
0.80  
0.68  
0.62  
0.56  
0.47  
0.44  
0.44  
0.36  
0.33  
0.26  
0.23  
0.68  
0.82  
1.0  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
A
A
A
B
B
B
B
B
B
B
B
C
C
C
C
C
C
C
D
T210A684 050  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
R,S  
P,R  
P,R  
R,S  
R,S  
R,S  
R,S  
P,R  
P,R  
P,R  
M,P  
P,R  
P,R  
P,R  
P,R  
M,P  
M,P  
M,P  
M,P  
0.1  
0.1  
0.1  
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.0  
1.0  
1.0  
2.5  
2.5  
2.5  
2.5  
2.5  
5.0  
5.0  
5.0  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
15.0 18.75  
20.0 25.00  
1.25  
1.25  
1.25  
3.13  
3.13  
3.13  
3.13  
3.13  
6.25  
6.25  
6.25  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
1.80  
1.60  
1.40  
1.20  
1.10  
0.92  
0.80  
0.68  
0.62  
0.56  
0.51  
0.44  
0.40  
0.36  
0.33  
0.30  
0.27  
0.25  
0.20  
(1)  
(1)  
T210B225 075  
T210A824 050  
(1)  
(1)  
T210B275 075  
T210A105 050  
(1)  
(1)  
T210B335 075  
T210B125 050  
(1)  
(1)  
T210B395 075  
T210B155 050  
(1)  
(1)  
T210C475 075  
T210B185 050  
(1)  
(1)  
T210C565 075  
P,R  
T210B225 050  
(1)  
(1)  
T210C685 075  
M,P  
M,P  
M,P  
M,P  
M,P  
T210B275 050  
(1)  
(1)  
T210C825 075  
T210B335 050  
(1)  
(1)  
10.0  
12.0  
15.0  
T210C106 075  
T210B395 050  
(1)  
(1)  
T210D126 075  
T210B475 050  
(1)  
(1)  
T210D156 075  
T210C565 050  
(1)  
T210C685 050  
100 VOLT RATING AT 85°C—67 VOLT RATING AT 125°C  
(1)  
8.2  
T210C825 050  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
0.0047  
0.0056  
0.0068  
0.0082  
0.01  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.1  
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
0.56  
0.68  
0.82  
1.0  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10.0  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
C
C
C
C
C
D
D
T210A472 100  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M.P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
2.0  
2.0  
2.0  
2.0  
2.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
5.0  
5.0  
5.0  
5.0  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
6.25  
6.25  
6.25  
6.25  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
30.00  
28.00  
26.00  
24.00  
22.00  
20.00  
18.00  
16.00  
14.00  
13.00  
12.00  
11.00  
10.00  
9.00  
8.00  
7.50  
7.00  
6.50  
4.40  
4.00  
3.50  
3.10  
2.80  
2.60  
2.40  
2.25  
2.10  
1.47  
1.40  
1.33  
1.06  
0.92  
0.80  
0.68  
0.62  
0.56  
0.47  
0.44  
0.40  
0.36  
0.33  
(1)  
10.0  
12.0  
15.0  
18.0  
22.0  
T210C106 050  
(1)  
T210A562 100  
(1)  
T210C126 050  
(1)  
T210A682 100  
(1)  
T210C156 050  
(1)  
T210A822 100  
(1)  
T210C186 050  
1.5  
2.0  
(1)  
T210A103 100  
(1)  
T210D226 050  
(1)  
T210A123 100  
75 VOLT RATING AT 85°C—50 VOLT RATING AT 125°C  
(1)  
T210A153 100  
(1)  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
T210A183 100  
0.0047  
0.0056  
0.0068  
0.0082  
0.01  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.1  
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.39  
0.47  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
T210A472 075  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
M,P  
P,R  
P,R  
P,R  
P,R  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
5.0  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
3.13  
6.25  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
30.00  
28.00  
26.00  
24.00  
22.00  
20.00  
18.00  
16.00  
14.00  
13.00  
12.00  
11.00  
10.00  
9.00  
8.00  
7.50  
7.00  
6.50  
4.40  
4.00  
3.50  
3.10  
(1)  
(1)  
T210A223 100  
T210A562 075  
(1)  
(1)  
T210A273 100  
T210A682 075  
(1)  
(1)  
T210A333 100  
T210A822 075  
(1)  
(1)  
T210A393 100  
T210A103 075  
(1)  
(1)  
T210A473 100  
T210A123 075  
(1)  
(1)  
T210A563 100  
T210A153 075  
(1)  
(1)  
T210A683 100  
T210A183 075  
(1)  
(1)  
T210A823 100  
T210A223 075  
(1)  
(1)  
T210A104 100  
T210A273 075  
(1)  
(1)  
T210A124 100  
T210A333 075  
(1)  
(1)  
T210A154 100  
T210A393 075  
(1)  
(1)  
T210A184 100  
T210A473 075  
(1)  
(1)  
T210A224 100  
T210A563 075  
(1)  
(2)  
S
(1)  
T2l0A274 100  
T210A683 075  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(1)  
T210A334 100  
T210A823 075  
(1)  
(1)  
T210A394 100  
T210A104 075  
(1)  
(1)  
T210A474 100  
T210A124 075  
(1)  
(1)  
T210A564 100  
T210A154 075  
(1)  
(1)  
T210B684 100  
T210A184 075  
(1)  
(1)  
T210B824 100  
T210A224 075  
(1)  
(1)  
T210B105 100  
T210A274 075  
(1)  
(1)  
T210B125 100  
T310A334 075  
2.80  
2.60  
2.40  
2.25  
2.10  
1.47  
1.40  
1.33  
(1)  
(1)  
T210B155 100  
T310A394 075  
(1)  
(1)  
T210B185 100  
T210A474 075  
(1)  
(1)  
T210B225 100  
0.56  
0.68  
0.82  
1.0  
1.2  
1.5  
T210A564 075  
(1)  
(1)  
T210B275 100  
T210A684 075  
(1)  
(1)  
T210C335 100  
20.0 25.00  
20.0 25.00  
20.0 25.00  
20.0 25.00  
20.0 25.00  
25.0 31.25  
25.0 31.25  
T210B824 075  
(1)  
(1)  
T210C395 100  
T210B105 075  
(1)  
(1)  
T210C475 100  
T210B125 075  
(1)  
(1)  
T210C565 100  
T210B155 075  
1.06  
(1)  
T210C685 100  
(1) To complete Part Number, insert Capacitance Tolerance Symbol in 9th character, M— 20ꢀ,  
(1)  
T210D825 100  
M
M
2.5  
2.5  
K— 10ꢀ, J— 5ꢀ.  
(1)  
T210D106 100  
(2) To complete Part Number, insert Failure Rate Symbol in the 13th character as shown on  
page 2.  
CAPACITOR MARKINGS  
B Case  
A Case  
C Case  
+T210  
K10ꢀS  
R68 µF  
50 V  
—Polarity symbol, series designation  
—KEMET tolerance, failure rate  
—Capacitance  
+KT210B —Polarity symbol, KEMET part number  
475K050 —KEMET part number (continued)  
SS4R7 µF —KEMET part number (continued)  
capacitance  
+KEMET —Polarity symbol, KEMET  
T210C106K —KEMET part number  
035SS 10ꢀ —KEMET part number (continued),  
tolerance  
—Voltage  
225XA  
—Date Code (Year and week of  
manufacture and batch designator)  
50 V 10ꢀ —Voltage, tolerance  
0225XA —Date Code (Year and week of  
manufacture and batch designator)  
10 µF 35V —Capacitance, voltage  
0225XA  
—Date Code (Year and week of  
manufacture and batch designator)  
4
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T210  
APPLICATIONS INFORMATION GR500/T210  
Introduction — The following section is provided for assis-  
tance in the application of T210 Series capacitors. Space  
does not permit a complete discussion of all technical  
aspects, and further information on specific problems may  
be obtained through KEMET sales representatives.  
a measurement parameter at higher frequencies, where  
impedance and ESR are the normal parameters of concern.  
TYPICAL DISSIPATION FACTOR AS A  
FUNCTION OF FREQUENCY AT  
+ 25° C  
POLAR CAPACITORS - T210 SERIES  
Capacitance — The nominal values listed in Table 1 con-  
forms to accepted industry practice; intermediate values may  
be produced on special order. Standard tolerances are  
20%, 10%, and 5%. Closer tolerances of 2% may be  
available upon special order and after agreement upon mea-  
surement conditions.  
20.0  
10.0  
The capacitance of solid tantalum capacitors decreases  
with frequency as shown in Figure 1. The nominal values of  
Table 1 are also available at 1 kHz on special order. Typical  
variation of capacitance with respect to temperature is illus-  
trated in Figure 2.  
1.0  
100  
1K  
10K  
Frequency - Hertz  
1.0  
Fig 3 Frequency –Hertz  
Reference  
1.0 at 120Hz  
0.9  
100  
1K  
10K  
DC Leakage Current — The DC Leakage current limits of  
Table I are the lowest generally specified in the solid tanta-  
lum industry. Even lower leakage currents are available on  
special order. Low leakage current, aside from its intrinsic  
value, is an indication of anode quality. DC leakage current  
as a function of temperature is represented by the typical  
curve in Figure 4, while similar information pertaining to  
leakage behavior with respect to voltage is contained in  
Figure 5.  
Frequency - Hertz  
Fig 1 Capacitance Versus Frequency  
+20  
+10  
0
-10  
-20  
10.0  
-80 -60 -40 -20  
0
+20 +40 +60 +80 +100 +120  
Operating Temperature °C  
Fig 2 Capacitance Versus Temperature  
Reference 1.0  
at + 25°C  
Dissipation Factor — Dissipation factor is defined as the  
ratio of equivalent series resistance to capacitive reactance at  
a specified frequency:  
1.0  
R
D =  
= 2πfCR  
XC  
Where R = equivalent series resistance in ohms  
D = dissipation factor  
XC = capacitive reactance in ohms  
C = series capacitance in farads  
f = frequency in Hertz  
0.1  
Unless otherwise stated, a standard frequency of 120 Hz is  
used for both dissipation and capacitance measurements.  
Typical behavior of dissipation factor with frequency is  
shown in Figure 3. Dissipation factor loses its importance as  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +125  
Operating Temperature –˚C  
5
Fig 4 Typical Variation of leakage current with temperature.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T210  
APPLICATIONS INFORMATION GR500/T210 (Continued)  
Expected reliability factors for voltages and temperatures  
other than the rated conditions may be found in Figure 6.  
Since T210 Series capacitors are supplied with a predeter-  
mined failure rate under rated conditions, reliability under  
use conditions may be estimated with this nomograph.  
1.0  
0.1  
Circuit Impedance — Failure rates are affected by temper-  
ature and voltage as described in Figure 6 and also by the  
circuit impedance seen by the capacitor. Originally, applica-  
tion advice for solid tantalum capacitors suggested an  
impedance of 3 ohms or higher per applied volt. This advice  
was later found to be unnecessarily conservative, and the  
factors below are based on 0.1 ohm per volt as the unity fail-  
ure rate multiplier.  
0.01  
0.001  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
Percentage of Rated Voltage  
Circuit Impedance,  
Ohms per Volt  
Failure Rate  
Multiplying Factor  
Fig 5 Typical variation of leakage current with voltage  
0.1  
0.2  
0.4  
0.6  
0.8  
1
1.0  
0.8  
0.6  
0.4  
0.3  
0.2  
0.1  
0.07  
Voltage and Temperature Ratings; Reliability Effect —  
T210 Series capacitors are manufactured in 6 through 100  
volt ratings at 85ºC. Operation at 125ºC with 2/3 rated volt-  
age applied gives equivalent results and voltage may be der-  
ated linearly between these two points. Solid tantalum  
capacitors may be operated continuously at any voltage from  
zero to the maximum rating without adverse effects.  
Operation at voltage below nameplate improves reliability,  
while subsequent operation at a higher voltage will not be  
affected by prior low voltage use.  
2
3  
Equivalent Series Resistance — The equivalent series  
resistance (ESR) of a solid tantalum capacitor is frequency  
dependent as shown in Figure 7a thru 7g. The curves are typ-  
ical of the capacitor values noted, with measurements being  
125  
120  
1.2  
1
made by contacting lead wires /4 inch from the ends of the  
3
10  
capacitor cases. Since ESR decreases with frequency, AC  
performance at higher frequencies is considerably better  
than would be predicted from the 120 Hz ratings.  
1.1  
2
10  
110  
85°C  
Capacitor Impedance — The relationship between imped-  
ance and frequency at various voltage ratings is illustrated  
with typical curves in Figure 7. Impedance declines with  
decreasing capacitive reactance, but ESR becomes dominant  
before the self-resonant point is reached, producing the typ-  
ical damped curves. Finally, impedance increases as induc-  
tance of the lead wire and other capacitor elements domi-  
nates. Obviously, high frequency impedance is directly  
influenced by the length of lead wire and general mounting  
1.0  
0.9  
0.8  
1
10  
Rating  
T
3
100  
1.0  
F
F
V
3
2
T
1
F
1
V
V
1
90  
85  
80  
-1  
10  
10  
10  
10  
10  
10  
10  
10  
3
2
T
2
-2  
-3  
-4  
-5  
-6  
-7  
-8  
0.7  
125°C  
0.67  
Rating  
Connect the temperature and  
applied voltage ratio of  
interest with a straight edge.  
The multiplier of failure rate is  
given at the intersection of this  
line with the model scale.  
1
70  
60  
50  
40  
0.6  
0.5  
0.4  
0.3  
0.2  
configuration. The typical curves of Figure 7 include /4 inch  
of lead wire at each end of the capacitor.  
AC Ripple — Permissable AC ripple voltage is related to  
the rated voltage, the ESR of the capacitor, and the power  
dissipation capability of a particular case size:  
1. The positive peak AC voltage plus the DC bias  
voltage (if any), must not exceed the rated voltage.  
2. The negative peak AC voltage, in combination  
with the bias voltage (if any), must not exceed that  
allowable for a polar T210 capacitor (see Table  
III).  
Given T & V1 Read Failure  
1
Rate Multiplier F1  
Given T, & F2  
Read Reguired Voltage V2  
Given F3 & V3  
Read Allowable Temp T3  
30  
25  
T
V 0.1  
F
6
Fig 6 Reliability alignment chart  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T210  
APPLICATIONS INFORMATION GR500/T210 (Continued)  
10VDC Rated  
Impedance  
100  
ESR  
(Ohms)  
33  
10  
1
µ
Fd  
100  
220  
µ
Fd  
µ
Fd  
33  
µ
Fd  
100  
µ
Fd  
0.1  
220  
µ
Fd  
100  
1000  
10K  
100K  
1M  
10M  
Frequency (MHz)  
ESR and Impedance vs. Frequency  
Figure 7a.  
20VDC Rated  
30  
10  
3
Impedance  
ESR  
(Ohms)  
47  
µ
Fd  
68  
µ
Fd  
100  
µ
Fd  
1
0.3  
0.1  
47  
µ
Fd  
68  
µ
Fd  
100  
µ
Fd  
100  
1000  
10K  
100K  
1M  
10M  
Frequency (MHz)  
ESR and Impedance vs. Frequency  
35VDC Rated  
Figure 7b.  
Impedance  
100  
2.7  
ESR  
µ
(Ohms)  
Fd  
4.7  
µ
Fd  
22  
10  
1
µ
47  
Fd  
µ
Fd  
2.7  
µ
Fd  
4.7  
µ
Fd  
47  
µFd  
0.1  
22  
µ
Fd  
100  
Figure 7c.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
1000  
10K  
100K  
1M  
10M  
Frequency (MHz)  
7
ESR and Impedance vs. Frequency  
GR500/T210  
APPLICATIONS INFORMATION GR500/T210 (Continued)  
3. The power dissipated in the equivalent series  
resistance of the capacitor must not exceed the  
limits specified in Table II.  
Reverse Voltage — The solid tantalum capacitor is basically  
a polar device and can be damaged by serious reversals of  
polarity even for short periods of time, depending upon the  
circuit impedance. However, some short duration reversal is  
permissable as shown in Table III.  
The power dissipated may be calculated from the  
following:  
E2R  
Z2  
P =  
Where E = ripple voltage across capacitor in rms volts  
Z = capacitor impedance in ohms at the specified fre-  
quency (typical values from Figure 7)  
TABLE III  
Permissible Reverse Voltage  
Temp.  
C
% of Forward  
Rated Voltage  
R = equivalent series resistance in ohms (typical val-  
ues from Figure 7)  
25  
85  
15  
5
125  
1
Ripple voltage, as limited by power dissipation, may be  
determined as follows:  
P max  
Shelf Life — Shelf life is particularly difficult to define for  
the solid tantalum capacitor. Extended periods of storage at  
high temperature will cause some small change in leakage  
current which usually returns to normal upon short time  
application of working voltage. Storage at low temperatures  
causes little or no degradation of leakage current. Long-term  
studies of capacitance and dissipation factor shift for as long  
as 45,000 hours indicate only minor variations (usually less  
than 2%) in these parameters.  
Installation — Mounting procedures should not place  
undue strain on terminals, particularly the positive end with  
its glass-metal seal. Attention to soldering technique should  
avoid excessive heat transfer which might remelt the capac-  
itorʼs internal solder and cause loss of hermeticity or short  
circuits. Potting materials should not produce excessive cur-  
ing exotherms or shrinkage pressures.  
E max (25C) = Z  
R
Where P max=maximum permissible power from  
Table III  
R = ESR from Figure 7  
E max (85C) = 0.9 E max (25C)  
E max (125C) = 0.4 E max (25C)  
TABLE II  
Maximum Permissible Power Dissipation at 25C Ambient  
T210 Polar Capacitors  
Case Size  
Watts  
0.090  
0.100  
0.125  
0.180  
A
B
C
D
8
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T240  
DETAIL SPECIFICATION  
GR500/T240 Capacitors  
CAPACITOR OUTLINE DRAWINGS  
DIMENSIONS — INCHES & (MILLIMETERS)  
UNINSULATED  
INSULATED  
D
L
D
L
B
C
CASE  
SIZE  
0.005  
(.13)  
0.031  
(.79)  
0.010  
(.25)  
0.031  
(.79)  
0.001  
(.03)  
MAX.  
A
B
C
D
0.125 (3.18)  
0.175 (4.45)  
0.279 (7.09)  
0.341 (8.66)  
0.250 (6.35)  
0.438 (11.13)  
0.650 (16.51)  
0.750 (19.05)  
0.135 (3.43)  
0.185 (4.70)  
0.289 (7.34)  
0.351 (8.92)  
0.286 (7.26)  
0.474 (12.04)  
0.686 (17.42)  
0.786 (19.96)  
0.020 (.51)  
0.020 (.51)  
0.025 (.64)  
0.025 (.64)  
0.422 (10.72)  
0.610 (15.49)  
0.822 (20.88)  
0.922 (23.42)  
T240 ORDERING INFORMATION  
T 240 A 125 K 050 R S  
LEAD MATERIAL  
S—Standard  
TANTALUM  
SERIES  
(Solder coated nickel)  
240—GR500/J (KEMET) High Reliability;  
Solid Electrolyte. Graded; High  
Reliability; Hermetic Seal; Axial  
Lead; Polar  
GRADED FAILURE RATE  
M—1ꢀ/k hrs.  
CASE SIZE  
A/B/C/D  
P—0.1ꢀ/k hrs.  
R—0.01ꢀ/k hrs.  
PICOFARAD CODE  
First two digits represent significant figures.  
Third digit specifies number of zeros to follow.  
CAPACITANCE TOLERANCE  
VOLTAGE  
M— 20ꢀ  
K— 10ꢀ  
J— 5ꢀ  
at 85°C  
9
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T240  
GR500/T240 Capacitors  
RATINGS & PART NUMBER REFERENCE  
NOMINAL  
CAPACI-  
TANCE  
(µF) 25°C  
120 Hz  
MAXIMUM  
MAXIMUM  
ESR  
MAXIMUM  
OHMS  
100 kHz  
+25°C  
NOMINAL  
CAPACI-  
TANCE  
(µF) 25°C  
120 Hz  
MAXIMUM  
LEAKAGE CURRENT  
AT RATED VOLTS  
MAXIMUM  
DISSIPATION FACTOR  
(ꢀ) AT 120 Hz  
ESR  
MAXIMUM  
OHMS  
100 kHz  
+25°C  
GRADED  
FAILURE  
RATES  
LEAKAGE CURRENT  
AT RATED VOLTS  
DISSIPATION FACTOR  
(ꢀ) AT 120 Hz  
GRADED  
FAILURE  
RATES  
CASE  
SIZE  
PART NUMBER  
CASE  
SIZE  
PART NUMBER  
+25°C  
(µA)  
+85°C  
(µA)  
+125°C  
(µA)  
-55  
+85°C  
+25°C  
(µA)  
+85°C  
(µA)  
+125°C  
(µA)  
-55  
+85°C  
+25°C  
+125°C  
+25°C  
+125°C  
6 VOLT RATING AT 85°C—4 VOLT RATING AT 125°C  
30 VOLT RATING AT 85°C—20 VOLT RATING AT 125°C  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
(2)  
10.0  
12.0  
A
A
B
C
C
C
C
C
D
D
D
T240A106 006  
S
S
S
S
S
S
S
S
S
S
S
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
0.5  
0.5  
1.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0 6.25 5.0  
2.0 6.25 5.0  
3.0 12.50 6.0  
8.0 25.00 6.0  
8.0 25.00 6.0  
8.0 25.00 6.0  
6.0  
6.0  
8.0  
8.0  
8.0  
8.0  
0.700  
0.600  
0.200  
0.090  
0.070  
0.065  
0.065  
0.060  
0.060  
1.8  
2.2  
2.7  
12.0  
15.0  
18.0  
56.0  
68.0  
82.0  
A
A
A
B
B
B
C
C
D
D
T240A185 030  
S
S
S
S
S
S
S
S
S
S
P,R  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M,P  
M
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
5.0 12.50 4.0  
5.0 12.50 4.0  
5.0 12.50 4.0  
5.0 12.50 4.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
1.25  
1.20  
1.10  
0.32  
0.29  
0.27  
0.15  
0.13  
0.11  
0.10  
(1)  
(1)  
T240A126 006  
T240A225 030  
(1)  
(1)  
100.0  
220.0  
270.0  
330.0  
390.0  
470.0  
680.0  
820.0  
1000.0  
T240B107 006  
T240A275 030  
(1)  
(1)  
T240C227 006  
T240B126 030  
(1)  
(1)  
T240C277 006  
T240B156 030  
(1)  
(1)  
T240C337 006  
T240B186 030  
(1)  
(1)  
T240C397 006  
8.0 25.00  
8.0 10.0  
T240C566 030  
(1)  
(1)  
T240C477 006  
8.0 25.00 8.0 10.0  
T240C686 030  
2.0 15.0 25.00 4.0  
2.5 20.0 31.25 5.0  
2.5 20.0 31.25 5.0  
(1)  
(1)  
T240D687 006  
5.0 10.0 62.50 8.0 10.0  
5.0 10.0 62.50 8.0 10.0  
5.0 10.0 62.50 8.0 10.0  
T240D826 030  
(1)  
(1)  
T240D827 006  
0.055 100.0  
0.050  
T240D107 030  
M
(1)  
T240D108 006  
35 VOLT RATING AT 85°C—20 VOLT RATING AT 125°C  
10 VOLT RATING AT 85°C—7 VOLT RATING AT 125°C  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
1.2  
1.5  
1.8  
A
A
A
B
B
C
C
C
C
D
D
T240A125 035  
P.R  
P.R  
M P  
M,P  
M,P  
M,P  
M,P  
M P  
M,P  
M
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
2.0 12.50 4.0  
2.0 12.50 4.0  
5.0 12.50 5.0  
5.0 12.50 5.0  
5.0 12.50 5.0  
5.0 12.50 5.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
1.30  
1.20  
1.20  
0.40  
0.35  
0.19  
0.19  
0.17  
0.15  
0.13  
0.12  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(1)  
6.8  
8.2  
47.0  
56.0  
68.0  
A
A
B
B
B
B
C
C
C
C
D
D
D
D
T240A685 010  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0 6.25 4.0  
2.0 6.25 4.0  
2.0 6.25 5.0  
4.0 12.50 5.0  
4.0 12.50 5.0  
4.0 12.50 5.0  
7.0 12.50 6.0  
7.0 12.50 6.0  
7.0 12.50 6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
8.0  
8.0  
8.0  
8.0  
0.80  
0.70  
0.22  
0.20  
0.18  
0.15  
0.10  
0.090  
0.090  
0.075  
0.070  
0.070  
0.065  
0.060  
T240A155 035  
(1)  
(1)  
T240A825 010  
T240A185 035  
(1)  
(1)  
T240B476 010  
8.2  
T240B825 035  
(1)  
(1)  
T240B566 010  
10.0  
27.0  
33.0  
39.0  
47.0  
56.0  
68.0  
T240B106 035  
(1)  
(1)  
T240B686 010  
T240C276 035  
(1)  
(1)  
82.0  
T240B826 010  
T240C336 035  
(1)  
(1)  
150.0  
180.0  
220.0  
270.0  
330.0  
390.0  
470.0  
560.0  
T240C157 010  
T240C396 035  
(1)  
(1)  
T240C187 010  
T240C476 035  
(1)  
(1)  
T240C227 010  
T240D566 035  
2.0 10.0 25.00 5.0  
2.0 10.0 25.00 5.0  
(1)  
(1)  
T240C277 010  
2.0 10.0 25.00 6.0  
T240D686 035  
M
(1)  
T240D337 010  
2.0 16.0 25.00 8.0 10.0  
2.0 16.0 25.00 8.0 10.0  
4.0 16.0 50.00 8.0 10.0  
4.0 16.0 50.00 8.0 10.0  
50 VOLT RATING AT 85°C—33 VOLT RATING AT 125°C  
(1)  
T240D397 010  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
1.2  
1.5  
5.6  
A
A
B
B
C
C
D
D
T240A125 050  
M,P  
M,P  
M,P  
M,P  
M,P  
M
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
2.0 12.50 3.0  
2.0 12.50 4.0  
5.0 12.50 4.0  
5.0 12.50 4.0  
5.0 12.50 4.0  
5.0 12.50 4.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
1.30  
1.20  
0.47  
0.43  
0.22  
0.20  
0.18  
0.16  
(1)  
T240D477 010  
(1)  
T240A155 050  
(1)  
T240D567 010  
(1)  
T240B565 050  
15 VOLT RATING AT 85°C—10 VOLT RATING AT 125°C  
(1)  
6.8  
T240B685 050  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(1)  
4.7  
5.6  
6.8  
27.0  
33.0  
A
A
A
B
B
B
C
C
D
D
D
T240A475 015  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
2.0 12.50 4.0  
2.0 12.50 4.0  
2.0 12.50 4.0  
7.0 12.50 6.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
8.0  
8.0  
8.0  
8.0  
8.0  
0.90  
0.80  
0.70  
0.28  
0.24  
0.22  
0.10  
0.090  
0.070  
0.065  
0.060  
22.0  
27.0  
33.0  
39.0  
T240C226 050  
(1)  
(1)  
T240A565 015  
T240C276 050  
(1)  
(1)  
T240A685 015  
T240D336 050  
M
M
(1)  
(1)  
T240B276 015  
T240D396 050  
(1)  
T240B336 015  
60 VOLT RATING AT 85°C—40 VOLT RATING AT 125°C  
(1)  
39.0  
T240B396 015  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
0.82  
1.0  
4.7  
A
A
B
B
C
C
C
C
D
D
T240A824 060  
M,P  
M,P  
M,P  
M,P  
M
M
M
M
M
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
5.0 12.50 3.0  
5.0 12.50 3.0  
5.0 12.50 4.0  
5.0 12.50 4.0  
4.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
1.60  
1.40  
0.51  
0.47  
0.27  
0.26  
0.25  
0.20  
0.18  
0.15  
(1)  
150.0  
180.0  
220.0  
270.0  
330.0  
T240C157 015  
(1)  
T240A105 060  
(1)  
T240C187 015  
2.0 10.0 25.00 6.0  
2.0 10.0 25.00 6.0  
2.0 16.0 25.00 6.0  
2.0 16.0 25.00 6.0  
(1)  
T240B475 060  
(1)  
T240D227 015  
(1)  
5.6  
T240B565 060  
(1)  
T240D277 015  
(1)  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
T240C126 060  
(1)  
T240D337 015  
(1)  
T240C156 060  
20 VOLT RATING AT 85°C—13 VOLT RATING AT 125°C  
(1)  
T240C186 060  
1.5 10.0 18.25 4.0  
1.5 10.0 18.25 4.0  
2.5 20.0 31.25 5.0  
2.5 20.0 31.25 5.0  
(1)  
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(2)  
S
(1)  
2.7  
3.3  
3.9  
A
A
A
B
B
B
C
C
C
C
C
D
D
T240A275 020  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
P,R  
M,P  
M,P  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
2.0 6.25 3.0  
2.0 12.50 4.0  
2.0 12.50 4.0  
2.0 12.50 4.0  
4.0  
4.0  
4.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
8.0  
8.0  
1.15  
0.95  
0.90  
0.27  
0.26  
0.24  
0.15  
0.14  
0.12  
0.10  
0.090  
0.080  
0.070  
T240C226 060  
(1)  
(1)  
T240A335 020  
T240D276 060  
(1)  
(1)  
T240A395 020  
T240D336 060  
M
(1)  
18.0  
22.0  
27.0  
56.0  
68.0  
82.0  
100.0  
120.0  
150.0  
180.0  
T240B186 020  
(1) To complete Part Number, insert Capacitance Tolerance Symbol in 9th character,  
M— 20ꢀ, K— 10ꢀ, J— 5ꢀ.  
(2) To complete Part Number, insert Failure Rate Symbol in the 13th character as shown.  
(1)  
T240B226 020  
(1)  
T240B276 020  
(1)  
T240C566 020  
1.0 10.0 12.50 5.0  
1.0 10.0 12.50 5.0  
1.0 10.0 12.50 5.0  
1.0 10.0 12.50 5.0  
1.0 10.0 12.50 6.0  
2.0 10.0 25.00 6.0  
2.0 10.0 25.00 6.0  
(1)  
T240C686 020  
(1)  
T240C826 020  
(1)  
T240C107 020  
(1)  
T240C127 020  
(1)  
T240D157 020  
(1)  
T240D187 020  
CAPACITOR MARKINGS  
B Case  
A Case  
C Case  
+T240  
—Polarity symbol, series designation  
—KEMET tolerance, failure rate  
—Capacitance*  
+KT240B —Polarity symbol, KEMET part number  
106K035 —KEMET part number  
SS10 µF —KEMET part number (continued)  
capacitance  
+KEMET  
—Polarity symbol, KEMET  
K10ꢀR  
1R2 µF  
35 V  
T240D227K —KEMET part number  
015PS 10ꢀ —KEMET part number (continued),  
tolerance  
—Voltage  
215XA  
—Date Code (Year and week of  
manufacture and batch designator)  
35 V 10ꢀ —Voltage, tolerance  
0216XB —Date Code (Year and week of  
manufacture and batch designator)  
220µF 35V —Capacitance, voltage  
0220ZC  
—Date Code (Year and week of  
manufacture and batch designato  
10  
*The letter “R” incorporated in the capacitance value denotes a decimal point.  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T240  
APPLICATIONS INFORMATION GR500/T240  
Introduction — The following section is devoted to general  
information of assistance in the application of T240 Series  
capacitors. Space does not permit a complete discussion of  
all technical aspects, and further information on specific  
problems may be obtained through KEMET sales represen-  
tatives.  
shown in Figure 2. Dissipation factor loses its importance as  
a measurement parameter at higher frequencies, where  
impedance and ESR are the normal parameters of concern.  
20.0  
10.0  
Capacitance — The nominal values listed in Table I con-  
forms to accepted industry practice; intermediate values may  
be produced on special order. Standard tolerances are  
20%, 10%, and 5%. Closer tolerances may be pro-  
duced upon special order and after agreement upon mea-  
surement conditions.  
Typical variation of capacitance with respect to tempera-  
ture is illustrated in Figure 1a. The capacitance of solid tan-  
talum capacitors decreases with frequency, as shown in  
Figure 1b.  
1.0  
100  
1K  
10K  
Frequency - Hertz  
Fig. 2 Typical Behavior of dissipation factor as a function of  
Frequency @ 25° C  
+20  
+10  
0
DC Leakage Current — The DC Leakage current limits of  
Table 1 for T240 Series capacitors are the lowest generally  
specified in the solid tantalum industry. Even lower leakage  
currents are available on special order. Low leakage current,  
aside from its intrinsic value, is an indication of anode qual-  
ity. DC leakage current as a function of temperature is rep-  
resented by the typical curve in Figure 3, while similar infor-  
mation pertaining to leakage behavior with respect to volt-  
age is contained in Figure 4.  
-10  
-20  
-80 -60 -40 -20  
0 +20 +40 +60 +80 +100 +120  
Operating Temperature °C  
Fig. 1a Typical capacitance with temperature  
1.0  
Reference  
1.0 at 120Hz  
10.0  
0.9  
100  
1K  
10K  
Frequency - Hertz  
Fig. 1b Typical Variation of capacitance with frequency @ 25° C  
Reference 1.0  
at + 25°C  
Dissipation Factor — Dissipation factor is defined as the  
ratio of equivalent series resistance to capacitive reactance at  
a specified frequency:  
1.0  
R
D =  
= 2πfCR  
XC  
Where R = equivalent series resistance in ohms  
D = dissipation factor  
XC = capacitive reactance in ohms  
C = series capacitance in farads  
f = frequency in Hertz  
0.1  
-60 -40 -20  
0
+20 +40 +60 +80 +100 +125  
Operating Temperature –˚C  
Unless otherwise stated, a standard frequency of 120 Hz is  
used for both dissipation and capacitance measurements.  
Typical behavior of dissipation factor with frequency is  
Fig. 3 Typical effect of temperature upon leakage current  
11  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T240  
APPLICATIONS INFORMATION GR500/T240 (Continued)  
Voltage and Temperature Ratings; Reliability Effect —  
T240 Series capacitors are manufactured in 6 through 60  
volt ratings at 85°C. Operation at 125°C with 2/3 rated volt-  
age applied gives equivalent results, and voltage may be der-  
ated linearly between these two points. Unlike wet elec-  
trolytic capacitors, solid tantalum capacitors may be oper-  
ated continuously at any voltage from zero to the maximum  
rating without adverse effects. Operation at voltage below  
nameplate improves reliability, while subsequent operation  
at a higher voltage will not be affected by prior low voltage  
use.  
Expected reliability factors for voltages and temperatures  
other than the rated conditions may be found in Figure 5.  
Since T240 Series capacitors are supplied with a predeter-  
mined failure rate under rated conditions, reliability under  
use conditions may be estimated with this nomograph.  
Circuit Impedance — Failure rates are affected by temper-  
ature and voltage as described in Figure 5 and also by the  
circuit impedance seen by the capacitor. Traditionally, appli-  
cation advice for solid tantalum capacitors suggested an  
impedance of 3 ohms or higher per applied volt. This advice  
was later found to be unnecessarily conservative, and the  
factors in Table II, are based on 0.1 ohm per volt as the unity  
failure rate multiplier.  
1.0  
0.1  
TABLE II  
Circuit Impedance,  
Ohms per Volt  
Failure Rate  
Multiplying Factor  
0.01  
0.1  
0.2  
0.4  
0.6  
0.8  
1
1.0  
0.8  
0.6  
0.4  
0.3  
0.2  
0.1  
0.07  
0.001  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
2
Percentage of Rated Voltage  
3  
Fig. 4 Typical effect of voltage upon leakage current  
125  
120  
Equivalent Series Resistance — The equivalent series  
resistance (ESR) of a solid tantalum capacitor is frequency  
dependent. The curves of Figure 6 are typical of the capaci-  
1.2  
3
10  
1.1  
2
10  
tor values noted, with measurements being made by con-  
110  
100  
1
85°C  
1.0  
tacting lead wires /  
4
inch from the ends of the capacitor  
1
10  
Rating  
T
3
cases. Since ESR decreases with frequency, AC performance  
at higher frequencies is considerably better than would be  
predicted from the 120 Hz ratings.  
1.0  
0.9  
0.8  
F
F
V
3
2
T
1
F
1
V
V
1
90  
85  
80  
-1  
10  
10  
10  
10  
10  
10  
10  
10  
3
2
T
Capacitor Impedance — The relationship between imped-  
ance and frequency at various voltage ratings is illustrated  
with typical curves in Figure 6. Impedance declines with  
decreasing capacitive reactance, but ESR becomes dominant  
before the self-resonant point is reached, producing the typ-  
ical damped curves. Finally, impedance increases as induc-  
tance of the lead wire and other capacitor elements domi-  
nates. Obviously, high frequency impedance is directly  
2
-2  
-3  
-4  
-5  
-6  
-7  
-8  
0.7  
125°C  
0.67  
Rating  
Connect the temperature and  
applied voltage ratio of  
interest with a straight edge.  
The multiplier of failure rate is  
given at the intersection of this  
line with the model scale.  
70  
60  
50  
40  
0.6  
0.5  
0.4  
0.3  
0.2  
Given T & V1 Read Failure  
1
Rate Multiplier F1  
Given T, & F2  
Read Reguired Voltage V2  
Given F3 & V3  
influenced by the length of lead wire and general mounting  
Read Allowable Temp T3  
1
configuration. The typical curves of Figure 6 include /  
4
inch  
of lead wire at each end of the capacitor.  
30  
25  
T
V 0.1  
F
12  
Fig.5 Reliability Alignment Chart  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500/T240  
APPLICATIONS INFORMATION GR500/T240 (Continued)  
Where P max=maximum permissible power from  
Table III  
Z = Impedance  
R = ESR  
E max (85°C) = 0.9 E max (25°C)  
E max (125°C) = 0.4 E max (25°C)  
TABLE III  
Maximum Permissible Power Dissipation at 25°C Ambient  
Case Size  
Watts  
0.090  
0.100  
0.125  
0.180  
A
B
C
D
Reverse Voltage — The solid tantalum capacitor is a polar  
device and can be damaged by serious reversals of polarity  
even for short periods of time. However, some short duration  
reversal is permissable as shown in Table IV.  
Fig. 6 Typical Behavior of Impedance and ESR as a function  
of frequency @ 25°C  
TABLE IV  
AC Ripple — Permissable AC ripple voltage is related to  
the rated voltage, the ESR of the capacitor, and the power  
dissipation capability of a particular case size:  
1. The positive peak AC voltage plus the DC bias  
voltage (if any), must not exceed the rated voltage.  
2. The negative peak AC voltage, in combination  
with the bias voltage (if any), must not exceed that  
allowable (see Reverse Voltage).  
Permissible Reverse Voltage  
Temp.  
C
25  
% of Forward  
Rated Voltage  
15  
5
85  
125  
1
Surge Current — Surge current testing is performed to pro-  
vide resistance from damage due to circuit transients. This  
test, employing total DC circuit resistance of 1.0 max, exclu-  
sive of the capacitor, is described on Page 21.  
Shelf Life — Shelf life is particularly difficult to define for  
the solid tantalum capacitor. Extended periods of storage at  
high temperature will cause some small change in leakage  
current which usually returns to normal upon short time  
application of working voltage. Storage at low temperatures  
causes little or no degradation of leakage current. Long-term  
studies of capacitance and dissipation factor shift for as long  
as 45,000 hours indicate only minor variations (usually less  
than 2%) in these parameters.  
3. The power dissipated in the equivalent series  
resistance of the capacitor must not exceed the  
limits specified in Table III.  
The power dissipated may be calculated from the  
following:  
2
E R  
P =  
2
Z
Where E = ripple voltage across capacitor in rms volts  
Z = capacitor impedance in ohms at the specified  
frequency.  
R = equivalent series resistance in ohms  
Installation — Mounting procedures should not place  
undue strain on terminals, particularly the positive end with  
its glass-metal seal. Attention to soldering technique should  
avoid excessive heat transfer which might remelt the capac-  
itorʼs internal solder and cause loss of hermeticity or short  
circuits. Potting materials should not produce excessive cur-  
ing exotherms or shrinkage pressures.  
Ripple voltage, as limited by power dissipation, may be  
determined as follows:  
P max  
E max (25C) = Z  
R
13  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500 GRADED RELIABILITY SPECIFICATIONS  
GR500  
KEMET Graded Reliability Specification  
CAPACITORS, FIXED, SOLID TANTALUM ELECTROLYTE,  
HIGH RELIABILITY  
1. SCOPE  
1.1 General Description—This specification details  
cation. In the event of any conflict between the requirements  
of this specification and the detail specification, the latter  
shall govern.  
requirements for high reliability, tantalum, solid electrolyte,  
hermetically sealed, fixed capacitors having a graded or  
determined failure rate. Operating temperature range is -  
65C to +125C with primary applications including filter-  
ing, bypass and coupling where the ac component of applied  
voltage is maintained within the limits as listed in the applic-  
able detail specification.  
3.2 Reliability assurance—Capacitors furnished under this  
specification shall be subject to the requirements and proce-  
dures of 4.1.2, 4.4.2 and 4.5.  
3.3 Material—The material shall be as specified herein.  
However, when a specific material is not designated, a mate-  
rial shall be used which will enable the capacitors to meet  
the performance requirement of this specification.  
Acceptance or the approval of any constituent material shall  
not be construed as a guarantee of the acceptance of the fin-  
ished product. Material traceability shall be maintained  
throughout manufacture.  
Capacitors covered by this specification are intended for  
use where determination of failure rate, shelf life, stability,  
leakage current and maximum resistance to environmental  
factors are of major concern.  
1.2 Classification—Part numbering of capacitors manufac-  
tured in accordance with this specification is described on  
Pages 2 and 9.  
TABLE 1 — DC Rated and Surge Voltages (VDC)  
2. APPLICABLE DOCUMENTS  
Rated Voltage  
Surge Voltage  
Rated Voltage  
Surge Voltage  
85°C  
6
85°C  
8
125°C  
4
125°C  
5
The following documents of the issue in effect form a part of  
this specification to the extent specified herein:  
10  
15  
20  
30  
35  
50  
60  
75  
100  
13  
20  
26  
39  
46  
65  
78  
98  
130  
7
9
10  
13  
20  
23  
33  
40  
50  
67  
12  
16-  
26  
28  
40  
50  
64  
86  
2.1 Specifications—Federal  
QQ-S-571 — Solder; Tin Alloy; Lead-Tin Alloy; and  
Lead Alloy  
TT-I-735 — Isopropyl Alcohol  
2.2 Specifications—Military  
MIL-PRF-39003 — Capacitors, Fixed, Electrolytic  
(Solid Electrolyte) Tantalum,  
Established Reliability, General  
Specification for  
3.3.1 Solder—Solder shall be as described in QQ-S-571  
3.3.2 Soldering flux—Soldering flux shall be of the rosin or  
rosin and alcohol type. Other non-corrosive fluxes may be  
used if adequate evidence indicates that no deleterious effect  
will be introduced.  
2.3 Standards—Military  
MIL-STD-202 — Test Methods for Electronic and  
Electrical Components Parts.  
MIL-STD-790 — Reliability Assurance Program  
for Electronic Parts  
MIL-STD-810 — Environmental Test Methods  
MIL-STD-1276 — Leads, Weldable, for Electronic  
Component Parts  
3.4.1 Case—Each capacitor shall be hermetically enclosed  
in a case which will protect the capacitor element from dete-  
rioration in performance according to the environmental  
conditions specified.  
3. REQUIREMENTS  
3.1 Detail requirements for individual capacitor series  
The part requirements for a capacitor series shall be as spec-  
ified herein and as described in the applicable detail specifi-  
14  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500 GRADED RELIABILITY SPECIFICATIONS  
GR500 GRADED RELIABILITY SPECIFICATION  
3.4.2 Case insulation (when applicable)—Case insulation  
3.5.12 Thermal shock and immersion—Capacitors tested  
per 4.5.12 shall meet the requirements listed in the applica-  
ble detail specification.  
shall not soften or creep at the high operating temperature.  
3.4.3 Terminals—All terminal elements shall be adequately  
secured so that normal movements of the terminal leads will  
not result in degradation, damage, or excessive strain to the  
capacitor element, case, or coating. Wire lead terminals shall  
be solder coated type N32 or N34 of MIL-STD-1276.  
Coating solder shall have a tin content of 40-70% and shall  
meet the solderability requirements of 3.5.13. Other lead  
materials and finishes are available. Refer to the applicable  
detail specification.  
3.5.13 Solderability—Capacitors tested per 4.5.12 shall  
exhibit leads with a minimum of 95% of the dipped surface  
uniformly covered with new solder coat. Only small pin holes  
or rough spots, not concentrated in one area, on the remaining  
5% of the dipped surface shall be considered acceptable.  
3.5.14 Terminal strength—Capacitors tested per 4.5.13  
shall exhibit no loosening effect or permanent damage to the  
terminals or terminal solder.  
3.5 Inspection Tests  
3.5.15 Moisture resistance—Capacitors tested per 4.5.14  
shall meet the requirements listed in the applicable detail  
specification.  
3.5.1 Thermal Shock—Capacitors shall be subjected to  
thermal shock per 4.5.2.  
3.5.2 Grading (accelerated voltage aging)—Capacitors  
shall be graded per 4.5.3. Available failure rates for a given  
series, capacitance and voltage rating shall be as listed in the  
applicable detail specification.  
3.5.16 Case insulation—Capacitors tested per 4.5.15 shall meet  
the requirements listed in the applicable detail specification.  
3.5.17 Temperature stability—Capacitors tested per  
4.5.16 shall meet the requirements listed in the applicable  
detail specification.  
3.5.3 DC leakage—The dc leakage shall not exceed the ini-  
tial requirements listed in the applicable detail specification  
when measured per 4.5.4.  
3.5.l8 Surge current—When tested in accordance with  
4.5.17, capacitors shall meet requirements as specified in the  
applicable detail specifications.  
3.5.4 Capacitance—The capacitance shall be within the  
specified tolerance band listed in the applicable detail spec-  
ification when measured per 4.5.5.  
3.5.19 Life—Capacitors tested per 4.5.18 shall exhibit no  
evidence of mechanical damage. permanent short circuits or  
opens and shall meet the requirements listed in the applica-  
ble detail specification.  
3.5.5 Dissipation factor—The dissipation factor shall not  
exceed the initial requirements listed in the applicable detail  
specification when measured per 4.5.6.  
3.5.20 Solvent resistance—Capacitors tested per 4.5.19 shall  
exhibit no evidence of mechanical damage or adverse effect  
on marking.  
3.5.6 ESR—The ESR shall not exceed the limits specified in  
the detail specification at 100 kHz, +25°C.  
3.5.7 Seal—Capacitors shall be tested for hermeticity per  
4.5.7. After test, D.C. leakage shall not exceed the initial  
requirements listed in the applicable detail specifications.  
3.5.21 Resistance to Soldering Heat—Capacitors tested  
per 4.5.20 shall meet the requirements listed in the applica-  
ble detail specification.  
3.5.8 Radiographic Inspection—Capacitors subjected to a  
two plane x-ray analysis per 4.5.8 shall reveal no indication  
of defective connections, improperly aligned anode assem-  
bles, defective seals or eyelets, excessive solder voids, insuf-  
ficient or excessive anode bonding solder, loose particles, or  
other structural weaknesses.  
3.6 Marking—Capacitors shall be permanently and legibly  
marked with the manufacturerʼs identification (K or  
KEMET), capacitance in microfarads. capacitance toler-  
ance. rated dc voltage in volts, a plus (+) sign marked adja-  
cent to the positive terminal and the manufacturerʼs lot code  
as specified in paragraph 3.7 and 3.7.1. See applicable detail  
specification for exact marking and examples.  
3.5.9 Visual and mechanical examination—Capacitors  
examined per 4.6.1 shall show compliance with require-  
ments of 3.1, 3.3, 3.4, 3.6 and 3.8.  
3.7 Lot definition—A lot shall consist of capacitors of the  
same series, case size, capacitance value and voltage rating.  
The manufacture of all parts in the lot shall begin on the  
same working day. The lot identity and traceability shall be  
maintained throughout manufacturing, inspection, and  
shipping.  
3.5.10 Shock—Capacitors tested per 4.5.9 shall exhibit no  
electrical discontinuities greater than 500 microseconds  
duration. There shall be no indication of mechanical dam-  
age, arcing, or breakdown.  
3.7.1 Lot identification—All parts in the lot shall be identi-  
fied by a unique lot code consisting of a 3 or 4 digit date  
code denoting year and week of manufacture and a 2 letter  
batch code identifying a specific batch within the week.  
3.5.11 Vibration—Capacitors tested per 4.5.10 shall exhibit  
no electrical discontinuities create than 500 microseconds  
duration. There shall he no indication of mechanical dam-  
age, arcing or breakdown.  
15  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500 GRADED RELIABILITY SPECIFICATIONS  
GR500 GRADED RELIABILITY SPECIFICATION (Continued)  
3.8 Workmanship—Capacitors shall be processed in such a  
manner as to be uniform in quality and shall be free from cold  
soldering, corrosion, pits, cracks, dents, rough edges, and  
other defects that will affect life, serviceability, or appear-  
ance. Solder on the surface of the case shall be smooth and  
unbroken and shall not have any pin holes or girdle.  
4.4.1.1 Group A—Group A shall consist of those tests listed  
in Table 2.  
4.4.1.2 Group C—Group C shall consist of those tests listed  
in Table 3.  
4.4.1.2.1 Sampling Plan—Group C shall be performed  
every three months. The sample shall consist of 48 pieces,  
selected at random from the largest and smallest case sizes  
produced during the month in the approximately ratio of  
production.  
3.9 Data submittal—Each shipment shall be accompanied  
by the following data for the respective lots (see paragraph  
3.5.2 and 4.5.3).  
a)Weibull distribution plot  
b)Failure rate computation sheet  
In addition, a statement of compliance to this specification  
shall accompany each shipment.  
TABLE 2 — Group A Inspection  
3.10 Deviations—Special or non-standard configurations,  
designs, finishes, or test requirements requiring deviation to  
this specification or the applicable detail specification shall  
be subject to negotiation between the procuring agency and  
the manufacturer.  
Paragraph References  
Number of  
Failures  
Test  
Requirement  
Method  
pieces tested Allowed  
Subgroup 1  
Thermal shock  
Surge current  
Grading (Accelerated  
voltage aging  
DC Leakage  
Capacitance  
Dissipation Factor  
ESR  
3.5.1  
3.5.1.9  
4.5.2  
4.5.18  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
3.5.6  
3.5.7  
4.5.3  
4.5.4  
4.5.5  
4.5.6  
4.5.17  
4.5.7  
Not  
appli-  
cable  
4. QUALITY ASSURANCE PROVISIONS  
100%  
4.1 Responsibility for inspection—The manufacturer is  
responsible for the performance of all inspection require-  
ments as specified herein.  
Seal  
Radiographic  
inspection  
3.5.8  
4.5.8  
4.1.2 Reliability assurance program—The manufacturer  
is responsible for establishing a reliability assurance pro-  
gram complying with the requirements of MIL-STD-790.  
Subgroup 2  
Visual & mechanical  
inspection  
3.5.9  
4.5.1  
Subgroup 3  
4.1.3 Additional inspection—Nothing specified herein  
shall preclude the manufacturer from making additional or  
more stringent inspection as he may deem necessary or  
desirable to assure conformance with the requirements of  
this specification.  
Solderability  
3.5.13  
3.5.17  
4.5.12  
4.5.16  
13  
20  
0
0
Temperature stability  
Per Production Lot of a single capacitance value, case size and voltage.  
TABLE 3 — Group C Inspection  
4.2 Classification of testing and inspection—The testing  
Paragraph References  
Number of  
Failures  
Test  
Requirement  
Method  
pieces tested Allowed  
and inspection of capacitors shall be classified as follows:  
Subgroup 1  
Shock  
3.5.10  
3.5.11  
4.5.9  
4.5.10  
a) Acceptance inspection (see 4.4)  
Vibration  
Thermal shock  
and immersion  
12  
4.3 General test requirements  
3.5.12  
4.5.11  
1
4.3.1 Inspection conditions—Unless otherwise specified,  
all inspection shall be made at 25°C +5°C ambient atmos-  
pheric pressure and humidity.  
Subgroup 2  
Terminal strength  
Resistance to solvents  
Resistance to  
3.5.14  
3.5.20  
4.5.13  
4.5.19  
12  
24  
soldering heat  
Moisture resistance  
Sleeving  
3.5.21  
3.5.15  
3.5.16  
4.5.20  
4.5.14  
4.5.15  
4.3.2 Test equipment and inspection facilities—Test  
equipment and inspection facilities shall be of sufficient  
accuracy and quality to permit performance of the required  
inspection. The manufacturer shall establish calibration of  
inspection equipment to the satisfaction of the user but at a  
minimum must meet the requirements of MIL-STD-45662.  
Subgroup 3  
Life (at 125°C)  
3.5.19  
4.5.18  
4.4.1.2.2 Nonconformance—Failures in excess of those  
allowed during Group C testing shall be cause to discontinue  
acceptance of product. Corrective action sha1l be instituted  
and the product retested. Evidence of successful corrective  
action shall release the product for acceptance.  
4.4 Acceptance inspection  
4.4.1 Acceptance tests—Acceptance tests shall consist of  
Group A. Capacitors shall be subjected to Group A  
(Subgroups 1, 2, 3), and C. Testing in accordance with  
Group C shall be considered degrading and product so tested  
shall not be shipped.  
4.5 Test procedures  
16  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500 GRADED RELIABILITY SPECIFICATIONS  
GR500 GRADED RELIABILITY SPECIFICATION (Continued)  
4.5.1 Visual and mechanical examination—Examination  
TABLE 4 — Acceleration Factors  
of capacitors shal1 verify compliance with the requirements  
of materials, design, construction, physical dimensions. mark-  
ing, and workmanship as listed in 3.1,3.3,3.4,3.6, and 3.8.  
RATIO OF APPLIED  
VOLT. TO RATED  
VOLT. AT 85°C  
ACCELERATION  
FACTOR  
4.5.2 Thermal shock (See 3.5.1)—Capacitors sha1l be sub-  
jected to the thermal shock tests as specified in MIL-STD-  
202, Method 107. The following details shall apply:  
1.0000  
1.1000  
1.2000  
1.3000  
1.4000  
1.5000  
1.5276  
1.0000  
6.5355  
42.7128  
279.1496  
(a) Special mounting-Not applicable.  
(b) Test condition letter-B. (Except, # cycles = 10)  
(c) Measurements before and after test-Not applicable.  
1,824.3823  
11,923.2626  
20,000.0000  
4.5.3 Grading (see 3.5.2)  
4.5.4 DC leakage (see 3.5.3)—Leakage current shall be  
measured after applying the dc rated voltage for a maximum  
electrification period of 5 minutes. A 1K ohm resistor shall  
be placed in series with the capacitor to limit the charging  
current. A steady source of power such as a regulated power  
supply shall be used. Measurement accuracy shall be within  
2 per cent or .02 microamp, whichever is greater.  
4.5.3.1 Aging conditions—Capacitors shall be power aged  
at 85°C for a minimum of 250 hours at a voltage greater than  
rated voltage (see Table 4). The aging circuit shall have less  
than one (1) ohms total impedance exclusive of the capaci-  
tors under test. Each capacitor shall be individually fused  
with a one (1) ampere fast-blow fuse.  
4.5.3.1.1 Definition of failure—For purposes of data col-  
lection (see 4.5.3.2), a failure shall be defined as a blown  
fuse and shall be considered catastrophic.  
4.5.5 Capacitance (see 3.5.4)—Capacitance shall be mea-  
sured as specified in MIL-STD-202, Method 305. The fol-  
lowing details apply:  
4.5.3.2 Data collection—The elapsed time to catastrophic  
failures shall be recorded. The number of failures shall be  
recorded and calculated as a cumulative percentage of the  
original lot size. After data has been recorded for a minimum  
period of 40 hours, cumulative percentage versus failure age  
shall be plotted of Weibull probability paper. The Weibull  
scale (s) and shape (s) parameter shall then be determined  
(see Figures 1 and 2). The failure rate at 1 hour and the  
required aging time to meet the failure rate goal shall be  
computed. Upon completion of the required aging time, the  
additional data shall be plotted and failure rate confirmed.  
a) Test frequency— 120 5 Hertz  
b) Limit of accuracy— 2% of reading  
c) Max. ac voltage—1.0V rms  
d) Max. dc bias—2.2V  
4.5.6 Dissipation factor (see 3.5.5)—Dissipation factor  
shall be measured on a capacitance bridge or on other appro-  
priate equipment. The following details apply:  
a) Test conditions-per 4.5.5 (details a, c, and d)  
b) Limit of accuracy-dial reading accuracy of 0.1% dissipa-  
tion factor and measuring accuracy of 2% of measured  
value plus 0.1%.  
ß-1  
5
Z(t) = Z(Ax) = ßx  
αA  
• l0  
4.5.7 Seal Tests (see 3.5.7)—GR500 Product receives 100%  
hermeticity test per MIL-STD-202. Method 112, Condition D.  
where: Z(t) = The desired instantaneous failure rate in per  
cent per 1000 hours at 5 equivalent hours at  
rated conditions.  
4.5.8 Radiographic inspection (see 3.5.8)—Capacitors  
shall be x-rayed in two (2) planes perpendicular to their lon-  
gitudinal axis. The equipment shall utilize image quality  
indicators (ASTM Type B) to assure that radiograms are of  
sufficient resolution and contrast to detect the conditions  
described in 3.5.8. Non-conforming devices shall be  
removed from the lot.  
x = actual test hours.  
A= acceleration factor.  
ß = Weibull shape parameter.  
α = Weibull scale parameter.  
The minimum test time employed will be 250 hours. how-  
ever, this shall be increased, in consideration of the lot per-  
formance, to achieve the failure rate goal. Figures 1, 2, and  
3 are typical examples of computation chart. Weibull plot  
and failure rate plot respectively.  
4.5.9 Shock (see 3.5.10)—Capacitors shall be tested as  
specified in MIL-STD-202, Method 213. The following  
details apply:  
a) Test condition letter—1 (l00g peak).  
b) Mounting—Capacitor bodies shall be rigidly mounted  
and leads attached to well supported terminals.  
17  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500 GRADED RELIABILITY SPECIFICATIONS  
GR500 GRADED RELIABILITY SPECIFICATION (Continued)  
c) Applied voltage during shock—dc rated voltage.  
4.5.14 Moisture resistance (see 3.5.15)—Capacitors shall  
be tested as specified in MIL-STD-202, Method 106 (less  
Step 7b). The following details apply:  
d) Monitoring during shock—electrical discontinuities of  
500 microseconds or greater duration.  
e) Visual examination after test—no indication of  
mechanical damage arcing or breakdown.  
a) Applied voltage—none  
b) Measurement after test—dc leakage, capacitance and  
dissipation factor (see 4.5.4, 4.5.5 and 4.5.6) shall be  
measured within 2 to 6 hours after removal from the  
humidity chamber.  
c) Visual examination after test—no indication of deleteri-  
ous corrosion.  
4.5.10 Vibration (see 3.5.11)—Capacitors shall be tested as  
specified in MIL-STD-202. Method 204. The following  
details apply:  
a) Test condition letter—D (20 g)  
b) Mounting—Capacitor bodies shall be rigidly mounted  
and leads attached to supported terminals. Lead length  
4.5.15 Case insulation (see 3.5.16)  
between capacitor body and supporting terminals shall  
4.5.15.1 Case insulation dielectric strength—Capacitors  
shall be placed in a V-block. A dc potential of 2000 volts  
(applied at the rate of 500 volts/second) shall be applied  
between the V-block and capacitor case for a period 1  
minute 5 seconds. A maximum leakage current of 20  
microamps will be allowed.  
3
be approximately /  
8
inch.  
c) Applied voltage during vibration—dc rated voltage.  
d) Monitoring during last cycle—electrical discontinuities  
of 500 microseconds or greater duration  
e) Visual examination after test—no indication of mechan-  
ical damage, arcing, or breakdown.  
4.5.15.2 Case insulation resistance—Capacitors shall be  
placed in a V-block as specified in 4.5.16.1. The insulation  
resistance shall be measured with a polarizing voltage of 500  
50 volts dc for 1 minute +0,-15 seconds. The capacitor  
shall be moved in the block and the measurement repeated  
five times.  
4.5.11 Thermal shock and immersion (see 3.5.13).  
4.5.11.1 Thermal shock—Capacitors shall be tested as  
specified in MIL-STD-2t)2, Method 107. The following  
details apply:  
a) Test condition letter—B (Except. # cycles = 10)  
b) Measurements before and after test—not applicable.  
4.5.16 Temperature stability (see 3.5.17)—DC leakage,  
capacitance, and dissipation factor (see 4.5.4, 4.5.5, and  
4.5.6) shall be measured at the temperatures specified in  
Table 5, except that the dc leakage measurements at -55°C  
(step 2) are not required. However, after the measurements  
of capacitance and dissipation factor have been made at the  
-55°C temperature (step 2), rated voltage shall be applied for  
a minimum of 5 minutes. The capacitors shall be stabilized  
at each temperature. Thermal stability shall be considered  
acceptable when C = 0.2% between two successive mea-  
surements taken at 15 minute intervals.  
4.5.11.2 Immersion—Capacitors shall be tested as specified  
in MIL-STD-202, Method 104. The following details apply:  
a) Test condition letter—B  
b) Measurements after tests dc leakage, capacitance and  
dissipation factor (see 4.5.4, 4.5.5, 4.5.6) shall be as  
specified in detailed specification within 4 hours after  
removal from the final immersion bath.  
c) Visual examination after test  
4.5.12 Solderability (see 3.5.13)—Capacitors shall be  
tested as specified in MIL-STD-202. Method 208. The fol-  
lowing details apply:  
TABLE 5 — Temperature Stability Test Conditions  
a) Number of leads tested-2  
Step Test Temperature (C)  
Limits  
1
b) Depth of immersion in flux and solder within /  
8
inch of  
1
2
3
+25( 2)  
Per tables  
Cap 10% DF per tables  
DC leakage, DF per tables,  
Cap 2%  
case, tubulation or seal.  
-55(+0, -3)  
+25( 2)  
4.5.13 Terminal strength (see 3.5.14)  
4.5.13.1 Pull—Capacitors shall be tested as specified in  
MIL-STD-202, Method 211. The following details apply:  
a) Test condition letter—A  
b) The body of the capacitor shall be secured.  
c) Applied force—3 pounds.  
4
5
6
+85(+4, -0)  
+125(+4, -0)  
+25( 2)  
Cap + 8% DC leakage,  
DF per table  
Cap 12% DC leakage,  
DF per table  
Cap 2% DC leakage.  
DF per table  
4.5.13.2 Twist—Capacitors shall he tested as specified in  
MIL-STD-202, Method 211. The following details apply:  
4.5.17 Surge Current—Capacitors shall be subjected to 10  
consecutive cycles of surge current at -55°C, +85°C. Rated  
voltage 2% shall be applied for 4 1 seconds, the capaci-  
a) Test condition letter—D  
b) Rotations—3  
18  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500 GRADED RELIABILITY SPECIFICATIONS  
GR500 GRADED RELIABILITY SPECIFICATION (Continued)  
tors shall then be discharged for 4 1 seconds to a voltage  
d) After test, DC leakage. capacitance. and dissipation  
factor measurements shall be made in accordance with  
4.5.4, 4.5.5, and 4.5.6.  
e) Capacitors shall be examined for external physical or  
mechanical damage.  
which is less than 1% of rated voltage. Total resistance of the  
wiring, fixturing and power supply output, but exclusive of  
the capacitor under test, shall be 1.0 ohms max. After test,  
the capacitors shall meet the following requirements:  
5. PREPARATION FOR DELIVERY  
DCL — Per applicable detail specification.  
Cap — Within 2% of initial measured value.  
D.F. — Per applicable detail specification.  
5.1 Leads—Capacitor leads shall be straightened prior to  
packaging.  
5.2 Packaging methods—Capacitors shall be packaged in  
individual container compartments. Packaging methods and  
materials used shall prevent degradation of capacitor char-  
acteristics as determined by this specification.  
Note: Rated Voltages 75V shall be tested at max 70V.  
4.5.18 Life (see 3.5.19)  
4.5.18.1 LifeAcceptance Inspection (see Table 3)—  
Capacitors shall be tested as specified in 4.6.19.1. The fol-  
lowing exceptions apply:  
a) Test condition letter-F (2,000 hours)  
b) The test temperature shall be  
125°  
+4°/-0°  
c) DC leakage  
(at the applicable high test temperature)  
shall be measured at 0;  
250  
1,000  
2,000  
+48/-0  
+48/-0  
+72/-0 hours  
d) Measurements after test—Per 4.5.19.l(g)  
4.5.19 Resistance to solvents (see 3.5.20)—Capacitors  
shall be tested in accordance with MIL-STD-202. Method  
215. The following details apply:  
a) Sample size shall be in accordance with Table 2 or 4 as  
applicable.  
b) The marked portion of the capacitor body shall be  
brushed.  
c) After test, capacitors shall be examined for physical or  
mechanical damage and deterioration or obliteration of  
marking.  
4.5.20 Resistance to soldering heat (see 3.5.21)—  
Capacitors shall be tested in accordance with MIL-STD-  
202, Method 210. The following details apply:  
a) Test condition letter—B  
b) Depth of lead immersion in molten solder shall be  
within 0.250 inches of the case, tubulation, or seal.  
c) Cooling time prior to measurements after test shall be  
30 minutes minimum.  
19  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500 GRADED RELIABILITY SPECIFICATIONS  
KEMET GRADED RELIABILITY  
20  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  
GR500 GRADED RELIABILITY SPECIFICATIONS  
GR500 GRADED RELIABILITY SPECIFICATION (Continued)  
21  
© KEMET Electronics Corporation • P.O. Box 5928 • Greenville, SC 29606 (864) 963-6300 • www.kemet.com  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX