T520X337M010ASE025 [KEMET]

CAPACITOR, TANTALUM, SOLID POLYMER, POLARIZED, 10V, 330uF, SURFACE MOUNT, 2917, CHIP;
T520X337M010ASE025
型号: T520X337M010ASE025
厂家: KEMET CORPORATION    KEMET CORPORATION
描述:

CAPACITOR, TANTALUM, SOLID POLYMER, POLARIZED, 10V, 330uF, SURFACE MOUNT, 2917, CHIP

电容器
文件: 总9页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KEMET®  
POLYMER TANTALUM CHIP CAPACITORS  
COMPONENT PERFORMANCE CHARACTERISTICS  
Introduction  
4. Voltage Ratings  
KEMET has developed a new type of tantalum capacitor  
that replaces the solid manganese dioxide electrode with  
a solid conductive polymer. This product is named the  
KO-CAP for KEMET Organic Capacitor. The basic fami-  
lies are the T520 and T530 series. A separate detail of  
performance characteristics is presented here as there  
are some differences between the polymer tantalums and  
the standard MnO2 types. Like all KEMET tantalum  
chips, these series are 100% screened for all electrical  
parameters: Capacitance @ 120 Hz, Dissipation Factor  
(DF) @ 120 Hz, ESR @ 100 kHZ and DC Leakage. It is  
also 100% surge current tested at full rated voltage  
through a low impedance circuit. The advantages of the  
polymer include very low ESR and elimination of the  
potentially catastrophic failure mode that may occur with  
standard tantalum capacitors in a high surge current  
application. Although the natural KO-CAP series failure  
mechanism is a short circuit, it does not exhibit an explo-  
sive failure mode.  
2V-16V DC Rated Voltage  
This is the maximum peak DC operating voltage  
from -55ºC to +85ºC for continuous duty. Above  
85ºC, this voltage is derated linearly to 0.8 times  
the rated voltage for operation at 105ºC.  
Surge Voltage Ratings  
Surge voltage is the maximum voltage to which the  
part can be subjected under transient conditions  
including the sum of peak AC ripple, DC bias and  
any transients. Surge voltage capability is demon-  
strated by application of 1000 cycles of the relevant  
voltage, at 25ºC, 85ºC or 105ºC. The parts are  
charged through a 33 ohm resistor for 30 seconds  
and then discharged through a 33 ohm resistor for  
30 seconds for each cycle.  
Voltage Ratings • Table 1  
Rated  
Surge  
Voltage  
Derated  
Voltage  
Derated  
Surge  
Voltage  
Voltage  
-55ºC to +85ºC  
+105ºC  
ELECTRICAL  
2V  
2.5V  
2.6V  
3.3V  
1.6V  
2.0V  
2.4V  
3.3V  
5V  
6.4V  
8V  
12.8V  
2.1V  
2.8V  
1. Operating Temperature Range  
-55ºC to +105ºC  
3V  
4V  
6.3V  
8V  
3.9V  
5.2V  
8V  
10.4V  
13V  
3.1V  
4.3V  
6.5V  
8.7V  
10.4V  
Above 85ºC, the voltage rating is reduced linearly  
from 1.0 x rated voltage to 0.8 x rated voltage at  
105ºC.  
10V  
2. Non-Operating Temperature Range  
16V  
20.8V  
16.6V  
-55ºC to +105ºC  
5. Reverse Voltage Rating & Polarity  
Polymer tantalum capacitors are polar devices and  
may be permanently damaged or destroyed if con-  
nected in the wrong polarity. The positive terminal  
is identified by a laser-marked stripe and may also  
include a beveled edge. These capacitors will with-  
stand a small degree of transient voltage reversal  
for short periods as shown in the following table.  
Please note that these parts may not be operated  
continuously in reverse, even within these limits.  
3. Capacitance and Tolerance  
33µF to 1500µF  
±20% Tolerance  
Capacitance is measured at 120 Hz, up to 1.0 volt rms  
maximum and up to 2.5V DC maximum. DC bias caus-  
es only a small reduction in capacitance, up to about  
2% when full rated voltage is applied. DC bias is not  
commonly used for room temperature measurements  
but is more commonly used when measuring at tem-  
perature extremes.  
Table 2  
Temperature  
25ºC  
Permissible Transient Reverse Voltage  
Capacitance does decrease with increasing frequency,  
but not nearly as much or as quickly as standard tanta-  
lums. Figure 1 compares the frequency induced cap roll-  
off between the KO-CAP and traditional MnO2 types.  
Capacitance also increases with increasing tempera-  
ture. See s ection 12 for temperature coefficients .  
15% of Rated Voltage  
10% of Rated Voltage  
5% of Rated Voltage  
3% of Rated Voltage  
55ºC  
85ºC  
105ºC  
6. DC Leakage Current  
Because of the high conductivity of the polymer,  
the KO-CAP family has higher leakage currents  
than traditional MnO2 type Tantalum caps. The DC  
Leakage limits at 25ºC are calculated as 0.1 x C x  
V, where C is cap in µF and V is rated voltage in  
Volts. Limits for all part numbers are listed in the  
ratings tables.  
Capacitance (uF)  
150  
100  
Polymer  
MnO2  
50  
DC Le a ka ge c urre nt is the c urre nt tha t flows  
through the capacitor dielectric after a five minute  
charging period at rated voltage. Leakage is mea-  
sured at 25ºC with full rated voltage applied to the  
capacitor through a 1000 ohm resistor in series  
with the capacitor.  
0
10  
1,000  
100,000  
10,000,000  
1,000,000 100,000,000  
100  
10,000  
Frequency (Hz)  
FIGURE 1  
KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300  
33  
KEMET®  
POLYMER TANTALUM CHIP CAPACITORS  
COMPONENT PERFORMANCE CHARACTERISTICS  
DC Leakage current does increase with tempera-  
ture. The limits for 85ºC @ Rated Voltage and  
9. Equivalent Series Resistance (ESR) and  
Impedance (Z)  
105ºC @ 0.8 x Rated Voltage are both 10 times  
the 25ºC limit.  
The Equivalent Series Resistance (ESR) of the KO-  
CAP is much lower than standard Tantalum caps  
because the polymer cathode has much higher  
conductivity. ESR is not a pure resistance, and it  
decreases with increasing frequency.  
7. Surge Current Capability  
Certain applications may induce heavy surge cur-  
rents when circuit impedance is very low (<0.1  
ohm per volt). Driving inductance may also cause  
voltage ringing. Surge currents may appear as  
transients during turn-on of equipment.  
Total impedance of the capacitor is the vector  
sum of capacitive reactance (X ) and ESR, below  
C
resonance; above resonance total impedance is  
the vector sum of inductive reactance (XL) and  
The KO-CAP has a very high tolerance for surge  
current. And although the failure mechanism is a  
short circuit, they do not explode as may occur  
with standard tantalums in such applications.  
ESR.  
The KO-CAP series receives 100% screening for  
s urg e c urre nt in o ur p ro d uc tio n p ro c e s s .  
Capacitors are surged 4 times at full rated voltage  
applied through a total circuit resistance of <0.5  
ohms. Failures are removed during subsequent  
electrical testing.  
X = 1 ohm  
C
8. Dissipation Factor (DF)  
2fC  
Refer to part number tables for maximum DF  
limits.  
where:  
f = frequency, Hertz  
C = capacitance, Farad  
Dissipation factor is measured at 120 Hz, up to 1.0  
volt rms maximum, and up to 2.5 volts DC maxi-  
mum at +25ºC. The application of DC bias causes  
a small reduction in DF, about 0.2% when full  
ra te d vo lta g e is a p p lie d . DF inc re a s e s with  
increasing frequency.  
FIGURE 2a Total Impedance of the Capacitor Below  
Resonance  
Dissipation factor is the ratio of the equivalent  
series resistance (ESR) to the capacitive reac-  
tance, (X ) and is usually expressed as a percent-  
C
age. It is directly proportional to both capacitance  
and frequency. Dissipation factor loses its impor-  
tance at higher frequencies, (above about 1 kHz),  
where impedance (Z) and equivalent series resis-  
tance (ESR) are the normal parameters of concern.  
X = 2fL  
L
DF = R = 2 f CR  
DF= Dissipation Factor  
R= Equivalent Series  
Resistance (Ohms)  
where:  
X
C
f = frequency, Hertz  
L = inductance, Henries  
X = Capacitive Reactance  
C
(Ohms)  
f= Frequency (Hertz)  
C= Series Capacitance  
(Farads)  
FIGURE 2b Total Impedance of the Capacitor Above  
Resonance  
DF is also referred to as tan or loss tangent.”  
The “Quality Factor,” “Q,” is the reciprocal of DF.  
To understand the many elements of a capaci-  
tor, see Figure 3.  
34  
KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300  
KEMET®
POLYMER TANTALUM CHIP CAPACITORS  
COMPONENT PERFORMANCE CHARACTERISTICS  
ESR and Impedance  
T495D 150 uF (MnO2) vs. T520D 150 uF (Polymer)  
Impedance & ESR (Ohms)  
RS  
L
C
100  
10  
RL  
1
MnO2  
Cd  
Rd  
0.1  
FIGURE 3 The Real Capacitor  
Polymer  
0.01  
100  
1,000  
10,000  
100,000  
1,000,000  
10,000,000  
A capacitor is a complex impedance consisting  
of many s eries and parallel elements , each  
adding to the complexity of the measurement  
system.  
Frequency (Hz)  
FIGURE 4  
10. AC Power Dissipation  
Power dissipation is a function of capacitor size  
and materials. Maximum power ratings have been  
established for all case sizes to prevent overheat-  
ing. In actual use, the capacitors ability to dissi-  
pate the heat generated at any given power level  
may be affected by a variety of circuit factors.  
These include board density, pad size, heat sinks  
and air circulation.  
L — Repres ents lead wire and cons truction  
inductance. In mos t ins tances (es pecially in  
solid tantalum and monolithic ceramic capaci-  
tors) it is insignificant at the basic measurement  
frequencies of 120 and 1000 Hz.  
RS — Represents the actual ohmic series resis-  
tance in series with the capacitance. Lead wires  
a nd c a p a c ito r e le c tro d e s a re c o ntrib uting  
sources.  
Table 3  
Tantalum Chip Power Dissipation Ratings  
RL — Capacitor Leakage Resistance. Typically it  
c a n re a c h 50,000 m e g o hm s in a ta nta lum  
capacitor. It can exceed 1012 ohms in monolithic  
ceramics and in film capacitors.  
Case Code  
KEMET EIA  
Maximum Power Dissipation  
mWatts @ +25ºC w/+20ºC Rise  
T520/T 3528-12  
T520/B 3528-21  
T520/V 7343-20  
T520/D 7343-31  
T520/Y 7343-40  
T520/X 7343-43  
T530/D 7343-31  
T530/X 7343-43  
T530/E 7260-38  
70  
85  
125  
150  
156  
165  
255  
270  
285  
Rd — The dielectric loss contributed by dielectric  
a b s o rp tio n a nd m o le c ula r p o la riza tio n. It  
becomes very significant in high frequency mea-  
surements and applications. Its value varies with  
frequency.  
Cd — The inherent dielectric absorption of the  
solid tantalum capacitor which typically equates  
to 1-2% of the applied voltage.  
11. AC Operation  
As fre q ue nc y inc re a s e s , XC c o ntinue s to  
decrease according to its equation above. There  
is unavoidable inductance as well as resistance  
in all capacitors, and at some point in frequency,  
the re a c ta nc e c e a s e s to b e c a p a c itive a nd  
becomes inductive. This frequency is called the  
self-resonant point. In solid tantalum capacitors,  
the resonance is damped by the ESR, and a  
s mooth, rather than abrupt, trans ition from  
capacitive to inductive reactance follows.  
Permissible AC ripple voltage and current are  
related to equivalent series resistance (ESR) and  
power dissipation capability.  
Permis s ible AC ripple voltage which may be  
applied is limited by three criteria:  
a. The positive peak AC voltage plus the DC bias  
voltage, if any, must not exceed the DC voltage  
rating of the capacitor.  
Figure 4 compares the frequency response of a  
KO-CAP to a standard Tantalum chip. See also  
frequency curves shown in the T520 section,  
p.39. Maximum limits for 100 kHz ESR are listed  
in the part number tables for each series.  
b. The negative peak AC voltage, in combination  
with bias voltage, if any, must not exceed the  
permissible reverse voltage ratings presented  
in Section 5.  
c. The power dissipated in the ESR of the capaci-  
tor mus t not exceed the appropriate value  
specified in Section 10.  
The T530 Capacitance, Impedance and ESR vs.  
Frequency Comparisions are located on page  
43. Maximum limits for 100 kHz are listed in the  
part number table on page 42.  
KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300  
35  
KEMET®  
POLYMER TANTALUM CHIP CAPACITORS  
COMPONENT PERFORMANCE CHARACTERISTICS  
Actual power dissipated may be calculated from  
14. High Temperature Life Test  
• 105ºC, 0.8 x Rated Voltage, 2000 hours  
Post Test Performance:  
the following:  
P =I2R  
Substituting I = E, P = E2R  
a. Capacitance: within -20%  
b. DF: within initial limit  
/+10% of initial value  
Z
Z2  
where:  
c. DC Leakage: within 1.25 x initial limit  
d. ESR: within 2 x initial limit  
I = rms ripple current (amperes)  
E = rms ripple voltage (volts)  
P = power (watts)  
15. Storage Life Test  
• 105ºC, 0VDC, 2000 Hours  
Post Test Perfomance:  
a. Capacitance: within -20%  
b. DF: within initial limit  
c. DC Leakage: within 1.25 x initial limit  
d. ESR: within 2 x initial limit  
Z = impedance at specified frequency (ohms)  
R = equivalent series resistance at specified  
frequency (ohms)  
Using P max from Table 3, maximum allowable  
rms ripple current or voltage may be determined as  
follows:  
/+10% of initial value  
I(max) = ͌P max  
These values should be derated at elevated tem-  
E(max) = Z ͌P max  
/
R
/
R
16. Thermal Shock  
• Mil-Std-202, Method 107, Condition B  
Minimum temperature is -55ºC  
Maximum temperature is +105ºC  
500 Cycles  
peratures as follows:  
Temperature  
85ºC  
Derating Factor  
.9  
.4  
105ºC  
Post Test Performance:  
a. Capacitance: within +10% /-20% of initial value  
b. DF: within initial limit  
ENVIRONMENTAL  
12. Temperature Stability  
c. DC Leakage: within initial limit  
d. ESR: within 2 x initial limit  
Mounted capacitors withstand extreme tempera-  
ture testing at a succession of continuous steps  
at +25ºC, -55ºC, +25ºC, +85ºC, +105ºC, +25ºC in  
that order. Capacitors are allowed to stabilize at  
each temperature before measurement. Cap, DF,  
a nd DCL a re me a s ure d a t e a c h te mp e ra ture  
except DC Leakage is not measured at -55ºC.  
17. Moisture Resistance Testing  
• J -Std-020  
Steps 7a and 7b excluded, 0V, 21 cycles  
Post Test Performance:  
a. Capacitance: within ±30% of initial value  
b. DF: within initial limit  
c. DC Leakage: within initial limit  
d. ESR: within initial limit  
Table 4  
Acceptable limits are as follows:  
Step Temp.  
ΔCap  
DCL  
DF  
1
2
3
4
5
6
+25ºC  
-55ºC  
Specified  
Tolerance  
±20% of  
initial value  
±10% of  
initial value  
±20% of  
initial value  
±30% of  
initial value  
±10% of  
initial value  
Catalog  
Limit  
N/A  
Catalog  
Limit  
Catalog  
Limit  
Catalog  
Limit  
18. Load Humidity  
• 85ºC, 85% RH, Rated Voltage, 500 Hours  
Post Test Performance:  
a. Capacitance: within +35% /-5% of initial value  
b. DF: within initial limit  
c. DC Leakage: within 5 x initial limit  
d. ESR: within 2 x initial limit  
+25ºC  
+85ºC  
+105ºC  
+25ºC  
Catalog  
Limit  
10x Catalog 1.2x Catalog  
Limit Limit  
10x Catalog 1.5x Catalog  
Limit  
Catalog  
Limit  
19. ESD  
Limit  
Catalog  
Limit  
Polymer tantalum capacitors are not sensitive  
to Electro-Static Discharge (ESD).  
20. Failure Mechanism and Reliability  
13. Standard Life Test  
The normal failure mechanism is dielectric break-  
down. Dielectric failure can res ult in high DC  
Leakage current and may proceed to the level of a  
short circuit. With sufficient time to charge, heal-  
ing may occur by one of two potential mecha-  
nisms. The polymer adjacent to the dielectric fault  
site may overheat and vaporize, disconnecting the  
fault site from the circuit. The polymer may also  
• 85ºC, Rated Voltage, 2000 Hours  
Post Test Performance:  
a. Capacitance: within -20%  
b. DF: within initial limit  
c. DC Leakage: within initial limit  
d. ESR: within initial limit  
/+10% of initial value  
36  
KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300  
KEMET®
POLYMER TANTALUM CHIP CAPACITORS  
COMPONENT PERFORMANCE CHARACTERISTICS  
oxidize into a more resistive material that plugs  
the defect site in the dielectric and reduces the  
flow of current.  
26. Vibration  
Mil-Std-202, Method 204, Condition D, 10 Hz  
to 2,000 Hz, 20G Peak  
Post Test Performance:  
Capacitor failure may be induced by exceeding  
the ra te d c ond itions of forwa rd DC volta ge ,  
reverse DC voltage, surge current, power dissipa-  
tion or temperature. Exces s ive environmental  
stress, such as prolonged or high temperature  
reflow processes may also trigger dielectric failure.  
a. Capacitance — within ±10% of initial value  
b. DC Leakage — within initial limit  
c. Dissipation Factor — within initial limit  
d. ESR — within initial limit  
27. Shock  
Mil-Std-202, Method 213, Condition I,  
100 G Peak  
Post Test Performance:  
a. Capacitance — within ±10% of initial value  
b. DC Leakage — within initial limit  
c. Dissipation Factor — within initial limit  
d. ESR - within initial limit  
Failure rates may be improved in application by  
derating the voltage applied to the capacitor.  
KEMET recommends that KO-CAPs be derated  
to 80% or less of the rated voltage in application.  
KO-CAPs exhibit a benign failure mode in that  
they do not fail catastophically even under typical  
fault conditions. If a shorted capacitor is allowed  
to pass unlimited current, it may overheat and the  
case may discolor. But this is distinctly different  
from the explosive “ignition” that may occur with  
standard MnO2 cathode tantalums. Replacement  
of the MnO2 by the polymer removes the oxygen  
that fuels ignition during a failure event.  
28. Terminal Strength  
• Pull Force  
One Pound (454 grams), 30 Seconds  
• Tensile Force  
Four Pounds (1.8 kilograms), 60 Seconds  
MECHANICAL  
21. Resistance to Solvents  
Mil-Std-202, Method 215  
Post Test Performance:  
a. Capacitance — within ±10% of initial value  
b. DC Leakage — within initial limit  
c. Dissipation Factor — within initial limit  
d. ESR — within initial limit  
e. Physical — no degradation of case, terminals  
or marking  
4 lb. (1.8 Kg)  
• Shear Force  
22. Fungus  
Table 5 Maximum Shear Loads  
Mil-Std-810, Method 508  
Case Code  
Maximum Shear Loads  
KEMET  
EIA  
Kilograms  
3.6  
Pounds  
8.0  
11.0  
11.0  
11.0  
23. Flammability  
B
V
D
X
3528-21  
7343-20  
7343-31  
7343-43  
UL94 VO Classification  
Encapsulant materials meet this classifaction  
5.0  
5.0  
5.0  
24. Resistance to Soldering Heat  
• Maximum Reflow  
Post Test Performance:  
+240 ±5ºC, 10 seconds  
• Typical Reflow  
+230 ±5ºC, 30 seconds  
Post Test Performance:  
a. Capacitance — within ±5% of initial value  
b. DC Leakage — within initial limit  
c. Dissipation Factor — within initial limit  
d. ESR - within initial limit  
a. Capacitance — within ±10% of initial value  
b. DC Leakage — within initial limit  
c. Dissipation Factor — within initial limit  
d. ESR — within initial limit  
25. Solderability  
Mil-Std-202, Method 208  
ANSI/J -STD-002, Test B  
Applies to Solder Coated terminations only.  
KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300  
37  
KEMET®  
POLYMER TANTALUM CHIP CAPACITORS  
COMPONENT PERFORMANCE CHARACTERISTICS  
APPLICATIONS  
high integrity solder fillets. Preheating of these  
components is recommended to avoid extreme  
thermal s tres s . The maximum recommended  
preheat rate is 2ºC per second.  
29. Handling  
Automatic handling of encapsulated components  
is enhanced by the molded case which provides  
compatibility with all types of high speed pick and  
p la c e e q uip me nt. Ma nua l ha nd ling of the s e  
d e vic e s p re s e nts no uniq ue p rob le ms . Ca re  
should be taken with your fingers, however, to  
avoid touching the solder-coated terminations as  
body oils, acids and salts will degrade the sol-  
derability of thes e terminations . Finger cots  
should be used whenever manually handling all  
solderable surfaces.  
Hand-soldering should be avoided. If necessary,  
it should be performed with care due to the diffi-  
culty in process control. Care should be taken to  
avoid contact of the soldering iron to the molded  
case. The iron should be used to heat the solder  
pad, applying solder between the pad and the  
termination, until reflow occurs. The iron should  
be removed. “Wiping” the edges of a chip and  
heating the top surface is not recommended.  
30. Termination Coating  
During typical reflow operations a slight darken-  
ing of the gold-colored epoxy may be observed.  
This slight darkening is normal and is not harmful  
to the product. Marking permanency is not affect-  
ed by this change.  
The standard finish coating is 90/10 Sn/Pb solder  
(Tin/Lead-solder coated). 100% tin coating is  
available upon request.  
31. Recommended Mounting Pad Geometries  
Proper mounting pad geometries are essential for  
successful solder connections. These dimensions  
a re highly p roc e s s s e ns itive a nd s hould b e  
designed to maximize the intergrity of the solder  
joint, and to minimize component rework due to  
unacceptable solder joints.  
33. Washing  
Standard washing techniques and solvents are  
compatible with all KEMET surface mount tanta-  
lum capacitors. Solvents such as Freon TMC and  
TMS, Trichlorethane, methylene chloride, prelete,  
and isopropyl alcohol are not harmful to these  
components. Please note that we are not endors-  
ing the use of banned or restricted solvents. We  
are simply stating that they would not be harmful  
to the components.  
Figure 5 illustrates pad geometry. The table pro-  
vides recommended pad dimensions for reflow  
s old e ring te c hniq ue s . The s e d ime ns ions a re  
intended to be a starting point for circuit board  
designers, to be fine tuned, if necessary, based  
upon the peculiarities of the soldering process  
and/or circuit board design.  
If ultrasonic agitation is utilized in the cleaning  
process, care should be taken to minimize energy  
levels and exposure times to avoid damage to the  
terminations.  
Contact KEMET for Engineering Bulletin Number  
F-2100 entitled Surface Mount Mounting Pad  
Dime ns ions a nd Cons id e ra tions ” for furthe r  
details on this subject.  
KEMET tantalum chips are also compatible with  
newer aqueous and semi-aqueous processes.  
34. Encapsulations  
C
Under normal circumstances, potting or encapsu-  
lation of KEMET tantalum chips is not required.  
Grid  
Placement  
X
35. Storage Environment  
Courtyard  
Tantalum chip capacitors should be stored in nor-  
mal working environments. While the chips them-  
selves are quite robust in other environments,  
solderability will be degraded by exposure to high  
temperatures, high humidity, corrosive atmos-  
pheres, and long term storage. In addition, pack-  
aging materials will be degraded by high temper-  
ature - reels may soften or warp, and tape peel  
force may increase. KEMET recommends that  
maximum storage temperature not exceed 40  
degrees C, and the maximum storage humidity  
not exceed 60% relative humidity. In addition,  
temperature fluctuations should be minimized to  
avoid condensation on the parts, and atmos-  
pheres should be free of chlorine and sulfur bear-  
ing compounds. For optimized solderability, chip  
stock should be used promptly, preferably within  
1.5 years of receipt.  
G
Y
Z
Figure 5  
Table 6 - Land Pattern Dimensions for Reflow Solder  
Pad Dimensions  
KEMET/EIA Size Code  
Y
C
Z
G
X
(ref) (ref)  
5.00 1.10 2.50 1.95 3.05  
B/3528-21  
D/7343-31, V/7343-20, X/7343-43 8.90 3.80 2.70 2.55 6.35  
32. Soldering  
The T520 KO-CAP family has been designed for  
reflow solder processes. They are not recom-  
mended for wave solder. Solder-coated termina-  
tions have excellent wetting characteristics for  
38  
KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300  
KEMET®
POLYMER TANTALUM CHIP CAPACITORS  
T520 SERIES  
FEATURES  
Polymer Cathode Technology  
• Low ESR  
• Capacitance 15 to 1000µF (±20% )  
Voltage 2V to 25V  
• High Frequency Cap Retention  
• No-Ignition Failure Mode  
• EIA Standard Case Sizes  
• 100% Surge Current Tested  
Use Up to 80% of Rated Voltage (20% Derating)  
OUTLINE DRAWING  
CATHODE (-) END  
SIDE VIEW  
ANODE (+) END  
VIEW  
BOTTOM VIEW  
VIEW  
W
H
E
F
K
T
A
L
X
S
G
S
DIMENSIONS - MILLIMETERS  
Case Size  
KEMET EIA  
L
W
H
K ±0.20  
0.3  
0.9  
0.9  
1.5  
F ±0.1  
2.2  
2.2  
2.4  
2.4  
S ±0.3  
0.8  
0.8  
1.3  
1.3  
X(Ref)  
0.05  
0.10 ± 0.10  
0.05  
0.10 ± 0.10  
0.10 ± 0.10  
0.10 ± 0.10  
T(Ref) A(Min) G(ref) E(ref)  
T
B
V
D
Y
X
3528-12 3.5 ± 0.2 2.8 ± 0.2  
3528-21 3.5 ± 0.2 2.8 ± 0.2  
7343-20 7.3 ± 0.3 4.3 ± 0.3  
7343-31 7.3 ± 0.3 4.3 ± 0.3  
7343-40 7.3 ± 0.3 4.3 ± 0.3  
7343-43 7.3 ± 0.3 4.3 ± 0.3  
1.2 max  
1.9 ± 0.2  
1.9 max  
2.8 ± 0.3  
4.0 max  
4.0 ± 0.3  
0.13  
0.13  
0.13  
0.13  
0.13  
0.13  
1.1  
1.1  
3.8  
3.8  
3.8  
3.8  
1.8  
1.8  
3.5  
3.5  
3.5  
3.5  
2.2  
2.2  
3.5  
3.5  
3.5  
3.5  
1.9  
2.3  
2.4  
2.4  
1.3  
1.3  
T520 ORDERING INFORMATION  
T 520 V 157 M 006 A S E015  
Tantalum  
ESR  
Series  
Lead Material  
T520 - Low ESR Polymer  
S - Standard Solder Coated  
Case Size  
Failure Rate  
B, V, D, X  
A - Not Applicable  
Capacitance Picofarad Code  
Voltage  
First two digits represent significant figures.  
Third digit specifies number of zeros to follow.  
Capacitance Tolerance  
M = ± 20%  
T520 SERIES CONSTRUCTION  
COMPONENT MARKING  
Polarity (+)  
Indicator  
KEMET  
Organic  
KO  
Picofarad  
Code  
157  
Rated  
Voltage  
KEMET ID  
K
6
PWC  
212  
212 = 12th week of 2002  
KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300  
39  
KEMET® POLYMER TANTALUM CHIP CAPACITORS  
T520 SERIES  
T520 RATINGS & PART NUMBER REFERENCE  
Ripple Current  
mA rms @ 25°C,  
100 kHz Max  
DF% @  
ESR mΩ @  
Capaci-  
Case  
DC Leakage μA  
KEMET Part Number  
25°C 120 Hz 25°C 100 kHz  
tance μF  
Size  
@ 25°C Max  
Max  
Max  
25°C  
85°C  
105°C  
2 Volt Rating @ +85°C (1.6 Volt Rating at 105°C)  
T520V477M002ASE040 94 10  
2.5 Volt Rating @ 85°C (2.0 Volt Rating at 105°C)  
470.0  
V
40  
1.8  
1.6  
0.7  
100.0  
100.0  
220.0  
220.0  
220.0  
330.0  
330.0  
330.0  
470.0  
470.0  
680.0  
680.0  
680.0  
1000.0  
B
B
V
V
V
V
V
V
V
V
D
D
Y
Y
T520B107M2R5ASE040  
T520B107M2R5ASE070  
T520V227M2R5ASE015  
T520V227M2R5ASE025  
T520V227M2R5ASE045  
T520V337M2R5ASE009  
T520V337M2R5ASE015  
T520V337M2R5ASE025  
T520V477M2R5ASE012  
T520V477M2R5ASE015  
T520D687M2R5ASE015  
T520D687M2R5ASE040  
T520Y687M2R5ATE025  
T520Y108M2R5ATE025  
25  
25  
55  
55  
55  
99  
83  
83  
118  
118  
170  
170  
170  
250  
8
8
40  
70  
15  
25  
45  
9
15  
25  
12  
15  
15  
40  
25  
25  
1.5  
1.1  
2.9  
2.2  
1.7  
3.7  
2.9  
2.2  
3.2  
2.9  
3.2  
1.9  
2.5  
2.5  
1.3  
1.0  
2.6  
2.0  
1.5  
3.4  
2.6  
2.0  
2.9  
2.6  
2.8  
1.7  
2.3  
2.3  
0.6  
0.4  
1.2  
0.9  
0.7  
1.5  
1.2  
0.9  
1.3  
1.2  
1.3  
0.8  
1.0  
1.0  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3 Volt Rating at 85°C (2.4 Volt Rating at 105°C)  
100.0  
100.0  
150.0  
150.0  
330.0  
330.0  
330.0  
680.0  
680.0  
1000.0  
1000.0  
B
B
B
B
V
V
V
D
D
X
X
T520B107M003ASE040  
T520B107M003ASE070  
T520B157M003ASE040  
T520B157M003ASE070  
T520V337M003ASE012  
T520V337M003ASE015  
T520V337M003ASE025  
T520D687M003ASE015  
T520D687M003ASE040  
T520X108M003ASE015  
T520X108M003ASE030  
30  
30  
45  
45  
99  
99  
99  
204  
204  
300  
300  
8
8
8
8
10  
10  
10  
10  
10  
10  
10  
40  
70  
40  
70  
12  
15  
25  
15  
40  
15  
30  
1.5  
1.1  
1.5  
1.1  
3.2  
2.9  
2.2  
3.2  
1.9  
3.3  
2.3  
1.3  
1.0  
1.3  
1.0  
2.9  
2.6  
2.0  
2.8  
1.7  
3.0  
2.1  
0.6  
0.4  
0.6  
0.4  
1.3  
1.2  
0.9  
1.3  
0.8  
1.3  
0.9  
4 Volt Rating @ +85°C (3.3 Volt Rating at +105°C)  
15.0  
68.0  
68.0  
T
B
B
B
B
B
B
V
V
V
V
V
D
V
V
D
D
D
D
D
D
D
D
Y
X
X
T520T156M004ASE100  
T520B686M004ASE040  
T520B686M004ASE070  
T520B107M004ASE040  
T520B107M004ASE070  
T520B157M004ASE040  
T520B157M004ASE070  
T520V157M004ASE015  
T520V157M004ASE025  
T520V227M004ASE015  
T520V227M004ASE025  
T520V227M004ASE045  
T520D227M004ASE065  
T520V337M004ASE025  
T520V337M004ASE040  
T520D337M004ASE015  
T520D337M004ASE040  
T520D337M004ASE045  
T520D477M004ASE012  
T520D477M004ASE015  
T520D477M004ASE018  
T520D477M004ASE025  
T520D477M004ASE040  
T520Y687M004ATE025  
T520X687M004ASE015  
T520X687M004ASE035  
6
27  
27  
40  
40  
60  
60  
60  
60  
88  
88  
88  
8
8
8
8
8
8
8
100  
40  
70  
40  
70  
40  
70  
15  
25  
15  
25  
45  
65  
25  
40  
15  
40  
45  
12  
15  
18  
25  
40  
25  
15  
35  
0.8  
1.5  
1.1  
1.5  
1.1  
1.5  
1.1  
2.9  
2.2  
2.9  
2.2  
1.7  
1.5  
2.2  
1.8  
3.2  
1.9  
1.8  
3.5  
3.2  
2.9  
2.4  
1.9  
2.5  
3.3  
2.2  
0.7  
1.3  
1.0  
1.3  
1.0  
1.3  
1.0  
2.6  
2.0  
2.6  
2.0  
1.5  
1.4  
2.0  
1.6  
2.8  
1.7  
1.6  
3.2  
2.8  
2.6  
2.2  
1.7  
2.3  
3.0  
2.0  
0.3  
0.6  
0.4  
0.6  
0.4  
0.6  
0.4  
1.2  
0.9  
1.2  
0.9  
0.7  
0.6  
0.9  
0.7  
1.3  
0.8  
0.7  
1.4  
1.3  
1.2  
1.0  
0.8  
1.0  
1.3  
0.9  
100.0  
100.0  
150.0  
150.0  
150.0  
150.0  
220.0  
220.0  
220.0  
220.0  
330.0  
330.0  
330.0  
330.0  
330.0  
470.0  
470.0  
470.0  
470.0  
470.0  
680.0  
680.0  
680.0  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
88  
132  
132  
132  
132  
132  
188  
188  
188  
188  
188  
272  
272  
272  
6/6.3 Volt Rating @ +85°C (5 Volt Rating at +105°C)  
15.0  
33.0  
33.0  
33.0  
47.0  
47.0  
68.0  
68.0  
T
B
B
T
T520T156M006ASE100  
T520B336M006ASE040  
T520B336M006ASE070  
T520T336M006ATE070  
T520B476M006ASE040  
T520B476M006ASE070  
T520B686M006ASE040  
T520B686M006ASE070  
T520B107M006ASE040  
T520B107M006ASE070  
T520V157M006ASE015  
T520V157M006ASE025  
T520V157M006ASE040  
T520V157M006ASE045  
T520D157M006ASE015  
T520D157M006ASE025  
T520D157M006ASE055  
T520V227M006ASE015  
T520V227M006ASE025  
T520V227M006ASE040  
T520D227M006ASE015  
T520D227M006ASE040  
T520D227M006ASE050  
T520V337M006ASE025  
T520V337M006ASE040  
T520D337M006ASE015  
T520D337M006ASE025  
T520D337M006ASE040  
T520D337M006ASE045  
T520Y337M006ATE025  
T520Y477M006ATE025  
T520X477M006ASE018  
T520X477M006ASE035  
T520X477M006ASE040  
9.5  
21  
21  
21  
30  
30  
43  
43  
63  
63  
95  
95  
95  
95  
95  
95  
95  
139  
139  
139  
139  
139  
139  
208  
208  
208  
208  
208  
208  
208  
296  
296  
296  
296  
8
8
8
8
8
8
8
8
100  
40  
70  
70  
40  
70  
40  
70  
40  
70  
15  
25  
40  
45  
15  
25  
55  
15  
25  
40  
15  
40  
50  
25  
40  
15  
25  
40  
45  
25  
25  
18  
35  
40  
0.8  
1.5  
1.1  
1
0.7  
1.3  
1.0  
0.9  
1.3  
1.0  
1.3  
1.0  
1.3  
1.0  
2.6  
2.0  
1.6  
1.5  
2.8  
2.2  
1.5  
2.6  
2.0  
1.6  
2.8  
1.7  
1.6  
2.0  
1.6  
2.8  
2.2  
1.7  
1.6  
2.3  
2.3  
2.7  
2.0  
1.8  
0.3  
0.6  
0.4  
0.4  
0.6  
0.4  
0.6  
0.4  
0.6  
0.4  
1.2  
0.9  
0.7  
0.7  
1.3  
1.0  
0.7  
1.2  
0.9  
0.7  
1.3  
0.8  
0.7  
0.9  
0.7  
1.3  
1.0  
0.8  
0.7  
1.0  
1.0  
1.2  
0.9  
0.8  
B
B
B
B
B
B
V
V
V
V
D
D
D
V
V
V
D
D
D
V
V
D
D
D
D
Y
Y
X
X
X
1.5  
1.1  
1.5  
1.1  
1.5  
1.1  
2.9  
2.2  
1.8  
1.7  
3.2  
2.4  
1.7  
2.9  
2.2  
1.8  
3.2  
1.9  
1.7  
2.2  
1.8  
3.2  
2.4  
1.9  
1.8  
2.5  
2.5  
3.0  
2.2  
2.0  
100.0  
100.0  
150.0  
150.0  
150.0  
150.0  
150.0  
150.0  
150.0  
220.0  
220.0  
220.0  
220.0  
220.0  
220.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
470.0  
470.0  
470.0  
470.0  
8
8
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
40  
KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300  
KEMET®  
POLYMER TANTALUM CHIP CAPACITORS  
T520 SERIES  
T520 RATINGS & PART NUMBER REFERENCE  
Ripple Current  
A rms @ 25°C,  
100 kHz Max  
DF% @  
ESR mΩ @  
Capaci-  
Case  
Size  
DC Leakage μA  
KEMET Part Number  
25°C 120 Hz 25°C 100 kHz  
tance μF  
@ 25°C Max  
Max  
Max  
8 Volt Rating @ +85°C (6.4 Volt Rating at +105°C)  
33.0  
33.0  
150.0  
150.0  
150.0  
B
B
D
D
D
T520B336M008ASE040  
T520B336M008ASE070  
T520D157M008ASE025  
T520D157M008ASE040  
T520D157M008ASE055  
26  
27  
120  
120  
120  
8
8
10  
10  
10  
40  
70  
25  
40  
55  
1.5  
1.1  
2.4  
1.9  
1.7  
1.3  
1.0  
2.2  
1.7  
1.5  
0.6  
0.4  
1.0  
0.8  
0.7  
10 Volt Rating @ +85°C (8 Volt Rating at +105°C)  
33.0  
33.0  
68.0  
B
B
V
V
V
V
V
V
D
D
D
D
D
D
D
D
D
X
X
T520B336M010ASE040  
T520B336M010ASE070  
T520V686M010ASE045  
T520V686M010ASE060  
T520V107M010ASE018  
T520V107M010ASE025  
T520V107M010ASE045  
T520V107M010ASE050  
T520D107M010ASE018  
T520D107M010ASE055  
T520D107M010ASE080  
T520D157M010ASE025  
T520D157M010ASE040  
T520D157M010ASE055  
T520D227M010ASE018  
T520D227M010ASE025  
T520D227M010ASE040  
T520X337M010ASE025  
T520X337M010ASE040  
33  
33  
68  
68  
8
8
40  
70  
45  
60  
18  
25  
45  
50  
18  
55  
80  
25  
40  
55  
18  
25  
40  
25  
40  
1.5  
1.1  
1.7  
1.4  
2.6  
2.2  
1.7  
1.6  
3.2  
1.7  
1.4  
2.4  
1.9  
1.7  
2.9  
2.4  
1.9  
2.6  
2.0  
1.3  
1.0  
1.5  
1.3  
2.4  
2.0  
1.5  
1.4  
2.8  
1.5  
1.2  
2.2  
1.7  
1.5  
2.6  
2.2  
1.7  
2.3  
1.8  
0.6  
0.4  
0.7  
0.6  
1.1  
0.9  
0.7  
0.6  
1.3  
0.7  
0.5  
1.0  
0.8  
0.7  
1.2  
1.0  
0.8  
1.0  
0.8  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
68.0  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
100.0  
150.0  
150.0  
150.0  
220.0  
220.0  
220.0  
330.0  
330.0  
100  
100  
100  
100  
100  
100  
100  
150  
150  
150  
220  
220  
220  
330  
330  
16 Volt Rating @ +85°C (12.8 Volt Rating at +105°C)  
33.0  
47.0  
47.0  
V
V
D
T520V336M016ASE060  
T520V476M016ASE070  
T520D476M016ASE070  
53  
76  
75  
10  
10  
10  
60  
70  
70  
1.4  
1.3  
1.5  
1.3  
1.2  
1.3  
0.6  
0.5  
0.6  
25 Volt Rating @ +85°C (20 Volt Rating at +105°C)  
15.0  
D
T520D156M025ASE080  
38 10  
80  
1.4  
1.2  
0.5  
Newest values indicated in RED  
TYPICAL FREQUENCY RESPONSE CURVES  
T520V157M006AS@ +25ºC with3VDC Bias  
Impedance and ESR (Ohms)  
T520D337M006AS@ +25ºC with3VDC Bias  
Impedance and ESR (Ohms)  
10  
10  
Freq 100kHz  
Z 30.5mOhm  
R 28.6 mOhm  
Freq 100 kHz  
Z
Z
29.1 mOhm  
Z
1
1
R
L
27.9 mOhm  
2.4 nH  
L
2.4 nH  
ESR  
ESR  
100m  
100m  
10m  
10m  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
T520V157M006AS @ +25ºC with 3V DC Bias  
T520D337M006AS@ +25ºC with3V DC Bias  
Measured Capacitance (F)  
Measured Inductance (H)  
Measured Capacitance (F)  
Measured Inductance (H)  
1m  
1m  
10n  
1n  
10n  
CAP  
L
L
CAP  
100u  
100u  
1n  
Freq 100 kHz  
Measured Cap 150.3 uF  
Actual Cap 131.6 uF  
Freq 100 kHz  
C
Measured Cap 189.2 uF  
Actual Cap 160.4 uF  
C
10u  
100p  
10u  
100p  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300  
41  

相关型号:

T520X337M010ASE025C-7280

CAPACITOR, TANTALUM, SOLID POLYMER, POLARIZED, 10V, 330uF, SURFACE MOUNT, 2917, CHIP, ROHS COMPLIANT
KEMET

T520X337M010ASE040C-7280

CAPACITOR, TANTALUM, SOLID POLYMER, POLARIZED, 10V, 330uF, SURFACE MOUNT, 2917, CHIP, ROHS COMPLIANT
KEMET

T520X337M010ATE010C-7280

Tantalum Capacitor, Polarized, Tantalum (solid Polymer), 10V, 20% +Tol, 20% -Tol, 330uF, Surface Mount, 2917, CHIP, ROHS COMPLIANT
KEMET

T520X337M010ATE025

Tantalum Chip Engineering Kits
KEMET

T520X337M010ATE0257280

Tantalum Capacitor, Polarized, Tantalum (solid Polymer), 10V, 20% +Tol, 20% -Tol, 330uF, Surface Mount, 2917, CHIP, ROHS COMPLIANT
KEMET

T520X337M010ATE025C-7280

Tantalum Capacitor, Polarized, Tantalum (solid Polymer), 10V, 20% +Tol, 20% -Tol, 330uF, Surface Mount, 2917, CHIP, ROHS COMPLIANT
KEMET

T520X337M010ATE035

Tantalum Capacitor, Tantalum (solid Polymer)
KEMET

T520X337M010ATE0407280

Tantalum Capacitor, Polarized, Tantalum (solid Polymer), 10V, 20% +Tol, 20% -Tol, 330uF, Surface Mount, 2917, CHIP, ROHS COMPLIANT
KEMET

T520X337M010ATE040C-7280

Tantalum Capacitor, Polarized, Tantalum (solid Polymer), 10V, 20% +Tol, 20% -Tol, 330uF, Surface Mount, 2917, CHIP, ROHS COMPLIANT
KEMET

T520X337M10AHE010

Tantalum Capacitor, Polarized, Tantalum (solid Polymer), 10V, 20% +Tol, 20% -Tol, 330uF, Surface Mount, 2917, CHIP
KEMET

T520X337M10ASE025

CAPACITOR, TANTALUM, SOLID POLYMER, POLARIZED, 10V, 330uF, SURFACE MOUNT, 2917, CHIP, ROHS COMPLIANT
KEMET

T520X337M10ASE040

CAPACITOR, TANTALUM, SOLID POLYMER, POLARIZED, 10V, 330uF, SURFACE MOUNT, 2917, CHIP, ROHS COMPLIANT
KEMET