1210J5000102FAT [KNOWLES]

CAP CER 1000PF 500V C0G/NP0 1210;
1210J5000102FAT
型号: 1210J5000102FAT
厂家: KNOWLES ELECTRONICS    KNOWLES ELECTRONICS
描述:

CAP CER 1000PF 500V C0G/NP0 1210

文件: 总48页 (文件大小:5611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AEC-Q200  
Automotive Grade  
Capacitors  
AEC-Q200  
Automotive Grade Capacitors  
At Knowles Precision Devices (KPD), we manufacture Single Layer, Multilayer, High Reliability and Precision  
Variable Capacitors; EMI Filters and Thin Film Devices. One of our fields of expertise is the design and  
manufacture of components important to engineers in the automotive industry. Today’s vehicles have  
many electronic control units that enable absolute precision and control.  
The Automotive Electronics Council (AEC) Component Technical Committee is the standardization body  
for establishing standards for reliable, high-quality electronic components. Components meeting these  
specifications are suitable for use in the harsh automotive environment without additional component-level  
qualification testing.  
The Component Technical Committee established AEC-Q200 “Stress Test Qualification for Passive  
Components” to define the minimum stress test driven qualification requirements for electrical devices,  
including ceramic capacitors. KPD’s Syfer brand has developed a range of MLC capacitors and surface mount  
EMI filters qualified to AEC-Q200 rev D to meet the needs of high reliability and automotive manufacturers.  
Knowles Suzhou (China), Norwich (England) and Penang (Malaysia) facilities are accredited to IATF  
16949:2016 for the design, manufacture and supply of AEC-Q200 qualified MLCC components. Please  
refer to the following pages for details of the product ranges offered.  
2
Table of Contents  
GENERAL AND TECHNICAL INTRODUCTION  
Dielectric Characteristics ....................................................................................... 4-6  
FlexiCap™ Overview ................................................................................................ 7  
IECQ-CECC and AEC-Q200 Periodic Tests .......................................................... 8  
Manufacturing Process ........................................................................................... 9  
Testing ....................................................................................................................... 10  
Regulations and Compliance ................................................................................. 11  
Explanation of Aging of MLC ................................................................................. 12  
Mounting, Soldering, Storage and Mechanical Precautions .............................. 13-14  
Ceramic Chip Capacitors Packaging Information ........................................... 15-16  
Chip Dimensions ...................................................................................................... 17  
MLC CAPACITORS  
C0G/NP0 (1B) AEC-Q200 and Standard Ranges ............................................. 18-20  
X7R (2R1) AEC-Q200 and Standard Ranges ..................................................... 21-23  
Ordering Information AEC-Q200 and Standard Ranges ................................. 24  
StackiCap™ Capacitors ............................................................................................ 25  
Safety Certified AC Capacitors ............................................................................... 26  
Enhanced 250Vac and 305Vac Safety Certified AC Capacitors......................... 27-31  
Legacy 250Vac Safety Certified AC Capacitors .................................................. 32-34  
Open Mode Capacitors C0G/NP0 (1B) and X7R (2R1) ..................................... 35  
Tandem Capacitors X7R (2R1) ............................................................................ 36  
X8R High Temperature Capacitors up to 150ºC .............................................. 37  
Ultra-Low ESR HiQ MLCCs X8G Range ............................................................ 38-39  
SM EMI FILTERS  
Surface Mount EMI Filters E01 and E07 Ranges .............................................. 40-41  
Surface Mount EMI Filters E03 X2Y IPCs ......................................................... 42-44  
Other Products Available That Are Not AEC-Q200 Qualified ............................ 45-46  
Our Other Products ................................................................................................. 47  
3
Dielectric Characteristics  
CLASS I DIELECTRICS  
Multilayer Ceramic Capacitors are generally divided into classes,  
which are defined by the capacitance temperature characteristics  
over specified temperature ranges. These are designated by alpha-  
numeric codes. Code definitions are summarized below and are also  
available in the relevant national and international specifications.  
dielectric characteristics with negligible dependence of  
capacitance and dissipation factor with time, voltage and  
frequency. They exhibit the following characteristics:  
a) Time does not significantly affect capacitance and dissipation  
factor (Tan δ) – no aging.  
Capacitors within this class have a dielectric constant range from 10  
to 100. They are used in applications that require ultra stable  
b) Capacitance and dissipation factor are not affected by voltage.  
c) Linear temperature coefficient.  
CLASS I DIELECTRICS  
C0G/NP0 (1B) (Porcelain)  
P90 (Porcelain)  
C0G/NP0 (1B)  
X8G  
Class I High Temperature  
-
Ultra Stable  
Ultra Stable  
Ultra Stable  
1B/CG  
Ultra Stable  
Ultra Stable  
IECQ-CECC  
EIA  
-
-
-
-
-
-
-
-
-
Dielectric  
classifications  
C0G/NP0 (1B)  
P90  
C0G/NP0 (1B)  
X8G  
MIL  
-
-
CG (BP)  
-
DLI  
Novacap  
Syfer  
CF  
AH  
-
-
-
N, RN  
C
-
-
-
F
-
-
D, RD  
G
-
-
-
-
Ordering code  
Q, U  
H
Voltronics  
-
F
H
Q
-
-
-
-
Rated  
temperature range  
-55ºC to +125ºC  
-55ºC to +125ºC  
-55ºC to +125ºC  
-55ºC to +125ºC  
-55ºC to +150ºC  
-55ºC to +160ºC  
-55ºC to +200ºC  
No DC  
voltage applied  
Maximum  
capacitance  
change over  
0
15 ppm/ºC  
+90 20 ppm/ºC  
0
30 ppm/ºC  
0
30 ppm/ºC  
-
0
30 ppm/ºC  
0
30 ppm/ºC  
0
30 ppm/ºC  
Rated DC  
voltage applied  
temperature range  
>50pF ≤0.0015  
≤50pF  
0.0015 (15/Cr + 0.7)  
Tangent of loss  
angle (tan ð)  
-
≤0.0005 @1MHz  
≤0.0005 @1MHz  
≤0.0005 @1MHz  
≤0.001  
@25ºC = 100GΩ or 1000ΩF  
@160ºC & 200ºC = 1GΩ or  
10ΩF (whichever is the least)  
Insulation  
resistance (Ri)  
Time constant  
(Ri x Cr)  
@25ºC = 106 MΩ min  
@125ºC = 105 MΩ min  
100GΩ or 1000s  
(whichever is the least)  
Cr <4.7pF  
Cr≥ 4.7 to <10pF  
Cr ≥ 10pF  
0.05pF, 0.10pF, 0.25pF, 0.5pF  
0.10pF, 0.25pF, 0.5pF  
1ꢀ, 2ꢀ, 5ꢀ, 10ꢀ  
Capacitance  
tolerance  
≤200V  
2.5 times  
Dielectric strength.  
Voltage applied  
for 5 seconds.  
Charging  
>200V to <500V  
500V to ≤ 1kV  
2.5 times  
Rated voltage +250V  
1.5 times  
2.5 times  
current limited  
to 50mA maximum.  
>1kV to ≤ 1.2kV  
>1.2kV  
1.25 times  
1.2 times  
-
N/A  
Chip  
-
-
-
-
-
-
55/125/56  
-
-
-
Climatic  
category (IEC)  
Dipped  
-
-
55/125/21  
55/125/56  
-
-
Discoidal  
Aging  
characteristic  
(Typical)  
-
Zero  
Approvals  
Syfer Chip  
-
-
-
QC-32100  
-
-
4
Dielectric Characteristics  
CLASS II DIELECTRICS  
Capacitors of this type have a dielectric constant range of 1000-  
4000 and also have a nonlinear temperature characteristic that  
exhibits a dielectric constant variation of less than 15ꢀ (2R1)  
from its room temperature value, over the specified temperature  
range. Generally used for bypassing (decoupling), coupling,  
filtering, frequency discrimination, DC blocking and voltage transient  
suppression with greater volumetric efficiency than Class I units,  
while maintaining stability within defined limits.  
Capacitance and dissipation factors are affected by:  
a) Time (Aging)  
b) Voltage (AC or DC)  
c) Frequency  
CLASS II DIELECTRICS  
X5R  
X7R (2R1)  
X8R  
Class II High Temperature  
Stable  
Stable  
Stable  
Stable  
-
Dielectric  
classifications  
-
2C1  
-
2R1  
2X1  
-
-
-
-
-
-
IECQ-CECC  
EIA  
X5R  
X7R (2R1)  
X8R  
-
-
BZ  
-
BX  
-
-
MIL  
-
DLI  
BW  
P
-
R
-
B, RB  
X
B
-
S
N
-
G
-
E, RE  
Novacap  
Syfer  
Ordering code  
X
X
X
-
-
-
Voltronics  
Rated  
temperature range  
-55ºC to +85ºC  
-55ºC to +125ºC  
-55ºC to +150ºC  
-55ºC to +160ºC  
+15 -40ꢀ  
-55ºC to +200ºC  
+15 -65ꢀ  
-
15ꢀ  
-
15ꢀ  
15ꢀ  
-
15ꢀ  
15ꢀ  
-
No DC voltage applied  
Maximum capacitance  
change over  
temperature range  
Rated DC  
voltage applied  
+15 -45ꢀ  
+15 -25ꢀ  
-
>25V ≤0.025  
≤25V ≤0.035  
Tangent of loss  
angle (tan ð)  
≤ 0.025 Typical*  
≤0.025  
≤0.025  
-
100GΩ or 1000s (whichever is the least)  
5ꢀ, 10ꢀ, 20ꢀ  
Time constant (Ri x Cr)  
-
Insulation resistance (Ri)  
Capacitance tolerance  
2.5 times  
≤200V  
Dielectric strength.  
Voltage applied  
for 5 seconds.  
Rated voltage +250V  
>200V to <500V  
1.5 times  
1.2 times  
500V to <1kV  
≥1kV  
Charging current limited  
to 50mA  
maximum.  
55/85/56  
55/125/56  
55/150/56  
-
-
-
Chip  
-
-
55/125/21  
55/125/56  
-
-
Dipped  
Discoidal  
Climatic category (IEC)  
Aging  
characteristic (Typical)  
5ꢀ Typical  
-
<2ꢀ per time decade  
-
QC-32100  
-
-
QC-32100  
-
Syfer chip  
Approvals  
* Refer to the MLC Capacitors catalog for details of Dissipation Factor.  
5
Dielectric Characteristics  
TYPICAL DIELECTRIC  
TEMPERATURE CHARACTERISTICS  
IMPEDANCE vs. FREQUENCY  
Ultra Stable C0G/NP0 (1B) Dielectric  
100,000,000  
10,000,000  
Porcelain C0G/NP0 & P90  
10pF  
100pF  
1nF  
1.25  
1,000,000  
100,000  
10,000  
1
10nF  
C0G/NP0 (1B) Porcelain  
1,000  
100  
P90 Porcelain  
0.75  
10  
1
0.5  
0.1  
0.25  
0
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1,000  
10,000  
Frequency (MHz)  
-0.25  
-0.5  
Stable X7R (2R1) Dielectric  
1,000,000  
100,000  
10,000  
1nF  
10nF  
100nF  
1μF  
-0.75  
-1  
1,000  
100  
-55 -40  
-20  
0
20  
40  
60  
80  
100  
125  
10  
1
Temperature °C  
0.1  
0.01  
C0G/NP0  
0.001  
0.01  
0.1  
1
10  
100  
1,000  
10,000  
Frequency (MHz)  
50  
25  
0
Upper Limit  
Stable X7R (2R1) Dielectric 10nF  
1,000,000  
Typical Limit  
100,000  
1808  
0805  
1206  
1210  
10,000  
1,000  
100  
10  
1
0.1  
-25  
-50  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1,000  
10,000  
Lower Limit  
Frequency (MHz)  
ESR vs. FREQUENCY CHIPS  
-55  
-25  
0
25  
50  
75  
100  
125  
Temperature °C  
Ultra Stable C0G/NP0 (1B) Dielectric  
1,000  
100pF  
1nF  
10nF  
100  
10  
1
X7R (2R1)  
20  
15  
Typical specification limit  
0.1  
Typical capacitance change curves will  
lie within the band shown  
10  
0.01  
5
0.001  
0.001  
0.01  
0.1  
1
10  
100  
1,000  
10,000  
Frequency (MHz)  
0
Stable X7R (2R1) Dielectric  
-5  
10,000  
1,000  
100  
1nF  
-10  
10nF  
100nF  
1μF  
-15  
10  
1
Typical specification limit  
-20  
0.1  
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
125  
0.01  
Temperature °C  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1,000  
10,000  
Frequency (MHz)  
6
FlexiCap™ Overview  
FLEXICAP™ BENEFITS  
FLEXICAP™ TERMINATION  
With traditional termination materials and assembly, the  
MLCCs are widely used in electronic circuit design for a multitude of  
applications. Their small package size, technical performance and suitability  
for automated assembly make them the component of choice for the  
specifier. However, despite the technical benefits, ceramic components  
are brittle and need careful handling on the production floor. In some  
circumstances they may be prone to mechanical stress damage if not used in  
an appropriate manner. Board flexing, depanelization, mounting through hole  
components, poor storage and automatic testing may all result in cracking.  
Careful process control is important at all stages of circuit board assembly  
and transportation — from component placement to test and packaging. Any  
significant board flexing may result in stress fractures in ceramic devices that  
may not always be evident during the board assembly process. Sometimes it  
may be the end customer who finds out — when equipment fails!  
chain of materials from bare PCB to soldered termination  
provides no flexibility. In circumstances where excessive stress  
is applied, the weakest link fails. This means the ceramic itself may  
fail or short circuit. The benefit to the user is to facilitate a wider  
process window giving a greater safety margin and substantially  
reducing the typical root causes of mechanical stress cracking. FlexiCap™  
may be soldered using your traditional wave or reflow solder techniques,  
including lead free, and needs no adjustment to equipment or current  
processes. Knowles has delivered millions of FlexiCap™ components  
and during that time has collected substantial test and reliability data,  
working in partnership with customers worldwide to eliminate mechanical  
cracking. An additional benefit of FlexiCap™ is that MLCCs can withstand  
temperature cycling -55ºC to +125ºC in excess of 1,000 times without  
cracking. FlexiCap™ termination has no adverse effect on any electrical  
parameters, nor affects the operation of the MLCC in any way.  
KNOWLES HAS THE SOLUTION FLEXICAP™  
FlexiCap™ has been developed as a result of listening to customers’  
experiences of stress damage to MLCCs from many manufacturers, often  
caused by variations in production processes. Our answer is a proprietary  
flexible epoxy polymer termination material that is applied to the device under  
the usual nickel barrier finish. FlexiCap™ will accommodate a greater degree of  
board bending than conventional capacitors.  
Picture taken at  
1,000x magnification  
using an SEM to  
demonstrate the fibrous  
nature of the FlexiCap  
TM  
termination that absorbs  
increased levels of  
mechanical stress.  
KNOWLES FLEXICAP™ TERMINATION  
Ranges are available with FlexiCap™ termination material offering increased  
reliability and superior mechanical performance (board flex and temperature  
cycling) when compared with standard termination materials. Refer to Knowles  
application note reference AN0001. FlexiCap™ capacitors enable the board to  
be bent almost twice as much before mechanical cracking occurs. Refer to  
application note AN0002. FlexiCap™ is also suitable for space applications,  
having passed thermal vacuum outgassing tests. Refer to Syfer application  
note reference AN0026.  
AVAILABLE ON THE FOLLOWING RANGES:  
All High Reliability Ranges  
Standard and High Voltage  
Capacitors  
Non-Magnetic Capacitors  
3-Terminal EMI Chips  
X2Y Integrated Passive  
Components  
Open Mode and Tandem  
Capacitors  
X8R High Temperature  
Safety Certified Capacitors  
Capacitors  
SUMMARY OF PCB BEND TEST RESULTS  
The bend tests conducted on X7R (2R1) have proven that the FlexiCap™  
termination withstands a greater level of mechanical stress before  
mechanical cracking occurs. The AEC-Q200 test for X7R (2R1) requires a  
bend level of 2mm minimum and a cap change of less than 10ꢀ. Knowles  
test to a minimum bend of 5mm for X7R with FlexiCap termination, and  
for COG with either FlexiCap or standard termination.  
Product X7R (2R1)  
Standard termination  
FlexiCap™  
Typical bend performance under AEC-Q200 test conditions  
2mm to 3mm  
Typically 8mm to 10mm  
APPLICATION NOTES  
FlexiCap™ may be handled, stored and transported in the same manner as standard terminated capacitors. The requirements  
for mounting and soldering FlexiCap™ are the same as for standard SMD capacitors. For customers currently using standard  
terminated capacitors there should be no requirement to change the assembly process when converting to FlexiCap™.  
Based upon board bend tests in accordance with IEC 60384-1, the amount of board bending required to mechanically crack a FlexiCap™ terminated capacitor  
is significantly increased compared with standard terminated capacitors. It must be stressed, however, that capacitor users must not assume that the use of  
FlexiCap™ terminated capacitors will totally eliminate mechanical cracking. Good process controls are still required for this objective to be achieved.  
7
IECQ-CECC and AEC-Q200 Tests  
PERIODIC TESTS CONDUCTED FOR IECQꢁCECC AND AECꢁQ200  
Sample acceptance  
Test ref  
Test  
Termination type  
Additional requirements  
Reference  
P
N
C
High temperature  
exposure (storage)  
Un-powered. 1,000 hours @ T=150ºC.  
Measurement at 24 2 hours after test conclusion.  
MIL-STD-202  
Method 108  
P1  
All types  
12  
77  
0
C0G/NP0 (1B):  
All types X7R (2R1):  
Y and H only  
1,000 cycles -55ºC to +125ºC  
Measurement at 24 2 hours after test conclusion.  
JESD22  
Method JA-104  
P2  
P3  
Temperature cycling  
Moisture resistance  
12  
12  
77  
77  
0
0
T = 24 hours/cycle. Note: Steps 7a and 7b not required.  
Unpowered.  
MIL-STD-202  
Method 106  
All types  
All types  
Measurement at 24 2 hours after test conclusion.  
1,000 hours 85ºC/85ꢀRH. Rated voltage or 50V  
whichever is the least and 1.5V.  
Measurement at 24 2 hours after test conclusion.  
MIL-STD-202  
Method 103  
P4  
Biased humidity  
12  
77  
0
Condition D steady state TA=125ºC at full rated.  
Measurement at 24 2 hours after test conclusion.  
MIL-STD-202  
Method 108  
P5  
P6  
Operational life  
All types  
All types  
12  
12  
77  
5
0
0
Note: Add aqueous wash chemical.  
Do not use banned solvents.  
MIL-STD-202  
Method 215  
Resistance to solvents  
C0G/NP0 (1B):  
All types X7R (2R1):  
Y and H only  
MIL-STD-202  
Method 213  
P7  
P8  
Mechanical shock  
Vibration  
Figure 1 of Method 213. Condition F  
12  
12  
30  
30  
0
0
5g’s for 20 minutes, 12 cycles each of 3 orientations.  
C0G/NP0 (1B):  
All types X7R (2R1):  
Y and H only  
Note: Use 8" x 5" PCB 0.031" thick 7 secure points on one  
long side and 2 secure points at corners of opposite sides.  
Parts mounted within 2" from any secure point. Test from  
10-2,000Hz.  
MIL-STD-202  
Method 204  
Condition B, no pre-heat of samples:  
Single wave solder - Procedure 2  
MIL-STD-202  
Method 210  
P9  
Resistance to soldering heat  
Thermal shock  
All types  
3
12  
0
0
C0G/NP0 (1B):  
All types X7R (2R1):  
Y and H only  
-55ºC/+125ºC. Number of cycles 300.  
Maximum transfer time - 20 seconds,  
dwell time - 15 minutes. Air-Air.  
MIL-STD-202  
Method 107  
P10  
12  
30  
BS EN132100  
Clause 4.8, 4.12  
and 4.13  
Adhesion, rapid temp change and  
climatic sequence  
X7R (2R1):  
A, F and J only  
5N force applied for 10s, -55ºC/+125ºC for 5 cycles,  
damp heat cycles  
P11  
12  
12  
27  
30  
0
0
C0G/NP0 (1B):  
All types X7R (2R1):  
Y and H only  
3mm deflection Class I  
2mm deflection Class II  
P12  
Board flex  
AEC-Q200-005  
BS EN132100  
Clause 4.9  
P13  
P14  
P15  
P16  
Board flex  
Terminal strength  
Beam load test  
X7R (2R1): A, F and J only  
All types  
1mm deflection  
12  
12  
12  
12  
12  
30  
30  
45  
0
0
0
0
Force of 1.8kg for 60 seconds  
AEC-Q200-006  
AEC-Q200-003  
All types  
-
56 days, 40ºC/93ꢀ RH 15x no volts, 15x 5Vdc,  
15x rated voltage or 50V whichever is the least  
BS EN132100  
Clause 4.14  
Damp heat steady state  
All types  
Test results are available on request.  
P = Period in months. N = Sample size. C = Acceptance criteria.  
8
Manufacturing Process  
KNOWLES RELIABILITY GRADES  
PRODUCTION PROCESS FLOWCHART  
High reliability (space quality)  
Electrode ink material  
Ceramic powder  
preparation  
Space  
Grade  
ESCC 3009(1)  
MIL Grade  
Multilayer build  
Fire  
IECQ-CECC(2)  
AEC-Q200(3)  
Standard components  
Standard reliability  
Notes:  
Rumble  
1) Space grade tested in accordance with ESCC3009 (refer to Knowles Spec S02A  
0100) or MIL Grade (in accordance with MIL-PRF-123, MILPRF-55681).  
2) IECQ-CECC. The International Electrotechnical Commission (IEC) Quality Assessment  
System for Electronic Components. This is an internationally recognized product  
quality certification that provides customers with assurance that the product  
supplied meets high-quality standards. View Knowles IECQ-CECC approvals at  
iecq.org or at knowlescapacitors.com  
DPA inspection  
Termination  
3) AEC-Q200. Automotive Electronics Council Stress Test Qualification For Passive  
Components. Refer to Knowles application note AN0009.  
Plating (if specified)  
Printing (if specified)  
KNOWLES RELIABILITY SURFACE MOUNT  
PRODUCT GROUPS  
High reliability  
Electrical test  
Tandem  
FlexiCapTM  
capacitors(1)  
Test verification  
Open Mode  
FlexiCapTM capacitors(2)  
Additional sample Rel  
tests (if specified)  
Standard FlexiCapTM capacitors(3)  
Standard components  
Standard reliability  
QC inspection  
Notes:  
1) “Tandem” construction capacitors, i.e., internally having the equivalent of two series  
capacitors. If one of these should fail or short circuit, there is still capacitance end to  
end and the chip will still function as a capacitor, although capacitance may be  
affected. Refer to application note AN0021. Also available qualified to AEC-Q200.  
Additional Hi Rel activities  
(S02A 100ꢀ burn-in, QC insp)  
2) “Open Mode” capacitors with FlexiCapTM termination also reduce the possibility of a  
short circuit by utilizing inset electrode margins. Refer to application note AN0022.  
Also available qualified to AEC-Q200.  
Packaging  
TM  
3) Multilayer capacitors with Knowles FlexiCapTM termination. By using FlexiCap  
termination, there is a reduced possibility of the mechanical cracking occurring.  
Finished goods store  
TM  
4) “Standard” capacitors include MLCCs with tin finish over nickel but no FlexiCap .  
9
Testing  
TESTS CONDUCTED DURING BATCH MANUFACTURE  
KNOWLES RELIABILITY SM PRODUCT GROUP  
S (Space grade)  
Standard SM  
capacitors  
IECQ-CECC/  
MIL grade  
AEC-Q200  
High Rel S02A ESCC 3009  
MIL-PRF-123  
Solderability  
Resistance to soldering heat  
Plating thickness verification (if plated)  
DPA (Destructive Physical Analysis)  
Voltage proof test (DWV/Flash)  
Insulation resistance  
Capacitance test  
Dissipation factor test  
100ꢀ visual inspection  
100ꢀ burn-in  
Load sample test @ 125ºC  
LAT1 & LAT2 (1000 hours)  
240 hours  
Humidity sample test. 85ºC/85ꢀRH  
Hot IR sample test  
Axial pull sample test (MIL-STD-123)  
Breakdown voltage sample test  
Deflection (bend) sample test  
SAM (Scanning Acoustic Microscopy)  
LAT1 (4 x adhesion, 8 x rapid temp change + LAT2 and LAT3)  
LAT2 (20 x 1000 hour life test + LAT3)  
LAT3 (6 x TC and 4 x solderability)  
-
-
-
-
-
-
-
-
-
Test conducted as standard.  
Optional test. Please discuss with the Knowles Precision Devices sales office.  
10  
Regulations and Compliance  
RELEASE DOCUMENTATION  
KNOWLES PRECISION DEVICES RELIABILITY SM PRODUCT GROUP  
Standard SM capacitors  
IECQ-CECC  
-
AEC-Q200 MIL grade  
S (Space grade) High Rel S02A  
Certificate of conformance  
IECQ-CECC Release certificate of conformity  
Batch electrical test report  
-
-
-
-
-
Included in data pack  
S (space grade) data documentation package  
-
Release documentation supplied as standard.  
Original documentation.  
EXAMPLE OF FIT ꢂFAILURE IN TIMEꢃ DATA AVAILABLE:  
PERIODIC TESTS CONDUCTED AND  
RELIABILITY DATA AVAILABILITY  
10,000  
STANDARD SURFACE MOUNT CAPACITORS  
Components are randomly selected on a sample basis and the  
following routine tests are conducted:  
RV  
50ꢀ of RV  
25ꢀ of RV  
10ꢀ of RV  
10  
Load Test. 1,000 hours @125ºC (150ºC for X8R). Applied  
voltage depends on components tested.  
Humidity Test. 168 hours @ 85ºC/85ꢀ RH.  
0.01  
Board Deflection (bend test).  
Test results are available on request.  
CONVERSION FACTORS  
0.00001  
25°C  
50°C  
75°C  
100°C  
125°C  
From  
FITS  
FITS  
To  
Operation  
109 ÷ FITS  
MTBF (hours)  
Component type: 0805 (C0G/NP0 (1B) and X7R (2R1)).  
Testing location: Knowles PD reliability test department.  
Results based on: 16,622,000 component test hours.  
MTBF (years)  
109 ÷ (FITS x 8760)  
FITS = Failures in 109 hours.  
MTBF = Mean time between failures.  
free solder alloys (refer to “Soldering Information” for more details on soldering limitations).  
Compliance with the EU RoHS directive automatically signifies compliance with some other  
legislation (e.g., China and Korea RoHS). Please refer to the Knowles Precision Devices Sales  
Office for details of compliance with other materials legislation.  
REGISTRATION, EVALUATION, AUTHORIZATION  
AND RESTRICTION OF CHEMICALS ꢂREACHꢃ  
The main purpose of REACH is to improve the protection of human  
health and the environment from the risks arising from the use of  
chemicals. Knowles maintains both ISO14001 Environmental  
Management System and OHSAS 18001 Health and Safety  
Management System approvals that require and ensure compliance  
with corresponding legislation such as REACH. For further information,  
please contact the Knowles Precision Devices Sales Office at  
knowlescapacitors.com  
Breakdown of material content, SGS analysis reports and tin whisker test results are available  
on request.  
Most Knowles PD MLCC components are available with non-RoHS compliant tin lead  
(SnPb) solderable termination finish for exempt applications and where pure tin is not  
acceptable. Other tin free termination finishes may also be available – please refer to  
knowlescapacitors.com Sales Office for further details. Environmental certificates can be  
downloaded from the Knowles Precision Devices website.  
EXPORT CONTROLS AND DUALꢁUSE REGULATIONS  
ROHS COMPLIANCE  
Certain Knowles catalog components are defined as “dual-use” items under international  
export controls — those that can be used for civil or military purposes which meet certain  
specified technical standards. The defining criteria for a dual-use component with respect to  
Knowles capacitor products is one with a voltage rating of >750Vdc, a capacitance value of  
>250nF when measured at 750Vdc, and a series inductance <10nH. Components defined  
as dual use under the above criteria may require a license for export across international  
borders. Please contact the Sales Office for further information on specific part numbers.  
Knowles routinely monitors worldwide material restrictions (e.g.,  
EU/China and Korea RoHS mandates) and is actively involved in  
shaping future legislation.  
All standard C0G/NP0 (1B), X7R (2R1), X5R, X8R, X8G and High Q Knowles  
MLCC products are 100ꢀ lead free and compliant with the EU RoHS directive.  
Those with plated terminations are suitable for soldering using common lead-  
11  
Explanation of Aging of MLC  
CAPACITANCE MEASUREMENTS  
AGING  
Because of aging it is necessary to specify an age for reference  
measurements at which the capacitance shall be within the prescribed  
tolerance. This is fixed at 1,000 hours, since for practical purposes there is  
not much further loss of capacitance after this time.  
Capacitor aging is a term used to describe the negative, logarithmic capacitance  
change that takes place in ceramic capacitors with time. The crystalline structure  
for barium titanate based ceramics changes on passing through its Curie  
temperature (known as the Curie Point, at about 125°C. This domain structure  
relaxes with time and in doing so, the dielectric constant reduces logarithmically;  
this is known as the aging mechanism of the dielectric constant. The more stable  
dielectrics have the lowest aging rates.  
All capacitors shipped are within their specified tolerance at the  
standard reference age of 1,000 hours after having cooled through  
their Curie temperature.  
The aging process is reversible and repeatable. Whenever the capacitor is heated  
to a temperature above the Curie Point, the aging process starts again from zero.  
The aging curve for any ceramic dielectric is a straight line when  
plotted on semi-log paper.  
The aging constant, or aging rate, is defined as the percentage loss of  
capacitance due to the aging process of the dielectric that occurs during a  
decade of time (a tenfold increase in age) and is expressed as percent per  
logarithmic decade of hours. As the law of decrease of capacitance is logarithmic,  
this means that in a capacitor with an aging rate of 1ꢀ per decade of time, the  
capacitance will decrease at a rate of:  
CAPACITANCE vs. TIME  
(Aging X7R (2R1) @ <2ꢀ per decade)  
Standard reference time  
24  
20  
a) 1ꢀ between 1 and 10 hours  
16  
12  
8
b) An additional 1ꢀ between the following 10 and 100 hours  
c) An additional 1ꢀ between the following 100 and 1,000 hours  
d) An additional 1ꢀ between the following 1,000 and 10,000 hours, etc.  
e) The aging rate continues in this manner throughout the capacitor’s life.  
C0G/NP0 (1B)  
4
0
X7R (2R1)  
1,000  
Typical values of the aging constant for our Multilayer Ceramic Capacitors  
are:  
-4  
10,000  
0.1  
1
10  
100  
Age (Hours)  
Dielectric class  
Typical values  
TIGHT TOLERANCE  
Ultra Stable C0G/NP0 (1B)  
Stable X7R (2R1)  
Negligible capacitance loss through aging  
<2ꢀ per decade of time  
One of the advantages of Knowles’ unique “wet process” of  
manufacture is the ability to offer capacitors with exceptionally tight  
capacitance tolerances.  
The accuracy of the printing screens used in the fully automated,  
computer controlled manufacturing process allows for tolerance as  
close as +/-1ꢀ on C0G/NP0 (1B) parts greater than or equal to 10pF. For  
capacitance values below <4.7pF, tolerances can be as tight as +/-0.05pF.  
12  
Mounting, Soldering, Storage and  
Mechanical Precautions  
The volume of solder applied to the chip capacitor can influence the reliability  
Knowles Precision Devices' MLCCs are compatible with all recognized soldering/  
mounting methods for chip capacitors.  
of the device. Excessive solder can create thermal and tensile stresses on the  
component, which can lead to fracturing of the chip or the solder joint itself.  
Insufficient or uneven solder application can result in weak bonds, rotation of the  
device off line or lifting of one terminal off the pad (tombstoning). The volume of  
solder is process and board pad size dependent.  
MECHANICAL CONSIDERATIONS FOR MOUNTING MLCCS  
Due to their brittle nature, ceramic chip capacitors are more prone to excesses of  
mechanical stress than other components used in surface mounting.  
One of the most common causes of failure is directly attributable to bending the printed  
circuit board after solder attachment. The excessive or sudden movement of the flexible  
circuit board stresses the inflexible ceramic block, causing a crack to appear at the  
weakest point, usually the ceramic/termination interface. The crack may initially be quite  
small and not penetrate into the inner electrodes; however, subsequent handling and  
rapid changes in temperature may cause the crack to enlarge. This mode of failure is  
often invisible to normal inspection techniques as the resultant cracks usually lie under  
the capacitor terminations, but if left, can lead to catastrophic failure. More importantly,  
mechanical cracks, unless they are severe, may not be detected by normal electrical  
testing of the completed circuit, failure only occurring at some later stage after moisture  
ingression. The degree of mechanical stress generated on the printed circuit board  
is dependent upon several factors, including the board material and thickness; the  
amount of solder and land pattern. The amount of solder applied is important, as an  
excessive amount reduces the chip’s resistance to cracking.  
Soldering methods commonly used in industry are Reflow Soldering, Wave  
Soldering and, to a lesser extent, Vapor Phase Soldering. All these methods  
involve thermal cycling of the components and therefore the rate of heating and  
cooling must be controlled to preclude thermal shocking of the devices. Without  
mechanical restriction, thermally induced stresses are released once the capacitor  
attains a steady state condition. Capacitors bonded to substrates, however, will  
retain some stress, due primarily to the mismatch of expansion of the component  
to the substrate; the residual stress on the chip is also influenced by the ductility  
and hence the ability of the bonding medium to relieve the stress. Unfortunately,  
the thermal expansion of chip capacitors differs significantly from those of most  
substrate materials. Large chips are more prone to thermal shock as their greater  
bulk will result in sharper thermal gradients within the device during thermal  
cycling. Large units experience excessive stress if processed through the fast  
cycles typical of solder wave or vapor phase operations.  
It is Knowles’ experience that more than 90ꢀ are due to board depanelization, a  
process where two or more circuit boards are separated after soldering is complete.  
Other manufacturing stages  
REFLOW SOLDERING SURFACE MOUNT CHIP CAPACITORS  
Knowles recommends reflow soldering as the preferred method for mounting  
MLCCs. KPD MLCCs can be reflow soldered using a reflow profile generally  
as defined in IPC/ EDEC J-STD-020. Sn plated termination chip capacitors  
are compatible with both conventional and lead-free soldering, with peak  
temperatures of 260ºC to 270ºC acceptable. The heating ramp rate should  
be such that components see a temperature rise of 1.5ºC to 4ºC per second to  
maintain temperature uniformity throughout the MLCC. The time for which the  
solder is molten should be maintained at a minimum, so as to prevent solder  
leaching. Extended times above 230ºC can cause problems with oxidation of Sn  
plating. Use of inert atmosphere can help if this problem is encountered. PdAg  
terminations can be particularly susceptible to leaching with lead-free, tin-rich  
solders and trials are recommended for this combination. Cooling to ambient  
temperature should be allowed to occur naturally, particularly if larger chip  
sizes are being soldered. Natural cooling allows a gradual relaxation of thermal  
mismatch stresses in the solder joints. Forced cooling should be avoided as this  
can induce thermal breakage.  
that should be reviewed include:  
1) Attaching rigid components such as connectors, relays, display panels, heat sinks, etc.  
2) Fitting conventional leaded components. Special care must be exercised when rigid  
terminals, as found on large can electrolytic capacitors, are inserted.  
3) Storage of boards in such a manner that allows warping.  
4) Automatic test equipment, particularly the type employing “bed of nails” and  
support pillars.  
5) Positioning the circuit board in its enclosure, especially where this is a “snap-fit”.  
Knowles was the first MLCC manufacturer to launch a flexible termination to significantly  
reduce the instances of mechanical cracking. FlexiCap™ termination introduces a certain  
amount of give into the termination layer, absorbing damaging stress. Unlike similar  
systems, FlexiCap™ does not tear under tension, but absorbs the stress, so maintaining the  
characteristics of the MLCC.  
SM PAD DESIGN  
WAVE SOLDERING SURFACE MOUNT CHIP CAPACITORS  
Knowles conventional 2-terminal chip capacitors can generally be mounted using  
pad designs in accordance with IPC-7351, Generic Requirements for Surface Mount  
Design and Land Pattern Standards, but there are some other factors that have been  
shown to reduce mechanical stress, such as reducing the pad width to less than the  
chip width. In addition, the position of the chip on the board should also be considered.  
3-Terminal components are not specifically covered by IPC-7351, but recommended  
pad dimensions are included in the Knowles catalog/website for these components.  
Wave soldering is generally acceptable, but the thermal stresses caused by the  
wave have been shown to lead to potential problems with larger or thicker chips.  
Particular care should be taken when soldering SM chips larger than size 1210 and  
with a thickness greater than 1.0mm for this reason. 0402 size components are  
not suitable for wave soldering. 0402 size components can also be susceptible  
to termination leaching and reflow soldering is recommended for this size MLCC.  
Wave soldering exposes the devices to a large solder volume, hence the pad size  
area must be restricted to accept an amount of solder that is not detrimental to the  
chip size utilized. Typically the pad width is 66ꢀ of the component width, and the  
length is .030" (.760mm) longer than the termination band on the chip. An 0805  
chip that is .050" wide and has a .020" termination band therefore requires a pad  
SOLDERING SURFACE MOUNT CHIP CAPACITORS  
Please see application note AN0028 “Soldering/Mounting Chip Capacitors, Radial  
Leaded Capacitors and EMI Filters” located at: http://www.knowlescapacitors.com/  
Resources.  
13  
Mounting, Soldering, Storage and  
Mechanical Precautions  
.033" wide by .050" in length. Opposing pads should be identical in size to preclude  
uneven solder fillets and mismatched surface tension forces, which can misalign the  
BONDING  
Hybrid assembly using conductive epoxy or wire bonding requires the use of  
device. It is preferred that the pad layout results in alignment of the long axis of the  
chips at right angles to the solder wave, to promote even wetting of all terminals.  
Orientation of components in line with the board travel direction may require dual  
waves with solder turbulence to preclude cold solder joints on the trailing terminals of  
the devices, as these are blocked from full exposure to the solder by the body of the  
capacitor.  
silver palladium or gold terminations. Nickel barrier termination is not practical in  
these applications, as intermetallics will form between the dissimilar metals. The  
ESR will increase over time and may eventually break contact when exposed to  
temperature cycling.  
CLEANING  
The preheat ramp should be such that the components see a temperature rise of  
1.5ºC to 4ºC per second as for reflow soldering. This is to maintain temperature  
uniformity throughout the MLCC and prevent the formation of thermal gradients  
within the ceramic. The preheat temperature should be within 120ºC maximum (100ºC  
preferred) of the maximum solder temperature to minimize thermal shock. Maximum  
permissible wave temperature is 270ºC for SM chips. Total immersion exposure  
time for Sn/Ni terminations is 30s at a wave temperature of 260ºC. Note that for  
multiple soldering operations, including the rework, the soldering time is cumulative.  
The total immersion time in the solder should be kept to a minimum. It is strongly  
recommended that plated terminations are specified for wave soldering applications.  
PdAg termination is particularly susceptible to leaching when subjected to lead-free  
wave soldering and is not generally recommended for this application.  
Chip capacitors can withstand common agents such as water, alcohol and  
degreaser solvents used for cleaning boards. Ascertain that no flux residues are  
left on the chip surfaces as these diminish electrical performance.  
HANDLING  
Ceramics are dense, hard, brittle and abrasive materials. They are liable to suffer  
mechanical damage, in the form of chips or cracks, if improperly handled.  
Terminations may be abraded onto chip surfaces if loose chips are tumbled in  
bulk. Metallic tracks may be left on the chip surfaces which might pose a reliability  
hazard. Components should never be handled with fingers; perspiration and  
skin oils can inhibit solderability and will aggravate cleaning. Chip capacitors  
should never be handled with metallic instruments. Metal tweezers should never  
be used as these can chip the product and may leave abraded metal tracks on the  
product surface. Plastic or plastic coated metal types are readily available and  
recommended — these should be used with an absolute minimum of applied  
pressure. Counting or visual inspection of chip capacitors is best performed on  
a clean glass or hard plastic surface. If chips are dropped or subjected to rough  
handling, they should be visually inspected before use. Electrical inspection may  
also reveal gross damage via a change in capacitance, an increase in dissipation  
factor or a decrease either in insulation resistance or electrical strength.  
Cooling to ambient temperature should be allowed to occur naturally, particularly if  
larger chip sizes are being soldered. Natural cooling allows a gradual relaxation of  
thermal mismatch stresses in the solder joints. Forced cooling should be avoided as  
this can induce thermal breakage.  
VAPOR PHASE SOLDERING CHIP CAPACITORS  
Vapor phase soldering, can expose capacitors to similar thermal shock and stresses as  
wave soldering and the advice is generally the same. Particular care should be taken  
in soldering large capacitors to avoid thermal cracks being induced and natural cooling  
should be use to allow a gradual relaxation of stresses.  
TRANSPORTATION  
Where possible, any transportation should be carried out with the product in its  
unopened original packaging. If already opened, any environmental control agents  
supplied should be returned to packaging and the packaging resealed.  
HAND SOLDERING AND REWORK OF CHIP CAPACITORS  
Avoid paper and card as a primary means of handling, packing, transportation  
and storage of loose components. Many grades have a sulphur content that will  
adversely affect termination solderability. Loose chips should always be packed with  
sulphur-free wadding to prevent impact or abrasion damage during transportation.  
Attachment using a soldering iron requires extra care and is accepted to have a risk of  
cracking the chip. Precautions include preheating of the assembly to within 100°C of the  
solder flow temperature and the use of a fine tip iron that does not exceed 30  
watts. In no circumstances should the tip of the iron be allowed to contact the chip  
directly. KPD recommends hot air/gas as the preferred method for applying heat for  
rework. Apply even heat surrounding the component to minimize internal thermal  
gradients. Minimize the rework heat duration and allow components to cool  
naturally after soldering.  
STORAGE  
Incorrect storage of components can lead to problems for the user. Rapid  
tarnishing of the terminations, with an associated degradation of solderability,  
will occur if the product comes into contact with industrial gases such as sulphur  
dioxide and chlorine. Storage in free air, particularly moist or polluted air, can result  
in termination oxidation.  
SOLDER LEACHING  
Leaching is the term for the dissolution of silver into the solder, causing a failure of the  
termination system, which causes increased ESR, tan δ and open circuit faults, including,  
ultimately, the possibility of the chip becoming detached. Leaching occurs more readily  
with higher temperature solders and solders with a high tin content. Pb-free solders can  
be very prone to leaching certain termination systems. To prevent leaching, exercise  
care when choosing solder alloys and minimize both maximum temperature and dwell  
time with the solder molten. Plated terminations with nickel or copper anti-leaching  
barrier layers are available in a range of top coat finishes to prevent leaching from  
occurring. These finishes also include Syfer FlexiCap™ for improved stress resistance  
post soldering.  
Packaging should not be opened until the MLCCs are required for use. If opened,  
the pack should be resealed as soon as is practicable. Alternatively, the contents  
could be kept in a sealed container with an environmental control agent.  
Long-term storage conditions, ideally, should be temperature controlled between  
-5°C and +40°C and humidity controlled between 40ꢀ and 60ꢀ RH. Taped  
product should be stored out of direct sunlight, which might promote deterioration in  
tape or adhesive performance. Product, stored under the conditions recommended  
above, in its “as received” packaging, has a minimum shelf life of 2 years.  
14  
Ceramic Chip Capacitors  
Packaging Information  
Tape and reel packing of surface mounting chip capacitors for automatic placement are in accordance with IEC60286-3.  
DIMENSIONS MM ꢂINCHESꢃ  
Symbol  
Description  
178mm reel  
330mm reel  
PEEL FORCE  
The peel force of the top sealing tape is between 0.2 and 1.0  
Newton at 180°. The breaking force of the carrier and sealing tape  
in the direction of unreeling is greater than 10 Newtons.  
A
G
T
Diameter  
Inside width  
Outside width  
178 (7)  
8.4 (0.33)  
330 (13)  
12.4 (0.49)  
14.4 (0.56) max  
18.4 (0.72) max  
IDENTIFICATION  
LEADER AND TRAILER  
Each reel is labeled with the following information: manufacturer,  
chip size, capacitance, tolerance, rated voltage, dielectric type,  
batch number, date code and quantity of components.  
MISSING COMPONENTS  
Maximum number of missing components shall be 1 per reel  
or 0.025ꢀ, whichever is greater. There shall not be consecutive  
components missing from any reel for any reason.  
TAPE DIMENSIONS  
Dimensions mm (inches)  
Symbol  
Description  
8mm tape  
12mm tape  
Width of cavity, Length of cavity, Depth  
of cavity  
A0, B0, K0  
Dependent on chip size to minimize rotation  
W
F
Width of tape  
8.0 (0.315)  
3.5 (0.138)  
12.4 (0.472)  
5.5 (0.213)  
Distance between drive hole centers and  
cavity centers  
Distance between drive hole centers and  
tape edge  
E
P1  
P2  
1.75 (0.069)  
2.0 (0.079)  
Distance between cavity centers  
4.0 (0.156)  
8.0 (0.315)  
Axial distance between drive hole centers  
and cavity centers  
P0  
D0  
D1  
Axial distance between drive hole centers  
Drive hole diameter  
4.0 (0.156)  
1.5 (0.059)  
Diameter of cavity piercing  
1.0 (0.039)  
1.5 (0.059)  
0.3 (0.012)  
0.1 (0.004)  
0.4 (0.016)  
0.1 (0.004)  
T
t1  
Carrier tape thickness  
Top tape thickness  
0.1 (0.004) max  
15  
Ceramic Chip Capacitors  
Packaging Information  
COMPONENT ORIENTATION  
OUTER PACKAGING  
Tape and reeling is in accordance with IEC 60286 part 3, which  
defines the packaging specifications of lead-less components on  
continuous tapes.  
OUTER CARTON DIMENSIONS MM ꢂINCHESꢃ MAX.  
Reel Size  
No. of reels  
L
W
T
178 (7.0)  
178 (7.0)  
1
4
1
185 (7.28)  
190 (7.48)  
335 (13.19)  
185 (7.28)  
195 (7.76)  
335 (13.19)  
25 (0.98)  
75 (2.95)  
25 (0.98)  
Notes:  
1) IEC60286-3 states Ao ≤ Bo  
(see tape dimensions on page 15).  
2) Regarding the orientation of 1825 and 2225 components,  
the termination bands are right to left, NOT front to back.  
Please see diagram.  
330 (13.0)  
Orientation of 1825 & 2225 components  
MAXIMUM REEL QUANTITIES  
1210  
1210  
Chip size  
0402  
0603  
0805  
1206  
1808  
1812  
1825  
2211  
2215  
2220  
2225 3640 5550  
8060  
(T = 2.0mm) (T = 2.2mm)  
Reel quantities  
178mm (7")  
10k  
15k  
4,000  
16k  
3,000  
12k  
2,500  
10k  
2,000  
8,000  
1,500  
6,000  
1,500  
500  
500  
750*  
500  
500  
500  
-
-
-
-
-
330mm (13")  
6,000  
2,000  
2,000  
2,000  
2,000  
2,000  
2,000  
500  
*For 2211 Enhanced AC Safety Capacitors, 178mm (7") reel quantity is 500.  
BULK PACKAGING, TUBS  
Chips can be supplied in rigid resealable plastic tubs together with  
impact cushioning wadding. Tubs are labeled with the details: chip  
size, capacitance, tolerance, rated voltage, dielectric type, batch  
number, date code and quantity of components.  
Dimensions mm (inches)  
H
D
60 (2.36)  
50 (1.97)  
16  
Chip Dimensions  
1. For maximum chip thicknesses, refer to individual range  
tables in this catalog.  
2. Non-standard thicknesses are available – consult your  
local Knowles Precision Devices sales office.  
3. For special ranges, e.g., AC Safety Capacitors and Surface Mount  
EMI Filters, dimensions may vary. See individual catalog page.  
Case Size  
Length (L1) Parts with standard  
termination mm (inches)  
Length (L1) Parts with polymer  
termination mm (inches)  
Width (W) mm (inches)  
Termination Band (L2)  
Minimum mm (inches)  
Maximum mm (inches)  
1.0 +0.20/-0.10  
(0.04 +0.008/-0.004)  
0402  
0603  
0805  
1206  
1210  
1.0 0.10 (0.040 0.004)  
1.6 0.15 (0.063 0.006)  
2.0 0.20 (0.079 0.008)  
3.2 0.20 (0.126 0.008)  
3.2 0.20 (0.126 0.008)  
4.5 0.35 (0.180 0.014)  
4.5 0.30 (0.180 0.012)  
4.5 0.30 (0.180 0.012)  
0.50 0.10 (0.02 0.004)  
0.8 0.15 (0.032 0.006)  
1.25 0.20 (0.049 0.008)  
1.6 0.20 (0.063 0.008)  
2.5 0.20 (0.098 0.008)  
2.0 0.30 (0.08 0.012)  
3.2 0.20 (0.126 0.008)  
6.40 0.40 (0.252 0.016)  
0.10 (0.004)  
0.20 (0.008)  
0.25 (0.01)  
0.25 (0.01)  
0.25 (0.01)  
0.25 (0.01)  
0.25 (0.01)  
0.25 (0.01)  
0.40 (0.016)  
0.40 (0.016)  
0.75 (0.030)  
0.75 (0.030)  
0.75 (0.030)  
1.0 (0.04)  
1.6 +0.25/-0.15  
(0.063 +0.01/-0.006)  
2.0 +0.30/-0.20  
(0.079 +0.012/-0.008)  
3.2 +0.30/-0.20  
(0.126 +0.012/-0.008)  
3.2 +0.30/-0.20  
(0.126 +0.012/-0.008)  
4.5 +0.45/-0.35  
(0.180 +0.018/-0.014)  
1808  
1812  
4.5 +0.40/-0.30  
(0.180 +0.016/-0.012)  
1.143 (0.045)  
1.0 (0.04)  
4.5 +0.40/-0.30  
(0.180 +0.016/-0.012)  
1825  
5.7 +0.50/-0.40  
(0.225 +0.02/-0.016)  
2211  
2220  
2225  
3640  
5550  
8060  
5.7 0.40 (0.225 0.016)  
5.7 0.40 (0.225 0.016)  
5.7 0.40 (0.225 0.016)  
9.2 0.50 (0.360 0.02)  
14.0 0.711 (0.550 0.028)  
20.3 0.5 (0.800 0.02)  
2.79 0.30 (0.11 0.012)  
5.0 0.40 (0.197 0.016)  
6.30 0.40 (0.252 0.016)  
10.16 0.50 (0.40 0.02)  
12.7 0.635 (0.500 0.025)  
15.24 0.50 (0.60 0.02)  
0.25 (0.01)  
0.25 (0.01)  
0.25 (0.01)  
0.50 (0.02)  
0.50 (0.02)  
0.50 (0.02)  
0.8 (0.03)  
1.0 (0.04)  
5.7 +0.50/-0.40  
(0.225 +0.02/-0.016)  
5.7 +0.50/-0.40  
(0.225 +0.02/-0.016)  
1.143 (0.045)  
1.50 (0.06)  
1.50 (0.06)  
1.50 (0.06)  
9.2 +0.60/-0.50  
(0.36 +0.024/-0.02)  
14.0 +0.811/-0.711  
(0.550 +0.032/-0.028)  
20.3 +0.60/-0.50  
(0.80 +0.024/-0.02)  
17  
C0G/NP0 (1B) AEC-Q200 and  
Standard Ranges  
C0G/NP0 ꢂ1Bꢃ AECꢁQ200 AND STANDARD RANGES CAPACITANCE VALUES  
C0G/NP0 (1B)  
0402  
0603  
0805  
1206  
1210  
1808  
Maximum Thickness (T)  
Standard  
0.6mm  
-
0.8mm  
1.3mm  
1.7mm  
2.0mm  
2.2mm  
-
2.0mm  
10V  
16V  
0.5pF - 3.9nF  
1.0pF - 15nF  
1.0pF - 47nF  
3.9pF - 100nF  
4.7pF - 100nF  
AEC-Q200  
Standard  
-
0.5pF - 1.0nF  
0.5pF - 2.7nF  
0.5pF - 1.0nF  
0.5pF - 2.2nF  
0.5pF - 1.0nF  
0.5pF - 1.5nF  
0.5pF - 680pF  
0.5pF - 680pF  
1.0pF - 4.7nF  
1.0pF -12nF  
1.0pF - 15nF  
1.0pF - 33nF  
1.0pF - 15nF  
1.0pF - 27nF  
1.0pF - 15nF  
1.0pF - 22nF  
1.0pF - 8.2nF  
1.0pF - 8.2nF  
3.9pF - 27nF  
3.9pF - 68nF  
3.9pF - 27nF  
3.9pF - 56nF  
3.9pF - 27nF  
3.9pF - 33nF  
3.9pF - 15nF  
3.9pF - 18nF  
-
-
-
-
-
-
-
-
4.7pF - 27nF  
4.7pF - 68nF  
4.7pF - 27nF  
4.7pF - 47nF  
4.7pF - 27nF  
4.7pF - 33nF  
4.7pF - 15nF  
4.7pF - 18nF  
-
AEC-Q200  
Standard  
-
1.0pF - 4.7nF  
1.0pF - 10nF  
1.0pF - 4.7nF  
1.0pF - 5.6nF  
1.0pF - 2.2nF  
1.0pF - 2.2nF  
25V  
50/63V  
100V  
0.2pF - 220pF  
AEC-Q200  
Standard  
-
0.2pF - 220pF  
-
AEC-Q200  
Standard  
0.2pF - 100pF  
AEC-Q200  
-
0.5pF - 560pF  
1.0pF - 1.5nF  
1.0pF - 3.9nF  
3.9pF - 8.2nF  
-
4.7pF - 8.2nF  
200/250V  
Standard  
AEC-Q200  
Standard  
0.2pF - 33pF  
0.5pF - 560pF  
1.0pF - 1.5nF  
1.0pF - 3.9nF  
1.0pF - 3.3nF  
1.0pF - 3.3nF  
1.0pF - 2.7nF  
1.0pF - 2.7nF  
1.0pF - 2.2nF  
1.0pF - 2.2nF  
1.0pF - 820pF  
1.0pF - 820pF  
1.0pF - 560pF  
1.0pF - 560pF  
1.0pF - 390pF  
1.0pF - 390pF  
10pF - 150pF  
1.0pF - 150pF  
10pF - 100pF  
1.0pF - 100pF  
-
3.9pF - 8.2nF  
3.9pF - 6.8nF  
3.9pF - 6.8nF  
3.9pF - 5.6nF  
3.9pF - 5.6nF  
3.9pF - 3.9nF  
3.9pF - 3.9nF  
3.9pF - 1.8nF  
3.9pF - 1.8nF  
3.9pF - 1.2nF  
3.9pF - 1.2nF  
3.9pF - 560pF  
3.9pF - 560pF  
10pF - 330pF  
3.9pF - 330pF  
10pF - 220pF  
3.9pF - 220pF  
-
-
4.7pF - 8.2nF  
4.7pF - 6.8nF  
4.7pF - 6.8nF  
4.7pF - 6.8nF  
4.7pF - 6.8nF  
4.7pF - 3.9nF  
4.7pF - 3.9nF  
4.7pF - 2.2nF  
4.7pF - 2.2nF  
4.7pF - 1.5nF  
4.7pF - 1.5nF  
4.7pF - 680pF  
4.7pF - 680pF  
10pF - 390pF  
4.7pF - 390pF  
10pF - 270pF  
4.7pF - 270pF  
10pF - 150pF  
4.7pF - 150pF  
10pF - 82pF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10pF - 330pF  
1.0pF - 1.0nF  
-
500V  
630V  
1kV  
0.5pF - 330pF  
1.0pF - 1.5nF  
-
AEC-Q200  
Standard  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10pF - 820pF  
6.8nF - 6.8nF  
1.0pF - 820pF  
6.8nF - 6.8nF  
AEC-Q200  
Standard  
10pF - 330pF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.0pF - 330pF  
AEC-Q200  
Standard  
10pF - 180pF  
1.2kV  
1.5kV  
2kV  
1.0pF - 180pF  
AEC-Q200  
Standard  
10pF - 150pF  
1.0pF - 150pF  
AEC-Q200  
Standard  
10pF - 100pF  
1.0pF - 100pF  
AEC-Q200  
Standard  
-
-
-
-
-
-
-
-
2.5kV  
3kV  
AEC-Q200  
Standard  
AEC-Q200  
Standard  
4kV*  
5kV*  
-
-
AEC-Q200  
Standard  
-
-
-
-
4.7pF - 82pF  
6kV*  
8kV*  
Standard  
Standard  
Standard  
Standard  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4.7pF - 47pF  
-
-
-
10kV*  
12kV*  
Note:  
*Parts rated 4kV and above may require conformal coating post soldering.  
18  
C0G/NP0 (1B) AEC-Q200 and  
Standard Ranges  
C0NTINUED  
10V TO 12KV  
C0G/NP0 (1B)  
1812  
1825  
2220  
Maximum Thickness (T)  
Standard  
2.5mm  
3.2mm  
-
2.5mm  
4.0mm  
-
2.5mm  
4.0mm  
-
10V  
16V  
10pF - 220nF  
10pF - 470nF  
10pF - 470nF  
AEC-Q200  
Standard  
10pF - 47nF  
10pF - 180nF  
10pF - 47nF  
10pF - 150nF  
10pF - 47nF  
10pF - 100nF  
10pF - 39nF  
10pF - 47nF  
-
-
-
-
-
-
-
-
10pF - 82nF  
10pF - 330nF  
10pF - 82nF  
10pF - 220nF  
10pF - 82nF  
10pF - 150nF  
10pF - 47nF  
10pF - 68nF  
-
-
-
-
-
-
-
-
10pF - 100nF  
10pF - 330nF  
10pF - 100nF  
10pF - 220nF  
10pF - 100nF  
10pF - 150nF  
10pF - 56nF  
10pF - 68nF  
-
-
-
-
-
-
-
-
AEC-Q200  
Standard  
25V  
50/63V  
100V  
AEC-Q200  
Standard  
AEC-Q200  
Standard  
AEC-Q200  
10pF - 18nF  
22nF - 22nF  
10pF - 27nF  
33nF - 33nF  
10pF - 33nF  
39nF - 39nF  
200/250V  
Standard  
AEC-Q200  
Standard  
10pF - 22nF  
10pF - 15nF  
27nF - 27nF  
18nF - 22nF  
10pF - 33nF  
10pF - 18nF  
10pF - 27nF  
10pF - 10nF  
10pF - 22nF  
10pF - 10nF  
10pF - 12nF  
10pF - 5.6nF  
10pF - 6.8nF  
10pF - 5.6nF  
10pF - 5.6nF  
10pF - 4.7nF  
10pF - 4.7nF  
10pF - 1.2nF  
10pF - 1.5nF  
10pF - 820pF  
10pF - 1.2nF  
10pF - 680pF  
10pF - 680pF  
10pF - 330pF  
10pF - 390pF  
39nF - 47nF  
22nF - 33nF  
33nF - 33nF  
12nF - 33nF  
10pF - 33nF  
10pF - 27nF  
10pF - 27nF  
10pF - 27nF  
10pF - 27nF  
10pF - 15nF  
10pF - 15nF  
10pF - 5.6nF  
10pF - 10nF  
10pF - 5.6nF  
10pF - 5.6nF  
10pF - 4.7nF  
10pF - 4.7nF  
10pF - 1.5nF  
10pF - 1.8nF  
10pF - 1.0nF  
10pF - 1.5nF  
10pF - 680pF  
10pF - 680pF  
10pF - 330pF  
10pF - 470pF  
39nF - 56nF  
33nF - 39nF  
33nF - 39nF  
33nF - 39nF  
33nF - 39nF  
18nF - 22nF  
18nF - 22nF  
6.8nF - 22nF  
12nF - 22nF  
6.8nF - 15nF  
6.8nF - 15nF  
5.6nF - 5.6nF  
5.6nF - 5.6nF  
1.8nF - 3.9nF  
2.2nF - 3.9nF  
1.2nF - 2.7nF  
1.8nF - 2.7nF  
820pF - 1.8nF  
820pF - 1.8nF  
390pF - 680pF  
560pF - 820pF  
500V  
630V  
1kV  
10pF - 15nF  
18nF - 22nF  
AEC-Q200  
Standard  
10pF - 15nF  
18nF - 22nF  
10pF - 15nF  
18nF - 22nF  
27nF - 33nF  
12nF - 22nF  
15nF - 22nF  
6.8nF - 18nF  
8.2nF - 18nF  
6.8nF - 12nF  
6.8nF - 12nF  
5.6nF - 5.6nF  
5.6nF - 5.6nF  
1.5nF - 3.3nF  
1.8nF - 3.3nF  
1.0nF - 2.2nF  
1.5nF - 2.2nF  
820pF - 1.5nF  
820pF - 1.5nF  
390pF - 560pF  
470pF - 560pF  
AEC-Q200  
Standard  
10pF - 6.8nF  
10pF - 6.8nF  
10pF - 3.9nF  
10pF - 4.7nF  
10pF - 3.9nF  
10pF - 3.9nF  
10pF - 2.2nF  
10pF - 2.2nF  
10pF - 680pF  
10pF - 820pF  
10pF - 470pF  
10pF - 560pF  
10pF - 220pF  
10pF - 270pF  
10pF - 180pF  
10pF - 180pF  
8.2nF - 10nF  
8.2nF - 10nF  
4.7nF - 8.2nF  
5.6nF - 8.2nF  
4.7nF - 6.8nF  
4.7nF - 6.8nF  
2.7nF - 2.7nF  
2.7nF - 2.7nF  
820pF - 1.5nF  
1.0nF - 1.5nF  
560pF - 1.0nF  
680pF - 1.0nF  
270pF - 560pF  
330pF - 560pF  
220pF - 220pF  
220pF - 270pF  
AEC-Q200  
Standard  
1.2kV  
1.5kV  
2kV  
AEC-Q200  
Standard  
AEC-Q200  
Standard  
AEC-Q200  
Standard  
2.5kV  
3kV  
AEC-Q200  
Standard  
AEC-Q200  
Standard  
4kV*  
5kV*  
AEC-Q200  
Standard  
6kV*  
8kV*  
Standard  
Standard  
Standard  
Standard  
10pF - 120pF  
150pF - 180pF  
10p - 270pF  
330pF - 330pF  
10pF - 330pF  
390p - 560pF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10kV*  
12kV*  
Note:  
*Parts rated 4kV and above may require conformal coating post soldering.  
19  
C0G/NP0 (1B) AEC-Q200 and  
Standard Ranges  
CONTINUED  
10V TO 12KVDC  
C0G/NP0 (1B)  
2225  
3640  
5550  
8060  
Maximum Thickness (T)  
Standard  
2.5mm  
4.0mm  
-
2.5mm  
4.0mm  
-
2.5mm  
-
4.0mm  
-
2.5mm  
-
4.0mm  
-
10V  
16V  
10pF - 560nF  
10pF - 330nF  
AEC-Q200  
Standard  
10pF - 150nF  
10pF - 470nF  
10pF - 150nF  
10pF - 330nF  
10pF - 150nF  
10pF - 220nF  
10pF - 68nF  
10pF - 82nF  
-
-
-
-
-
-
-
-
10pF - 220nF  
10pF - 330nF  
10pF - 220nF  
10pF - 330nF  
10pF - 220nF  
10pF - 330nF  
10pF - 180nF  
10pF - 270nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AEC-Q200  
Standard  
-
-
25V  
50/63V  
100V  
-
-
AEC-Q200  
Standard  
-
-
27pF - 680nF  
-
47pF - 1.0μF  
-
AEC-Q200  
Standard  
27pF - 470nF  
47pF - 680nF  
AEC-Q200  
10pF - 33nF  
39nF - 47nF  
10pF - 82nF  
100nF - 100nF  
-
-
-
-
200/250V  
Standard  
AEC-Q200  
Standard  
10pF - 47nF  
10pF - 33nF  
10pF - 33nF  
10pF - 18nF  
10pF - 22nF  
10pF - 18nF  
10pF - 18nF  
10pF - 6.8nF  
10pF - 12nF  
10pF - 6.8nF  
10pF - 6.8nF  
10pF - 3.9nF  
10pF - 4.7nF  
10pF - 2.7nF  
10pF - 2.7nF  
10pF - 1.5nF  
10pF - 1.8nF  
10pF - 1.0nF  
10pF - 1.0nF  
10pF - 680pF  
10pF - 680pF  
56nF - 68nF  
39nF - 47nF  
39nF - 47nF  
-
10pF - 120nF  
10pF - 82nF  
10pF - 82nF  
10pF - 82nF  
10pF - 82nF  
10pF - 47nF  
10pF - 47nF  
10pF - 33nF  
10pF - 33nF  
10pF - 22nF  
10pF - 22nF  
10pF - 12nF  
10pF - 12nF  
100pF - 5.6nF  
10pF - 6.8nF  
100pF - 3.9nF  
10pF - 4.7nF  
-
150nF - 180nF  
100nF - 100nF  
100nF - 120nF  
100nF - 100nF  
100nF - 100nF  
56nF - 68nF  
56nF - 82nF  
39nF - 56nF  
39nF - 56nF  
27nF - 39nF  
27nF - 39nF  
15nF - 15nF  
15nF - 18nF  
6.8nF - 8.2nF  
8.2nF - 12nF  
4.7nF - 6.8nF  
5.6nF - 8.2nF  
-
27pF - 270nF  
330nF - 330nF  
47pF - 390nF  
470nF - 560nF  
-
-
-
-
500V  
630V  
1kV  
27pF - 180nF  
220nF - 270nF  
47pF - 270nF  
330nF - 470nF  
AEC-Q200  
Standard  
-
-
-
-
27nF - 39nF  
22nF - 27nF  
22nF - 27nF  
8.2nF - 27nF  
15nF - 27nF  
8.2nF - 18nF  
8.2nF - 18nF  
4.7nF - 8.2nF  
5.6nF - 8.2nF  
3.3nF - 4.7nF  
3.3nF - 4.7nF  
1.8nF - 3.9nF  
2.2nF - 3.9nF  
1.2nF - 1.8nF  
1.2nF - 1.8nF  
820pF - 820pF  
820pF - 1.2nF  
27pF - 120nF  
150nF - 180nF  
47pF - 220nF  
270nF - 390nF  
AEC-Q200  
Standard  
-
-
-
-
27pF - 82nF  
100nF - 150nF  
47pF - 150nF  
180nF - 270nF  
AEC-Q200  
Standard  
-
-
-
-
1.2kV  
1.5kV  
2kV  
27pF - 68nF  
82nF - 100nF  
47pF - 100nF  
120nF - 180nF  
AEC-Q200  
Standard  
-
-
-
-
27pF - 39nF  
47nF - 68nF  
47pF - 68nF  
82nF - 120nF  
AEC-Q200  
Standard  
-
-
-
-
27pF - 22nF  
27nF - 39nF  
47pF - 39nF  
47nF - 68nF  
AEC-Q200  
Standard  
-
-
-
-
2.5kV  
3kV  
27pF - 12nF  
15nF - 22nF  
47pF - 22nF  
27nF - 39nF  
AEC-Q200  
Standard  
-
-
-
-
27pF - 10nF  
12nF - 18nF  
47pF - 15nF  
18nF - 27nF  
AEC-Q200  
Standard  
-
-
-
-
4kV*  
5kV*  
10pF - 1.8nF  
-
2.2nF - 3.3nF  
-
27pF - 4.7nF  
-
5.6nF - 6.8nF  
-
47pF - 8.2nF  
-
10nF - 15nF  
-
AEC-Q200  
Standard  
10pF - 1.5nF  
1.8nF - 2.2nF  
27pF - 2.7nF  
3.3nF - 4.7nF  
47pF - 5.6nF  
6.8nF - 10nF  
6kV*  
8kV*  
Standard  
Standard  
Standard  
Standard  
10pF - 390pF  
470pF - 680pF  
10pF - 1.0nF  
10pF - 150pF  
10pF - 100pF  
10pF - 68pF  
1.2nF - 1.5nF  
27pF - 1.8nF  
27pF - 330pF  
27pF - 180pF  
27pF - 120pF  
2.2nF - 3.3nF  
47pF - 3.9nF  
47pF - 680pF  
47pF - 470pF  
47pF - 220pF  
4.7nF - 6.8nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10kV*  
12kV*  
Note:  
*Parts rated 4kV and above may require conformal coating post soldering.  
20  
X7R (2R1) AEC-Q200 and  
Standard Ranges  
16V TO 12KV  
X7R ꢂ2R1ꢃ AECꢁQ200 AND STANDARD RANGES CAPACITANCE VALUES  
X7R(2R1)  
0402  
0.6mm  
-
0603  
0.9mm  
-
0805  
1.3mm  
-
1206  
1210  
1808  
Maximum  
Thickness (T)  
1.7mm  
-
1.7mm  
2.0mm  
-
2.0mm  
2.8mm  
-
2.8mm  
2.0mm  
2.0mm  
Special  
Requirements  
Conformal  
Coating  
Conformal  
Coating  
Conformal  
Coating  
Conformal  
Coating  
-
AEC-Q200  
Standard  
-
-
-
220pF - 100nF 220pF - 470nF  
-
-
1.0nF - 1.0μF  
100pF - 1.5μF  
-
-
-
-
-
-
1.0nF - 470nF  
100pF - 1.5μF  
-
-
16V  
100pF -  
100pF - 330nF  
100pF - 100nF  
1.0μF  
AEC-Q200  
Standard  
-
-
220pF - 100nF 220pF - 470nF  
100pF - 220nF 100pF - 820nF  
100pF - 220nF 100pF - 470nF  
-
-
-
-
-
-
-
-
-
-
-
1.0nF - 1.0μF  
100pF - 1.2μF  
100pF - 1.0μF  
100pF - 1.0μF  
100pF - 680nF  
100pF - 680nF  
100pF - 330nF  
100pF - 330nF  
100pF - 330nF  
100pF - 330nF  
100pF - 150nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.0nF - 470nF  
100pF - 1.2μF  
100pF - 680nF  
100pF - 680nF  
100pF - 560nF  
100pF - 560nF  
100pF - 330nF  
100pF - 330nF  
100pF - 270nF  
100pF - 270nF  
100pF - 150nF  
-
-
-
-
-
-
-
-
-
-
-
25V  
47pF - 10nF  
100pF - 100nF  
100pF - 100nF  
100pF - 100nF  
100pF - 47nF  
100pF - 47nF  
100pF - 10nF  
100pF - 10nF  
100pF - 10nF  
100pF - 10nF  
220pF - 2.2nF  
AEC-Q200  
Standard  
-
50/  
63V  
47pF - 5.6nF  
100pF - 220nF  
100pF - 470nF  
AEC-Q200  
Standard  
-
100pF - 100nF 100pF - 220nF  
100pF - 100nF 100pF - 330nF  
100pF - 47nF 100pF - 150nF  
100pF - 56nF 100pF - 150nF  
100pF - 47nF 100pF - 150nF  
100pF - 56nF 100pF - 150nF  
100pF - 15nF 100pF - 68nF  
100V  
200  
47pF - 3.3nF  
AEC-Q200  
Standard  
-
47pF - 1.0nF  
AEC-Q200  
Standard  
-
250V  
500V  
47pF - 1.0nF  
-
AEC-Q200  
Standard  
-
-
100pF - 2.2nF  
-
100pF - 15nF 100pF- 68nF  
220pF - 10nF 100pF - 47nF  
-
-
100pF - 150nF  
100pF - 100nF  
-
-
-
-
-
-
100pF - 150nF  
100pF - 100nF  
-
-
AEC-Q200  
630V  
Standard  
-
-
100pF - 10nF 100pF - 47nF  
-
100pF - 100nF  
-
-
-
100pF - 100nF  
-
AEC-Q200  
Standard  
-
-
-
-
-
-
220pF - 4.7nF 100pF - 22nF  
100pF - 10nF 100pF - 22nF  
-
-
-
100pF - 47nF  
100pF - 47nF  
100pF - 22nF  
-
-
-
-
-
-
-
-
-
100pF - 47nF  
100pF - 47nF  
100pF - 18nF  
-
-
-
1kV  
AEC-Q200  
-
-
100pF - 10nF  
100pF - 15nF  
100pF - 10nF  
100pF - 10nF  
1.2kV  
Standard  
-
-
-
-
-
100pF - 22nF  
-
-
-
100pF - 22nF  
-
AEC-Q200  
Standard  
AEC-Q200  
Standard  
AEC-Q200  
Standard  
AEC-Q200  
Standard  
AEC-Q200  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100pF - 18nF  
-
22nF - 22nF  
-
100pF - 18nF  
100pF - 18nF  
100pF - 4.7nF  
100pF - 4.7nF  
1.0nF - 1.5nF  
100pF - 1.5nF  
1.0nF - 1.2nF  
100pF - 1.2nF  
1.0nF - 1.0nF  
100pF - 1.0nF  
100pF - 680pF  
100pF - 390pF  
-
-
1.5kV  
2kV  
100pF - 18nF  
-
22nF - 22nF  
-
-
100pF - 2.2nF 2.7nF - 3.3nF  
100pF - 2.2nF 2.7nF - 3.3nF  
100pF - 4.7nF  
5.6nF - 5.6nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
6.8nF - 10nF  
5.6nF - 8.2nF  
100pF - 4.7nF  
5.6nF - 5.6nF  
6.8nF - 10nF  
5.6nF - 8.2nF  
-
-
-
-
-
-
-
-
-
-
-
100pF - 2.2nF  
-
-
-
-
-
-
-
-
-
-
-
100pF - 4.7nF  
-
-
-
-
-
-
-
-
-
-
-
1.8nF - 4.7nF  
2.5kV  
3kV  
220pF - 2.7nF  
680pF - 4.7nF  
1.8nF - 4.7nF  
100pF - 1.5nF  
100pF - 3.3nF  
1.5nF - 3.9nF  
220pF - 1.5nF  
680pF - 3.3nF  
1.5nF - 3.9nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.2nF - 1.5nF  
4kV*  
1.2nF - 2.2nF  
5kV*  
6kV*  
8kV*  
10kV*  
12kV*  
-
-
-
-
-
-
-
4) Parts in this range may be dual use under export control legislation and as  
such may be subject to export license restrictions. Please refer to page 11 for  
Notes:  
1) *Parts rated 4kV and higher may require conformal coating post soldering.  
more information on the dual-use regulations and contact the Knowles Capacitors  
Sales Office for further information on specific part numbers.  
2) "Conformal Coating" identifies parts that must be conformally coated after mounting  
to prevent flashover, especially between the board and the component.  
3) Suffix codes WS2 and WS3 relate to StackiCap™ high capacitance parts. WS3 parts (shown in  
parentheses) must be conformally coated after mounting, especially between the board and the component.  
21  
X7R (2R1) AEC-Q200 and  
Standard Ranges  
16V TO 12KV  
C0NTINUED  
X7R(2R1)  
1812  
1825  
2220  
Maximum  
Thickness (T)  
2.5mm  
-
2.5mm  
3.2mm  
-
3.5mm  
2.5mm  
-
2.5mm  
4.0mm  
-
2.5mm  
-
2.5mm  
4.0mm  
-
4.5mm  
Special  
Requirements  
Conformal  
Coating  
Suffix Code WS2  
(WS3)  
Conformal  
Coating  
Conformal  
Coating  
Suffix Code  
WS2 (WS3)  
AEC-Q200  
Standard  
1.0nF - 680nF  
150pF - 3.3μF  
1.0nF - 680nF  
150pF - 2.2μF  
150pF - 2.2μF  
150pF - 2.2μF  
150pF - 1.0μF  
150pF - 1.5μF  
150pF - 560nF  
150pF - 560nF  
150pF - 560nF  
150pF - 560nF  
150pF - 390nF  
150pF - 390nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.0nF - 680nF  
220pF - 4.7μF  
1.0nF - 680nF  
220pF - 3.9μF  
220pF - 2.2μF  
220pF - 2.2μF  
220pF - 1.5μF  
220pF - 1.5μF  
220pF - 1.2μF  
220pF - 1.2μF  
220pF - 1.2μF  
220pF - 1.2μF  
220pF - 560nF  
220pF - 560nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.0nF - 1.5μF  
220pF - 5.6μF  
1.0nF - 1.5μF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16V  
-
-
-
-
AEC-Q200  
Standard  
-
-
-
-
25V  
-
-
220pF - 4.7μF  
220pF - 3.3μF  
220pF - 3.3μF  
220pF - 1.5μF  
220pF - 2.2μF  
220pF - 1.2μF  
220pF - 1.2μF  
220pF - 1.2μF  
220pF - 1.2μF  
220pF - 680nF  
220pF - 680nF  
-
-
AEC-Q200  
Standard  
-
-
-
-
50/  
63V  
-
-
-
-
AEC-Q200  
Standard  
-
-
-
-
100V  
200  
-
-
-
-
AEC-Q200  
Standard  
680nF - 680nF  
680nF - 680nF  
680nF - 680nF  
680nF - 680nF  
470nF - 470nF  
470nF - 470nF  
820nF - 1.0μF  
820nF - 1.0μF  
820nF - 1.0μF  
820nF - 1.0μF  
470nF - 470nF  
470nF - 470nF  
1.5μF - 1.5μF  
1.5μF - 1.5μF  
1.5μF - 1.5μF  
1.5μF - 1.5μF  
-
1.5μF - 1.5μF  
1.5μF - 1.5μF  
1.5μF - 1.5μF  
1.5μF - 1.5μF  
-
-
1.8μF - 2.2μF  
AEC-Q200  
Standard  
-
250V  
500V  
1.8μF - 2.2μF  
-
AEC-Q200  
Standard  
-
-
820nF - 1.2μF  
AEC-Q200  
Standard  
150pF - 220nF  
150pF - 220nF  
-
-
-
-
220nF - 330nF  
270nF - 330nF  
220pF - 470nF  
220pF - 470nF  
-
-
-
-
220pF - 470nF  
220pF - 470nF  
-
-
-
-
560nF - 1.0μF  
560nF - 1.0μF  
630V  
AEC-Q200  
Standard  
150pF - 100nF  
150pF - 100nF  
150pF - 39nF  
150pF - 39nF  
150pF - 39nF  
150pF - 39nF  
150pF - 10nF  
150pF - 10nF  
150pF - 3.3nF  
150pF - 3.3nF  
150pF - 2.7nF  
-
-
-
-
-
-
-
-
-
-
-
-
120nF - 180nF  
220pF - 180nF  
220pF - 180nF  
220pF - 68nF  
220pF - 68nF  
220pF - 68nF  
220pF - 68nF  
220pF - 10nF  
220pF - 10nF  
220pF - 6.8nF  
220pF - 6.8nF  
220pF - 3.9nF  
-
-
-
-
-
-
-
-
-
-
-
-
220pF - 180nF  
220pF - 180nF  
220pF - 82nF  
220pF - 82nF  
220pF - 82nF  
220pF - 82nF  
220pF - 27nF  
220pF - 33nF  
220pF - 8.2nF  
220pF - 8.2nF  
220pF - 6.8nF  
-
-
-
-
-
-
-
-
-
-
-
-
220nF - 470nF  
220nF - 470nF  
(100nF - 220nF)  
(100nF - 220nF)  
(100nF - 150nF)  
(100nF - 150nF)  
(33nF - 100nF)  
(39nF - 100nF)  
-
1kV  
-
120nF - 180nF  
-
-
AEC-Q200  
Standard  
-
(47nF - 100nF)  
-
-
1.2kV  
1.5kV  
2kV  
-
(47nF - 100nF)  
-
-
AEC-Q200  
Standard  
-
(47nF - 56nF)  
-
-
-
(47nF - 56nF)  
-
-
AEC-Q200  
Standard  
12nF - 18nF  
12nF - 18nF  
3.9nF - 10nF  
3.9nF - 10nF  
3.3nF - 4.7nF  
-
-
-
-
-
12nF - 22nF  
12nF - 22nF  
8.2nF - 18nF  
8.2nF - 18nF  
4.7nF - 10nF  
-
-
AEC-Q200  
Standard  
10nF - 22nF  
10nF - 22nF  
8.2nF - 15nF  
2.5kV  
-
AEC-Q200  
-
3kV  
4kV*  
Standard  
150pF - 2.7nF  
3.3nF - 4.7nF  
-
-
220pF - 3.9nF  
4.7nF - 10nF  
-
220pF - 6.8nF  
8.2nF - 15nF  
-
-
AEC-Q200  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
150pF - 2.2nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1.0nF - 2.2nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
220pF - 4.7nF  
5.6nF - 6.8nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
150pF - 2.2nF  
2.7nF - 3.3nF  
220pF - 2.2nF  
220pF - 4.7nF  
5.6nF - 6.8nF  
5kV*  
6kV*  
8kV*  
10kV*  
12kV*  
150pF - 1.2nF  
-
-
-
-
-
220pF - 1.8nF  
220pF - 3.9nF  
4.7nF - 4.7nF  
150pF - 1.0nF  
220pF - 1.5nF  
220pF - 2.2nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
Notes:  
1 ) *Parts rated 4kV and above may require conformal coating post soldering.  
2) “Conformal Coating” identifies parts that must be conformally coated after mounting to  
prevent flashover, especially between the board and the component.  
3) Suffix codes WS2 and WS3 relate to StackiCap™ high capacitance parts. WS3 parts (shown in  
parentheses) must be conformally coated after mounting, especially between the board and the component.  
4) Parts in this range may be dual use under export control legislation and as such may  
be subject to export license restrictions. Please refer to page 11 for more  
information on the dual-use regulations and contact the Knowles Precision Devices sales office for  
further information on specific part numbers.  
22  
X7R (2R1) AEC-Q200 and  
Standard Ranges  
16V TO 12KV  
C0NTINUED  
X7R(2R1)  
2225  
3640  
5550  
8060  
Maximum Thickness (T)  
2.5mm  
-
2.5mm  
4.0mm  
-
2.5mm  
-
4.5mm  
2.5mm  
2.5mm  
Conformal  
Coating  
Suffix Code WS2  
(WS3)  
Special Requirements  
-
-
AEC-Q200  
Standard  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
16V  
25V  
330pF - 6.8μF  
-
-
-
-
-
-
AEC-Q200  
Standard  
-
-
-
-
-
330pF - 5.6μF  
330pF - 3.3μF  
330pF - 3.3μF  
330pF - 2.2μF  
330pF - 2.7μF  
330pF - 1.5μF  
330pF - 1.5μF  
330pF - 1.5μF  
330pF - 1.5μF  
330pF - 1.0μF  
330pF - 1.0μF  
-
-
-
-
-
AEC-Q200  
Standard  
-
470pF - 4.7μF  
470pF - 10μF  
470pF - 3.3μF  
470pF - 5.6μF  
470pF - 1.5μF  
470pF - 3.3μF  
470pF - 1.5μF  
470pF - 3.3μF  
470pF - 1.0μF  
470pF - 1.0μF  
-
-
-
50/ 63V  
100V  
200  
-
-
1.0nF - 15μF  
2.2nF - 22μF  
AEC-Q200  
Standard  
-
-
-
-
-
-
1.0nF - 10μF  
2.2nF - 15μF  
AEC-Q200  
Standard  
1.8μF - 2.2μF  
1.8μF - 2.2μF  
1.8μF - 2.2μF  
1.8μF - 2.2μF  
-
-
-
-
3.9μF - 5.6μF  
1.0nF - 5.6μF  
2.2nF - 10μF  
AEC-Q200  
Standard  
-
-
-
250V  
500V  
3.9μF - 5.6μF  
-
1.0nF - 5.6μF  
-
2.2nF - 10μF  
-
AEC-Q200  
Standard  
-
1.2μF - 2.7μF  
1.0nF - 1.8μF  
2.2nF - 3.3μF  
AEC-Q200  
Standard  
330pF - 680nF  
330pF - 680nF  
-
-
-
-
470pF - 680nF  
470pF - 680nF  
-
-
-
630V  
820nF - 2.2μF  
1.0nF - 1.2μF  
2.2nF - 2.2μF  
AEC-Q200  
Standard  
330pF - 220nF  
330pF - 220nF  
330pF - 100nF  
330pF - 100nF  
330pF - 100nF  
330pF - 100nF  
330pF - 47nF  
330pF - 47nF  
330pF - 12nF  
330pF - 12nF  
330pF - 8.2nF  
-
-
-
-
-
-
-
-
-
-
-
-
470nF - 180nF  
470pF - 180nF  
470pF - 150nF  
470pF - 150nF  
470pF - 100nF  
470pF - 100nF  
470pF - 47nF  
470pF - 47nF  
470pF - 22nF  
470pF - 33nF  
470pF - 18nF  
220nF - 1.0μF  
-
-
1kV  
-
220nF - 1.0μF  
1.0nF - 390nF  
2.2nF - 1.0μF  
AEC-Q200  
Standard  
-
-
-
-
1.2kV  
1.5kV  
2kV  
-
(180nF - 470nF)  
1.0nF - 220nF  
2.2nF - 470nF  
AEC-Q200  
Standard  
-
-
-
-
-
(120nF - 330nF)  
1.0nF - 150nF  
2.2nF - 330nF  
AEC-Q200  
Standard  
-
-
-
-
-
(56nF - 150nF)  
1.0nF - 82nF  
2.2nF - 150nF  
AEC-Q200  
Standard  
15nF - 33nF  
15nF - 33nF  
10nF - 18nF  
-
-
-
-
-
2.5kV  
1.0nF - 68nF  
-
2.2nF - 100nF  
-
AEC-Q200  
3kV  
4kV*  
Standard  
330pF - 8.2nF  
10nF - 18nF  
-
470pF - 22nF  
-
1.0nF - 47nF  
2.2n - 82nF  
AEC-Q200  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
2.2nF - 5.6nF  
6.8nF - 10nF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
330pF - 5.6nF  
6.8nF - 10nF  
470pF - 6.8nF  
470pF - 5.6nF  
470pF - 4.7nF  
470pF - 1.5nF  
470pF - 1.0nF  
470pF - 820pF  
1.0nF - 15nF  
1.0nF - 10nF  
1.0nF - 8.2nF  
1.0nF - 4.7nF  
1.0nF - 2.2nF  
1.0nF - 1.2nF  
2.2nF - 33nF  
2.2nF - 22nF  
2.2nF - 15nF  
2.2nF - 6.8nF  
2.2nF - 4.7nF  
2.2nF - 2.2nF  
5kV*  
6kV*  
8kV*  
10kV*  
12kV*  
330pF - 4.7nF  
-
-
-
-
-
330pF - 2.7nF  
-
-
-
Notes:  
1) *Parts rated 4kV and above may require conformal coating post soldering.  
2) “Conformal Coating” identifies parts that must be conformally coated after mounting to  
prevent flashover, especially between the board and the component.  
3) Suffix codes WS2 and WS3 relate to StackiCap™ high capacitance parts. WS3 parts (shown in  
parentheses) must be conformally coated after mounting, especially between the board and the component.  
4) Parts in this range may be dual use under export control legislation  
and as such may be subject to export license restrictions. Please refer to  
page 11 for more information on the dual-use regulations and contact the  
Knowles Precision Devices sales office for further information on specific  
part numbers.  
23  
Ordering Information  
AEC-Q200 and Standard Ranges  
ORDERING INFORMATION AECꢁQ200 RANGES  
0805  
Y
100  
0103  
K
S
T
---  
Chip Size  
Termination  
Voltage  
Capacitance in  
Picofarads (pF)  
Capacitance  
Tolerance  
Dielectric  
Release Codes  
Packaging  
Suffix Code  
016 = 16V  
025 = 25V  
050 = 50V  
063 = 63V  
100 = 100V  
200 = 200V  
250 = 250V  
500 = 500V  
630 = 630V  
1K0 = 1kV  
Y = FlexiCapTM termination base with Ni barrier  
(100ꢀ matte tin plating).  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
A = C0G/NP0 (1B)  
to AEC-Q200  
original  
RoHS compliant.  
0603  
0805  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
First digit is 0.  
H = FlexiCapTM termination base with Ni barrier  
(Tin/lead plating with min. 10ꢀ lead).  
Not RoHS compliant.  
For StackiCap™  
parts only:  
T = 178mm  
(7") reel  
R = 330mm  
(13") reel  
B = Bulk  
pack tubs  
or trays  
K = C0G/NP0 (1B)  
to AEC-Q200 —  
recommended  
Second and third digits  
are significant figures of  
capacitance code.  
WS2  
WS3  
J = Nickel barrier (100ꢀ matte tin plating).  
RoHS compliant. Lead free.  
Note:  
The fourth digit is number  
of zeros following  
E = X7R (2R1) to  
AEC-Q200 original  
X7R (2R1) parts are  
available in J, K & M  
tolerances only.  
A = Nickel barrier (Tin/lead plating with  
min. 10ꢀ lead). Not RoHS compliant  
1K2 = 1.2kV  
1K5 = 1.5kV  
2K0 = 2kV  
2K5 = 2.5kV  
3K0 = 3kV  
Example: 0103 = 10nF  
S = X7R (2R1)  
to AEC-Q200 —  
recommended  
Note: X7R (2R1) to AEC-Q200 is  
only available in Y or H termination.  
Note: Suffix code WS3 applies to StackiCap™ parts rated ≥1.2kV, and indicates conformal coating is required after mounting. For StackiCap™ parts rated <1.2kV, use suffix WS2.  
ORDERING INFORMATION STANDARD RANGES  
1210  
Y
200  
0103  
K
C
T
---  
Chip Size  
Termination  
Voltage  
Capacitance in  
Picofarads (pF)  
Capacitance  
Tolerance  
Dielectric  
Release Codes  
Packaging  
Suffix Code  
010 = 10V  
016 = 16V  
025 = 25V  
050 = 50V  
063 = 63V  
100 = 100V  
200 = 200V  
250 = 250V  
500 = 500V  
630 = 630V  
1K0 = 1kV  
TM  
Y = FlexiCap  
termination base with Ni  
barrier (100ꢀ matte tin  
plating). RoHS compliant.  
0402  
0603  
0805  
1206  
1210  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
First digit is 0.  
TM  
H = FlexiCap  
Second and third digits  
are significant figures of  
capacitance code.  
For StackiCap™  
parts only:  
T = 178mm  
(7") reel  
R = 330mm  
(13") reel  
B = Bulk  
pack tubs  
or trays  
termination base with Ni  
barrier (Tin/lead plating  
with min. 10ꢀ lead).  
C = C0G/NP0 (1B)  
X = X7R (2R1)  
1808  
1812  
WS2  
WS3  
1K2 = 1.2kV  
1K5 = 1.5kV  
2K0 = 2kV  
2K5 = 2.5kV  
3K0 = 3kV  
4K0 = 4kV  
5K0 = 5kV  
6K0 = 6kV  
8K0 = 8kV  
10K = 10kV  
12K = 12kV  
The fourth digit is  
number of zeros  
following  
1825  
2220  
2225  
3640  
5550  
8060  
Not RoHS compliant.  
J = Nickel barrier  
Note:  
(100ꢀ matte tin plating).  
RoHS compliant. Lead free.  
A = Nickel barrier (Tin/  
lead plating with min. 10ꢀ lead).  
Not RoHS compliant.  
X7R (2R1) parts are  
available in J, K & M  
tolerances only.  
Example:0103 = 10nF  
Note: Suffix code WS3 applies to StackiCap™ parts rated ≥1.2kV, and indicates conformal coating is required after mounting. For StackiCap™ parts rated <1.2kV, use suffix WS2.  
24  
StackiCap™ Capacitors  
AEC-Q200 and Standard Ranges  
The StackiCap™ range offers a significant reduction in "PCB real estate" for an  
equivalent capacitance value when board space is at a premium. For example,  
a standard 150nF chip in an 8060 case size is now available in a much smaller  
3640 case size.  
Knowles Precision Devices’ unique patented* construction and FlexiCap™  
termination material make the StackiCap™ range suitable for applications  
including: power supplies, lighting, aerospace electronics and high voltage  
applications where a large amount of capacitance is required.  
Further developments are ongoing, please contact the Knowles Precision  
Devices sales office for details of the full range.  
*StackiCap™ technology is protected by international patents (pending) EP2847776, WO2013186172A1,  
US20150146343A1 and CN104471660A.  
MAXIMUM CAPACITANCE: Up to 5.6μF  
MAXIMUM VOLTAGE: Up to 2kV  
INSULATION RESISTANCE: Time Constant (RxCr) (whichever is the least 500s or 500MΩ)  
CAPACITANCE VALUES STACKICAP™ CAPACITORS  
Chip Size  
1812  
2220  
3640  
Max. Thickness  
200/250V  
500V  
3.5mm  
4.5mm  
4.2mm  
820nF - 1.0μF  
390nF - 470nF  
1.2μF - 2.2μF  
680nF - 1.2μF  
3.9μF - 5.6μF  
1.2μF - 2.7μF  
630V  
220nF - 330nF  
330nF - 1.0μF  
820nF - 2.2μF  
1kV  
1.2kV  
1.5kV  
2kV  
120nF - 180nF  
(39nF - 100nF)  
(27nF - 56nF)  
-
150nF - 470nF  
(100nF - 220nF)  
(56nF - 150nF)  
(39nF - 100nF)  
220nF - 1μF  
(180nF - 470nF)  
(120nF - 330nF)  
(56nF - 150nF)  
Note: Blue Background = AEC-Q200 | Values shown in parentheses require conformal coating after mounting (suffix code WS3 applies). All other values use suffix code WS2.  
ORDERING INFORMATION STACKICAP™ CAPACITORS  
1812  
Y
500  
0474  
K
J
T
WS2  
Capacitance  
tolerance  
Chip Size  
Termination  
Voltage  
Capacitance in Picofarads (pF)  
Dielectric  
Packaging  
Suffix code  
200 = 200V  
250 = 250V  
500 = 500V  
630 = 630V  
1K0 = 1kV  
1K2 = 1.2kV  
1K5 = 1.5kV  
2K0 = 2kV  
E = X7R (2R1)  
to AEC-Q200  
Y = FlexiCap™ termination base with nickel  
barrier (100ꢀ matte tin plating). RoHS  
compliant. Lead free.  
H = FlexiCap™ Termination base with nickel  
barrier (Tin/lead plating with minimum  
10ꢀ lead). Not RoHS compliant.  
First digit is 0. Second and third  
digits are significant figures of  
capacitance code in picofarads  
(pF). Fourth digit is number of  
zeros; e.g., 0474 = 470nF  
T = 178mm  
(7") reel  
R = 330mm  
(13") reel  
B = Bulk pack  
tubs or trays  
1812  
2220  
3640  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
WS2  
WS3  
X = X7R (2R1)  
Values are E12 series.  
Note: Suffix code WS3 applies to parts with a rated voltage 1.2kV, and indicates conformal coating is required after mounting. For all other parts use suffix code WS2.  
REELED QUANTITIES STACKICAP™ CAPACITORS  
StackiCap  
1812  
2220  
3640  
Note:  
Parts in this range may be defined as dual-use under export control legislation  
and may be subject to export license restrictions. Please refer to page 11 for more  
information on the dual-use regulations and contact the Knowles Precision Devices  
sales office for further information on specific part numbers.  
178mm (7") Reel  
330mm (13") Reel  
500  
500  
-
2,000  
2,000  
500  
25  
Safety Certified AC Capacitors  
Knowles Safety Certified capacitors comply with international UL and TÜV  
specifications, offering designers the option of using a surface mount  
ceramic multilayer capacitor to replace leaded film types.  
Offering the benefits of simple pick-and-place assembly, reduced board  
space required and a lower profile, they are also available as a FlexiCap™  
version to reduce the risk of mechanical cracking.  
Our high voltage expertise allows us to offer capacitance ranges that are  
among the highest in the market for selected case sizes.  
Applications include: modems and other telecoms equipment,  
AC/DC power supplies, power distribution switchgear, automotive  
applications, and where lightning strikes or other voltage transients  
represent a threat to electronic equipment.  
Surface mount multilayer ceramic capacitors  
Case sizes 1808, 1812, 2211, 2215 and 2220  
Reduced board area and height restrictions  
Meet Class Y2, X1 and X2 requirements  
Reduced assembly costs over conventional through hole components  
Approved by UL and TÜV  
FlexiCap™ polymer termination option available on all sizes  
OVERVIEW OF SAFETY CAPACITOR CLASSES  
Class  
Rated Voltage  
Impulse Voltage  
Insulation Bridging  
May be used in Primary Circuit  
Y1  
Y2  
Y3  
Y4  
X1  
250Vac  
250Vac  
250Vac  
150Vac  
250Vac  
250Vac  
250Vac  
8000V  
5000V  
None  
Double or Reinforced  
Line to Protective Earth  
Line to Protective Earth  
-
Basic or Supplementary*  
Basic or Supplementary*  
2500V  
4000V  
2500V  
None  
Basic or Supplementary*  
Line to Protective Earth  
Line to Line  
-
-
-
X2  
X3  
Line to Line  
Line to Line  
Note: * 2 x Y2 or Y4 rated may bridge double or reinforced insulation when used in series.  
KNOWLES’ SAFETY CERTIFIED AC CAPACITOR RANGES  
Knowles offers two Safety Certified capacitor ranges:  
Enhanced 250Vac and 305Vac our latest range, recommended for new designs  
Legacy 250Vac our original range, for existing applications  
These ranges are covered on the following pages.  
26  
Enhanced 250Vac and 305Vac  
Safety Certified AC Capacitors  
Our new range of Enhanced Safety Certified capacitors offers significant advantages over other safety certified MLCC  
ranges, including:  
• 250Vac class Y2 ranges  
• 305Vac class X1 and X2 ranges  
• All ranges have a safety certified dc voltage rating (unique in the industry)  
• Most ranges are certified as humidity robustness grade III (unique in the industry)  
• Approved for mains voltages up to 250Vac 50/60Hz (class Y2) and 305Vac 50/60Hz (classes X1, X2)  
• SYX range with DWV withstand to 4kVdc/3kVac – suitable for EV battery systems with high voltage test demands  
• SYS range with reduced creepage class Y2 (250Vac)/X1 (305Vac) parts, offering a smaller part for use in equipment within the  
scope of IEC62368  
• Certification specifications IEC/EN60384-14:2013+A1, UL60384-14 and CAN/CSA E60384-14:1  
• CTI ≥ 600  
SYX/UYX FAMILY ꢄ Y2 ꢂ250VACꢃ/X1 ꢂ305VACꢃ, 5KV IMPULSE  
The Knowles SYX family offers guaranteed 4mm creepage class Y2/X1 safety capacitors, including humidity robustness grade III, 5kV  
impulse and a 1kVdc rating approved by TÜV and UL.  
In addition, all components are 100ꢀ DWV tested to 4kVdc, and AQL tested to 4kVdc and 3kVac for 60s. This makes the SYX range  
ideal for use in high voltage battery systems within electric vehicles.  
Unmarked components (UYX suffix) can be offered a 2.5kVdc rating and are designed to comply with, but are not approved to,  
EN60384-14.  
Dielectric  
Approval Body  
1808  
1812  
2211  
2215  
2220  
C0G/NP0 (1B)  
X7R (2R1)  
TÜV, UL  
TÜV, UL  
5.6pF - 220pF  
82pF – 1.8nF  
2.0mm  
5.6pF - 820pF  
100pF – 4.7nF  
2.8mm  
4.7pF - 1nF  
100pF - 3.9nF  
2.8mm  
820pF - 1nF  
2.7nF – 6.8nF  
2.8mm  
-
150pF – 6.8nF  
2.54mm  
Max. Thickness*  
Notes: Blue Background = AEC-Q200.  
* For lower capacitance values in this family, the maximum part thickness will be lower than the value shown. To nd out the maximum thickness for a specific part, please use the Part  
Builder or Part Search application on the Knowles website to generate the component datasheet.  
27  
Enhanced 250Vac and 305Vac  
Safety Certified AC Capacitors  
C0NTINUED  
SYS/UYS FAMILY ꢄ Y2 ꢂ250VACꢃ/X1 ꢂ305VACꢃ,  
5KV IMPULSE  
Dielectric  
Approval Body  
1808  
1812  
The Knowles SYS family offers class Y2/X1 safety capacitors,  
including humidity robustness grade III, 5kV impulse and a  
1kVdc rating, approved by TÜV and UL for use in machinery  
within the scope of IEC 62368. Unmarked components (UYS  
suffix) can be offered with a 2500Vdc rating and are designed  
to comply with, but are not approved to, EN60384-14.  
C0G/NP0 (1B)  
X7R (2R1)  
TÜV, UL  
TÜV, UL  
5.6pF - 220pF  
82pF - 1.8nF  
2.0mm  
5.6pF - 680pF  
100pF - 3.9nF  
2.8mm  
Max. Thickness*  
SYS and UYS components have a creepage <4mm,  
and as a result, their safety certifications are only valid  
for applications within the scope of IEC 62368.  
Ref: EN60384-14, clause 4.8.1.3.  
Notes: Blue Background = AEC-Q200.  
* For lower capacitance values in this family, the maximum part thickness will be lower than the  
value shown. To nd out the maximum thickness for a specific part, please use the Part Builder or  
Part Search application on the Knowles website to generate the component datasheet.  
Dielectric  
Approval Body  
2220  
S3X/U3X FAMILY ꢄ X2 ꢂ305VACꢃ 2.5KV IMPULSE  
The Knowles S3X family offers class 305Vac X2 safety  
capacitors, 2.5kV impulse and a 1kVdc rating, approved by  
TÜV and UL.  
C0G/NP0 (1B)  
X7R (2R1)  
TÜV, UL  
TÜV, UL  
-
10nF - 56nF  
4.5mm  
Unmarked components (U3X suffix) can be offered with a  
1.5kVdc rating and are designed to comply with, but are not  
approved to, EN60384-14.  
Max. Thickness*  
Notes: Blue Background = AEC-Q200.  
* For lower capacitance values in this family, the maximum part thickness  
will be lower than the value shown. To nd out the maximum thickness for  
a specific part, please use the Part Builder or Part Search application on the  
Knowles website to generate the component datasheet.  
Dielectric  
Approval Body  
1808  
S2X/U2X FAMILY ꢄ X2 ꢂ250VACꢃ, 2.5KV IMPULSE  
The Knowles S2X family offers class 250Vac X2 safety  
capacitors, including humidity robustness grade III, 2.5kV  
impulse and a 1kVdc rating, approved by TÜV and UL.  
C0G/NP0 (1B)  
X7R (2R1)  
TÜV, UL  
TÜV, UL  
10pF - 1nF  
-
Unmarked components (U2X suffix) can be offered with a  
2.5kVdc rating and are designed to comply with, but are not  
approved to, EN60384-14.  
Max. Thickness*  
2.0mm  
Notes: Blue Background = AEC-Q200.  
* For lower capacitance values in this family, the maximum part thickness  
will be lower than the value shown. To nd out the maximum thickness  
for a specific part, please use the Part Builder or Part Search application  
on the Knowles website to generate the component datasheet.  
28  
Enhanced 250Vac and 305Vac  
Safety Certified AC Capacitors  
C0NTINUED  
CLASSIFICATION AND APPROVAL SPECIFICATION  
Chip Size  
Suffix Code  
Dielectric  
Cap Range  
Classification  
Approval Specification  
Approval Body  
AEC-Q200  
C0G/NP0 (1B)  
5.6pF to 220pF  
IEC/EN60384-  
14:2013+A1:2016  
Y2 (250Vac) + X1 (305Vac)  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
1808  
SYX  
UL/cUL  
FOWX2 + FOWX8  
X7R (2R1)  
82pF to 1.8nF  
UL/CAN/CSA60384-14:2014  
Y2 (250Vac) + X1 (305Vac)  
C0G/NP0 (1B)  
5.6pF to 220pF  
IEC/EN60384-  
14:2013+A1:2016  
for use in equipment within the  
spec of IEC62368  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
1808  
1808  
SYS  
S2X  
UL/cUL  
FOWX2 + FOWX8  
X7R (2R1)  
82pF to 1.8nF  
10pF to 1.0nF  
UL/CAN/CSA60384-14:2014  
IEC/EN60384-  
14:2013+A1:2016  
X2 (250Vac)  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
C0G/NP0 (1B)  
UL/cUL  
FOWX2 + FOWX8  
UL/CAN/CSA60384-14:2014  
C0G/NP0 (1B)  
X7R (2R1)  
5.6pF to 820pF  
100pF to 4.7nF  
IEC/EN60384-  
14:2013+A1:2016  
Y2 (250Vac) + X1 (305Vac)  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
1812  
1812  
SYX  
SYS  
UL/cUL  
FOWX2 + FOWX8  
UL/CAN/CSA60384-14:2014  
Y2 (250Vac) + X1 (305Vac)  
for use in equipment within the  
spec of IEC62368  
C0G/NP0 (1B)  
X7R (2R1)  
5.6pF to 680pF  
100pF to 3.9nF  
IEC/EN60384-  
14:2013+A1:2016  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
UL/cUL  
FOWX2 + FOWX8  
UL/CAN/CSA60384-14:2014  
IEC/EN60384-  
14:2013+A1:2016  
Y2 (250Vac) + X1 (305Vac)  
C0G/NP0 (1B)  
X7R (2R1)  
4.7pF to 1nF  
100pF to 3.9nF  
820pF to 1nF  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
2211  
SYX  
SYX  
UL/cUL  
FOWX2 + FOWX8  
UL/CAN/CSA60384-14:2014  
C0G/NP0 (1B)  
IEC/EN60384-  
14:2013+A1:2016  
Y2 (250Vac) + X1 (305Vac)  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
2215  
UL/cUL  
FOWX2 + FOWX8  
X7R (2R1)  
2.7nF to 6.8nF  
UL/CAN/CSA60384-14:2014  
IEC/EN60384-  
14:2013+A1:2016  
Y2 (250Vac) + X1 (305Vac)  
UL/cUL  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
2220  
2220  
SYX  
SꢅX  
X7R (2R1)  
X7R (2R1)  
150pF to 6.8nF  
10nF to 56nF  
FOWX2 + FOWX8  
UL/CAN/CSA60384-14:2014  
IEC/EN60384-  
14:2013+A1:2016  
X2 (305Vac)  
UL/cUL  
FOWX2 + FOWX8  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
UL/CAN/CSA60384-14:2014  
29  
Enhanced 250Vac and 305Vac  
Safety Certified AC Capacitors  
DIMENSIONS  
Chip Size Suffix Code Length L1 mm (in) Width (W) mm (in) Maximum Thickness T* mm (in) Termination Bands L2, L3 mm (in) Creepage L4 mm (in)  
4.95 0.35  
(0.195 0.014)  
2.00 0.30  
(0.08 0.012)  
1.50 (0.06)  
2.00 (0.08)  
0.35 – 0.80  
(0.014 – 0.030)  
≥4  
(≥0.0158)  
SYX/UYX  
SYS/UYS  
S2X/U2X  
4.80 0.35  
(0.189 0.014)  
2.00 0.30  
(0.08 0.012)  
1.50 (0.06)  
2.00 (0.08)  
0.35 – 0.80  
(0.014 – 0.030)  
≥3.5  
(≥0.0138)  
1808  
4.50 0.35  
(0.180 0.014)  
2.00 0.30  
(0.08 0.012)  
1.50 (0.06)  
2.00 (0.08)  
0.50 – 0.80  
(0.020 – 0.030)  
≥3  
(≥0.118)  
1.50 (0.06)  
2.00 (0.08)  
2.54 (0.10)  
2.80 (0.11)  
4.95 0.35  
(0.195 0.014)  
3.20 0.30  
(0.126 0.012)  
0.35 – 0.80  
(0.014 – 0.030)  
≥4  
(≥0.0158)  
SYX/UYX  
SYS/UYS  
SYX/UYX  
1812  
1.50 (0.06)  
2.00 (0.08)  
2.54 (0.10)  
2.80 (0.11)  
4.80 0.35  
(0.189 0.014)  
3.20 0.30  
(0.126 0.012)  
0.35 – 0.80  
(0.014 – 0.030)  
≥3.5  
(≥0.0138)  
1.50 (0.06)  
2.00 (0.08)  
2.54 (0.10)  
2.80 (0.11)  
5.70 0.40  
(0.225 0.016)  
2.79 0.30  
(0.11 0.012)  
0.50 – 0.80  
(0.020 – 0.030)  
≥4  
(≥0.0158)  
2211  
2.00 (0.08)  
2.54 (0.10)  
2.80 (0.11)  
5.70 0.40  
(0.225 0.016)  
3.81 0.35  
(0.35 0.02)  
0.50 – 0.80  
(0.020 – 0.030)  
≥4  
(≥0.0158)  
*Maximum part thickness will  
be one of the stated values,  
depending on capacitance  
requested. To nd out the  
maximum thickness for a specific  
part, please use the Part Builder  
or Part Search application on the  
Knowles website to generate the  
component datasheet.  
2215  
SYX/UYX  
SYX/UYX  
5.70 0.40  
(0.225 0.016)  
5.00 0.40  
(0.197 0.016)  
2.00 (0.08)  
2.54 (0.10)  
0.25 – 1.00  
(0.010 – 0.040)  
≥4  
(≥0.0158)  
2.54 (0.1)  
2.80 (0.11)  
3.25 (0.128)  
4.50 (0.177)  
2220  
5.70 0.40  
(0.225 0.016)  
5.00 0.40  
(0.197 0.016)  
0.25 – 1.00  
(0.010 – 0.040)  
≥4  
(≥0.158)  
S3X/U3X  
ORDERING INFORMATION ꢄ SYX/UYX FAMILY  
1808  
J
A25  
0102  
K
J
T
SYX  
Chip Size  
Termination  
Voltage  
Capacitance in  
Picofarads (pF)  
Capacitance  
Tolerance  
Dielectric  
Codes  
Packaging  
Suffix Code  
<10pF  
B = 0.10pF  
C = 0.25pF  
D = 0.50pF  
≥ 10pF  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
T = 178mm  
(7") reel  
First digit is 0.  
Second and third  
digits are significant  
figures of capacitance  
code.  
1808  
1812  
K = C0G/NP0 (1B)  
to AEC-Q200  
SYX =  
Y2 (250Vac)/  
X1 (305Vac)  
Marked + Approved  
J = Nickel barrier (100ꢀ matte tin  
plating). RoHS compliant.  
Lead free.*  
R = 330mm  
(13") reel  
S = X7R (2R1) to  
AEC-Q200  
2211  
Y = FlexiCapTM termination base  
with nickel barrier (100ꢀ matte tin  
plating). RoHS compliant.  
A25 = 250Vac  
The fourth digit is number  
of zeros following.  
UYX =  
2215  
2220  
Unmarked parts in  
accordance with  
above but not certified  
B = Bulk pack —  
tubs or trays  
G = C0G/NP0 (1B)  
J = X7R (2R1)  
M = 20ꢀ  
Example:  
0102 = 1nF  
Note: X7R (2R1) parts are available  
in J, K & M tolerances only.  
Notes: Blue Background = AEC-Q200. *J termination is available for dielectric codes K, G and J only.  
ORDERING INFORMATION ꢄ SYS/UYS FAMILY  
1808  
J
A25  
0102  
G
J
T
SYS  
Chip Size  
Termination  
Voltage  
Capacitance in  
Picofarads (pF)  
Capacitance  
Tolerance  
Dielectric  
Codes  
Packaging  
Suffix Code  
T = 178mm  
(7") reel  
<10pF  
B = 0.10pF  
C = 0.25pF  
D = 0.50pF  
≥ 10pF  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
First digit is 0.  
Second and third  
digits are significant  
figures of capacitance  
code.  
K = C0G/NP0 (1B)  
to AEC-Q200  
SYS =  
Y2 (250Vac)/  
X1 (305Vac)  
Marked + Approved  
J = Nickel barrier (100ꢀ matte tin  
plating). RoHS compliant.  
Lead free.*  
1808  
1812  
R = 330mm  
(13") reel  
S = X7R (2R1) to  
AEC-Q200  
Y = FlexiCapTM termination base  
with nickel barrier (100ꢀ matte tin  
plating). RoHS compliant.  
A25 = 250Vac  
The fourth digit is number  
of zeros following.  
UYS =  
Unmarked parts in  
accordance with  
above but not certified  
B = Bulk pack —  
tubs or trays  
G = C0G/NP0 (1B)  
J = X7R (2R1)  
Example:  
0102 = 1nF  
Note: X7R (2R1) parts are available  
in J, K & M tolerances only.  
Notes: Blue Background = AEC-Q200. *J termination is available for dielectric codes K, G and J only.  
30  
Enhanced 250Vac and 305Vac  
Safety Certified AC Capacitors  
CONTINUED  
ORDERING INFORMATION ꢄ S3X/U3X FAMILY  
2220  
Y
A30  
0563  
K
S
T
S3X  
Chip Size  
Termination  
Voltage  
Capacitance in Picofarads  
(pF)  
Capacitance  
Tolerance  
Dielectric  
Codes  
Packaging  
Suffix Code  
T = 178mm  
(7") reel  
S = X7R (2R1) to  
AEC-Q200  
First digit is 0.  
J = Nickel barrier (100ꢀ matte tin  
plating). RoHS compliant.  
Lead free.*  
S3X =  
X2 (305Vac)  
Marked + Approved  
Second and third digits  
are significant figures of  
capacitance code.  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
R = 330mm  
(13") reel  
2220  
Y = FlexiCapTM termination base  
with nickel barrier (100ꢀ matte tin  
plating). RoHS compliant.  
A30 = 305Vac  
The fourth digit is number of  
zeros following.  
U3X =  
J = X7R (2R1)  
Unmarked parts in  
accordance with  
above but not certified  
B = Bulk pack —  
tubs or trays  
Example:  
0563 = 56nF  
Notes: Blue Background = AEC-Q200. *J termination is available for dielectric codes K, G and J only.  
ORDERING INFORMATION ꢄ S2X/U2X FAMILY  
1808  
J
A25  
0102  
G
J
T
S2X  
Chip Size  
Termination  
Voltage  
Capacitance in Picofarads  
(pF)  
Capacitance  
Tolerance  
Dielectric  
Codes  
Packaging  
Suffix Code  
T = 178mm  
(7") reel  
<10pF  
B = 0.10pF  
C = 0.25pF  
D = 0.50pF  
≥ 10pF  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
First digit is 0.  
K = C0G/NP0 (1B)  
to AEC-Q200  
J = Nickel barrier (100ꢀ matte  
tin plating). RoHS compliant.  
Lead free.  
S2X =  
X2 (250Vac)  
Marked + Approved  
Second and third digits  
are significant figures of  
capacitance code.  
R = 330mm  
(13") reel  
1808  
Y = FlexiCapTM termination base  
with nickel barrier (100ꢀ matte tin  
plating). RoHS compliant.  
A25 = 250Vac  
The fourth digit is number of  
zeros following.  
U2X =  
Unmarked parts in  
accordance with  
above but not certified  
G = C0G/NP0 (1B)  
B = Bulk pack —  
tubs or trays  
Example:  
0102 = 1nF  
Notes: Blue Background = AEC-Q200.  
31  
Legacy 250Vac Safety Certified AC Capacitors  
Knowles’ original 250Vac safety certified capacitors remain available  
in our Legacy range to support existing customer applications.  
For new equipment designs, we recommend our Enhanced 250Vac  
and 305Vac Safety Certified AC Capacitors range (see page 27).  
Approved for mains voltages up to 250Vac  
Smaller sizes suitable for use in equipment certified to EN60950  
Certification specifications for larger sizes include: IEC/EN60384-14, UL/CSA60950 and UL60384-14  
250VAC SAFETY CERTIFIED CAPACITORS  
Dielectric  
Approval Body  
X1 PY2  
X2 SP  
Y2/X1 SP  
Y2/X1 B16/M16†  
X2 B17  
1808  
1812  
1808  
2211  
2215  
2220  
2220  
C0G/NP0 (1B)  
X7R (2R1)  
TÜV, UL  
TÜV, UL  
4.7pF - 390pF  
4.7pF - 390pF  
4.7pF - 1.5nF  
4.7pF - 1nF  
820pF - 1nF  
-
-
150pF - 22nF  
(TÜV approval only)  
150pF - 1nF  
2.0mm  
150pF - 2.2nF  
2.5mm  
150pF - 4.7nF  
2.0mm  
100pF - 3.9nF  
2.54mm  
2.7nF - 3.9nF  
2.54mm  
150pF - 10nF  
2.54mm*  
Max. Thickness  
2.54mm**  
Notes: Blue Background = AEC-Q200.  
* Y2/X1 (B16 and M16) 2220 parts with values >5.6nF have a maximum thickness of 4.5mm.  
** X2 (B17) 2220 parts with values >10nF have a maximum thickness of 4.0mm.  
†M16 parts have an open mode construction to reduce the risk of short-circuit failure in the  
event of a mechanical crack developing. For further information on the design of open mode  
parts, refer to page 35 of this catalog.  
32  
Legacy 250Vac Safety Certified AC Capacitors  
CLASSIFICATION AND APPROVAL SPECIFICATION  
Chip Size  
Suffix Code  
Dielectric  
Cap Range  
Classification  
Approval Specification  
Approval Body  
AEC-Q200  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
X2  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
1808  
SPꢆ  
C0G/NP0 (1B)  
4.7pF to 1.5nF  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
TÜV & UL  
FULL RANGE  
"Y" TERM ONLY  
X2  
TÜV  
UL  
1808  
1808  
1808  
1812  
1812  
SPꢆ  
X7R (2R1)  
C0G/NP0 (1B)  
X7R (2R1)  
150pF to 4.7nF  
4.7pF to 390pF  
150pF to 1nF  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
X1  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
PY2ꢆ  
PY2ꢆ  
PY2ꢆ  
PY2ꢆ  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
TÜV & UL  
1nF max.  
"Y" TERM ONLY  
X1  
TÜV  
UL  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
X1  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
C0G/NP0 (1B)  
X7R (2R1)  
4.7pF to 390pF  
150pF to 2.2nF  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
TÜV & UL  
2.2nF max.  
"Y" TERM ONLY  
X1  
TÜV  
UL  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
Y2/X1  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
2211  
2211  
2215  
2215  
SPꢇ  
SPꢇ  
SP2  
SP2  
C0G/NP0 (1B)  
X7R (2R1)  
4.7pF to 1nF  
100pF to 3.9nF  
820pF to 1nF  
2.7nF to 3.9nF  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
TÜV & UL  
FULL RANGE  
‘Y’ & ‘H’ TERM ONLY  
Y2/X1  
TÜV  
UL  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
Y2/X1  
TÜV  
UL  
TÜV & UL  
FULL RANGE  
C0G/NP0 (1B)  
X7R (2R1)  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60950-1, 2nd Ed  
CSA 60950-1-07 2nd Ed  
TÜV & UL  
FULL RANGE  
"Y" & "H" TERM ONLY  
Y2/X1  
TÜV  
UL  
NWGQ2, NWGQ8  
IEC60384-14  
EN60384-14  
UL-60384-14:2010  
CSA E60384-14:09  
TÜV & UL  
FULL RANGE  
"Y" & "H" TERM ONLY  
Y2/X1  
TÜV  
UL  
2220  
2220  
B16³ or M16³  
B17²  
X7R (2R1)  
X7R (2R1)  
150pF to 10nF  
150pF to 22nF  
FOWX2, FOWX8  
TÜV ONLY  
22nF max.  
"Y" & "H" TERM ONLY  
IEC60384-14  
EN60384-14  
X2  
TÜV  
Notes: Termination availability  
(1) J and Y terminations only.  
(2) J, Y, A and H terminations available.  
(3) J, Y, A and H terminations available on values ≤5.6nF. Y and H terminations on values >5.6nF.  
PY2 Unmarked capacitors also available as released in accordance with approval specifications. Suffix Code SY2 applies.  
SP Unmarked capacitors also available as released in accordance with approval specifications. Suffix Code SPU applies.  
B16 Unmarked capacitors with a dual AC/DC rating are also available as released in accordance with approval specifications. Suffix Code U16 applies.  
B17 Unmarked capacitors with a dual AC/DC rating are also available as released in accordance with approval specifications. Suffix Code U17 applies.  
33  
Legacy 250Vac Safety Certified AC Capacitors  
DIMENSIONS  
Chip Size  
1808  
Length L1 mm (in)  
Width (W) mm (in)  
2.00 0.30 (0.08 0.012)  
3.20 0.20 (0.126 0.012)  
2.79 0.30 (0.11 0.012)  
3.81 0.35 (0.35 0.02)  
5.00 0.40 (0.197 0.016)  
Maximum Thickness T mm (in) Termination Bands L2, L3 mm (in) Creepage L4 mm (in)  
4.50 0.35 (0.180 0.014)  
4.50 0.30 (0.180 0.012)  
5.70 0.40 (0.225 0.016)  
5.70 0.40 (0.225 0.016)  
5.70 0.40* (0.225 0.016)*  
2.0 (0.08)  
0.50 – 0.80 (0.020 - 0.030)  
0.50 – 0.80 (0.020 - 0.030)  
0.50 – 0.80 (0.020 - 0.030)  
0.50 – 0.80 (0.020 - 0.030)  
0.25 – 1.00 (0.010 - 0.040)  
≥3.0 (≥0.118)  
≥3.0 (≥0.118)  
≥4.0 (≥0.158)  
≥4 (≥0.0158)  
≥4 (≥0.0158)  
1812  
2.5 (0.1)  
2211  
2.54 (0.1)  
2.54 (0.1)  
2.54** (0.1)**  
2215  
2220  
*For 2220 B16 parts >5.6nF, length L1 = 5.8 0.40 (0.228 0.016).  
**For 2220 B16 parts >5.6nF, max thickness (T) = 4.50 (0.177). For 2220 B17 parts >10nF, max thickness (T) = 4.0 (0.157).  
ORDERING INFORMATION SPU/SP RANGES  
1808  
J
A25  
0102  
J
C
T
SP  
Chip Size  
Termination  
Voltage  
Capacitance in  
Picofarads (pF)  
Capacitance  
Tolerance  
Dielectric  
Codes  
Packaging  
Suffix Code  
J = Nickel barrier (100ꢀ matte tin  
plating). RoHS compliant. Lead free.  
<10pF  
B = 0.10pF  
C = 0.25pF  
D = 0.50pF  
≥ 10pF  
First digit is 0.  
Second and third  
digits are significant  
figures of  
T = 178mm  
(7") reel  
A = C0G/NP0 (1B)  
to AEC-Q200  
E = X7R (2R1) to  
AEC-Q200  
SP = Surge  
Y = FlexiCapTM termination base  
with nickel barrier (100ꢀ matte tin  
plating). RoHS compliant.  
protection capacitors  
(marked + approved)  
1808  
2211  
2215  
R = 330mm  
(13") reel  
capacitance code.  
F = 1ꢀ  
SPU = Surge  
protection capacitors  
(un-marked parts  
are in accordance  
with but not certified)  
A25 = 250Vac  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
A = Nickel barrier  
(Tin/lead plating with min. 10ꢀ  
lead). Not RoHS compliant.  
B = Bulk  
pack tubs or  
trays  
The fourth  
digit is number of  
zeros following.  
C = C0G/NP0 (1B)  
X = X7R (2R1)  
Note: X7R (2R1) parts are  
available in J, K & M  
tolerances only.  
H = FlexiCap™ termination base with nickel  
barrier (Tin/lead plating with minimum 10ꢀ  
lead). Not RoHS compliant.  
Example: 0102 = 1nF  
Note: J and A terminations are not available for dielectric code E. A and H terminations are available for case sizes 2211/2215 only.  
ORDERING INFORMATION PY2/SY2 RANGES  
1808  
J
A25  
0102  
J
X
T
PY2  
Chip Size  
Termination  
Voltage  
Capacitance in  
Picofarads (pF)  
Capacitance  
Tolerance  
Dielectric  
Codes  
Packaging  
Suffix Code  
First digit is 0.  
Second and third  
digits are significant  
figures of  
<10pF  
B = 0.10pF  
C = 0.25pF  
D = 0.50pF  
> 10pF  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
PY2 = Safety tested  
Surge protection  
capacitors (marked  
+ approved)  
A = C0G/NP0 (1B)  
to AEC-Q200  
E = X7R (2R1) to  
AEC-Q200  
T = 178mm  
(7") reel  
J = Nickel barrier  
(100ꢀ matte tin plating).  
RoHS compliant. Lead free.  
R = 330mm  
(13") reel  
1808  
1812  
capacitance code.  
Y = FlexiCapTM termination  
base with nickel barrier  
(100ꢀ matte tin plating).  
RoHS compliant.  
SY2 = Surge  
protection capacitors  
(un-marked parts  
are in accordance  
with but not certified)  
A25 = 250Vac  
B = Bulk  
pack tubs or  
trays  
The fourth  
digit is number of  
zeros following.  
C = C0G/NP0 (1B)  
X = X7R (2R1)  
Note: X7R (2R1) parts are available in  
J, K & M tolerances only.  
Example: 0102 = 1nF  
Note: J termination is not available for dielectric code E.  
ORDERING INFORMATION B16/B17/M16 RANGES  
2220  
J
A25  
0102  
J
X
T
B16  
Chip Size  
Termination  
Voltage  
Capacitance in  
Picofarads (pF)  
Capacitance  
Tolerance  
Dielectric  
Codes  
Packaging  
Suffix Code  
B16 = Type A: X1/Y2  
B17 = Type B: X2  
J = Nickel barrier (100ꢀ matte tin  
plating). RoHS compliant. Lead free.  
First digit is 0.  
Second and third  
digits are significant  
figures of  
E = X7R (2R1) to  
AEC-Q200 - original  
S = X7R (2R1)  
to AEC-Q200 -  
recommended  
T = 178mm  
(7") reel  
1000 pieces  
Y = FlexiCapTM termination base with  
nickel barrier (100ꢀ matte tin plating).  
U16 = Surge protection Unmarked Type A  
X1/Y2 capacitors (with a dual AC/DC rating  
are in accordance with but not certified)  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
A25 = 250Vac  
R = 330mm  
(13") reel  
4000 pieces  
capacitance code.  
RoHS compliant.  
2220  
A = Nickel barrier (Tin/lead plating with  
min. 10ꢀ lead). Not RoHS compliant.  
The fourth  
digit is number of  
zeros following.  
U17 = Surge protection Unmarked Type B  
X2 capacitors (with a dual AC/DC rating are  
‘in accordance with’ but not certified)  
X = X7R(2R1) -  
original  
J = X7R(2R1) -  
recommended  
B = Bulk pack—  
tubs or trays  
H = FlexiCap™ termination base with  
nickel barrier (Tin/lead plating with  
minimum 10ꢀ lead). Not RoHS compliant.  
M16 = Type A: X1/Y2, open mode  
protected design  
Example: 0102 = 1nF  
Notes: J and A terminations are not available for dielectric codes E and S (all capacitance values), or for dielectric code X with suffix codes B16/U16 for capacitance values >5.6nF.  
H termination is available for dielectric codes E and X only. Dielectric codes S and J are available for use with suffix codes B16, U16 and M16 only.  
34  
Open Mode Capacitors  
C0G/NP0 (1B) and X7R (2R1)  
Open Mode capacitors have been designed specifically for use in applications  
where mechanical cracking is a severe problem and short circuits due to cracking  
are unacceptable.  
OPEN MODE CAPACITOR  
Open Mode capacitors use inset electrode margins, which prevent any mechanical cracks  
that may form during board assembly from connecting to the internal electrodes.  
When combined with FlexiCap™ termination, Open Mode capacitors provide a  
robust component with the assurance that if a part becomes cracked, the crack will  
be unlikely to result in short circuit failure.  
Qualification included cracking the components by severe bend tests. Following  
the bend tests, cracked components were subjected to endurance/humidity  
tests, with no failures evident due to short circuits. Note: Depending on the  
severity of the crack, capacitance loss was between 0ꢀ and 70ꢀ.  
Note: Blue Background = AEC-Q200.  
OPEN MODE ꢈ C0G/NP0 ꢂ1Bꢃ ꢈ CAPACITANCE VALUES  
C0G/NP0 (1B)  
0603  
0805  
1206  
1210  
1808  
1812  
2220  
2225  
Max. Thickness  
Min cap  
16/25V  
50/63V  
100V  
0.8mm  
10pF  
82pF  
82pF  
82pF  
82pF  
1.37mm  
10pF  
1.7mm  
10pF  
2.0mm  
22pF  
82pF  
82pF  
82pF  
82pF  
82pF  
82pF  
82pF  
2.0mm  
22pF  
82pF  
82pF  
82pF  
82pF  
82pF  
82pF  
82pF  
2.5mm  
47pF  
2.5mm  
68pF  
2.5mm  
100pF  
270pF  
270pF  
270pF  
270pF  
270pF  
270pF  
270pF  
82pF  
82pF  
82pF  
82pF  
82pF  
47pF  
47pF  
82pF  
82pF  
82pF  
82pF  
82pF  
82pF  
82pF  
120pF  
120pF  
120pF  
120pF  
120pF  
120pF  
120pF  
180pF  
180pF  
180pF  
180pF  
180pF  
180pF  
180pF  
200/250V  
500V  
630V  
1kV  
OPEN MODE ꢈ X7R ꢂ2R1ꢃ ꢈ CAPACITANCE VALUES  
X7R (2R1)  
0603  
0805  
1206  
1210  
1808  
1812  
2220  
2225  
Max. Thickness  
Min cap  
16V  
0.8mm  
100pF  
39nF  
33nF  
22nF  
6.8nF  
2.7nF  
1.37mm  
100pF  
1.7mm  
100pF  
2.0mm  
100pF  
2.0mm  
100pF  
680nF  
560nF  
470nF  
220nF  
100nF  
68nF  
2.5mm  
150pF  
1.5μF  
1.2μF  
1μF  
2.5mm  
220pF  
3.3μF  
2.2μF  
1.5μF  
2.5mm  
330pF  
4.7μF  
100nF  
100nF  
100nF  
150nF  
220nF  
220nF  
470nF  
330nF  
470nF  
470nF  
680nF  
560nF  
25V  
120nF  
3.9μF  
2.7μF  
50/63V  
100V  
220nF  
470nF  
27nF  
22nF  
5.6nF  
100nF  
68nF  
39nF  
22nF  
6.8nF  
220nF  
100nF  
68nF  
33nF  
15nF  
680nF  
330nF  
180nF  
100nF  
47nF  
1μF  
1.5μF  
1.8μF  
200/250V  
500V  
680nF  
330nF  
180nF  
100nF  
1μF  
390nF  
220nF  
100nF  
630V  
27nF  
1kV  
15nF  
ORDERING INFORMATION ꢈ OPEN MODE CAPACITORS  
1206  
Y
050  
0224  
K
X
T
---  
Chip Size  
Termination  
Voltage  
Capacitance in Picofarads (pF) CapacitanceTolerance  
Dielectric Release Codes  
Packaging  
Suffix Code  
T = 178mm  
(7") reel  
A = C0G/NP0 (1B) to AEC-Q200  
0603  
0805  
1206  
1210  
1808  
1812  
First digit is 0. Second and  
third digits are significant  
figures of capacitance code.  
F = 1ꢀ G = 2ꢀ  
J = 5ꢀ K = 10ꢀ  
M = 20ꢀ  
Note: X7R (2R1)  
parts are available  
in J, K & M  
TM  
Y = FlexiCap  
termination base  
with nickel barrier  
(100ꢀ matte tin  
plating). RoHS  
compliant.  
016 = 16V  
025 = 25V  
E = X7R (2R1) to AEC-Q200 - original  
M01 =  
Open  
Mode  
R = 330mm  
(13") reel  
050 = 50V 063 = 63V  
100 = 100V 200 = 200V  
250 = 250V 500 = 500V  
630 = 630V 1K0 = 1kV  
S = X7R (2R1) to AEC-Q200 -  
recommended  
The fourth digit is number  
of zeros following.  
B = Bulk pack —  
tubs or trays  
capacitor  
C = C0G/NP0 (1B)  
X = X7R (2R1) - original  
J = X7R (2R1) - recommended  
2220  
2225  
tolerances only.  
Example: 0224 = 220000pF  
35  
Tandem Capacitors X7R (2R1)  
Tandem capacitors have been designed as a fail safe range, using a  
series section internal design, for use in any application where short  
circuits would be unacceptable.  
TANDEM CAPACITOR  
When combined with FlexiCap™ termination, Tandem capacitors  
provide an ultra robust and reliable component, for use in the most  
demanding applications.  
Non-standard voltages are available. For more  
information, please consult the Knowles Capacitors  
Sales Office.  
Qualification included cracking the components by severe bend tests.  
Following the bend tests, cracked components were subjected to  
endurance/humidity tests, with no failures evident due to short circuits.  
Note: Depending on the severity of the crack, capacitance  
loss was between 0ꢀ and 50ꢀ.  
TANDEM X7R ꢂ2R1ꢃ CAPACITANCE VALUES  
X7R (2R1)  
0603  
0805  
1206  
1210  
1812  
2220  
2225  
Max. Thickness  
Min cap  
16V  
0.8mm  
100pF  
12nF  
1.39mm  
100pF  
47nF  
1.7mm  
100pF  
150nF  
120nF  
100nF  
47nF  
2.0mm  
100pF  
270nF  
220nF  
180nF  
82nF  
2.0mm  
150pF  
560nF  
470nF  
390nF  
220nF  
100nF  
2.5mm  
220pF  
1.2μF  
2.5mm  
330pF  
1.5μF  
25V  
10nF  
39nF  
33nF  
10nF  
1μF  
1.2μF  
50/63V  
100V  
6.8nF  
2.2nF  
1nF  
680nF  
470nF  
220nF  
1μF  
680nF  
330nF  
200/250V  
4.7nF  
22nF  
47nF  
Note: Blue Background= AEC-Q200.  
ORDERING INFORMATION TANDEM CAPACITORS  
1206  
Y
050  
0224  
K
X
T
---  
Chip Size  
Termination  
Voltage  
Capacitance in Picofarads (pF)  
Capacitance Tolerance  
Dielectric Codes  
Packaging  
Suffix Code  
First digit is 0. Second and  
third digits are significant figures  
of capacitance code.  
E = X7R (2R1) to AEC-Q200 —  
0603  
0805  
1206  
1210  
1812  
2220  
2225  
T = 178mm  
(7") reel  
original  
TM  
050 = 50V  
063 = 63V  
100 = 100V  
200 = 200V  
250 = 250V  
Y = FlexiCap  
termination base with  
nickel barrier (100ꢀ  
matte tin plating).  
RoHS compliant.  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
T01 =  
Tandem  
capacitor  
R = 330mm  
(13") reel  
The fourth digit is number  
of zeros following.  
B = Bulk pack —  
tubs or trays  
X = X7R (2R1)  
Example: 0224 = 220000pF  
36  
X8R High Temperature Capacitors — up to 150°C  
The X8R dielectric will operate from -55°C to +150°C, with a maximum capacitance change 15ꢀ (without applied voltage).  
The devices are available in sizes 0805 to 2225, with voltage ranges from 25V to 3kV and capacitance values from 100pF to 2.2μF.  
The capacitors have been developed by Knowles Precision Devices to meet demand from various applications in the automotive and  
industrial markets and in other electronic equipment exposed to high temperatures. The increased use of electronics in automotive  
“under the hood” applications has created demand for this product range.  
The X8R range incorporates a specially formulated termination with a nickel barrier finish that has been designed to enhance the  
mechanical performance of these SMD chip capacitors in harsh environments typically present in automotive applications.  
X8R HIGH TEMPERATURE CAPACITORS CAPACITANCE VALUES  
X8R  
0805  
1206  
1210  
1808  
1812  
2220  
2225  
CAPACITANCE RANGE:  
100pF to 2.2μF (0805 to 2225)  
Max. Thickness  
1.37mm  
1.7mm  
2.0mm  
2.0mm  
2.5mm  
2.5mm  
2.5mm  
Min cap  
Min cap  
50V  
100pF  
100pF  
220pF  
150nF  
100nF  
68nF  
22nF  
10nF  
3.3nF  
2.2nF  
1.5nF  
680pF  
-
100pF  
220pF  
330nF  
220nF  
150nF  
47nF  
33nF  
6.8nF  
5.6nF  
3.3nF  
1.5nF  
-
100pF  
220pF  
330nF  
220nF  
150nF  
47nF  
150pF  
220pF  
680nF  
470nF  
330nF  
120nF  
68nF  
220pF  
220pF  
1.2μF  
1μF  
330pF  
330pF  
2.2μF  
1.5μF  
1μF  
TEMPERATURE COEFFICIENT OF CAPACITANCE ꢂTCCꢃ:  
15ꢀ from -55°C to +150°C  
220pF  
47nF  
CAPACITANCE RANGE:  
< 0.025  
100V  
33nF  
200/250V  
500V  
630V  
1kV  
15nF  
680nF  
330nF  
180nF  
68nF  
47nF  
TERMINATION:  
Nickel Barrier Tin Plated  
4.7nF  
470nF  
220nF  
82nF  
56nF  
33nF  
22nF  
12nF  
2.2nF  
33nF  
INSULATION RESISTANCE ꢂIRꢃ:  
100G Ω or 1000secs (whichever is the less).  
1.5nF  
6.8nF  
5.6nF  
3.3nF  
1.5nF  
27nF  
1.2kV  
-
-
-
-
-
15nF  
1.5kV  
10nF  
27nF  
15nF  
DIELECTRIC WITHSTAND VOLTAGE ꢂDWVꢃ  
2.5 x rated voltage for 5 1 seconds, 50mA charging current maximum.  
2kV  
5.6nF  
3.3nF  
2.7nF  
2.5kV  
3kV  
1.2nF  
10nF  
AGING RATE:  
1ꢀ per decade (typical)  
-
-
820pF  
5.6nF  
6.8nF  
Note: Blue background = AEC-Q200.  
ORDERING INFORMATION X8R HIGH TEMPERATURE CAPACITORS  
1206  
Y
100  
0473  
K
N
T
Chip Size  
Termination  
Voltage  
Capacitance in Picofarads (pF)  
Capacitance Tolerance  
Dielectric Release Codes  
Packaging  
050 = 50V  
100 = 100V  
200 = 200V  
250 = 250V  
500 = 500V  
630 = 630V  
1K0 = 1kV  
N = X8R  
0805  
1206  
1210  
1808  
1812  
T = 178mm  
(7") reel  
Y = FlexiCap™  
termination base  
with nickel barrier  
(100ꢀ matte tin  
plating).  
First digit is 0. Second and third digits  
are significant figures of capacitance  
code. The fourth digit is number of  
zeros following.  
J = 5ꢀ  
K = 10ꢀ  
M = 20ꢀ  
R = 330mm  
(13") reel  
1K2 = 1.2kV  
1K5 = 1.5kV  
2K0 = 2kV  
2K5 = 2.5kV  
3K0 = 3kV  
B = Bulk pack —  
tubs or trays  
2220  
2225  
Example: 0473 = 47000pF = 47nF  
T = X8R AEC-Q200  
37  
Ultra-Low ESR HiQ MLCCs X8G Range  
The Ultra-Low ESR HiQ X8G range offers a very stable, High Q material system that provides  
excellent low loss performance. Optimized for lowest possible ESR, the electrode system provides  
low metal losses resulting in flatter performance curves and reduced losses at higher frequencies.  
An extended operating temperature range of -55ºC to +150ºC accommodates modern high density  
microelectronics requirements. This range of high frequency capacitors is suitable for many  
applications where economical, high performance is required.  
ULTRAꢁLOW ESR HIQ CAPACITORS X8G RANGE CAPACITANCE VALUES  
Chip size  
0402  
0505  
0603  
0805  
1111  
OPERATING TEMPERATURE:  
Thickness  
Min cap  
Min cap  
50V  
0.6mm max  
1.27mm max  
0.8mm max  
1.0mm max  
2.0 0.2mm  
0.5pF  
-55°C to +150°C (EIA X8G)  
0.2pF  
0.3pF  
0.2pF  
0.2pF  
0.2pF  
0.3pF  
0.2pF  
0.2pF  
-
TEMPERATURE COEFFICIENT  
ꢂTYPICALꢃ:  
100pF  
1.0nF  
470pF  
1.5nF  
5.1nF  
100V  
100pF  
560pF  
150pF  
1.0nF  
5.1nF  
0
30 ppm/°C (EIA X8G)  
200V  
250V  
500V  
630V  
1kV  
-
-
-
-
5.1nF  
33pF  
270pF  
150pF  
820pF  
5.1nF  
INSULATION RESISTANCE: Time  
constant (Ri xCr) (whichever is the least)  
100GΩ or 1000s  
33pF  
240pF  
150pF  
430pF  
1.8nF  
-
-
-
-
1.8nF  
-
-
-
47pF  
1.8nF  
Q FACTOR: >2000 @ 1MHz  
1.5kV  
-
-
-
-
820pF  
390pF  
7" reel - 1,000  
13" reel - 5,000  
2kV  
-
-
-
-
Note: Blue background = AEC-Q200.  
Capacitance values below 1pF are in 0.1pF steps. Capacitance values  
higher than 1pF follow E24 series.  
7" reel - 10,000  
13" reel - 15,000  
7" reel - 2,500  
13" reel - 10,000  
7" reel - 4,000  
7" reel - 3,000  
Tape quantities  
13" reel - 16,000 13" reel - 12,000  
ORDERING INFORMATION ULTRAꢁLOW ESR HIQ CAPACITORS X8G RANGE  
085  
J
250  
0101  
J
H
T
Chip Size  
Termination  
Voltage  
Capacitance in Picofarads (pF)  
Capacitance Tolerance  
Dielectric  
Packaging  
<4.7pF  
H = 0.05pF  
B = 0.1pF  
C = 0.25pF  
D = 0.5pF  
V = Ultra-Low ESR  
High Frequency X8G to  
AEC-Q200  
050 = 50V  
100 = 100V  
200 = 200V  
250 = 250V  
500 = 500V  
630 = 630V  
1K0 = 1kV  
<1.0pF: Insert a P for the decimal point as the first  
character. e.g. P300 = 0.3pF Values in 0.1pF steps  
T = 178mm  
(7") horizontal reel  
0402  
0505  
0603  
0805  
1111  
≥1.0pF & <10pF: Insert a P for the decimal point as  
the second character. e.g. 8P20 = 8.2pF  
Values are E24 series  
R = 330mm  
(13") reel  
J = Nickel barrier  
(100ꢀ matte tin plating).  
RoHS compliant.  
Lead free.  
<10pF  
B = 0.1pF  
C = 0.25pF  
D = 0.5pF  
B = Bulk pack —  
tubs or trays  
≥10pF: First digit is 0. Second and third digits are  
significant figures of capacitance code. Fourth  
digit is number of zeros. e.g. 0101 = 100pF  
Values are E24 series  
≥10pF  
F = 1ꢀ  
G = 2ꢀ  
J = 5ꢀ  
K = 10ꢀ  
V = 178mm (7")  
vertical reel*  
1K5 = 1.5kV  
2K0 = 2.0kV  
H = Ultra-Low ESR High  
Frequency X8G  
* Vertical reel is available for case size 1111 only  
38  
Ultra-Low ESR HiQ MLCCs X8G Range  
TYPICAL PERFORMANCE  
0603 CHIP SIZE  
TYPICAL PERFORMANCE —  
0805 CHIP SIZE  
0603 H SERIES IMPEDANCE vs. FREQUENCY  
0805 H SERIES IMPEDANCE vs. FREQUENCY  
1,000,000  
1,000,000  
100,000  
100,000  
10,000  
10,000  
1,000  
100  
1,000  
100  
10  
1pF  
0.8pF  
2.7pF  
6.8pF  
22pF  
3.9pF  
8.2pF  
39pF  
10  
1
1
62pF  
43pF  
0.1  
0.1  
0.01  
1,000  
3,000  
1
10  
100  
Frequency (MHz)  
1,000  
10,000  
1
10  
100  
Frequency (MHz)  
0603 H SERIES ESR vs. FREQUENCY  
0805 H SERIES ESR vs. FREQUENCY  
10  
10  
1pF  
0.8pF  
2.7pF  
6.8pF  
22pF  
3.9pF  
8.2pF  
39pF  
1
1
62pF  
43pF  
0.1  
0.1  
0.01  
0.01  
2,500  
3,000  
2,500  
3,000  
0
500  
1,000  
1,500  
2,000  
0
500  
1,000  
1,500  
2,000  
Frequency (MHz)  
Frequency (MHz)  
0603 H SERIES Q vs. FREQUENCY  
0805 H SERIES Q vs. FREQUENCY  
10,000  
1,000  
10,000  
1,000  
100  
10  
100  
10  
1pF  
0.8pF  
2.7pF  
22pF  
6.8pF  
1
0.1  
1
0.1  
3.9pF  
8.2pF  
39pF  
62pF  
43pF  
0.01  
0.01  
3,000  
3,000  
100  
500  
1,000  
100  
500  
1,000  
Frequency (MHz)  
Frequency (MHz)  
39  
Surface Mount EMI Filters E01 and E07 Ranges  
The E01 and E07 ranges of feedthrough MLCC chip "C" filters are 3-terminal chip devices designed to offer reduced inductance  
compared to conventional MLCCs when used in signal line filtering. The filtered signal passes through the chip internal electrodes and  
the noise is filtered to the grounded side contacts, resulting in reduced length noise transmission paths.  
Available in C0G/NP0 (1B) and X7R (2R1) dielectrics, with current ratings of 300mA, 1A, 2A, 3A and voltage ratings of 25Vdc to 200Vdc.  
Also available with FlexiCap™ termination, which is strongly recommended for new designs.  
Commonly used in automotive applications, a range qualified to AEC-Q200 is also available.  
E01300mA, E071A/2A/3A  
DIMENSIONS  
0805  
1206  
1806  
1812  
0805  
1206  
1806  
1812  
2.0 0.3  
(0.079 0.012)  
3.2 0.3  
(0.126 0.012)  
4.5 0.35  
(0.177 0.014)  
4.5 0.35  
(0.177 0.014)  
A
B
C
D
E
0.95 (0.037)  
0.90 (0.035)  
0.30 (0.012)  
0.40 (0.016)  
0.75 (0.030)  
0.56 (0.022)  
1.20 (0.047)  
0.90 (0.035)  
0.60 (0.024)  
0.80 (0.031)  
1.0 (0.039)  
1.2 (0.047)  
1.40 (0.055)  
0.80 (0.031)  
1.40 (0.055)  
1.0 (0.039)  
2.65 (0.104)  
1.40 (0.055)  
0.80 (0.031)  
1.40 (0.055)  
2.05 (0.080)  
1.08 (0.043)  
L
W
T
1.25 0.2  
(0.049 0.008)  
1.6 0.2  
(0.063 0.008)  
1.6 0.2  
(0.063 0.008)  
3.2 0.3  
(0.126 0.012)  
1.0 0.15  
(0.039 0.006)  
1.1 0.2  
(0.043 0.008)  
1.1 0.2  
(0.043 0.008)  
2.0 0.3  
(0.079 0.012)  
F
0.70 (0.028)  
0.70 (0.028)  
0.60 0.2  
(0.024 0.008)  
0.95 0.3  
(0.037 0.012)  
1.4 0.3  
(0.055 0.012)  
1.45 0.35  
(0.055 0.014)  
B1  
B2  
Notes: 1) All dimensions mm (inches). 2) Pad widths less than chip width gives improved  
mechanical performance. 3) The solder stencil should place 4 discrete solder pads.  
The unprinted distance between ground pads is shown as dim E. 4) Insulating the  
earth track underneath the filters is acceptable and can help avoid displacement of  
filter during soldering but can result in residue entrapment under the chip.  
0.3 0.15  
(0.012 0.006)  
0.5 0.25  
(0.02 0.01)  
0.5 0.25  
(0.02 0.01)  
0.75 0.25  
(0.03 0.01)  
STANDARD RANGE ꢂE01, E07ꢃ CAPACITANCE VALUES  
TYPE  
E01  
E07  
Chip Size  
0805  
1206  
1806  
0805  
1206  
1806  
1812  
Max Current  
300mA  
300mA  
300mA  
1A  
2A  
2A  
3A  
Rated Voltage  
Dielectric  
Minimum and maximum capacitance values  
25Vdc  
C0G/NP0 (1B)  
X7R (2R1)  
180pF - 1.5nF  
470pF - 100nF  
22pF - 820pF  
560pF - 68nF  
22pF - 560pF  
560pF - 27nF  
-
560pF - 3.9nF  
5.6nF - 330nF  
22pF - 3.3nF  
4.7nF - 220nF  
22pF - 2.2nF  
1.8nF - 100nF  
560pF - 1.2nF  
2.7nF - 56nF  
820pF - 4.7nF  
180pF - 1.5nF  
820pF - 100nF  
10pF - 220pF  
1nF - 68nF  
10pF - 120pF  
1nF - 27nF  
-
560pF-3.9nF  
820pF-4.7nF  
22nF - 560nF  
100pF - 1.5nF  
22nF - 330nF  
100pF - 680pF  
22nF - 180nF  
56pF - 470pF  
22nF - 100nF  
-
3.9nF - 560nF  
22pF - 3.9nF  
3.3nF - 330nF  
22pF - 3.3nF  
3.3nF - 180nF  
56pF - 1nF  
10nF - 330nF  
22pF - 1nF  
560nF - 1.8µF  
50Vdc  
C0G/NP0 (1B)  
X7R (2R1)  
-
10nF - 220nF  
22pF - 560pF  
10nF - 100nF  
15pF - 180pF  
12nF - 56nF  
330nF - 1.5µF  
100Vdc  
200Vdc  
C0G/NP0 (1B)  
X7R (2R1)  
-
180nF - 820nF  
-
C0G/NP0 (1B)  
X7R (2R1)  
-
3.9nF - 100nF  
-
100nF - 270nF  
Note: E07 25Vdc C0G/NP0 (1B) 1206 and 1806 ranges in green, have a maximum current of 1A.  
40  
Surface Mount EMI Filters E01 and E07 Ranges  
AECꢁQ200 RANGE ꢂE01, E07ꢃ CAPACITANCE VALUES  
TYPE  
E01  
E07  
Chip Size  
0805  
1206  
1806  
0805  
1206  
1806  
50V  
C0G/NP0 (1B)  
22pF - 820pF  
560pF - 47nF  
22pF - 560pF  
560pF - 15nF  
22pF - 1nF  
4.7nF - 100nF  
22pF - 1nF  
1.8nF - 15nF  
22pF - 2.2nF  
3.3nF - 200nF  
22pF - 2.2nF  
3.3nF - 68nF  
10pF - 220pF  
1nF - 47nF  
10pF - 120pF  
1nF - 15nF  
22pF - 1nF  
100pF - 1.5nF  
22nF - 200nF  
100pF - 680pF  
22nF - 68nF  
X7R (2R1)  
C0G/NP0 (1B)  
X7R (2R1)  
10nF - 100nF  
22pF - 560pF  
10nF - 15nF  
100V  
Notes: Blue background = AEC-Q200. For some lower capacitance parts, higher voltage rated parts may be supplied.  
OPEN BOARD INSERTION LOSS PERFORMANCE IN 50Ω SYSTEM  
OPEN BOARD PERFORMANCE  
10  
Resonance  
0
Cap.  
0.1MHz 1MHz 10MHz  
100MHz  
1GHz  
Freq (MHz)  
approx.  
-10  
-20  
-30  
10pF  
22pF  
33pF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
7.5  
16  
2200  
1600  
1350  
1150  
900  
800  
700  
600  
500  
425  
350  
300  
260  
220  
200  
170  
135  
110  
0
10pF - C0G  
22pF - C0G  
47pF - C0G  
100pF - C0G  
470pF - C0G  
2.2pF - C0G  
2.2nF - X7R  
4.7nF - X7R  
10nF - X7R  
22nF - X7R  
100nF - X7R  
200nF - X7R  
0
0
1
22  
28  
41  
47pF  
0
0
2
-40  
-50  
68pF  
100pF  
150pF  
220pF  
330pF  
470pF  
560pF  
680pF  
820pF  
1nF  
0
0
3
0
0
5
28  
24  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
-60  
0
0
8
0
0
12  
15  
18  
20  
22  
24  
27  
31  
-70  
-80  
0
1
0
2
0.00  
0.01  
0.1  
1
10  
100  
1,000  
10K 20K  
0
3
Frequency (MHz)  
0
4
0
5
ORDERING INFORMATION E01 AND E07  
FEEDTHROUGH CAPACITORS  
0
7
1.5nF  
0
9
2.2nF  
3.3nF  
4.7nF  
6.8nF  
10nF  
0
12  
14  
18  
21  
24  
27  
31  
34  
38  
41  
45  
48  
52  
55  
60  
65  
34  
39  
46  
50  
48  
45  
43  
40  
40  
40  
40  
40  
40  
40  
40  
40  
1
1206  
Y
100  
0103  
M
X
T
E07  
2
Capacitance in  
Picofarads (pF)  
3
90  
Chip Size  
Termination  
Voltage  
Tolerance Dielectric  
Packaging  
Type  
5
80  
A = C0G/  
NP0 (1B)  
to AEC-Q200  
E = X7R  
(2R1) to  
AEC-Q200  
15nF  
8
65  
First digit is 0. Second  
and third digits are  
significant figures of  
capacitance code.  
The fourth digit is  
number of zeros  
following  
J = Nickel Barrier (Tin)  
Y = FlexiCap™  
T = 178mm  
(7") reel  
R = 330mm  
(13") reel  
22nF  
33nF  
12  
14  
17  
20  
24  
26  
30  
33  
36  
39  
56  
0805  
1206  
1806  
1812  
(Tin - X7R (2R1) only)  
A = (Tin/Lead)  
Not RoHS compliant.  
H = FlexiCap™  
025 = 25V  
050 = 50V  
100 = 100V  
200 = 200V  
40  
E01  
E07  
M = 20ꢀ  
47nF  
2
4
34  
C = C0G/  
NP0 (1B)  
X = X7R (2R1)  
(Tin/Lead)  
Not RoHS compliant.  
68nF  
100nF  
150nF  
220nF  
330nF  
470nF  
560nF  
30  
B = Bulk  
Example: 0103 =  
10000pF.  
5
8
28  
24  
Notes: A, Y and H terminations are not available for dielectric codes A and C.  
10  
13  
16  
18  
17  
J and A terminations are not available for dielectric code E.  
Please contact your Knowles Precision Devices sales office for any special requirements.  
15.5  
14  
REELED QUANTITIES  
12  
0805  
1206  
1806  
1812  
178mm (7") reel  
330mm (13") reel  
3,000  
2,500  
2,500  
1,000  
4,000  
12,000  
10,000  
10,000  
41  
Surface Mount EMI Filters E03 X2Y IPCs  
The X2Y Integrated Passive Component is a 3-terminal EMI chip device.  
When used in balanced line applications, the revolutionary design provides simultaneous line-to-line and line-to-ground  
filtering, using a single ceramic chip. In this way, differential and common mode filtering are provided in one device.  
For unbalanced applications, it provides ultra-low ESL (equivalent series inductance). Capable of replacing two or more  
conventional devices, it is ideal for balanced and unbalanced lines, twisted pairs and dc motors, in automotive, audio,  
sensor and other applications.  
Available in sizes from 0805 to 1812, these filters can prove invaluable in meeting stringent EMC demands.  
Dielectric:  
X7R (2R1) or C0G/NP0 (1B)  
Capacitance measurement:  
At 1,000-hr point  
Temperature rating:  
-55°C to +125°C  
Dielectric withstand voltage:  
≤200V 2.5 times rated Volts for  
5 secs. 500V 1.5 times rated  
Volts for 5 secs. Charging  
Electrical configuration:  
Multiple capacitance  
Typical capacitance matching:  
Better than 5ꢀ (down to 1ꢀ  
available on request)  
Insulation resistance:  
100GΩ or 1000s (whichever is  
the least)  
current limited to 50mA Max.  
STANDARD RANGE ꢂE03ꢃ CAPACITANCE VALUES  
TYPE  
E03  
Chip Size  
Dielectric  
0805  
1206  
1410  
1812  
Rated Voltage  
C0G/NP0 (1B)  
X7R (2R1)  
560pF - 820pF  
1.8nF - 3.3nF  
-
6.8nF - 8.2nF  
470nF - 470nF  
4.7nF - 5.6nF  
180nF - 400nF  
100pF - 3.9nF  
4.7nF - 150nF  
100pF - 3.3nF  
1.2nF - 120nF  
-
12nF - 15nF  
820nF - 820nF  
8.2nF - 10nF  
25Vdc  
56nF - 68nF  
C0G/NP0 (1B)  
X7R (2R1)  
390pF - 470pF  
1.2nF - 1.5nF  
56nF - 220nF  
22pF - 1nF  
1.5nF - 47nF  
22pF - 1nF  
820pF - 33nF  
-
50Vdc  
100Vdc  
200Vdc  
500Vdc  
18nF - 47nF  
390nF - 680nF  
820pF - 6.8nF  
8.2nF - 330nF  
820pF - 5.6nF  
2.7nF - 180nF  
820pF - 3.9nF  
2.7nF - 100nF  
C0G/NP0 (1B)  
X7R (2R1)  
10pF - 330pF  
470pF - 15nF  
C0G/NP0 (1B)  
X7R (2R1)  
-
-
-
-
C0G/NP0 (1B)  
X7R (2R1)  
-
-
Note: For some lower capacitance parts, higher voltage rated parts may be supplied.  
42  
Surface Mount EMI Filters E03 X2Y IPCs  
AECꢁQ200 RANGE ꢂE03ꢃ CAPACITANCE VALUES  
Chip Size  
C0G/NP0 (1B)  
0805  
1206  
1410  
1812  
390pF - 470pF  
18nF - 33nF  
10pF - 330pF  
470pF - 15nF  
1.2nF - 1.5nF  
56nF - 150nF  
22pF - 1nF  
1.5nF - 47nF  
4.7nF - 5.6nF  
180nF - 330nF  
100pF - 3.9nF  
4.7nF - 150nF  
8.2nF - 10nF  
390nF - 560nF  
820pF - 6.8nF  
8.2nF - 330nF  
50Vdc  
X7R (2R1)  
C0G/NP0 (1B)  
X7R (2R1)  
100Vdc  
Note: Blue background = AEC-Q200.  
0805  
1206  
1410  
1812  
L
2.0 0.3 (0.079 0.012)  
1.25 0.2 (0.049 0.008)  
1.0 0.15 (0.039 0.006)  
3.2 0.3 (0.126 0.012)  
1.6 0.2 (0.063 0.008)  
1.1 0.2 (0.043 0.008)  
3.6 0.3 (0.14 0.012)  
2.5 0.3 (0.1 0.012)  
2.0 max. (0.08 max.)  
4.5 0.35 (0.177 0.014)  
3.2 0.3 (0.126 0.012)  
2.1 max (0.083 max)  
W
T
B1  
B2  
0.50 0.25 (0.020 0.010) 0.95 0.3 (0.037 0.012) 1.20 0.3 (0.047 0.012) 1.45 0.35 (0.055 0.014)  
0.3 0.15 (0.012 0.006)  
0.5 0.25 (0.02 0.01)  
0.5 0.25 (0.02 0.01)  
0.75 0.25 (0.03 0.01)  
0805  
1206  
1410  
1812  
A
B
C
D
E
0.95 (0.037)  
0.9 (0.035)  
0.3 (0.012)  
1.2 (0.047)  
2.05 (0.08)  
2.65 (0.104)  
0.9 (0.035)  
0.6 (0.024)  
0.8 (0.031)  
1.0 (0.039)  
0.7 (0.028)  
1.0 (0.040)  
0.7 (0.028)  
0.9 (0.035)  
1.85 (0.071)  
0.79 (0.031)  
1.4 (0.055)  
0.8 (0.031)  
1.4 (0.055)  
2.05 (0.080)  
1.08 (0.043)  
0.4 (0.016)  
0.75 (0.030)  
0.56 (0.022)  
F
COMPONENT  
ADVANTAGES  
DISADVANTAGES  
APPLICATIONS  
• Requires 1 per line  
• High inductance  
• Capacitance matching problems  
• Bypass  
• Low frequency  
Chip capacitor  
• Industry standard  
• Feedthrough  
• Unbalanced lines  
• High frequency  
3-Terminal  
feedthrough  
• Feedthrough  
• Lower inductance  
• Current limited  
• Very low inductance  
• Bypass  
• Balanced lines  
• High frequency DC  
electric motors  
• Unbalanced lines  
• Audio amplifiers  
• CANBUS  
• Replaces 2 (or 3) components  
• Negates the effects of temperature,  
voltage and aging  
• Provides both common mode and  
differential mode attenuation  
Syfer X2Y  
Integrated  
Passive  
• Care must be taken to optimize  
circuit design  
Component  
• Can be used on balanced and unbalanced lines  
43  
Surface Mount EMI Filters E03 X2Y IPCs  
FILTERING APPLICATION  
DECOUPLING APPLICATION  
Input 1  
A
A
Signal  
C1  
C1  
C1  
C2  
Ground  
C1  
Return  
B
B
Input 2  
FILTERING APPLICATION  
DECOUPLING APPLICATION  
0
-10  
-40  
-50  
-20  
470pF  
1nF  
-20  
-30  
-40  
-30  
-40  
27pF  
100pF  
470pF  
1nF  
10nF  
47nF  
100nF  
220nF  
400nF  
680nF  
-50  
-60  
-70  
-50  
-60  
-70  
47nF  
10nF  
100nF  
1,000  
5,000  
0.1  
1
10  
100  
1,000  
5,000  
0.10  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
ORDERING INFORMATION X2Y IPC RANGE  
1812  
Y
100  
0334  
M
X
T
E03  
Chip  
Size  
Capacitance in  
Picofarads (pF) C1  
Termination  
Voltage  
Tolerance  
Dielectric  
Packaging  
Type  
First digit is 0. Second and third  
digits are significant figures of  
capacitance code. The fourth digit  
is number of zeros following  
J = Nickel Barrier (Tin)  
Y = FlexiCap™(Tin - X7R (2R1) only)  
A = (Tin/Lead)  
A = C0G/NP0 (1B)  
to AEC-Q200  
E = X7R (2R1) to  
AEC-Q200  
025 = 25V  
050 = 50V  
100 = 100V  
200 = 200V  
500 = 500  
M = 20ꢀ  
T = 178mm (7") reel  
R = 330mm (13") reel  
B = Bulk  
0805  
1206  
1410  
1812  
X2Y  
Integrated  
Passive  
Not RoHS compliant.  
(Tighter tolerances  
may be available on  
request).  
Example:  
0334 = 330nF.  
H = FlexiCap™(Tin/Lead)  
Not RoHS compliant.  
Component  
C = C0G/NP0 (1B)  
X = X7R (2R1)  
Note: C1 = 2C2  
Notes:  
1) A, Y and H terminations are not available for dielectric codes A and C.  
2) J and A terminations are not available for dielectric code E.  
3) Please contact your Knowles Precision Devices sales office for any special requirements.  
REELED QUANTITIES  
178mm (7") reel  
330mm (13") reel  
0805  
1206  
1410  
1812  
3,000  
2,500  
2,000  
500  
12,000  
10,000  
8,000  
2,000  
44  
Other Products Available That Are Not  
AEC-Q200 Qualified  
VC1 RESIDUAL CAPACITORS X7R ꢀ2R1ꢁ  
The VC1 residual capacitance range MLCCs provide a more stable  
capacitance value with voltage — not to drop below 50ꢀ of the 1Vrms  
1kHz value, up to full rated DC voltage, at room temperature.  
They can be operated continuously at full rated voltage, but if derated  
will maintain a larger percentage of their original capacitance value, e.g.,  
at 80ꢀ RV capacitance value equals 60ꢀ approximately — see graph.  
Defined capacitance value in case sizes from 0805 to 3640, with  
voltage rating up to 3kV. Ideal for power supplies, capacitance-critical  
circuits, smoothing circuits and EMI suppression.  
Operating Temperature:  
-55°C to +125°C  
Typical Performance Curves  
100ꢀ  
Temperature Coefficient (Typical):  
15ꢀ  
80ꢀ  
60ꢀ  
Insulation Resistance at +25°C:  
Time constant (Ri xCr) 100GΩ or 1000s (whichever is the least)  
40ꢀ  
20ꢀ  
0ꢀ  
Aging Rate:  
10ꢀ  
30ꢀ  
50ꢀ  
70ꢀ  
90ꢀ  
Typical 1ꢀ per time decade  
Applied Voltage  
Residual Cap Range  
Typical HV X7R  
MINIMUM/MAXIMUM CAPACITANCE VALUES VC1 CAPACITORS  
Chip Size  
0805  
1206  
1210  
1808  
1812  
2220  
2225  
3640  
Min Cap  
250V  
100pF  
150pF  
39nF  
6.8nF  
4.7nF  
1.5nF  
1nF  
220pF  
82nF  
15nF  
8.2nF  
2.7nF  
2.2nF  
1.2nF  
560pF  
-
220pF  
82nF  
15nF  
8.2nF  
2.7nF  
2.2nF  
1.2nF  
560pF  
-
470pF  
220nF  
56nF  
39nF  
15nF  
10nF  
5.6nF  
3.3nF  
1.8nF  
-
1nF  
680nF  
150nF  
100nF  
39nF  
27nF  
15nF  
1nF  
1μF  
2.2nF  
1.8μF  
560nF  
470nF  
180nF  
120nF  
68nF  
39nF  
22nF  
12nF  
12nF  
500V  
2.2nF  
220nF  
120nF  
56nF  
39nF  
22nF  
12nF  
630V  
1.5nF  
1000V  
390pF  
1200V  
-
1500V  
-
560pF  
270pF  
-
2000V  
2500V  
3000V  
7" reel qty  
13" reel qty  
-
10nF  
-
5.6nF  
3.9nF  
500  
8.2nF  
5.6nF  
500  
-
-
-
-
3,000  
12,000  
2,500  
10,000  
2,000  
8,000  
1,500  
6,000  
500  
N/A  
2,000  
2,000  
2,000  
500  
Note: Other capacitance values may become available, please contact your Knowles Precision Devices sales office if you need values other than those shown in the above table. For dimensions and soldering  
information, please go to our website knowlescapacitors.com.  
45  
Other Products Available That Are Not  
AEC-Q200 Qualified  
HIGH TEMPERATURE HiT RANGE  
200°C - C0G/NP0 (1B) & X7R (2R1)  
The HiT range of multilayer ceramic capacitors is suitable for a  
Insulation Resistance (IR):  
25ºC >100GΩ or 1000secs (whichever is the least)  
variety of high temperature applications, including: oil exploration,  
geothermal, military, automotive under-hood and avionics. This range  
is manufactured to exacting standards using our unique screen  
printing process. This provides a high-quality component suitable for  
demanding applications.  
200ºC >1GΩ or 10secs (whichever is the least)  
Temperature Coefficient of Capacitance (TCC):  
C0G/NP0 (1B) 30ppm/ºC to +125°C  
• 200ºC operating temperature  
X7R (2R1) 15ꢀ to +125°C  
• 0603 to 2220 chip sizes  
• C0G/NP0 (1B) and X7R dielectric options  
• Capacitance range C0G/NP0 (1B) from 3.9pF up to 47nF  
• Capacitance range X7R (2R1) from 100pF up to 4.7µF  
• Voltage ratings from 10V to 630V  
• RoHS compliant/Pb free  
Aging Rate:  
C0G/NP0 (1B) Zero.  
X7R (2R1) typically less than 2ꢀ per time decade  
• Sn over Ni termination  
• Sample kits available  
HIGH TEMP. HiT250 RANGE  
250°C C0G/NP0 (1B) & X7R (2R1)  
The HiT250 range of multilayer ceramic capacitors is suitable for a  
variety of high temperature applications, including: oil exploration,  
geothermal, military, automotive under-hood and avionics.  
Insulation Resistance (IR):  
25ºC >100GΩ or 1000secs (whichever is the least)  
250ºC >100MΩ or 1secs (whichever is the least)  
This range is manufactured to exacting standards using our unique  
screen printing process. This provides a high-quality component  
suitable for demanding applications.  
Temperature Coefficient of Capacitance (TCC):  
C0G/NP0 (1B) 30ppm/ºC to +125°C  
250ºC operating temperature  
0603 to 2220 chip sizes  
X7R (2R1) 15ꢀ to +125°C  
C0G/NP0 (1B) and X7R dielectric options  
Capacitance range C0G/NP0 (1B) from 3.9pF up to 39nF  
Capacitance range X7R (2R1) from 1nF up to 2.2µF  
Voltage ratings from 10V to 630V  
RoHS compliant/Pb free  
Aging Rate:  
C0G/NP0 (1B) Zero  
X7R (2R1) typically less than 2ꢀ per time decade  
Au over Ni termination  
Sample kits available  
46  
Our Other Products  
Broadband Blocking Capacitors  
EMI Filters  
Feedthrough EMI Filters  
Gain Equalizers  
Hi-Rel Products  
High Capacitance Value Chips  
High Temperature Capacitors  
HiT Capacitors  
Opti-Cap Capacitors  
Planar Arrays  
Powder Dividers  
Pulse Capacitors  
Pulse Power Capacitors  
Radial Leaded Capacitors  
Safety Certified Capacitors  
Single Layer Capacitors  
Solder in EMI Filters  
Speciality Products  
StackiCap™ Capacitors  
Thin Film Products  
Ultra-Low ESR Capacitors  
X2Y 3-Terminal EMI Chips  
43  
Scan here  
to follow us on WeChat  
Asian Sales Office  
O: +86 512 62588258  
F: +86 512 62589258  
KPD-Asia-sales@knowles.com  
European Sales Office  
O: +44 1603 723300  
F: +44 1603 723301  
KPD-Europe-sales@knowles.com  
North American Sales Office  
O: +1 661 295 5920  
F: +1 661 295 5928  
O: +1 315 655 8710  
F: +1 315 655 0445  
KPD-NA-sales@knowles.com  
080221 / R12  
©2021 Knowles Capacitors. All Rights Reserved.  

相关型号:

1210J5000102FCR

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102FCT

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102FFR

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102FFT

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102GAT

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102GCR

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102GCT

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102GFT

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102JAR

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102JCR

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102JCT

CAP CER 1000PF 500V C0G/NP0 1210
KNOWLES

1210J5000102JDR

CAP CER 1000PF 500V X7R 1210
KNOWLES