MC145554DW [LANSDALE]

PCM Codec-Filter; PCM编码解码滤波器
MC145554DW
型号: MC145554DW
厂家: LANSDALE SEMICONDUCTOR INC.    LANSDALE SEMICONDUCTOR INC.
描述:

PCM Codec-Filter
PCM编码解码滤波器

电信集成电路 光电二极管 PC
文件: 总18页 (文件大小:1225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ML145554 ML145564  
ML145557 ML145567  
PCM Codec–Filter  
Legacy Device: Motorola MC145554, MC145557, MC145564, MC145567  
The ML145554, ML145557, ML145564, and ML145567 are all per channel  
PCM Codec–Filters. These devices perform the voice digitization and recon-  
struction as well as the band limiting and smoothing required for PCM sys-  
tems. They are designed to operate in both synchronous and asynchronous  
applications and contain an on–chip precision voltage reference. The  
ML145554 (Mu–Law) and ML145557 (A–Law) are general purpose devices  
that are offered in 16–pin packages. The ML145564 (Mu–Law) and  
ML145567 (A–Law), offered in 20–pin packages, add the capability of analog  
loopback and push–pull power amplifiers with adjustable gain.  
These devices have an input operational amplifier whose output is the input  
to the encoder section. The encoder section immediately low–pass filters the  
analog signal with an active R–C filter to eliminate very–high–frequency noise  
from being modulated down to the pass band by the switched capacitor filter.  
From the active R–C filter, the analog signal is converted to a differential sig-  
nal. From this point, all analog signal processing is done differentially. This  
allows processing of an analog signal that is twice the amplitude allowed by a  
single–ended design, which reduces the significance of noise to both the invert-  
ed and non–inverted signal paths. Another advantage of this differential design  
is that noise injected via the power supplies is a common–mode signal that is  
cancelled when the inverted and non–inverted signals are recombined. This  
dramatically improves the power supply rejection ratio.  
After the differential converter, a differential switched capacitor filter band-  
passes the analog signal from 200 Hz to 3400 Hz before the signal is digitized-  
by the differential compressing A/D converter.  
The decoder accepts PCM data and expands it using a differential D/A con-  
verter. The output of the D/A is low–pass filtered at 3400 Hz and sinX/X com-  
pensated by a differential switched capacitor filter. The signal is then filtered  
by an active R–C filter to eliminate the out–of–band energy of the switched  
capacitor filter.  
These PCM Codec–Filters accept both long–frame and short–frame industry  
standard clock formats. They also maintain compatibility with Motorolas fami-  
ly of TSACs and MC3419/MC34120 SLIC products.  
The ML145554/57/64/67 family of PCM Codec–Filters utilizes CMOS due  
to its reliable low–power performance and proven capability for complex  
analog/digital VLSI functions.  
P DIP 16 = EP  
PLASTIC DIP  
CASE 648  
16  
ML145554/57  
1
SOG 16 = -5P  
SOG PACKAGE  
CASE 751G  
16  
1
ML145554/57  
P DIP 20 = RP  
PLASTIC DIP  
CASE 738  
20  
1
ML145564/67  
SOG 20 = -6P  
SOG PACKAGE  
CASE 751D  
20  
1
ML145564/67  
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
MOTOROLA  
LANSDALE  
P DIP 16  
SO 16W  
P DIP 16  
SO 16W  
P DIP 20  
SO 20W  
P DIP 20  
SO 20W  
MC145554P  
ML145554EP  
MC145554DW ML145554-5P  
MC145557P  
MC145557DW ML145557-5P  
MC145564P ML145564RP  
MC145564DW ML145564-6P  
MC145567P ML145567RP  
MC145567DW ML145567-6P  
ML145557EP  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
FEATURES  
ML145554/57(16–Pin Package)  
• Fully Differential Analog Circuit Design for Lowest Noise  
• Performance Specified for Extended Temperature Range of – 40 to + 85°C  
• Transmit Band–Pass and Receive Low–Pass Filters On–Chip  
• Active R–C Pre–Filtering and Post–Filtering  
• Mu–Law Companding ML145554  
• A–Law Companding ML145557  
• On–Chip Precision Voltage Reference (2.5 V)  
Typical Power Dissipation of 40 mW, Power Down of 1.0 mW at 5 V  
ML145564/67(20–Pin Package) — All of the Features of the ML145554/57 Plus:  
• Mu–Law Companding ML145564  
• A–Law Companding ML145567  
• Push–Pull Power Drivers with External Gain Adjust  
• Analog Loopback  
Page 1 of 18  
www.lansdale.com  
Issue A  
ML145554, ML145557, ML145564, ML145567  
LANSDALE Semiconductor, Inc.  
PIN ASSIGNMENTS  
ML145554, ML145557  
ML145564, ML145567  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VF I +  
X
VPO+  
GNDA  
VPO –  
VPI  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
BB  
BB  
GNDA  
VF I –  
X
VF I +  
X
2
VF  
O
VF I –  
X
GS  
X
3
R
4
GS  
X
V
TS  
X
CC  
VF  
O
5
ANLB  
FS  
FS  
X
R
R
R
V
6
TS  
X
D
D
X
CC  
FS  
D
7
FS  
X
BCLK / CLKSEL  
R
BCLK  
R
R
X
MCLK / PDN  
R
8
D
X
MCLK  
X
BCLK /CLKSEL  
9
BCLK  
X
R
MCLK /PDN  
10  
MCLK  
X
R
FUNCTIONAL BLOCK DIAGRAM  
MCLK  
PDN  
/
BCLK /  
R
CLKSEL  
R
GS  
ANLB*  
V
GNDA  
V
FS  
FS  
MCLK  
BCLK  
X
X
CC  
BB  
X
R
X
INTERNAL SEQUENCING  
AND CONTROL  
+
TS  
X
VF I–  
X
RC ACTIVE  
LOW–PASS  
FILTER  
5–POLE SC  
LOW–PASS  
FILTER  
3–POLE  
HIGH–PASS  
AND S/H  
VF I+  
X
COMP  
TRANSMIT  
SHIFT  
REG  
SAR  
REG  
VPO+  
–1  
D
X
4
8
BAND–GAP  
VOLTAGE  
REF  
*
RDAC  
CDAC  
+
VPO–  
4
MUX  
*
RECEIVE  
SHIFT  
REG  
VPI*  
RECEIVE  
LATCH  
8
D
R
RC ACTIVE  
LOW–PASS  
FILTER  
5–POLE SC  
LOW–PASS  
FILTER  
S/H  
VF  
O
R
* ML145564 and ML145567 only.  
Page 2 of 18  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145554, ML145557, ML145564, ML145567  
DEVICE DESCRIPTION  
PIN DESCRIPTION  
A codec–filter is used for digitizing and reconstructing the-  
human voice. These devices were developed primarily for the  
telephone network to facilitate voice switching and transmis-  
sion. Once the voice is digitized, it may be switched by digital  
switching methods or transmitted long distance (T1,  
microwave, satellites, etc.) without degradation. The name  
codec is an acronym from “COder” (for the A/D used to digi-  
tize voice) and “DECoder” (for the D/A used for reconstruct-  
ing voice). A codec is a single device that does both the A/D  
and D/A conversions.  
DIGITAL  
FS  
R
Receive Frame Sync  
This is an 8 kHz enable that must be synchronous with  
BCLK . Following a rising FS edge, a serial PCM word at  
R
R
D is clocked by BCLK into the receive data register. FSR  
R
R
also initiates a decode on the previous PCM word. In the ab-  
sence of FS , the length of the FS pulse is used to deter-  
X
R
mine whether the I/O conforms to the Short Frame Sync or  
Long Frame Sync convention.  
To digitize intelligible voice requires a signal–to–distortion  
ratio of about 30 dB over a dynamic range of about 40 dB.  
This can be accomplished with a linear 13–bit A/D and D/A,  
but will far exceed the required signal–to–distortion ratio at  
amplitudes greater than 40 dB below the peak amplitude. This  
excess performance is at the expense of data per sample.  
Methods of data reduction are implemented by compressing  
the 13–bit linear scheme to companded 8–bit schemes. There  
are two companding schemes used: Mu–255 Law specifically  
in North America, and A–Law specifically in Europe. These  
companding schemes are accepted world wide. These com-  
panding schemes follow a segmented or “piecewise–linear”  
curve formatted as sign bit, three chord bits, and four step bits.  
For a given chord, all sixteen of the steps have the same volt-  
age weighting. As the voltage of the analog input increases, the  
four step bits increment and carry to the three chord bits which  
increment. When the chord bits increment, the step bits double  
their voltage weighting. This results in an effective resolution  
of six bits (sign + chord + four step bits) across a 42 dB  
dynamic range (seven chords above zero, by 6 dB per chord).  
Tables 3 and 4 show the linear quantization levels to PCM  
words for the two companding schemes.  
D
R
Receive Digital Data Input  
BCLK /CLKSEL  
R
Receive Data Clock and Master Clock Frequency Selector  
If this input is a clock, it must be between 128 kHz and  
4.096 MHz, and synchronous with FS . In synchronous appli-  
R
cations this pin may be held at a constant level; then BCLK  
X
is used as the data clock for both the transmit and receive  
sides, and this pin selects the assumed frequency of the master  
clock (see Table 1 in Functional Description).  
MCLK /PDN  
Receive Master Clock and Power–Down Control  
R
Because of the shared DAC architecture used on these  
devices, only one master clock is needed. Whenever FS is  
clocking, MCLK is used to derive all internal clocks, and the  
MCLK /PDN pin merely serves as a power–down control. If  
MCLK /PDN pin is held low or is clocked (and at least one of  
X
X
R
R
the frame syncs is present), the part is powered up. If this pin  
In a sampling environment, Nyquist theory says that to prop-  
erly sample a continuous signal, it must be sampled at a fre-  
quency higher than twice the signals highest frequency com-  
ponent. Voice contains spectral energy above 3 kHz, but its  
absence is not detrimental to intelligibility. To reduce the digi-  
tal data rate, which is proportional to the sampling rate, a sam-  
ple rate of 8 kHz was adopted, consistent with a bandwidth of  
3 kHz. This sampling requires a low–pass filter to limit the  
high frequency energy above 3 kHz from distorting the  
in–band signal. The telephone line is also subject to 50/60 Hz  
power line coupling, which must be attenuated from the signal  
by a high–pass filter before the A/D converter.  
is held high, the part is powered down. If FS is absent but  
FSR is still clocking, the device goes into receive half–channel  
X
mode, and MCLK (if clocking) generates the internal clocks.  
R
MCLK  
X
Transmit Master Clock  
This clock is used to derive the internal sequencing clocks; it  
must be 1.536 MHz, 1.544 MHz, or 2.048 MHz.  
BCLK  
X
Transmit Data Clock  
The D/A process reconstructs a staircase version of the  
desired in–band signal, which has spectral images of the  
in–band signal modulated about the sample frequency and its  
harmonics. These spectral images, called aliasing components,  
need to be attenuated to obtain the desired signal. The  
low–pass filter used to attenuate these aliasing components is  
typically called a reconstruction or smoothing filter.  
BCLK may be any frequency between 128 kHz and 4.096  
X
MHz, but it should be synchronous with MCLK .  
X
D
X
Transmit Digital Data Output  
This output is controlled by FS and BCLK to output the  
X
X
PCM data word; otherwise this pin is in a high–impedance state.  
The ML145554/57/64/67 PCM Codec–Filters have the  
codec, both presampling and reconstruction filters, and a pre-  
cision voltage reference on–chip, and require no external com-  
ponents.  
FS  
X
Transmit Frame Sync  
This is an 8 kHz enable that must be synchronous  
with BCLK . A rising FS edge initiates the transmission of a  
X
X
Page 3 of 18  
www.lansdale.com  
Issue A  
ML145554, ML145557, ML145564, ML145567  
LANSDALE Semiconductor, Inc.  
serial PCM word, clocked by BCLK , out of D . If the FS  
X
amplifier pair can drive 300 to 3.3 V peak.  
X
X
pulse is high for more than eight BCLK periods, the D and  
X
X
TS outputs will remain in a low–impedance state until FS is POWER SUPPLY  
X
X
brought low. The length of the FS pulse is used to determine  
X
whether the transmit and receive digital I/O conforms to the  
Short Frame Sync or to the Long Frame Sync convention.  
GNDA  
Analog Ground  
This terminal is the reference level for all signals, both ana-  
log and digital. It is 0 V.  
TSX  
Transmit Time Slot Indicator  
This is an open–drain output that goes low whenever the D  
output is in a low–impedance state (i.e., during the transmit  
time slot when the PCM word is being output) for enabling a  
PCM bus driver.  
V
X
CC  
Positive Power Supply  
V
CC  
is typically 5 V.  
V
BB  
Negative Power Supply  
ANLB  
Analog Loopback Control Input (ML145564/67 Only)  
V
BB  
is typically – 5 V.  
When held high, this pin causes the input of the transmit RC  
active filter to be disconnected from GS and connected to  
X
FUNCTIONAL DESCRIPTION  
VPO+ for analog loopback testing. This pin is held low in  
normal operation.  
ANALOG INTERFACE AND SIGNAL PATH  
ANALOG  
The transmit portion of these codec–filters includes a  
low–noise gain setting amplifier capable of driving a 600 Ω  
load. Its output is fed to a three–pole anti–aliasing pre–filter.  
This pre–filter incorporates a two–pole Butterworth active  
low–pass filter, and a single passive pole. This pre–filter is  
followed by a single ended–to–differential converter that is  
clocked at 256 kHz. All subsequent analog processing uti-  
lizes fully differential circuitry. The next section is a  
fully–differential, five–pole switched capacitor low–pass fil-  
ter with a 3.4 kHz passband. After this filter is a 3–pole  
switched–capacitor high–pass filter having a cutoff frequen-  
cy of about 200 Hz. This high–pass stage has a transmission  
zero at DC that eliminates any DC coming from the analog  
input or from accumulated operational amplifier offsets in  
the preceding filter stages. The last stage of the high–pass  
filter is an autozeroed sample and hold amplifier.  
GS  
X
Gain–Setting Transmit  
This output of the transmit gain–adjust operational amplifi-  
er is internally connected to the encoder section of the device.  
It must be used in conjunction with VFXI– and VFXI+ to set  
the transmit gain for a maximum signal amplitude of 2.5 V  
peak. This output can drive a 600 load to 2.5 V peak.  
VF I–  
X
Voice–Frequency Transmit Input (Inverting)  
This is the inverting input of the transmit gain–adjust  
operational amplifier.  
VF I+  
X
One bandgap voltage reference generator and  
Voice–Frequency Transmit Input (Non–Inverting)  
digital–to–analog converter (DAC) are shared by the transmit  
and receive sections. The autozeroed, switched–capacitor  
bandgap reference generates precise positive and negative  
reference voltages that are independent of temperature and  
power supply voltage. A binary–weighted capacitor array  
(CDAC) forms the chords of the companding structure,  
while a resistor string (RDAC) implements the linear steps  
within each chord. The encode process uses the DAC, the  
voltage reference, and a frame–by–frame autozeroed com-  
parator to implement a successive–approximation conversion  
algorithm. All of the analog circuitry involved in the data  
conversion the voltage reference, RDAC, CDAC, and com-  
parator are implemented with a differential architecture.  
The receive section includes the DAC described above,  
asample and hold amplifier, a five–pole 3400 Hz switched-  
capacitor low–pass filter with sinX/X correction, and a  
two–pole active smoothing filter to reduce the spectral com-  
ponents of the switched capacitor filter. The output of the  
smoothing filter is a power amplifier that is capable of driv-  
ing a 600 load. The ML145564 and ML145567 add a pair  
of power amplifiers that are connected in a push–pull con-  
figuration; two external resistors set the gain of both of the  
This is the non–inverting input of the transmit gain–adjust  
operational amplifier.  
VF O  
R
Voice–Frequency Receive Output  
This receive analog output is capable of driving a 600 load  
to 2.5 V peak.  
VPI  
Voltage Power Input (ML145564/67 Only)  
This is the inverting input to the first receive power ampli-  
fier. Both of the receive power amplifiers can be powered  
down by connecting this input to V  
.
BB  
VPO–  
Voltage Power Output (Inverted) (ML145564/67 Only)  
This inverted output of the receive push–pull power ampli-  
fiers can drive 300 to 3.3 V peak.  
VPO+  
Voltage Power Output (Non–Inverted) (ML145554/67 Only)  
This non–inverted output of the receive push–pull power  
Page 4 of 18  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145554, ML145557, ML145564, ML145567  
complementary outputs. The output of the second amplifier may be  
high, the sign bit appears at the D output. The next seven rising  
X
internally connected to the input of the transmit anti–aliasing filter by edges of BCLK clock out the remaining seven bits of the PCM  
X
bringing the ANLB pin high. The power amplifiers can drive unbal-  
anced 300 loads or a balanced 600 load; they may be powered  
down independent of the rest of the chip by tying the VPI pin to  
word. The D and TS outputs return to a high impedance state on  
X X  
the falling edge of the eighth bit clock or the falling edge of FS ,  
X
whichever comes later. The receive PCM word is clocked into D on  
R
V
.
the eight falling BCLK edges following an FS rising edge.  
R R  
BB  
For Short Frame Sync operation, the frame sync pulses must be  
one bit clock period long. On the first BCLK rising edge after the  
MASTER CLOCKS  
X
falling edge of BCLK has latched FS high, the D and TS out-  
X
X
X
X
Since the codec–filter design has a single DAC architecture, only  
one master clock is used. In normal operation (both frame syncs  
puts are enabled and the sign bit is presented on D . The next seven  
X
rising edges of BCLK clock out the remaining seven bits of the  
X
clocking), the MCLK is used as the master clock, regardless of  
PCM word; on the eighth BCLK falling edge, the D and TS  
X X X  
X
whether the MCLK /PDN pin is clocking or low. The same is true if outputs return to a high impedance state. On the second falling  
R
the part is in transmit half–channel mode (FS clocking, FS held  
BCLK edge following an FS rising edge, the receive sign bit is  
R R  
X
R
low). But if the codec–filter is in the receive half–channel mode, with clocked into D . The next seven BCLK falling edges clock in the  
R
R
FS clocking and FS held low, MCLK is used for the internal  
remaining seven bits of the receive PCM word.  
Table 2 shows the coding format of the transmit and receive PCM  
words.  
R
X
R
master clock if it is clocking; if MCLK is low, then MCLK is still  
R
X
used for the internal master clock. Since only one of the master  
clocks isused at any given time, they need not be synchronous.  
The master clock frequency must be 1.536 MHz, 1.544 MHz, or  
2.048 MHz. The frequency that the codec–filter expects depends  
upon whether the part is a Mu–Law or an A–Law part, and on the  
HALF–CHANNEL MODES  
In addition to the normal full–duplex operating mode, these  
state of the BCLK /CLKSEL pin.The allowable options are shown  
R
codec–filters can operate in both transmit and receive half–channel  
In Table 1. When a level (rather than a clock) is provided for  
modes. Transmit half–channel mode is entered by holding FS low.  
R
BCLK /CLKSEL, BCLK is used as the bit clock for both transmit The VF O output goes to analog ground but remains in a low imped-  
R
X
R
and receive.  
ance state (to facilitate a hybrid interface); PCM data at D is  
R
ignored. Holding FS low while clocking FSR puts these devices in  
X
the receive half–channel mode. In this state, the transmit input oper-  
ational amplifier continues to operate, but the rest of the transmit cir-  
Table 1. Master Clock Frequency Determination  
Master Clock Frequency Expected  
cuitry is disabled; the D and TS outputs remain in a high imped-  
X
X
BCLK /CLKSEL  
R
ML145554/64  
ML145557/67  
ance state. MCLK is used as the internal master clock if it is clock-  
R
ing. If MCLK is not clocking, then MCLK is used for the internal  
Clocked, 1, or Open  
1.536 MHz  
1.544 MHz  
2.048 MHz  
R
X
master clock, but in that case it should be synchronous with FS . If  
R
BCLK is not clocking, BCLK will be used for the receive data,  
R
X
0
2.048 MHz  
1.536 MHz  
1.544 MHz  
just as in the full–channel operating mode. In receive half–channel  
mode only, the length ofthe FS pulse is used to determine whether  
R
Short Frame Sync or Long Frame Sync timing is used at D .  
R
FRAME SYNCS AND DIGITAL I/O  
POWER–DOWN  
These codec–filters can accommodate both of the industry standard  
timing formats. The Long Frame Sync mode isused by Lansdales  
ML145500 family of codec–filters and the UDLT family of digital  
Holding both FS and FS low causes the part to go into the  
X
R
power–down state. Power–down occurs approximately 2 ms after the  
loop transceivers. The Short Frame Sync mode is compatible with the last frame sync pulse is received. An alternative way to put these  
IDL (Interchip Digital Link) serial format used in Motorola and devices in power–down is to hold the MCLK /PDN pin high. When  
R
Lansdales ISDN family and by other companies in their telecommu- the chip is powered down, the D , TS , and GS outputs are high  
X
X
X
nication devices. These codec–filters use the length of the transmit  
impedance, the VF O, VPO–, and VPO+ operational amplifiers are  
R
frame sync (FS ) to determine the timing format for both transmit  
X
biased with a trickle current so that their respective outputs remain  
stable at analog ground. To return the chip to the power–up state,  
and receive unless the part is operating in the receive half–channel  
mode.  
MCLK /PDN must be low or clocking and at least one of the frame  
R
In the Long Frame Sync mode, the frame sync pulses must be at  
sync pulses must be present. The D and TS outputs will remain in  
X X  
least three bit clock periods long. The D and TS outputs are  
a high–impedance state until the second FS pulse after power–up.  
X
X
X
X
enabled by the logical ANDing of FS and BCLK ; when both are  
X
Table 2. PCM Data Format  
Mu–Law (ML145554/64)  
A–Law (ML145557/67)  
Level  
+ Full Scale  
+ Zero  
Sign Bit  
Chord Bits  
0 0 0  
Step Bits  
0 0 0 0  
1 1 1 1  
1 1 1 1  
0 0 0 0  
Sign Bit  
Chord Bits  
0 1 0  
Step Bits  
1 0 1 0  
0 1 0 1  
0 1 0 1  
1 0 1 0  
1
1
0
0
1
1
0
0
1 1 1  
1 0 1  
– Zero  
1 1 1  
1 0 1  
– Full Scale  
0 0 0  
0 1 0  
Page 5 of 18  
www.lansdale.com  
Issue A  
ML145554, ML145557, ML145564, ML145567  
LANSDALE Semiconductor, Inc.  
MAXIMUM RATINGS (Voltage Referenced to GNDA)  
This device contains circuitry to protect  
Rating  
Symbol  
Value  
Unit  
against damage due to high static voltages or  
electric fields; however, it is advised that  
normal precautions be taken to avoid appli-  
cation of any voltage higher than maximum  
rated voltages to this high impedance circuit.  
For proper operation it is recommended that  
DC Supply Voltage  
V
to V  
to GNDA  
to GNDA  
– 0.5 to + 13  
– 0.3 to + 7.0  
– 7.0 to + 0.3  
V
CC  
BB  
V
V
CC  
BB  
Voltage on Any Analog Input or Output Pin  
Voltage on Any Digital Input or Output Pin  
V
V
– 0.3 to  
V
V
BB  
+ 0.3  
CC  
GNDA – 0.3 to  
+ 0.3  
V
and V  
be constrained to the range V  
in  
out SS  
(V or V  
)
V
DD  
.
in out  
Unused inputs must always be tied to an  
appropriate logic voltage level (e.g., V  
V
CC  
,
BB  
Operating Temperature Range  
Storage Temperature Range  
T
A
– 40 to + 85  
°C  
°C  
GNDA, or V ).  
CC  
T
stg  
– 85 to + 150  
POWER SUPPLY (T = – 40 to + 85°C)  
A
Characteristic  
Min  
Typ  
Max  
Unit  
DC Supply Voltage  
V
V
4.75  
– 4.75  
5.0  
– 5.0  
5.25  
– 5.25  
V
CC  
BB  
Active Power Dissipation (No Load)  
ML145554/57  
ML145564/67  
40  
45  
40  
60  
70  
60  
mW  
ML145564/67, VPI = V  
BB  
Power–Down Dissipation (No Load)  
ML145554/57  
ML145564/67  
1.0  
2.0  
1.0  
3.0  
5.0  
3.0  
mW  
ML145564/67, VPI = V  
BB  
DIGITAL LEVELS (V  
= 5 V 5%, V  
BB  
= – 5 V 5%, GNDA = 0 V, T = – 40 to + 85°C)  
CC  
A
Characteristic  
Symbol  
Min  
Max  
0.6  
Unit  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
Output High Voltage  
V
IL  
V
IH  
2.2  
V
D
or TS , I  
OL  
= 3.2 mA  
V
OL  
0.4  
V
X
X
D , I  
X
= – 3.2 mA  
= – 1.6 mA  
V
OH  
2.4  
V
OH  
OH  
I
V
– 0.5  
CC  
Input Low Current  
Input High Current  
GNDA V V  
in  
I
– 10  
– 10  
– 10  
+ 10  
+ 10  
+ 10  
µA  
µA  
µA  
CC  
CC  
CC  
IL  
GNDA V V  
in  
I
IH  
Output Current in High Impedance State  
GNDA D V  
I
OZ  
X
Page 6 of 18  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145554, ML145557, ML145564, ML145567  
ANALOG ELECTRICAL CHARACTERISTICS  
(V  
CC  
= + 5 V 5%, V  
= – 5 V 5%, VF I – Connected to GS , T = – 40 to + 85°C)  
BB  
X
X
A
Characteristic  
Min  
Typ  
0.05  
20  
Max  
0.2  
Unit  
µA  
Input Current (– 2.5 V + 2.5 V)  
in  
VF I+, VF I–  
X X  
AC Input Impedance to GNDA (1 kHz)  
Input Capacitance  
VF I+, VF I–  
10  
MΩ  
pF  
X
X
VF I+, VF I–  
10  
X
X
Input Offset Voltage of GS Op Amp  
X
VF I+, VF I–  
25  
mV  
V
X
X
Input Common Mode Voltage Range  
Input Common Mode Rejection Ratio  
VF I+, VF I–  
– 2.5  
2.5  
X
X
VF I+, VF I–  
65  
dB  
X
X
Unity Gain Bandwidth of GS Op Amp (R  
10 k)  
10 k)  
1000  
kHz  
dB  
X
load  
DC Open Loop Gain of GS Op Amp (R  
load  
75  
X
Equivalent Input Noise (C–Message) Between VF I+ and VF I– at GS  
X
20  
dBrnC0  
pF  
X
X
Output Load Capacitance for GS Op Amp  
0
100  
X
Output Voltage Range for GS  
R
R
= 10 kto GNDA  
= 600 to GNDA  
– 3.5  
– 2.8  
+ 3.5  
+ 2.8  
V
X
load  
load  
Output Current (– 2.8 V V  
+ 2.8 V)  
Output Impedance VF O (0 to 3.4 kHz)  
GS , VF O  
5.0  
0
1
mA  
out  
X
R
R
Output Load Capacitance for VF O  
500  
100  
pF  
R
VF O Output DC Offset Voltage Referenced to GNDA  
mV  
dBC  
R
Transmit Power Supply Rejection  
Positive, 0 to 100 kHz, C–Message  
Negative, 0 to 100 kHz, C–Message  
45  
45  
Receive Power Supply Rejection  
Positive, 0 to 100 kHz, C–Message  
Positive, 4 kHz to 25 kHz  
Positive, 25 kHz to 50 kHz  
Negative, 0 to 100 kHz, C–Message  
Negative, 4 kHz to 25 kHz  
50  
50  
43  
50  
45  
38  
dBC  
dB  
dB  
dBC  
dB  
dB  
Negative, 25 kHz to 50 kHz  
ML145564/67 Power Drivers  
Input Current (– 1 V VPI + 1 V)  
Input Resistance (– 1 V VPI + 1 V)  
Input Offset Voltage (VPI Connected to VPO–)  
Output Resistance, Inverted Unity Gain  
Unity Gain Bandwidth, Open Loop  
VPI  
5
0.05  
10  
0.5  
µA  
MΩ  
mV  
VPI  
VPI  
0
50  
VPO+ or VPO–  
VPO–  
1
400  
kHz  
pF  
Load Capacitance (∞ Ω ≥ R  
load  
300 )  
VPO+ or VPO– to GNDA  
1000  
Gain from VPO– to VPO+ (R  
= 1.77 Vrms, +3 dBm0)  
= 300 , VPO+ to GNDA Level at VPO–  
–1  
V/V  
load  
Maximum 0 dBm0 Level for Better than 0.1 dB Linearity Over the  
R
= 600 Ω  
3.3  
3.5  
4.0  
Vrms  
load  
R = 1200 Ω  
load  
Range – 10 dBm0 to + 3 dBm0 (For R  
and VPO–)  
between VPO+  
load  
R
= 10 kΩ  
load  
Power Supply Rejection of V  
VPO+ or VPOto GNDA  
or V  
BB  
(VPO– Connected to VPI)  
0 to 4 kHz  
4 to 50 kHz  
55  
35  
dB  
dB  
CC  
Differential Power Supply Rejection of V  
CC  
or V  
BB  
(VPO– Connected to VPI)  
VPO+ to VPO–, 0 to 50 kHz  
50  
Page 7 of 18  
www.lansdale.com  
Issue A  
ML145554, ML145557, ML145564, ML145567  
LANSDALE Semiconductor, Inc.  
ANALOG TRANSMISSION PERFORMANCE  
(V  
CC  
= + 5 V 5%, V = – 5 V 5%, GNDA = 0 V, 0 dBm0 = 1.2276 Vrms = + 4 dBm @ 600 , FS = FS = 8 kHz,  
BB X R  
BCLK = MCLK = 2.048 MHz Synchronous Operation, VF I – Connected to GS , T = – 40 to + 85°C Unless Otherwise Noted)  
X
X
X
X
A
End–to–End  
A/D  
D/A  
Characteristic  
Unit  
dB  
Min  
Max  
Min  
Max  
Min  
Max  
Absolute Gain (0 dBm0 @ 1.02 kHz, T = 25°C, V  
= 5 V, V = – 5 V)  
BB  
0.25 – 0.25 – 0.25 + 0.25  
A
CC  
Absolute Gain Variation with Temperature  
0 to 70°C  
– 40 to + 85°C  
0.03  
0.06  
0.03  
0.06  
dB  
Absolute Gain Variation with Power Supply (V  
CC  
= 5 V, 5%,  
0.02  
0.02  
dB  
dB  
V
= – 5 V, 5%)  
BB  
Gain vs Level Tone (Relative to – 10 dBm0, 1.02 kHz)  
+ 3 to – 40 dBm0 – 0.4  
– 40 to – 50 dBm0 – 0.8  
– 50 to – 55 dBm0 – 1.6  
+ 0.4  
+ 0.8  
+ 1.6  
– 0.2  
– 0.4  
– 0.8  
+ 0.2  
+ 0.4  
+ 0.8  
– 0.2  
– 0.4  
– 0.8  
+ 0.2  
+ 0.4  
+ 0.8  
Gain vs Level Pseudo Noise CCITT G.712  
(ML145557/67 A–Law Relative to – 10 dBm0)  
– 10 to – 40 dBm0  
– 40 to – 50 dBm0  
– 50 to – 55 dBm0  
– 0.25 + 0.25 – 0.25 + 0.25  
– 0.30 + 0.30 – 0.30 + 0.30  
– 0.45 + 0.45 – 0.45 + 0.45  
dB  
Total Distortion, 1.02 kHz Tone (C–Message)  
+ 3 dBm0  
0 to – 30 dBm0  
– 40 dBm0  
33  
35  
29  
24  
15  
33  
36  
30  
25  
15  
33  
36  
30  
25  
15  
dBC  
– 45 dBm0  
– 55 dBm0  
Total Distortion With Pseudo Noise CCITT G.714  
(ML145557/67 A–Law)  
– 3 dBm0  
– 6 to – 27 dBm0  
– 34 dBm0  
27.5  
35  
33.1  
28.2  
13.2  
28  
28.5  
36  
34.2  
30  
dB  
35.5  
33.5  
28.5  
13.5  
– 40 dBm0  
– 55 dBm0  
15  
Idle Channel Noise (For End–End and A/D, Note 1)  
(ML145554/64 Mu–Law, C–Message Weighted)  
(ML145557/67 A–Law, Psophometric Weighted)  
15  
70  
15  
– 70  
7
– 83  
dBrnC0  
dBm0p  
Frequency Response (Relative to 1.02 kHz @ 0 dBm0)  
15 Hz  
50 Hz  
60 Hz  
– 40  
– 30  
– 26  
– 40  
– 30  
– 26  
– 0.4  
– 0.15  
– 0.15  
– 0.15  
– 0.15  
0
0
0
0
dB  
200 Hz  
– 1.0  
300 to 3000 Hz – 0.3  
0.3  
– 0.15 + 0.15 – 0.15 + 0.15  
3300 Hz – 0.70 + 0.3 – 0.35 + 0.15 – 0.35 + 0.15  
3400 Hz – 1.6  
0
– 28  
– 60  
– 0.8  
0
– 14  
– 32  
– 0.8  
0
– 14  
– 30  
4000 Hz  
4600 Hz  
In–Band Spurious  
(1.02 kHz @ 0 dBm0, Transmit and Receive)  
300 to 3000 Hz  
48  
– 48  
– 48  
dBm0  
dB  
Out–of–Band Spurious at VF O (300 – 3400 Hz @ 0 dBm0 In)  
R
4600 to 7600 Hz  
7600 to 8400 Hz  
8400 to 100,000 Hz  
– 30  
– 40  
– 30  
– 30  
– 40  
– 30  
Idle Channel Noise Selective (8 kHz, Input = GNDA, 30 Hz Bandwidth)  
Absolute Delay (1600 Hz)  
70  
– 70  
215  
dBm0  
µs  
315  
Group Delay Referenced to 1600 Hz  
500 to 600 Hz  
600 to 800 Hz  
220  
145  
75  
40  
75  
– 40  
– 40  
– 40  
– 30  
90  
µs  
800 to 1000 Hz  
1000 to 1600 Hz  
1600 to 2600 Hz  
2600 to 2800 Hz  
2800 to 3000 Hz  
105  
155  
125  
175  
Crosstalk of 1020 Hz @ 0 dBm0 from A/D or D/A (Note 2)  
– 75  
– 41  
– 75  
– 41  
dB  
dB  
Intermodulation Distortion of Two Frequencies of Amplitudes  
– 4 to – 21 dBm0 from the Range 300 to 3400 Hz  
– 41  
NOTES:  
1. Extrapolated from a 1020 Hz @ – 50 dBm0 distortion measurement to correct for encoder enhancement.  
2. Selectively measured while the A/D is stimulated with 2667 Hz @ – 50 dBm0.  
Page 8 of 18  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145554, ML145557, ML145564, ML145567  
DIGITAL SWITCHING CHARACTERISTICS  
(V  
CC  
= 5 V 5%, V  
= – 5 V 5%, GNDA = 0 V, All Signals Referenced to GNDA; T = – 40 to + 85°C, C = 150 pF Unless Otherwise  
BB  
A
load  
Noted)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Master Clock Frequency  
MCLK or MCLK  
f
M
1.536  
1.544  
2.048  
MHz  
X
R
Minimum Pulse Width High or Low  
Minimum Pulse Width High or Low  
Minimum Pulse WIdth Low  
MCLK or MCLK  
t
w(M)  
100  
50  
50  
60  
50  
70  
60  
ns  
ns  
ns  
ns  
ns  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
X
R
R
R
BCLK or BCLK  
t
w(B)  
X
FS or FS  
t
X
w(FL)  
Rise Time for all Digital Signals  
Fall Time for all Digital Signals  
Bit Clock Data Rate  
t
r
50  
t
f
50  
BCLK or BCLK  
f
B
128  
50  
20  
20  
80  
20  
20  
50  
20  
0
4096  
X
R
Setup Time from BCLK Low to MCLK High  
t
su(BRM)  
X
R
Setup Time from MCLK High to BCLK Low  
t
su(MFB)  
X
X
Hold Time from BCLK (BCLK ) Low to FS (FS ) High  
t
h(BF)  
X
R
X
R
Setup Time for FS (FS ) High to BCLK (BCLK ) Low for Long Frame  
t
su(FB)  
X
R
X
R
Delay Time from BCLK High to D Data Valid  
t
140  
140  
140  
140  
X
X
d(BD)  
Delay Time from BCLK High to TS Low  
t
X
X
d(BTS)  
Delay Time from the 8th BCLK Low of FS Low to D Output Disabled  
t
d(ZC)  
X
X
X
Delay Time to Valid Data from FS or BCLK , Whichever is Later  
t
X
X
d(ZF)  
su(DB)  
Setup Time from D Valid to BCLK Low  
t
R
X
Hold Time from BCLK Low to D Invalid  
t
h(BD)  
50  
50  
50  
50  
R
R
Setup Time from FS (FS ) High to BCLK (BCLK ) Low in Short Frame  
t
su(F)  
X
R
X
R
Hold Time from BCLK (BCLK ) Low to FS (FS ) Low in Short Frame  
t
h(F)  
X
R
X
R
Hold Time from 2nd Period of BCLK (BCLK ) Low to FS (FS ) Low in  
Long Frame  
t
h(BFI)  
X
R
X
R
Page 9 of 18  
www.lansdale.com  
Issue A  
ML145554, ML145557, ML145564, ML145567  
LANSDALE Semiconductor, Inc.  
TS  
X
t
t
t
t
d(ZC)  
d(BTS)  
w(M)  
w(M)  
MCLK  
X
R
MCLK  
t
t
su(MFB)  
w(B)  
t
t
w(B)  
su(BRM)  
BCLK  
1
2
3
4
5
6
7
8
9
X
t
h(BF)  
t
h(F)  
t
su(F)  
FS  
X
t
t
d(BD)  
d(ZC)  
MSB  
CH1  
CH2  
CH3  
ST1  
ST2  
ST3  
LSB  
D
X
BCLK  
FS  
1
2
3
4
5
6
7
8
9
R
t
h(BF)  
t
h(F)  
t
su(F)  
R
t
h(BD)  
t
t
h(BD)  
su(DB)  
D
MSB  
CH1  
CH2  
CH3  
ST1  
ST2  
ST3  
LSB  
R
Figure 1. Short Frame Sync Timing  
Page 10 of 18  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145554, ML145557, ML145564, ML145567  
MCLK  
X
R
MCLK  
t
su(MFB)  
t
su(BRM)  
BCLK  
2
3
4
8
9
X
X
1
5
6
7
t
su(FB)  
t
h(BFI)  
t
h(BF)  
FS  
t
d(ZF)  
t
t
d(BD)  
d(ZC)  
t
t
d(ZC)  
d(ZF)  
D
MSB  
CH1  
CH2  
CH3  
ST1  
ST3  
LSB  
X
ST2  
1
2
3
4
5
6
7
8
9
BCLK  
R
t
t
h(BFI)  
h(BF)  
t
su(FB)  
FS  
D
R
t
h(BD)  
t
t
h(BD)  
su(DB)  
MSB  
CH1  
CH2  
CH3  
ST1  
ST2  
ST3  
LSB  
R
Figure 2. Long Frame Sync Timing  
Page 11 of 18  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145554, ML145557, ML145564, ML145567  
1
2
3
4
5
6
7
8
16  
– 5 V  
V
VF I +  
X
BB  
GNDA  
15  
14  
13  
12  
11  
10  
9
ANALOG IN  
VF I –  
X
ANALOG OUT  
+ 5 V  
GS  
VF  
V
O
X
R
TX TIME SLOT  
TS  
X
FS  
X
CC  
ML145554/57  
FS  
R
D
D
BCLK  
MCLK  
R
X
X
X
BCLK / CLKSEL  
R
MCLK / PDN  
R
8 kHz  
1
16  
MODE  
DDO  
V
+ 5 V  
DD  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
ADPCM OUT  
EDO  
EOE  
DDE  
1.544 MHz/  
2.048 MHz  
DDC  
DDI  
DIE  
EDC  
EDI  
EIE  
MC145532  
ADCPM IN  
POWER–DOWN  
SPC  
ADP  
20.48 MHz  
PD/RESET  
V
SS  
Figure 3. ADPCM Transcoder Application  
Page 12 of 18  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145554, ML145557, ML145564, ML145567  
MC33120  
15  
12  
13  
14  
20  
19  
+ 5 V  
V
V
DD  
CC  
EP  
PDI/ST2  
ST1  
HOOK STATUS/  
FAULT INDICATION  
+
18  
BP  
5 µF, 16 V  
MJD253  
1N4002  
V
DG  
1N4002  
– 48 V  
9
+ 5 V  
V
AG  
100  
1/4 W  
ML145554/7  
0.01  
µF  
1 k  
9.1 k  
9.1 k  
1 k  
4
17  
50 V  
V
CP  
CC  
48.5 k  
10  
8
3
12  
16  
5
8 kHz SYNC  
V
RXI  
FS  
FS  
FRO  
X
TIP  
RING  
TSI  
RSI  
CN  
5
R
4.7 k  
20.6 k  
47.4 k  
10  
7
BCLK  
DATA CLOCK  
ML145554 =  
1.544 MHZ  
ML145557 =  
2.048 MHz  
X
R
R
4
RFO  
BCLK  
MCLK  
8
100  
1/4 W  
1 µF  
9
1
µF  
MCLK  
D
X
X
11  
7
15  
14  
11  
6
TXO  
CF  
VF I–  
X
0.01  
µF  
TO PCM HWY  
10 k  
3
GS  
X
D
50 V  
R
MJD243  
BN  
EN  
49.0 k  
16  
2
13  
1
300  
VF I+  
X
TS  
X
1N4002  
1N4002  
6
2
1
1.0 µF, 50 V  
VQB  
GNDA  
V
+
BB  
– 48 V  
V
20  
EE  
10 µF, 50 V  
– 5 V  
+
NOTE: Six resistors and two capacitors on the two–wire side can be 5% tolerance.  
Figure 4. A Complete Single Party Channel Unit Using ML145554/57 PCM Codec–Filter and MC33120 SLIC  
Page 13 of 18  
www.lansdale.com  
Issue A  
ML145554, ML145557, ML145564, ML145567  
LANSDALE Semiconductor, Inc.  
“S” TRANSCEIVER  
LAP–D/LAP–B CONTROLLER  
+ 5 V  
MC145474P  
+ 5 V + 5 V  
ML145488  
17  
2
4
52, 2, 9  
V
V
D0 10  
D1 11  
D2 12  
D3 13  
D4 14  
D5 15  
D6 16  
D7 17  
D8 18  
D9 19  
D10 20  
D11 22  
D12 23  
D13 24  
D14 25  
D15 26  
TE/NT  
DD  
DD  
33 k  
+ 5 V  
ISET  
8
9
60, 44  
59, 45  
S INTERFACE  
SYNC  
CLK  
RX  
SYNC 0, 1  
CLK 0, 1  
TX 0, 1  
7
7
7
21  
20  
TX+  
TX–  
10  
11  
7
55, 49  
56, 48  
47  
+ 5 V  
RX 0, 1  
DREQ 1  
TX  
DREQ  
7
5
46  
+ 5 V  
DGNT 1  
DGRT  
50 SCPE 1  
15  
14  
13  
12  
53  
1 kΩ  
1 kΩ  
2
SCPE 0  
SEL  
CLK  
RX  
RX+  
RX–  
57  
54  
SCP CLK  
SCP TXD  
+ 5 V  
MPU  
BUS  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
8
7
6
5
4
3
1
58  
1 kΩ  
1 kΩ  
3
6
SCP RXD  
TX  
IRQ  
RESET  
EXTAL  
V
SS  
XTAL  
19  
15.36 MHz  
A8 68  
A9 67  
30 pF  
+ 5 V  
30 pF  
A10 66  
A11 65  
A12 64  
A13 63  
A14 62  
A15 61  
OWN0 42  
OWN1 43  
MCLK 27  
CS 28  
HANDSET  
RJ–1  
ML145554  
500  
3
4
1
+ RCVR  
V
VF  
O
CC  
R
+ 5 V  
(WHITE)  
12, 5  
FS , FS  
X
R
10, 7, 8, 9  
500  
MCLK, BCLK  
10 kΩ  
15  
14  
16  
11  
+ MIC (RED)  
– RCVR  
VF I–  
X
D
X
6
13  
1
R/W 29  
AS 30  
0.1  
µF  
GS  
D
R
X
(WHITE)  
VF I+  
TS  
– MIC (BLK)  
X
X
LDS 31  
UDS 32  
RST 33  
IACK 34  
IRQ 36  
DTACK 37  
BERR 38  
BR 39  
2
V
GNDA  
BB  
CODEC–FILTER  
– 5 V  
51, 36, 21  
V
SS  
BG 40  
BGACK 41  
Figure 5. ISDN Voice/Data Terminal  
Page 14 of 18  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145554, ML145557, ML145564, ML145567  
Table 3. Mu–Law Encode–Decode Characteristics  
Normalized  
Digital Code  
Encode  
Decision  
Levels  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
8159  
7903  
4319  
4063  
2143  
2015  
1055  
991  
511  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
8031  
4191  
2079  
1023  
495  
231  
99  
8
16  
256  
7
6
5
4
3
2
1
16  
16  
16  
16  
16  
16  
128  
64  
32  
16  
8
479  
239  
223  
103  
95  
4
35  
33  
31  
15  
1
2
1
3
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes inversion of all magnitude bits.  
Page 15 of 18  
www.lansdale.com  
Issue A  
ML145554, ML145557, ML145564, ML145567  
LANSDALE Semiconductor, Inc.  
Table 4. A–Law Encode–Decode Characteristics  
Normalized  
Encode  
Decision  
Levels  
Digital Code  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
4096  
3968  
2176  
2048  
1088  
1024  
544  
512  
272  
256  
136  
128  
68  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
4032  
2112  
1056  
528  
264  
132  
66  
7
16  
128  
6
5
4
3
2
16  
16  
16  
16  
16  
32  
64  
32  
16  
8
4
64  
1
2
2
1
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes alternate bit inversion, as specified by CCITT.  
Page 16 of 18  
www.lansdale.com  
Issue A  
ML145554, ML145557, ML145564, ML145567  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
P DIP 16 = EP  
(ML145554EP, ML145557EP)  
PLASTIC DIP  
CASE 648–08  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
8
B
S
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
SEATING  
PLANE  
–T–  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T
A
SOG 16 = -5P  
(ML145554-5P, ML145557-5P)  
SOG PACKAGE  
CASE 751G–02  
–A–  
16  
9
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
–B–  
8X P  
M
M
0.010 (0.25)  
B
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
1
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
J
16X D  
M
S
S
0.010 (0.25)  
T
A
B
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45  
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
M
14X G  
K
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
Page 17 of 18  
www.lansdale.com  
Issue A  
ML145554, ML145557, ML145564, ML145567  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
P DIP 20 = RP  
(ML145564RP, ML145567RP)  
PLASTIC DIP  
CASE 738–03  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
B
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
C
L
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
F
G
J
K
L
M
N
MIN  
MAX  
1.070  
0.260  
0.180  
0.022  
MIN  
25.66  
6.10  
3.81  
0.39  
1.27 BSC  
1.27  
2.54 BSC  
0.21  
2.80  
MAX  
27.17  
6.60  
4.57  
0.55  
1.010  
0.240  
0.150  
0.015  
-T-  
SEATING  
PLANE  
K
M
0.050 BSC  
0.050  
0.100 BSC  
0.008  
0.110  
0.070  
1.77  
E
N
0.015  
0.140  
0.38  
3.55  
G
F
J 20 PL  
0.300 BSC  
15  
0.040  
7.62 BSC  
15  
0.51 1.01  
D 20 PL  
M
M
0.25 (0.010)  
T
B
0°  
°
0°  
°
0.020  
M
M
0.25 (0.010)  
T
A
SOG 20 = -6P  
(ML145564-6P, ML145567-6P)  
SOG PACKAGE  
CASE 751D–04  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
20  
11  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
10X P  
–B–  
M
M
0.010 (0.25)  
B
1
10  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
MILLIMETERS  
INCHES  
20X D  
DIM  
A
B
C
D
MIN  
12.65  
7.40  
2.35  
0.35  
0.50  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
0.499  
0.292  
0.093  
0.014  
0.020  
M
S
S
0.010 (0.25)  
T
A
B
F
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
R X 45  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
PLANE  
–T–  
M
18X G  
K
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliabil-  
ity, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which  
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the cus-  
tomer’s technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.  
Page 18 of 18  
www.lansdale.com  
Issue A  

相关型号:

MC145554DWR2

MU-LAW, PCM CODEC, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC145554L

暂无描述
MOTOROLA

MC145554P

PCM Codec-Filter
LANSDALE

MC145557

PCM Codec-Filter
MOTOROLA

MC145557DW

PCM Codec-Filter
LANSDALE

MC145557DW

PCM Codec, A-Law, 1-Func, CMOS, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC145557DWR2

PCM Codec, A-Law, 1-Func, CMOS, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC145557L

A-LAW, PCM CODEC, CDIP16, CERAMIC, DIP-16
MOTOROLA

MC145557P

PCM Codec-Filter
MOTOROLA

MC145557P

PCM Codec-Filter
LANSDALE

MC14555B

Dual Binary to 1-of-4 Decoder/Demultiplexer
ONSEMI

MC14555B

Dual Binary to 1-of-4 Decoder/Demultiplexer
MOTOROLA