ML13145-9P [LANSDALE]

UHF Wideband Receiver Subsystem (LNA, Mixer, VCO, Prescaler, IF Subsystem, Coiless Detector); 超高频宽带接收器子系统( LNA ,混频器, VCO ,分频器,中频子系统, Coiless探测器)
ML13145-9P
型号: ML13145-9P
厂家: LANSDALE SEMICONDUCTOR INC.    LANSDALE SEMICONDUCTOR INC.
描述:

UHF Wideband Receiver Subsystem (LNA, Mixer, VCO, Prescaler, IF Subsystem, Coiless Detector)
超高频宽带接收器子系统( LNA ,混频器, VCO ,分频器,中频子系统, Coiless探测器)

文件: 总17页 (文件大小:2485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ML13145  
UHF Wideband Receiver Subsystem  
(LNA, Mixer, VCO, Prescaler, IF  
Subsystem, Coiless Detector)  
LOW POWER INTEGRATED RECEIVER FOR ISM BAND APPLICATIONS  
SEMICONDUCTOR TECHNICAL DATA  
Legacy Device: Motorola MC13145  
The ML13145 is a dual conversion integrated RF receiver intended for ISM  
band applications. It features a Low Noise Amplifier (LNA), two 50 linear  
Mixers with linearity control, Voltage Controlled Oscillator (VCO), second  
LO amplifier, divide by 64/65 dual modulus Prescalar, split IF Amplifier and  
Limiter, RSSI output, Coilless FM/FSK Demodulator and power down con-  
trol. Together with the transmit chip (ML13146) and the baseband chip  
(MC33410 or MC33411A/B), a complete 900 MHz cordless phone system  
can be implemented. This device may be used in applications up to 1.8 GHz,  
1
48  
LQFP 48 = -9P  
PLASTIC PACKAGE  
CASE 932  
and operating temperature T = –20° to +70°C.  
A
CROSS REFERENCE/ORDERING INFORMATION  
• Low (<1.8 dB @ 900 MHz) Noise Figure LNA with 14 dB Gain  
• Externally Programmable Mixer linearity: IIP3 = 10(nom.) to 17 dBm  
(Mixer1); IIP3 = 10 (nom.) to 17 dBm (Mixer2)  
PACKAGE  
MOTOROLA  
LANSDALE  
LQFP 48  
MC13145FTA  
ML13145-9P  
• 50 Mixer Input Impedance and Open Collector Output (Mixer 1 and  
Mixer 2); 50 Second LO (LO2) Input Impedance  
• Low Power 64/65 Dual Modulus Prescalar (ML12054A type)  
• Split IF for Improved Filtering and Extended RSSI Range  
• Internal 330 Terminations for 10.7 MHz Filters  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
• Linear Coilless FM/FSK Demodulator with Externally Programmable Bandwidth,  
Center Frequency and Audio level  
•2.7 to 6.5 V Operation, Low Current Drain (<27 mA, Typ @ 3.6 V) with Power Down  
Mode (<10 µA, Typ)  
•2.4 GHz RF, 1.0 GHz IF1 and 50 MHz IF2 Bandwidth  
PIN CONNECTIONS AND FUNCTIONAL BLOCK DIAGRAM  
12 11 10  
9
8
7
6
5
4
3
2
1
48 V  
V
13  
EE  
EE  
Demod  
47 BWadj  
LNA In 14  
46 Lim Dec2  
45 Lim Dec1  
44 Lim In  
V
V
15  
16  
EE  
EE  
LNA  
/64, 65  
Lim  
RF  
LNA Out 17  
18  
43 V  
CC  
V
EE  
42 V  
CC  
Mxr In 19  
1
41 IF Out  
40 IF Dec2  
39 IF Dec1  
38 IF In  
Lin Adj1 20  
Enable 21  
oscC 22  
oscE 23  
IF  
LO  
37 V  
EE  
oscB 24  
IF2  
25 26 27 28 29 30 31 32 33 34 35 36  
ESD Sensitive —  
Handle with Care  
This device contains  
626 active transistors.  
IF1  
Page 1 of 17  
www.lansdale.com  
Issue 0  
ML13145  
LANSDALE Semiconductor, Inc.  
MAXIMUM RATINGS  
Rating  
Power Supply Voltage  
Symbol  
(max)  
Value  
7.0  
Unit  
Vdc  
°C  
V
CC  
T (max)  
Junction Temperature  
150  
J
Storage Temperature Range  
Maximum Input Signal  
T
65 to 150  
5.0  
°C  
stg  
P
dBm  
in  
NOTES: 1. Meets Human Body Model (HBM) 250 V and Machine Model (MM) 25 V.  
RECOMMENDED OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply Voltage (T = 25°C)  
V
V
2.7  
0
0
6.5  
0
Vdc  
A
CC  
EE  
Input Frequency (LNA In, Mxr In)  
1
f
100  
20  
1800  
70  
MHz  
°C  
in  
Ambient Temperature Range  
T
A
Input Signal Level (with minor performance degradation)  
P
–10  
dBm  
in  
RECEIVER DC ELECTRICAL CHARACTERISTICS (T = 25°C; V  
= 3.6 Vdc; No Input Signal,  
CC  
A
unless otherwise noted)  
Characteristics  
Symbol  
Min  
24  
Typ  
27  
Max  
34  
Unit  
mA  
A
Total Supply Current (Enable = V  
CC)  
I
total  
total  
Power Down Current (Enable = V  
EE)  
I
10  
50  
RECEIVER AC ELECTRICAL CHARACTERISTICS (T = 25°C; V  
= 3.6 Vdc; RF In = 1.0 GHz; 1st LO Freq = 1070.7 MHz; 2nd  
A
CC  
= 1.0 kHz; f = 40 kHz; IF filter bandwidth = 280 kHz, unless otherwise noted. See Figure 1 Test Circuit)  
dev  
LO Freq = 60 MHz; f  
mod  
Input  
Pin  
Measure  
Pin  
Characteristics  
Symbol  
MIn  
12  
Typ  
20  
Max  
Unit  
dB  
SINAD @ –110 dBm LNA Input  
LNA In  
LNA In  
Det Out  
Det Out  
SINAD  
12 dB SINAD Sensitivity (Apps Circuit with  
C–message filter at DetOut)  
SINAD  
–115  
dBm  
12dB  
30 dB SINAD Sensitivity (No IF filter distortion within  
40 kHz)  
LNA In  
LNA In  
Det Out  
Det Out  
SINAD  
–100  
5.0  
dBm  
dB  
30dB  
SINAD Variation with IF Offset of 40 kHz (No IF filter  
distortion within 40 kHz)  
Noise Figure: LNA, 1st Mixer & 2nd Mixer  
Power Gain: LNA, 1st Mixer & 2nd Mixer  
RSSI Dynamic Range  
LNA In  
LNA In  
IF In  
IF Out  
IF Out  
RSSI  
RSSI  
NF  
G
15  
3.5  
19  
80  
5.0  
25  
dB  
dB  
dB  
µA  
RSSI Current  
IF In  
–10 dBm @ IF Input  
–20 dBm @ IF Input  
–30 dBm @ IF Input  
–40 dBm @ IF Input  
–50 dBm @ IF Input  
–60 dBm @ IF Input  
–70 dBm @ IF Input  
–80 dBm @ IF Input  
–90 dBm @ IF Input  
35  
15  
40  
35  
30  
25  
20  
15  
10  
5.0  
1.0  
55  
37  
7.0  
Input 1.0 dB Compression Point(Measured at IF  
output)  
P
–18  
–8.0  
1.0  
dBm  
dBm  
in1dB  
Input 3rd Order Intercept Point (Measured at IF  
output)  
IIP3  
Demodulator Output Swing (50 k || 56 pF Load)  
IF In  
Det Out  
V
0.8  
1.2  
V
pp  
out  
Page 2 of 17  
www.lansdale.com  
Issue 0  
LANSDALE Semiconductor, Inc.  
ML13145  
RECEIVER AC ELECTRICAL CHARACTERISTICS (T = 25°C; V  
= 3.6 Vdc; RF In = 1.0 GHz; 1st LO Freq = 1070.7 MHz; 2nd  
= 1.0 kHz; f = 40 kHz; IF filter bandwidth = 280 kHz, unless otherwise noted. See Figure 1 Test Circuit)  
dev  
A
CC  
LO Freq = 60 MHz; f  
mod  
Input  
Pin  
Measure  
Pin  
Characteristics  
Symbol  
MIn  
Typ  
Max  
Unit  
Demodulator Bandwidth ( 1.0 dB bandwidth)  
Det Out  
BW  
100  
kHz  
Prescalar Output Level (10 k //8.0 pF load)  
Prescaler 64 Frequency = 16.72968 MHz  
Prescaler 65 Frequency = 16.4723 MHz  
PRSC  
V
out  
V
pp  
out  
0.4  
0.4  
0.51  
0.51  
0.6  
0.6  
MC Current Input (High)  
MC Current Input (Low)  
Input high voltage  
MC  
MC  
I
70  
100  
–100  
130  
–70  
µA  
µA  
V
ih  
I
–130  
il  
Enable  
V
V
– 0.4  
V
CC  
ih  
CC  
Input low voltage  
Input Current  
Enable  
Enable  
V
0
0.4  
50  
V
il  
I
in  
–50  
µA  
nS  
dB  
PLL Setup Time [Note 1]  
MC  
PRSC  
out  
T
10  
50  
PLL  
SNR @ –30 dBm Signal Input (<40 kHz  
deviation;with C–Message Filter)  
Total Harmonic Distortion (<40 kHz deviation;with  
C–Message Filter)  
1.0  
12  
%
Spurious Response SINAD (RF In: –50 dBm)  
dB  
Page 3 of 17  
www.lansdale.com  
Issue 0  
ML13145  
LANSDALE Semiconductor, Inc.  
Figure 1. Test Circuit  
MC  
PRSC Out  
10 k  
10 n  
7.2 p  
1.0 n  
RSSI  
2.0 k  
2.0 k  
51 k  
56 p  
51 k  
Det Out  
10 k  
100 n  
4
68 k  
2.7 k  
1.0 n  
12 11 10  
9
8
7
6
5
3
2
1
V
V
6.8 n  
LNA In  
CC CC  
100 p  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
6.8 p 1.5 p  
100 k  
1.0 n  
BWadj  
64/65  
LNA  
100 n  
1.0 n  
Lim  
1.0 n  
20  
6.8 n  
1.0 p  
V
V
CC  
CC  
1.0 M  
ML13145  
1.0 n  
1.0 n  
100 n  
1.0 n  
EN  
IF  
1.0 n  
4.7 p  
4.7 p  
3.3 nH  
V
V
CC  
CC  
47 p  
25 26 27 28 29 30 31 32 33 34 35 36  
10 n  
1.0 M  
1.0 n  
10 p  
1.0 k  
50  
RF  
LO  
12 p  
16 p  
10  
T1**  
100 n  
V
CC  
1.0 µ  
1.0 µ  
10 n  
100 n  
1.0 n  
1.0 n  
RF  
LO2  
IF In  
10  
1.0 µ  
100 n  
T2  
TC4  
*CF1 & CF2 = 280 kHz, 6.0 dB BW, 10.7 MHz Ceramic Filter  
**T1 = Toko Part # 600ENAS–A998EK  
IF Out  
Page 4 of 17  
www.lansdale.com  
Issue 0  
LANSDALE Semiconductor, Inc.  
ML13145  
General  
ly 80 dB of dynamic range with temperature compensation.  
Linearity of the RSSI is optimized by using external ceramic  
bandpass filters which have an insertion loss of 4.0 dB and  
330 source and load impedance.  
The ML13145 is a low power dual conversion wideband FM  
receiver incorporating a split IF. This device is designated for  
use as the receiver in analog and digital FM systems such as  
900 Mhz ISM Band Cordless phones and wideband data links  
with data rates up to 150kbps. It contains a 1st and 2nd mixer,  
1st and 2nd local oscillator, Received Signal Strength Indicator  
(RSSI), IF amplifier, limiting IF, a unique coilless quadrature  
detector, and a device enable function.  
IF Amplifier  
The first IF amplifier section is composed of three differen-  
tial stages with the second and third stages contributing to the  
RSSI. This section has internal DC feedback and external input  
decoupling for improved symmetry and stability. The total gain  
of the IF amplifier block is approximately 40 dB up to 40MHz.  
The fixed internal input impedance is 330 . When using  
ceramic filters requiring source and load impedances of 330,  
no external matching is necessary. Overall RSSI linearity is  
dependent on having total midband attenuation of 10 dB (4.0  
dB insertion loss plus 6.0 dB impedance matching loss) for the  
filter. The output of the IF amplifier is buffered and the imped-  
ance is 330 .  
Current Regulation/Enable  
The ML13145 is designed for battery powered portable  
applications. Supply current is typically 27 mA at 3.6 Vdc.  
Temperature compensating, voltage independent current reg-  
ulators are controlled by the Enable Pin where ”high” powers  
up and ”low” powers down the entire circuit.  
Low Noise Amplifier (LNA)  
The LNA is a cascoded common emitter amplifier configu-  
ration. Under very large RF input signals, the DC base current  
of the common emitter and cascode transistors can become  
very significant. To maintain linear operation of the LNA, ade-  
quate dc current source is needed to establish the 2Vbe refer-  
ence at the base of the RF cascoded transistor and to provide  
the base voltage on the common emitter transistor. A sensing  
circuit, together with a current mirror guarantees that there is  
always sufficient DC base current available for the cascode  
transistor under all power levels.  
Limiter  
The limiter section is similar to the IF amplifier section  
except that five stages are used with the middle three con-  
tributing to the RSSI. The fixed internal input impedance is  
330 . The total gain of the limiting amplifier section is  
approximately 84 dB. This IF limiting amplifier section inter-  
nally drives the coilless quadrature detector section.  
Coilless Quadrature Detector  
The coilless detector is a unique design which eliminates the  
conventional tunable quadrature coil in FM receiver systems.  
The frequency detector implements a phase locked loop with a  
fully integrated on chip relaxation oscillator which is current  
controlled and externally adjusted, a bandwidth adjust, and an  
automatic frequency tuning circuit. The loop filter is external  
to the chip allowing the user to set the loop dynamics. Two  
outputs are used: one to deliver the audio signal (detector out-  
put) and the other to filter and tune the detector (AFT).  
1st and 2nd Mixer  
Each mixer is a double–balanced class AB four quadrant  
multiplier which may be externally biased for high mixer  
dynamic range. Mixer input third order intercept point of up  
to17 dBm is achieved with only 7.0 mA of additional supply  
current. The 1st mixer has a single–ended input at 50 and  
operates at 1.0 GHz with –3.0 dB of power gain at approxi-  
mately 100 mVrms LO drive level. The mixers have open col-  
lector differential outputs to provide excellent mixer dynamic  
range and linearity.  
Figure 2. 2nd Mixer NF & Gain  
versus LO Power  
25  
20  
15  
10  
5.0  
0
–2.0  
–4.0  
–6.0  
–8.0  
–10  
1st Local Oscillator  
The 1st LO has an on–chip transistor which operates with  
coaxial transmssion line and LC resonant elements up to 1.8  
GHz. A VCO output is available for multi–frequency operation  
under PLL synthesizer control.  
NF  
RSSI  
Gain  
The received signal strength indicator (RSSI) output is a cur-  
rent proportional to the log of the received signal amplitude.  
The RSSI current output (Pin 7) is derived by summing the  
currents from the IF and limiting amplifier stages. An increase  
in RSSI dynamic range, particularly at higher input signal lev-  
els is achieved. The RSSI circuit is designed to provide typical-  
V
T
P
= 3.6 Vdc  
= 25°C  
= –25 dBm  
CC  
A
RF  
Lim Adj Current = 0  
–12  
11  
–14  
–9.0  
–4.0  
–1.0  
6.0  
LO POWER (dBm)  
Page 5 of 17  
www.lansdale.com  
Issue 0  
ML13145  
LANSDALE Semiconductor, Inc.  
PIN FUNCTION DESCRIPTION  
Description  
Pin  
Symbol/Type  
Description  
47  
BWadj  
See Figure 3.  
COILLESS DETECTOR  
Bandwidth Adjust  
The deviation bandwidth of the detector response is  
determined by the combination of an on–chip  
capacitor and an external resistor to ground.  
2
F
V
Frequency Adjust  
adj  
The free running frequency of the detector  
oscillator is defined by the combination of an  
on–chip capacitor and an external resistor, Radj  
from frequency adjust pin to ground.  
1, 48  
3
V
, Negative Supply  
EE  
EE  
These pins are V  
circuit.  
supply for the coilless detector  
EE  
AFT Out  
AFT Out  
The AFT is low pass filtered with a corner frequency  
below the audio bandwidth allowing the error to be  
added to the center frequency adjust signal at Fadj,  
Pin 2. The low frequency high pass corner is set by  
the external capacitor, Ct from AFT out (Pin 3) to  
AFT in (Pin 4) and external resistor, Rt from AFT  
out to Fadj (Pin 2).  
4
5
6
AFT In  
Det Gain  
Det Out  
AFT In  
The AFT in is used to set the buffer transfer  
function.  
Detector Gain  
The AFT buffer is used to set the buffer transfer  
function.  
Detector Output  
Set gain and output level of detector with resistor to  
Det Out Pin.  
Figure 3. Coilless Detector Internal Circuit  
i
Current Amplifier  
i
Phase  
Detector  
ICO  
V
V
CC  
CC  
IF  
V
4
5
6
A * i  
A * i  
AFT In  
V
ref2  
RI  
C
t
Fadj  
2I  
2
Rt  
3
ref1  
AFT Out  
Det Out  
BWadj  
47  
Rb  
Rf  
2Ib  
V
EE  
48, 1  
Page 6 of 17  
www.lansdale.com  
Issue 0  
LANSDALE Semiconductor, Inc.  
ML13145  
Pin  
Symbol/Type  
Description  
Description  
8
V
EE  
V , Negative Supply Voltage  
EE  
11  
V
CC  
9
PRSCout  
Prescaler Output  
The prescaler output provides typically 500 mVpp  
9
drive to the fin pin of a PLL synthesizer. Conjugately  
matching the interface will increase the drive  
delivered to the PLL input.  
PRSC Out  
1.0 mA  
8
V
CC  
V
EE  
10  
10  
MC  
Dual Modulus Control Current Input  
This requires a current input of typically 200 µApp.  
MC  
11, 12  
V
CC  
V
, Positive Supply  
CC  
CC  
V
pin is taken to the incoming positive battery or  
regulated dc voltage through a low impedance trace  
on the PCB. It decoupled to V  
of the IC.  
ground at the pin  
EE  
17  
14  
LNA In  
LNA In  
LNA  
out  
The input is the base of the common emitter  
transistor. Minimum external matching is required to  
optimize the input return loss and gain.  
15, 16  
V
EE  
13  
13, 15,  
& 16  
V
EE  
V
, Negative Supply  
EE  
EE  
V
ref2  
V
EE  
14  
V
pin is taken to an ample dc ground plane  
through a low impedance path. The path should be  
kept as short as possible. A minimum two sided  
PCB is recommended so that ground returns can  
be easily made through via holes.  
V
ref1  
LNA  
in  
2.0 mA  
11,12  
V
CC  
17  
19  
LNAout  
LNA Out  
The output is from the collector of the cascode  
transistor amplifier. The output may be conjugately  
matched with a shunt L (needed to dc bias the open  
collector), and series L and C network.  
V
Mxr In  
1
1st Mixer Input  
CC  
The mixer input impedance is broadband 50 for  
applications up to 2.4 GHz. It easily interfaces with  
a RF ceramic filter.  
20  
LinAdj1  
20  
Lin Adj1  
1st Mixer Linearity Control  
The mixer linearity control circuit accepts  
approximately 0 to 300 µA control current to set the  
dynamic range of the mixer. An Input Third Order  
Intercept Point, IIP3 of 17 dBm may be achieved at  
300 µA of control current.  
19  
Mxr In  
1
450 µA  
Page 7 of 17  
www.lansdale.com  
Issue 0  
ML13145  
LANSDALE Semiconductor, Inc.  
Pin  
Symbol/Type  
Description  
Description  
21  
Enable  
Enable  
Enable the receiver by pulling the pin up to V  
.
CC  
21  
10 k  
Enable  
26  
27  
V
V
, Negative Supply  
EE  
EE  
EE  
V
supply for the mixer IF output.  
27  
IF1+  
IF1+  
IF1–  
1st Mixer Outputs  
The Mixer is a differential open collector output  
26  
configuration which is designed to use over a wide  
frequency range. The differential output of the mixer  
has back to back diodes across them to limit the  
output voltage swing and to prevent pulling of the  
VCO. Differential to single–ended circuit  
configuration and matching options are shown in  
the Test Circuit. Additional mixer gain can be  
achieved by matching the outputs for the desired  
passband Q.  
V
EE  
28  
28  
IF1–  
22  
23  
24  
25  
Collector  
Emitter  
Base  
On–board VCO Transistor  
The transistor has the emitter, base, collector, VCC,  
and VEE pins available. Internal biasing which is  
compensated for stability over temperature is  
provided. It is recommended that the base pin is  
pulled up to VCC through an RFC chosen for the  
particular oscillator center frequency .  
25  
V
CC  
24  
Base  
18, 26  
V
CC  
V
, Positive Supply Voltage  
V
CC  
EE  
A VCC pin is provided for the VCO. The operating  
supply voltage range is from 2.7 Vdc to 6.5 Vdc.  
23  
Emitter  
2.0 mA  
500 µA  
18, 26  
29  
V
V
, Negative Supply Voltage  
22  
EE  
EE  
Collector  
Lin Adj2  
2nd Mixer Linearity Control  
31, V  
CC  
The mixer linearity control circuit accepts  
approximately 0 to 400 µA control current to set the  
dynamic range of the mixer. An Input Third Order  
Intercept Point, IIP3 of 17 dBm may be achieved at  
400 µA of control current. IIP3 default with no  
external bias is 10 dBm.  
29  
Lin Adj2  
30  
31  
Mxr2 In  
2nd Mixer Input  
30  
The mixer input impedance is broadband 50 .  
Mxr2 In  
450 µA  
V
CC  
V
CC  
, Positive Supply  
Page 8 of 17  
www.lansdale.com  
Issue 0  
LANSDALE Semiconductor, Inc.  
ML13145  
Pin  
Symbol/Type  
Description  
Description  
32, 34  
V
EE  
V , Negative Supply Voltage  
EE  
V
CC  
LO Out+  
LO Out–  
(to Mxr2)  
33  
LO2  
2nd Local Oscillator  
The 2nd LO input impedance is broadband 50 ; it  
is driven from an external 50 source. Typical level  
is –15 to –10 dBm.  
33  
LO2  
390 µA  
32  
V
EE  
35  
36  
IF2+  
IF2–  
2nd Mixer Outputs  
The Mixer is a differential open collector  
configuration.  
35  
IF2+  
34  
V
EE  
36  
IF2–  
37  
38  
V
See Figure 4.  
V
, Negative Supply Voltage  
EE  
EE  
IF In  
IF Amplifier Input  
IF amplifier input source impedance is 330 .. The  
three stage amplifier has 40 dB of gain with 3.0 dB  
bandwidth of 40 MHz.  
39, 40  
IF Dec1,  
IF Dec2  
IF Decoupling  
These pins are decoupled to V  
to provide stable  
CC  
operation of the limiting IF amplifier.  
41  
42  
7
IF Out  
IF Amplifier Output  
IF amplifier output load impedance is 330 .  
V
CC  
V
CC  
, Positive Supply Voltage  
RSSI  
RSSI  
The RSSI circuitry in the 2nd & 3rd amplifier stages  
outputs a current when the output of the previous  
stage enters limiting. The net result is a RSSI  
current which represents the logarithm of the IF  
input voltage. An external resistor to ground is used  
to provide a voltage output.  
Page 9 of 17  
www.lansdale.com  
Issue 0  
ML13145  
LANSDALE Semiconductor, Inc.  
Figure 4. IF Amplifier Functional Diagram  
RSSI  
39  
IF Dec1  
Σ
38  
IF In  
40  
IF Dec2  
41  
IF Out  
Pin  
Symbol/Type  
Description  
Description  
43  
V
CC  
See Figure 5.  
V
CC  
, Positive Supply Voltage  
44  
Lim In  
Limiting Amplifier Input  
Limiting amplifier input source impedance is 330 .  
This amplifier has 84 dB of gain with 3.0 dB  
bandwidth of 40 MHz; this enables the IF and  
limiting ampliers chain to hard limit on noise.  
45, 46  
7
Lim Dec1,  
Lim Dec2  
If Decoupling  
These pins are decoupled to V  
to provide stable  
CC  
operation of the 2nd IF limiting amplifier.  
RSSI  
RSSI  
The RSSI circuitry in the 2nd, 3rd, & 4th amplifier  
stages outputs a current when the output of the  
previous stage enters limiting. The net result is a  
RSSI current which represents the logarithm of the  
IF input voltage. An external resistor to ground is  
used to provide a voltage output.  
Figure 5. Limiter Amplifier Functional Diagram  
7
RSSI  
45  
Lim Dec1  
Σ
44  
Lim+  
Lim–  
Lim In  
46  
Demod  
Lim Dec2  
Page 10 of 17  
www.lansdale.com  
Issue 0  
LANSDALE Semiconductor, Inc.  
ML13145  
Figure 7. 2nd Mixer P  
versus LO Drive  
Figure 6. 2nd Mixer Gain  
versus LO Drive  
1dB  
–6.0  
–6.4  
–6.8  
–7.2  
–7.6  
–8.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
V
T
P
= 3.6 V  
CC  
A
RF  
= 25°C  
= –25 dBm  
Lin Adj Current = 400µA  
V
T
= 3.6 V  
CC  
= 25°C  
A
Lin Adj Current = 400µA  
–20  
–18  
–16  
–14  
–12  
–10  
–20  
–18  
–16  
–14  
–12  
10  
LO DRIVE (dBm)  
LO DRIVE (dBm)  
Figure 8. 2nd Mixer IP3/P  
1dB  
Figure 9. 2nd Mixer Gain  
versus Lin Adj Current  
versus Lin Adj Current  
18  
16  
14  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
–6.0  
–6.2  
–6.4  
–6.6  
–6.8  
–7.0  
V
T
P
P
= 3.6 V  
CC  
A
LO  
RF  
= 25°C  
= –15 dBm  
= –25 dBm  
IP3  
V
T
P
= 3.6 V  
= 25°C  
= –15 dBm  
CC  
A
LO  
Adj Channel = 75 kHz  
P
1dB  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
60  
LIN ADJ CURRENT ( µA)  
LIN ADJ CURRENT ( µA)  
Figure 10. Test Circuit for Figures 6 thru 9.  
5.1 k  
10 n  
29  
Lin Adj2  
Lin Adj  
Current  
V
CC  
35  
IF2+  
IF2–  
T1  
IF  
30  
33  
Mxr2 In  
LO2  
out  
RF  
in  
in  
1.0 k  
36  
LO2  
16:1  
T1 = Toko 600ENAS–A998EK  
Page 11 of 17  
www.lansdale.com  
Issue 0  
ML13145  
LANSDALE Semiconductor, Inc.  
Figure 12. Fadj Resistor  
versus IF Frequency  
Figure 11. Fadj Current  
versus IF Frequency  
500  
450  
400  
350  
300  
250  
200  
150  
100  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
5.0  
10  
IF FREQUENCY (MHz)  
15  
20  
5.0  
10  
IF FREQUENCY (MHz)  
15  
20  
Figure 13. BWadj Resistor  
versus BWadj Current  
Figure 14. IF Frequency  
versus BWadj Current  
900  
800  
700  
600  
500  
400  
300  
200  
100  
10.90  
10.85  
10.80  
10.75  
10.70  
10.65  
10.60  
10.55  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
1.0  
2.0  
3.0  
4.0  
5.0  
60.  
BWadj CURRENT ( µA)  
BWadj CURRENT ( µA)  
Page 12 of 17  
www.lansdale.com  
Issue 0  
LANSDALE Semiconductor, Inc.  
ML13145  
Table 1. LNA S–Parameters: 3.6 Vdc  
Freq  
(MHz)  
S11  
Mag  
S11  
Ang  
S21  
Mag  
S21  
Ang  
S12  
Mag  
S12  
Ang  
S22  
mag  
S22  
Ang  
25  
0.84  
0.84  
0.83  
0.81  
0.78  
0.73  
0.66  
0.64  
0.62  
0.51  
0.49  
0.47  
0.46  
0.44  
0.45  
0.55  
0.48  
0.43  
0.43  
0.45  
0.47  
0.51  
0.55  
–3.0  
–71  
10.8  
10.7  
10.3  
10.  
9.6  
9.0  
7.8  
7.4  
7.0  
5.5  
5.2  
4.9  
4.6  
4.3  
3.9  
3.5  
3.1  
2.5  
2.1  
1.8  
1.5  
1.2  
1.0  
176  
171  
162  
154  
147  
132  
116  
111  
106  
80  
0.00005  
0.0004  
0.0006  
0.0011  
0.001  
–27  
76  
1.0  
1.0  
–1.2  
–3.7  
–4.9  
–7.3  
–9.7  
–15  
–19  
–21  
–23  
–33  
–36  
–37  
–38  
–40  
–41  
–50  
–65  
–74  
–85  
–96  
–106  
–118  
–129  
50  
100  
–15  
61  
0.99  
0.99  
0.99  
0.99  
0.95  
0.96  
0.96  
0.94  
0.93  
0.92  
0.92  
0.91  
0.95  
0.099  
0.94  
0.93  
0.92  
0.91  
0.89  
0.88  
0.85  
150  
–22  
91  
200  
–28  
60  
300  
–41  
0.002  
42  
400  
–50  
0.00070  
0.0014  
0.0009  
0.0013  
0.002  
22  
450  
–54  
39  
500  
–59  
69  
750  
–77  
–51  
–80  
–120  
–130  
–142  
–162  
140  
63  
800  
–80  
75  
850  
–81  
71  
0.004  
900  
–82  
67  
0.0057  
0.008  
950  
––82  
–81  
62  
1000  
1250  
1500  
1750  
2000  
2250  
2500  
2750  
3000  
58  
0.014  
–94  
47  
0.029  
–120  
–126  
–135  
–145  
–155  
–167  
–180  
24  
0.02  
6.9  
–9.9  
–27  
–43  
–60  
–78  
0.0066  
0.0099  
0.017  
79  
129  
133  
132  
130  
120  
0.021  
0.03  
0.039  
Page 13 of 17  
www.lansdale.com  
Issue 0  
ML13145  
LANSDALE Semiconductor, Inc.  
CF2  
CF3  
Page 14 of 17  
www.lansdale.com  
Issue 0  
LANSDALE Semiconductor, Inc.  
ML13145  
Legacy Applications Information  
Figure 16. Evaluation PCB Component Side  
Figure 17. Evaluation PCB Solder Side  
2.25″  
2.25″  
2.5″  
2.5″  
CF1  
CF2,CF3  
C1, C3, C5, C7, C13, C17, C31,  
480/481  
10.7M  
100 p  
C45  
C46, C47  
C49  
3.3 p  
2.0 p  
22  
C41, C42, C43, C44, C48, C51  
C2  
C6, C12, C21, C23, C26, C27,  
C28, C29, C33, C34, C36, C37,  
C38, C39, C54  
C8, C15, C16, C18, C32, C53  
C9  
C10  
C11  
C14  
C19  
C20  
C50  
1.0  
U/D  
6.8 n  
5.6 n  
2.7  
1.5 p  
1.0 n  
R1, R7, R8, L8, L9, R12, C52  
L1  
L2  
L4, L5  
L6  
L7  
R3  
R5  
R6,R14  
R11,R9  
R10  
R13  
T1  
0.01  
16 p  
10 p  
12 p  
2.0–4.0 p  
36 p  
39 p  
0.1  
RFC  
2.7 n  
33 k  
27 k  
51 k  
68 k  
2.7 k  
51  
C22, C24, C25, C30, C35  
R2, C40  
10  
A099  
ML13145  
U1  
Page 15 of 17  
www.lansdale.com  
Issue 0  
ML13145  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
Page 16 of 17  
www.lansdale.com  
Issue 0  
ML13145  
LANSDALE Semiconductor, Inc.  
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliabili-  
ty, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which  
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the customer’s  
technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.  
Page 17 of 17  
www.lansdale.com  
Issue 0  

相关型号:

ML13146

Low Power DC - 1.8 GHz Transmitter
LANSDALE

ML13146-9P

Low Power DC - 1.8 GHz Transmitter
LANSDALE

ML13146FTA

Low Power DC - 1.8 GHz Transmitter
LANSDALE

ML13150

Narrowband FM Coilless Detector IF Subsystem
LANSDALE

ML13150-A9P

Narrowband FM Coilless Detector IF Subsystem
LANSDALE

ML13150-B9P

Narrowband FM Coilless Detector IF Subsystem
LANSDALE

ML13155

Wideband FM IF
LANSDALE

ML13155-5P

Wideband FM IF
LANSDALE

ML13156

Wideband FM IF System
LANSDALE

ML13156-6P

Wideband FM IF System
LANSDALE

ML13156-8P

Wideband FM IF System
LANSDALE

ML13158

Wideband FM IF Subsystem For Dect and Digital Applications
LANSDALE