ML145151YP [LANSDALE]

Parallel-Input PLL Frequency Synthesizer Interfaces with Single-Modulus Prescalers; 并行输入锁相环频率合成器的接口与单预分频系数
ML145151YP
型号: ML145151YP
厂家: LANSDALE SEMICONDUCTOR INC.    LANSDALE SEMICONDUCTOR INC.
描述:

Parallel-Input PLL Frequency Synthesizer Interfaces with Single-Modulus Prescalers
并行输入锁相环频率合成器的接口与单预分频系数

光电二极管 局域网
文件: 总35页 (文件大小:2437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ML145151 ML145156  
ML145152 ML145157  
ML145155 ML145158  
PLL Frequency Synthesizer Family - CMOS  
The devices described in this document are typically used as low–power, phase–locked loop frequency  
synthesizers. When combined with an external low–pass filter and voltage–controlled oscillator, these  
devices can provide all the remaining functions for a PLL frequency synthesizer operating up to the  
device's frequency limit. For higher VCO frequency operation, a down mixer or a prescaler can be used  
between the VCO and the synthesizer IC.  
These frequency synthesizer chips can be found in the following and other applications:  
CATV  
TV Tuning  
AM/FM Radios  
Two–Way Radios  
Scanning Receivers  
Amateur Radio  
÷
R
OSC  
φ
CONTROL LOGIC  
÷
A
N
÷
EXTERNAL  
COMPONENTS  
÷
P/P  
+ 1  
VCO  
OUTPUT  
FREQUENCY  
CONTENTS  
Page  
DEVICE DETAIL SHEETS  
ML145151 Parallel–Input, Single–Modulus ...........................................................................................2  
ML145152 Parallel–Input, Dual–Modulus..............................................................................................5  
ML145155 Serial–Input, Single–Modulus ..............................................................................................9  
ML145156 Serial–Input, Dual–Modulus...............................................................................................13  
ML145157 Serial–Input, Single–Modulus ............................................................................................17  
ML145158 Serial–Input, Dual–Modulus...............................................................................................20  
FAMILY CHARACTERISTICS  
Maximum Ratings..................................................................................................................................23  
DC Electrical Characteristics.................................................................................................................23  
AC Electrical Characteristics.................................................................................................................25  
Timing Requirements.............................................................................................................................26  
Frequency Characteristics......................................................................................................................27  
Phase Detector/Lock Detector Output Waveforms................................................................................27  
DESIGN CONSIDERATIONS  
Phase–Locked Loop – Low–Pass Filter Design ....................................................................................28  
Crystal Oscillator Considerations..........................................................................................................29  
Dual–Modulus Prescaling......................................................................................................................30  
Page 1 of 35  
www.lansdale.com  
Issue A  
ML145151  
Parallel-Input PLL  
Frequency Synthesizer  
Interfaces with Single–Modulus Prescalers  
Legacy Device: Motorola/Freescale MC145151  
The ML145151 is programmed by 14 parallel–input data  
lines for the N counter and three input lines for the R counter.  
The device features consist of a reference oscillator, selec-  
table–reference divider, digital–phase detector, and 14–bit  
programmable divide–by–N counter.  
P DIP 28 = YP  
PLASTIC DIP  
CASE 710  
28  
28  
1
SO 28W = -6P  
SOG PACKAGE  
CASE 751F  
• Operating Temperature Range: T  
A =  
– 40 to 85°C  
• Low Power Consumption Through Use of CMOS  
Technology  
1
• 3.0 to 9.0 V Supply Range  
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
MOTOROLA  
LANSDALE  
• On– or Off–Chip Reference Oscillator Operation  
• Lock Detect Signal  
• ÷ N Counter Output Available  
P DIP 28  
SO 28W  
MC145151P2  
MC145151DW2 ML145151-6P  
ML145151YP  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
• Single Modulus/Parallel Programming  
• 8 User–Selectable ÷ R Values: 8, 128, 256, 512, 1024,  
2048, 2410, 8192  
• ÷ N Range = 3 to 16383  
• “Linearized” Digital Phase Detector Enhances Transfer  
Function Linearity  
PIN ASSIGNMENT  
Two Error Signal Options: Single–Ended (Three–State)  
or Double–Ended  
• Chip Complexity: 8000 FETs or 2000 Equivalent Gates  
f
1
2
28  
27  
LD  
in  
V
OSC  
SS  
DD  
out  
in  
V
3
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
OSC  
N11  
N10  
N13  
N12  
T/R  
N9  
out  
PD  
4
RA0  
RA1  
RA2  
5
6
7
φ
8
R
φ
9
V
f
10  
N8  
V
N0 11  
N1 12  
N7  
N6  
N2 13  
N3 14  
16  
15  
N5  
N4  
Page 2 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145151  
ML145151 BLOCK DIAGRAM  
RA2  
RA1  
14 x 8 ROM REFERENCE DECODER  
14  
OSC  
out  
RA0  
LOCK  
LD  
PD  
DETECT  
OSC  
14–BIT  
÷
R COUNTER  
in  
PHASE  
DETECTOR  
A
out  
f
in  
14–BIT  
÷
N COUNTER  
14  
V
PHASE  
DETECTOR  
B
DD  
φ
φ
V
R
TRANSMIT OFFSET ADDER  
T/R  
f
V
N13  
N11  
N9  
N7 N6  
N4  
N2  
N0  
NOTE: N0 – N13 inputs and inputs RA0, RA1, and RA2 have pull–up resistors that are not shown.  
PIN DESCRIPTIONS  
nificant and N13 is the most significant. Pull–up resistors en-  
sure that inputs left open remain at a logic 1 and require only  
an SPST switch to alter data to the zero state.  
INPUT PINS  
f
in  
Frequency Input (Pin 1)  
T/R  
Transmit/Receive Offset Adder Input (Pin 21)  
Input to the ÷N portion of the synthesizer. f is typically  
in  
This input controls the offset added to the data provided at  
the N inputs. This is normally used for offsetting the V  
quency by an amount equal to the IF frequency of the trans-  
ceiver. This offset is fixed at 856 when T/R is low and gives no  
offset when T/R is high. A pull–up resistor ensures that no  
connection will appear as a logic 1 causing no offset addition.  
derived from loop V  
CO  
and is AC coupled into the device. For  
fre-  
CO  
larger amplitude signals (standard CMOS logic levels) DC  
coupling may be used.  
RA0 – RA2  
Reference Address Inputs (Pins 5, 6, 7)  
These three inputs establish a code defining one of eight  
possible divide values for the total reference divider, as defined  
by the table below.  
Pull–up resistors ensure that inputs left open remain at a  
logic 1 and require only a SPST switch to alter data to the zero  
state.  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 27, 26)  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be con-  
nected from OSC to ground and OSC  
may also serve as the input for an externally generated refer-  
ence signal. This signal is typically AC coupled to OSC , but  
for larger amplitude signals (standard CMOS logic levels) DC  
coupling may also be used. In the external reference mode, no  
to ground. OSC  
in  
out  
in  
Total  
Divide  
Value  
Reference Address Code  
in  
RA2  
RA1  
RA0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
128  
256  
512  
1024  
2048  
2410  
8192  
connection is required to OSC  
OUTPUT PINS  
PDout  
.
out  
Phase Detector A Output (Pin 4)  
Three–state output of phase detector for use as loop–error  
signal. Double–ended outputs are also available for this pur-  
pose (see ΦV and ΦR).  
N0 – N11  
Frequency f > f or f Leading: Negative Pulses  
Frequency f < f or f Lagging: Positive Pulses  
Frequency f = f and Phase Coincidence: High–Imped-  
V
V
V
R
R
V
V
N Counter Programming Inputs (Pins 11 – 20, 22 – 25)  
These inputs provide the data that is preset into the ÷ N  
counter when it reaches the count of zero. N0 is the least sig-  
R
ance State  
Page 3 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145151  
φR,φV  
nally connected to the phase detector input. With this output  
available, the ÷ N counter can be used independently.  
Phase Detector B Outputs (Pins 8, 9)  
These phase detector outputs can be combined externally for LD  
a loop–error signal. A single–ended output is also available for Lock Detector Output (Pin 28)  
this purpose (see PD ).  
out  
Essentially a high level when loop is locked (f , f of same  
R V  
If frequency f is greater than f or if the phase of f is  
V
R
V
phase and frequency). Pulses low when loop is out of lock.  
leading, then error information is provided by φV pulsing low.  
φR remains essentially high.  
POWER SUPPLY  
If the frequency f is less than f or if the phase of f is  
V
V
R
V
DD  
lagging, then error information is provided by φR pulsing low.  
φV remains essentially high.  
Positive Power Supply (Pin 3)  
The positive power supply potential. This pin may range  
If the frequency of f = f and both are in phase, then both  
V
R
from + 3 to + 9 V with respect to V  
.
SS  
φV and φR remain high except for a small minimum time peri-  
V
od when both pulse low in phase.  
SS  
Negative Power Supply (Pin 2)  
f
V
The most negative supply potential. This pin is usually-  
ground.  
N Counter Output (Pin 10)  
This is the buffered output of the ÷ N counter that is inter-  
TYPICAL APPLICATIONS  
2.048 MHz  
NC  
NC  
OSC  
in  
OSC  
out  
f
RA2 RA1  
RA0  
PD  
in  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
ML145151  
out  
N13 N12 N11 N10 N9 N8 N7 N6 N5 N4 N3 N2 N1 N0  
5 – 5.5 MHz  
0 1 1 1 0 0 0 1 0 0 0 = 5 MHz  
1 0 1 0 1 1 1 1 1 0 0 = 5.5 MHz  
Figure 1. 5 MHz to 5.5 MHz Local Oscillator Channel Spacing = 1 kHz  
LOCK DETECT SIGNAL  
TRANSMIT: 440.0 – 470.0 MHz  
RECEIVE: 418.6 – 448.6 MHz  
(25 kHz STEPS)  
“1”  
“1”  
“0”  
CHOICE OF  
DETECTOR  
ERROR  
OSC  
RA2  
RA1  
RA0  
LD  
f
V
out  
SIGNALS  
PD  
out  
OSC  
in  
LOOP  
FILTER  
φ
f
VCO  
X6  
+ V  
R
V
V
V
DD  
SS  
ML145151  
REF. OSC.  
10.0417 MHz  
(ON–CHIP OSC.  
OPTIONAL)  
f
in  
T: 73.3333 – 78.3333 MHz  
R: 69.7667 – 74.7667 MHz  
T/R  
T: 13.0833 – 18.0833 MHz  
R: 9.5167 – 14.5167 MHz  
DOWN  
MIXER  
“0” “0” “1”  
CHANNEL PROGRAMMING  
N = 2284 TO 3484  
RECEIVE  
÷
TRANSMIT  
(ADDS 856 TO  
N VALUE)  
÷
X6  
60.2500 MHz  
NOTES:  
1. f = 4.1667 kHz; ÷ R = 2410; 21.4 MHz low side injection during receive.  
R
2. Frequency values shown are for the 440 – 470 MHz band. Similar implementation applies to the 406 – 440 MHz band.  
For 470 – 512 MHz, consider reference oscillator frequency X9 for mixer injection signal (90.3750 MHz).  
Figure 2. Synthesizer for Land Mobile Radio UHF Bands  
ML145151 Data Sheet Continued on Page 23  
Page 4 of 35  
www.lansdale.com  
Issue A  
ML145152  
Parallel-Input PLL  
Frequency Synthesizer  
Interfaces with Dual–Modulus Prescalers  
Legacy Device: Motorola/Freescale MC145152  
The ML145152 is programmed by sixteen parallel inputs  
for the N and A counters and three input lines for the R  
counter. The device features consist of a reference oscillator,  
selectable–reference divider, two–output phase detector,  
10–bit programmable divide–by–N counter, and 6–bit pro-  
grammable ÷ A counter.  
P DIP 28 = YP  
PLASTIC DIP  
CASE 710  
28  
1
SO 28W = -6P  
SOG PACKAGE  
CASE 751F  
28  
• Operating Temperature Range: T = – 40 to 85°C  
A
• Low Power Consumption Through Use of CMOS  
Technology  
1
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
MOTOROLA  
LANSDALE  
• 3.0 to 9.0 V Supply Range  
• On– or Off–Chip Reference Oscillator Operation  
• Lock Detect Signal  
P DIP 28  
SO 28W  
MC145152P2  
MC145152DW2 ML145152-6P  
ML145152YP  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
• Dual Modulus/Parallel Programming  
• 8 User–Selectable ÷ R Values: 8, 64, 128, 256, 512,  
1024, 1160, 2048  
• ÷ N Range = 3 to 1023, ÷ A Range = 0 to 63  
• Chip Complexity: 8000 FETs or 2000 Equivalent Gates  
• See Application Note AN980  
PIN ASSIGNMENT  
f
1
2
28  
27  
LD  
in  
V
OSC  
SS  
in  
V
3
4
5
6
7
8
9
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
OSC  
A4  
A3  
A0  
A2  
A1  
N9  
N8  
N7  
N6  
DD  
out  
RA0  
RA1  
RA2  
φ
R
φ
V
MC  
A5 10  
N0 11  
N1 12  
N2 13  
N3 14  
16  
15  
N5  
N4  
Page 5 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145152  
ML145152 BLOCK DIAGRAM  
RA2  
RA1  
RA0  
12 x 8 ROM REFERENCE DECODER  
12  
OSC  
out  
LOCK  
DETECT  
LD  
OSC  
in  
12–BIT  
÷
R COUNTER  
MC  
φ
φ
V
CONTROL  
LOGIC  
PHASE  
DETECTOR  
R
f
in  
6–BIT  
A5  
÷
A COUNTER  
10–BIT  
N2  
÷
N COUNTER  
A3 A2  
A0  
N0  
N4 N5  
N7  
N9  
NOTE: N0 – N9, A0 – A5, and RA0 – RA2 have pull–up resistors that are not shown.  
PIN DESCRIPTIONS  
tors that ensure that inputs left open will remain at a logic 1.  
INPUT PINS  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 27, 26)  
f
in  
Frequency Input (Pin 1)  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be con-  
Input to the positive edge triggered ÷ N and ÷ A counters.  
f
is typically derived from a dual–modulus prescaler and is  
in  
nected from OSC to ground and OSC  
to ground. OSC  
in  
out  
in  
AC coupled into the device. For larger amplitude signals (stan-  
dard CMOS logic levels) DC coupling may be used.  
may also serve as the input for an externally generated refer-  
ence signal. This signal is typically AC coupled to OSC , but  
in  
RA0, RA1, RA2  
Reference Address Inputs (Pins 4, 5, 6)  
for larger amplitude signals (standard CMOS logic levels) DC  
coupling may also be used. In the external reference mode, no  
connection is required to OSC  
OUTPUT PINS  
φR,φV  
.
These three inputs establish a code defining one of eight  
possible divide values for the total reference divider. The total  
reference divide values are as follows:  
out  
Phase Detector B Outputs (Pins 7, 8)  
Total  
Divide  
Value  
Reference Address Code  
These phase detector outputs can be combined externally for  
a loop–error signal.  
If the frequency f is greater than f or if the phase of f is  
leading, then error information is provided by φV pulsing low.  
φR remains essentially high.  
If the frequency f is less than f or if the phase of f is  
RA2  
RA1  
RA0  
V
R
V
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
64  
128  
256  
512  
1024  
1160  
2048  
V
R
V
lagging, then error information is provided by φR pulsing low.  
φV remains essentially high.  
If the frequency of f = f and both are in phase, then both  
V
R
φV and φR remain high except for a small minimum time peri-  
od when both pulse low in phase.  
N0 – N9  
N Counter Programming Inputs (Pins 11 – 20)  
MC  
Dual–Modulus Prescale Control Output (Pin 9)  
The N inputs provide the data that is preset into the ÷ N  
counter when it reaches the count of 0. N0 is the least signifi-  
cant digit and N9 is the most significant. Pull–up resistors en-  
sure that inputs left open remain at a logic 1 and require only a  
SPST switch to alter data to the zero state.  
Signal generated by the on–chip control logic circuitry for  
controlling an external dual–modulus prescaler. The MC level  
will be low at the beginning of a count cycle and will remain  
low until the ÷ A counter has counted down from its pro-  
grammed value. At this time, MC goes high and remains high  
until the ÷ N counter has counted the rest of the way down  
from its programmed value (N – A additional counts since  
both ÷ N and ÷ A are counting down during the first portion of  
the cycle). MC is then set back low, the counters preset to  
A0 – A5  
A Counter Programming Inputs(Pins 23, 21, 22, 24, 25, 10)  
The A inputs define the number of clock cycles of f that  
in  
require a logic 0 on the MC output (see Dual–Modulus Pres-  
caling section). The A inputs all have internal pull–up resis-  
Page 6 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145152  
POWER SUPPLY  
their respective programmed values, and the above sequence  
repeated. This provides for a total programmable divide value  
(NT)=N•P+A where P and P + 1 represent the dual–modulus  
prescaler divide values respectively for high and low MC lev-  
els, N the number programmed into the ÷ N counter, and A the  
number programmed into the ÷ A counter.  
VDD  
Positive Power Supply (Pin 3)  
The positive power supply potential. This pin may range from  
+ 3 to + 9 V with respect to V  
.
SS  
V
SS  
Negative Power Supply (Pin 2)  
LD  
Lock Detector Output (Pin 28)  
The most negative supply potential. This pin is usually-  
ground.  
Essentially a high level when loop is locked (f , f of same  
R V  
phase and frequency). Pulses low when loop is out of lock.  
TYPICAL APPLICATIONS  
NO CONNECTS  
“1”  
“1”  
“1”  
150 – 175 MHz  
5 kHz STEPS  
LOCK DETECT SIGNAL  
R2  
10.24 MHz  
NOTE 1  
C
OSC  
out  
RA2  
RA1  
RA0  
LD  
R1  
R1  
φ
+
R
OSC  
in  
VCO  
φ
V
MC33171  
NOTE 2  
ML145152  
R2  
C
MC  
V
V
+ V  
DD  
f
in  
SS  
N9  
N0 A5  
A0  
ML12017  
CHANNEL PROGRAMMING  
÷
64/65 PRESCALER  
NOTES:  
1. Off–chip oscillator optional.  
2. The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop — Low–Pass Filter  
R
V
Design page for additional information. The φ and φ outputs swing rail–to–rail. Therefore, the user should be careful  
R
V
not to exceed the common mode input range of the op amp used in the combiner/loop filter.  
Figure 1. Synthesizer for Land Mobile Radio VHF Bands  
Page 7 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145152  
RECEIVER 2ND L.O.  
30.720 MHz  
REF. OSC.  
15.360 MHz  
NO CONNECTS  
(ON–CHIP OSC.  
OPTIONAL)  
RECEIVER FIRST L.O.  
825.030 844.980 MHz  
X2  
“1”  
“1”  
“1”  
LOCK DETECT SIGNAL  
R2  
C
(30 kHz STEPS)  
OSC  
out  
RA2  
RA1  
RA0  
LD  
R1  
R1  
φ
+
R
OSC  
in  
X4  
NOTE 6  
VCO  
φ
V
ML145152  
NOTE 5  
NOTE 7  
V
V
+ V  
DD  
R2  
C
MC  
SS  
f
X4  
TRANSMITTER  
in  
NOTE 6  
MODULATION  
N9  
N0 A5  
A0  
ML12017  
TRANSMITTER SIGNAL  
825.030 844.980 MHz  
(30 kHz STEPS)  
÷
64/65 PRESCALER  
CHANNEL PROGRAMMING  
NOTE 6  
NOTES:  
1. Receiver 1st I.F. = 45 MHz, low side injection; Receiver 2nd I.F. = 11.7 MHz, low side injection.  
2. Duplex operation with 45 MHz receiver/transmit separation.  
3. f = 7.5 kHz; ÷ R = 2048.  
R
total  
4. N  
= N 64 + A = 27501 to 28166; N = 429 to 440; A = 0 to 63.  
5. ML145158 may be used where serial data entry is desired.  
6. High frequency prescalers may be used for higher frequency VCO and f  
implementations.  
ref  
7. The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop — Low–Pass Filter Design page for  
R
V
additional information. The φ and φ outputs swing rail–to–rail. Therefore, the user should be careful not to exceed the common mode  
R
V
input range of the op amp used in the combiner/loop filter.  
Figure 2. 666–Channel, Computer–Controlled, Mobile Radiotelephone Synthesizer  
for 800 MHz Cellular Radio Systems  
ML145152 Data Sheet Continued on Page 23  
Page 8 of 35  
www.lansdale.com  
Issue A  
ML145155  
Serial–Input PLL  
Frequency Synthesizer  
Interfaces with Single–Modulus Prescalers  
Legacy Device: Motorola/Freescale MC145155-2  
The ML145155 is programmed by a clocked, serial input,  
16–bit data stream. The device features consist of a reference  
oscillator, selectable–reference divider, digital–phase detector,  
14–bit programmable divide–by–N counter, and the necessary  
shift register and latch circuitry for accepting serial input  
data.  
P DIP 18 = VP  
PLASTIC DIP  
CASE 707  
18  
1
• Operating Temperature Range: T = – 40 to 85°C  
• Low Power Consumption Through Use of CMOS  
Technology  
A
SOG 20W = -6P  
SOG PACKAGE  
CASE 751D  
20  
1
• 3.0 to 9.0 V Supply Range  
• On– or Off–Chip Reference Oscillator Operation with  
Buffered Output  
• Compatible with the Serial Peripheral Interface (SPI) on  
CMOS MCUs  
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
MOTOROLA  
LANSDALE  
P DIP 18  
MC145155P2  
ML145155VP  
SOG 20W  
MC145155DW2 ML145155-6P  
• Lock Detect Signal  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
Two Open–Drain Switch Outputs  
• 8 User–Selectable ÷ R Values: 16, 512, 1024, 2048,  
3668, 4096, 6144, 8192  
• Single Modulus/Serial Programming  
• ÷ N Range = 3 to 16383  
• “Linearized” Digital Phase Detector Enhances Transfer  
Function Linearity  
Two Error Signal Options: Single–Ended (Three–State)  
or Double–Ended  
• Chip Complexity: 6504 FETs or 1626 Equivalent Gates  
PIN ASSIGNMENTS  
PLASTIC DIP  
SOG PACKAGE  
RA1  
RA2  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
RA0  
OSC  
OSC  
REF  
RA1  
RA2  
1
2
20  
19  
RA0  
OSC  
in  
in  
φ
φ
3
4
18  
OSC  
V
out  
V
out  
φ
17  
REF  
φ
R
out  
R
out  
V
5
6
16  
15  
NC  
V
SW2  
DD  
out  
DD  
PD  
SW2  
SW1  
ENB  
DATA  
CLK  
PD  
SW1  
ENB  
DATA  
CLK  
out  
V
7
14  
13  
12  
11  
V
7
8
9
12  
11  
10  
SS  
NC  
SS  
LD  
8
LD  
9
f
in  
f
10  
in  
NC = NO CONNECTION  
Page 9 of 35  
www.lansdale.com  
Issue A  
ML145155  
LANSDALE Semiconductor, Inc.  
ML145155 BLOCK DIAGRAM  
RA2  
14 x 8 ROM REFERENCE DECODER  
RA1  
RA0  
LOCK  
DETECT  
14  
OSC  
REF  
out  
LD  
OSC  
14–BIT  
14–BIT  
÷
÷
R COUNTER  
in  
f
PHASE  
DETECTOR  
A
R
PD  
out  
f
V
out  
f
in  
R COUNTER  
14  
PHASE  
DETECTOR  
B
φ
φ
V
R
V
DD  
SW2  
SW1  
ENB  
LATCH  
LATCH  
14  
14–BIT SHIFT REGISTER  
DATA  
CLK  
2–BIT SHIFT  
REGISTER  
PIN DESCRIPTIONS  
signals SW1 and SW2. The entry format is as follows:  
INPUT PINS  
in  
f
÷
N COUNTER BITS  
Frequency Input (PDIP – Pin 9, SOG – Pin 10)  
Input to the ÷ N portion of the synthesizer. f is typically  
in  
derived from loop VCO and is AC coupled into the device. For  
larger amplitude signals (standard CMOS logic levels) DC  
coupling may be used.  
LAST DATA BIT IN (BIT NO. 16)  
FIRST DATA BIT IN (BIT NO. 1)  
RA0, RA1, RA2  
Reference Address Inputs (PDIP – Pins 18, 1, 2; SOG –  
Pins 20, 1, 2)  
These three inputs establish a code defining one of eight  
possible divide values for the total reference divider, as defined  
by the table below:  
ENB  
Latch Enable Input (PDIP – Pin 12, SOG – Pin 13)  
When high (1), ENB transfers the contents of the shift reg-  
ister into the latches, and to the programmable counter inputs,  
and the switch outputs SW1 and SW2. When low (0), ENB  
inhibits the above action and thus allows changes to be made  
in the shift register data without affecting the counter program-  
ming and switch outputs. An on–chip pull–up establishes a  
continuously high level for ENB when no external signal is  
applied. ENB is normally low and is pulsed high to transfer  
data to the latches.  
Total  
Divide  
Value  
Reference Address Code  
RA2  
RA1  
RA0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
16  
512  
1024  
2048  
3668  
4096  
6144  
8192  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (PDIP – Pins 17, 16;  
SOG – Pins 19, 18)  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be con-  
CLK, DATA  
Shift Register Clock, Serial Data Inputs  
(PDIP – Pins 10, 11; SOG – Pins 11, 12)  
Each low–to–high transition clocks one bit into the on–chip  
16–bit shift register. The Data input provides programming  
information for the 14–bit ÷ N counter and the two switch  
nected from OSC to ground and OSC  
to ground. OSC  
in  
out  
in  
may also serve as the input for an externally–generated refer-  
ence signal. This signal is typically ac coupled to OSC , but  
in  
for larger amplitude signals (standard CMOS logic levels) DC  
coupling may also be used. In the external reference mode, no  
connection is required to OSC  
.
out  
Page 10 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145155  
ML145155  
OUTPUT PINS  
phase and frequency). LD pulses low when loop is out of lock.  
PD  
out  
Phase Detector A Output (PDIP, SOG – Pin 6)  
Three–state output of phase detector for use as loop error  
signal. Double–ended outputs are also available for this pur-  
pose (see φV and φR).  
SW1, SW2  
Band Switch Outputs (PDIP – Pins 13, 14; SOG – Pins 14, 15)  
SW1 and SW2 provide latched open–drain outputs corre-  
sponding to data bits numbers one and two. These outputs can  
be tied through external resistors to voltages as high as 15 V,  
Frequency f > f or f Leading: Negative Pulses  
V
V
R
V
V
Frequency f < f or f Lagging: Positive Pulses  
independent of the V  
supply voltage. These are typically  
R
DD  
Frequency f = f and Phase Coincidence: High–Imped-  
used for band switch functions. A logic 1 causes the output to  
assume a high–impedance state, while a logic 0 causes the out-  
put to be low.  
V
R
ance State  
φR, φV  
Phase Detector B Outputs (PDIP, SOG – Pins 4, 3)  
REF  
out  
These phase detector outputs can be combined externally for  
a loop–error signal. A single–ended output is also available for  
Buffered Reference Oscillator Output (PDIP, SOG – Pin 15)  
Buffered output of on–chip reference oscillator or externally  
provided reference–input signal.  
this purpose (see PD ).  
out  
If frequency f is greater than f or if the phase of f is  
V
R
V
leading, then error information is provided by f pulsing low.  
POWER SUPPLY  
V
f remains essentially high.  
R
If the frequency f is less than f or if the phase of f is  
VDD  
V
R
V
lagging, then error information is provided by f pulsing low.  
Positive Power Supply (PDIP, SOG – Pin 5)  
The positive power supply potential. This pin may range  
R
f
remains essentially high.  
V
If the frequency of f = f and both are in phase, then both  
from + 3 to + 9 V with respect to V  
.
V
R
SS  
f
and f remain high except for a small minimum time peri-  
V
R
od when both pulse low in phase.  
VSS  
Negative Power Supply (PDIP, SOG – Pin 7)  
The most negative supply potential. This pin is usually  
ground.  
LD  
Lock Detector Output (PDIP – Pin 8, SOG – Pin 9)  
Essentially a high level when loop is locked (f , f of same  
R V  
TYPICAL APPLICATIONS  
4.0 MHz  
UHF/VHF  
TUNER OR  
CATV  
φ
FRONT END  
+
R
f
in  
MC120xx  
PRESCALER  
ML145155  
φ
V
1/2 MC1458*  
DATA  
CLK  
ENB  
CMOS  
MPU/MCU  
3
MC14489  
KEYBOARD  
LED DISPLAY  
* The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop – Low–Pass Filter Design page  
R
V
foradditionalinformation.TheφRandφVoutputsswingrail–to–rail.Therefore,theusershouldbecarefulnottoexceedthecommon  
mode input range of the op amp used in the combiner/loop filter.  
Figure 1. Microprocessor–Controlled TV/CATV Tuning System with Serial Interface  
Page 11 of 35  
www.lansdale.com  
Issue A  
ML145155  
LANSDALE Semiconductor, Inc.  
ML145155  
2.56 MHz  
φ
TO  
AM/FM  
OSCILLATORS  
+
f
R
in  
ML12019  
÷20 PRESCALER  
FM  
OSC  
ML145155  
CLK  
φ
V
1/2 MC1458*  
AM  
OSC  
DATA  
ENB  
CMOS  
MPU/MCU  
KEYBOARD  
TO DISPLAY  
* The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop – Low–Pass Filter Design page  
R
V
foradditionalinformation.Theφ andφ outputsswingrail–to–rail. Therefore, theusershouldbecarefulnottoexceedthecommon  
R
V
mode input range of the op amp used in the combiner/loop filter.  
Figure 2. AM/FM Radio Synthesizer  
Page 12 of 35  
www.lansdale.com  
Issue A  
ML145156  
Serial–Input PLL  
Frequency Synthesizer  
Interfaces with Dual–Modulus Prescalers  
Legacy Device: Motorola/Freescale MC145156-2  
The ML145156 is programmed by a clocked, serial input,  
19–bit data stream. The device features consist of a reference  
oscillator, selectable–reference divider, digital–phase detector,  
10–bit programmable divide–by–N counter, 7–bit program-  
mable divide–by–A counter, and the necessary shift register  
and latch circuitry for accepting serial input data.  
P DIP 20 = RP  
PLASTIC DIP  
CASE 738  
20  
1
SOG 20W = -6P  
SOG PACKAGE  
CASE 751D  
• Operating Temperature Range: T = – 40 to 85°C  
A
• Low Power Consumption Through Use of  
CMOS Technology  
20  
1
• 3.0 to 9.0 V Supply Range  
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
MOTOROLA  
LANSDALE  
• On– or Off–Chip Reference Oscillator Operation with  
Buffered Output  
• Compatible with the Serial Peripheral Interface (SPI) on  
CMOS MCUs  
P DIP 20  
SOG 20W  
MC145156P2  
MC145156DW2 ML145156-6P  
ML145156RP  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
• Lock Detect Signal  
Two Open–Drain Switch Outputs  
• Dual Modulus/Serial Programming  
• 8 User–Selectable ÷ R Values: 8, 64, 128, 256, 640,  
1000, 1024, 2048  
• ÷ N Range = 3 to 1023, ÷A Range = 0 to 127  
• “Linearized” Digital Phase Detector Enhances Transfer  
Function Linearity  
Two Error Signal Options: Single–Ended (Three–State)  
or Double–Ended  
• Chip Complexity: 6504 FETs or 1626 Equivalent Gates  
PIN ASSIGNMENT  
RA1  
RA2  
1
2
20  
19  
RA0  
OSC  
OSC  
in  
φ
3
4
18  
V
out  
out  
φ
17  
REF  
R
V
5
6
16  
15  
TEST  
SW2  
DD  
PD  
V
out  
SS  
7
14  
13  
12  
11  
SW1  
ENB  
DATA  
CLK  
MC  
LD  
8
9
f
10  
in  
Page 13 of 35  
www.lansdale.com  
Issue A  
ML145156  
LANSDALE Semiconductor, Inc.  
ML145156 BLOCK DIAGRAM  
RA2  
RA1  
RA0  
12 x 8 ROM REFERENCE DECODER  
12  
LOCK  
DETECT  
12–BIT  
÷ R COUNTER  
OSC  
in  
LD  
OSC  
REF  
out  
f
PHASE  
DETECTOR  
A
CONTROL LOGIC  
R
out  
PD  
out  
f
V
MC  
PHASE  
DETECTOR  
B
7–BIT  
÷
A COUNTER  
10–BIT  
÷
N COUNTER  
10  
f
φ
in  
V
φ
R
7
V
SW2  
SW1  
DD  
ENB  
LATCH  
÷
A COUNTER LATCH  
7
÷
N COUNTER LATCH  
10  
DATA  
CLK  
2–BIT SHIFT  
REGISTER  
7–BIT SHIFT REGISTER  
10–BIT SHIFT REGISTER  
A COUNTER BITS  
N COUNTER BITS  
PIN DESCRIPTIONS  
INPUT PINS  
f
in  
Frequency Input (Pin 10)  
Input to the positive edge triggered ÷ N and ÷ A counters.  
is typically derived from a dual–modulus prescaler and is  
AC coupled into the device. For larger amplitude signals (stan-  
dard CMOS logic levels), DC coupling may be used.  
LAST DATA BIT IN (BIT NO. 19)  
FIRST DATA BIT IN (BIT NO. 1)  
f
in  
ENB  
Latch Enable Input (Pin 13)  
When high (1), ENB transfers the contents of the shift reg-  
ister into the latches, and to the programmable counter inputs,  
and the switch outputs SW1 and SW2. When low (0), ENB  
inhibits the above action and thus allows changes to be made  
in the shift register data without affecting the counter program-  
ming and switch outputs. An on–chip pull–up establishes a  
continuously high level for ENB when no external signal is  
applied. ENB is normally low and is pulsed high to transfer  
data to the latches.  
RA0, RA1, RA2  
Reference Address Inputs (Pins 20, 1, 2)  
These three inputs establish a code defining one of eight  
possible divide values for the total reference divider, as defined  
by the table below:  
Total  
Divide  
Value  
Reference Address Code  
RA2  
RA1  
RA0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8
64  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 19, 18)  
128  
256  
640  
1000  
1024  
2048  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be con-  
nected from OSC to ground and OSC  
to ground. OSC  
in  
out  
in  
may also serve as the input for an externally–generated refer-  
ence signal. This signal is typically AC coupled to OSC , but  
in  
for larger amplitude signals (standard CMOS logic levels) DC  
coupling may also be used. In the external reference mode, no  
CLK, DATA  
Shift Register Clock, Serial Data Inputs (Pins 11, 12)  
Each low–to–high transition clocks one bit into the on–chip  
19–bit shift register. The data input provides programming in-  
formation for the 10–bit ÷ N counter, the 7–bit ÷ A counter,  
and the two switch signals SW1 and SW2. The entry format is  
as follows:  
connection is required to OSC  
.
out  
TEST  
Factory Test Input (Pin 16)  
Used in manufacturing. Must be left open or tied to V  
.
SS  
Page 14 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145156  
ML145156  
OUTPUT PINS  
respective programmed values, and the above sequence repeat-  
ed. This provides for a total programmable divide value (N ) =  
T
PDout  
N • P + A where P and P + 1 represent the dual–modulus  
prescaler divide values respectively for high and low MC lev-  
els, N the number programmed into the ÷ N counter, and A the  
number programmed into the ÷ A counter.  
Phase Detector A Output (Pin 6)  
Three–state output of phase detector for use as loop–error  
signal. Double–ended outputs are also available for this pur-  
pose (see φ and φ ).  
V
R
LD  
Frequency f > f or f Leading: Negative Pulses  
V
R
V
V
Lock Detector Output (Pin 9)  
Frequency f < f or f Lagging: Positive Pulses  
V
V
R
R
Frequency f = f and Phase Coincidence: High–Imped-  
Essentially a high level when loop is locked (f , f of same  
R V  
ance State  
phase and frequency). LD pulses low when loop is out of lock.  
φR, φV  
SW1, SW2  
Band Switch Outputs (Pins 14, 15)  
Phase Detector B Outputs (Pins 4, 3)  
These phase detector outputs can be combined externally for  
a loop–error signal. A single–ended output is also available for  
SW1 and SW2 provide latched open–drain outputs corre-  
sponding to data bits numbers one and two. These outputs can  
be tied through external resistors to voltages as high as 15 V,  
this purpose (see PD ).  
out  
If frequency f is greater than f or if the phase of f is  
independent of the V  
supply voltage. These are typically  
V
R
V
DD  
leading, then error information is provided by φ pulsing low.  
used for band switch functions. A logic 1 causes the output to  
assume a high–impedance state, while a logic 0 causes the out-  
put to be low.  
V
φ remains essentially high.  
R
If the frequency f is less than f or if the phase of f is  
V
R
V
lagging, then error information is provided by φ pulsing low.  
R
φ
remains essentially high.  
REF  
out  
V
If the frequency of f = f and both are in phase, then both  
Buffered Reference Oscillator Output (Pin 17)  
V
R
φ
and φ remain high except for a small minimum time  
V
R
Buffered output of on–chip reference oscillator or externally  
provided reference–input signal.  
period when both pulse low in phase.  
MC  
POWER SUPPLY  
Dual–Modulus Prescale Control Output (Pin 8)  
Signal generated by the on–chip control logic circuitry for-  
controlling an external dual–modulus prescaler. The MC level-  
will be low at the beginning of a count cycle and will remain-  
low until the ÷ A counter has counted down from its pro-  
grammed value. At this time, MC goes high and remains high-  
until the ÷ N counter has counted the rest of the way down-  
from its programmed value (N – A additional counts since  
both ÷ N and ÷ A are counting down during the first portion of  
the cycle). MC is then set back low, the counters preset to their  
V
DD  
Positive Power Supply (Pin 5)  
The positive power supply potential. This pin may range  
from + 3 to + 9 V with respect to V  
.
SS  
V
SS  
Negative Power Supply (Pin 7)  
The most negative supply potential. This pin is usually-  
ground.  
Page 15 of 35  
www.lansdale.com  
Issue A  
ML145156  
LANSDALE Semiconductor, Inc.  
ML145156  
TYPICAL APPLICATIONS  
+ 12 V  
LOCK DETECT SIGNAL  
3.2 MHz  
NOTES 1  
AND 2  
FM B +  
+ 12 V  
AM B +  
+ V  
OSC  
OSC  
RA2 RA1 RA0 LD SW1 SW2  
in  
out  
OPTIONAL  
LOOP  
ERROR SIGNAL  
PD  
out  
V
V
DD  
+
φ
ML145156  
R
SS  
VCO  
REF  
φ
V
out  
1/2 MC1458  
NOTE 3  
f
CLK  
DATA  
ENB  
in  
MC  
KEY–  
BOARD  
CMOS MPU/MCU  
ML12019  
20/21 DUAL MODULUS PRESCALER  
÷
TO DISPLAY DRIVER (e.g., MC14489)  
NOTES:  
1. For AM: channel spacing = 5 kHz,  
2. For FM: channel spacing = 25 kHz,  
÷
R =  
÷
640 (code 100).  
÷ 128 (code 010).  
÷
R =  
3. Theφ andφ outputsarefedtoanexternalcombiner/loopfilter.SeethePhase–LockedLoopLow–PassFilterDesignpage  
R
V
for additional information. The φ and φ outputs swing rail–to–rail. Therefore, the user should be careful not to exceed the  
R
V
common mode input range of the op amp used in the combiner/loop filter.  
Figure 1. AM/FM Radio Broadcast Synthesizer  
3.2 MHz (NOTE 3)  
VCO RANGE  
NAV = 01  
COM = 10  
NAV: 97.300 – 107.250 MHz  
COM–T: 118.000 – 135.975 MHz  
COM–R: 139.400 – 157.375 MHz  
LOCK DETECT SIGNAL  
+ V  
OSC  
OSC  
out  
RA2 RA1 RA0 LD SW1 SW2  
in  
PD  
out  
V
V
DD  
+
ML145156  
φ
R
SS  
VCO  
REF  
φ
V
out  
MC33171  
NOTE 5  
f
CLK  
DATA  
ENB  
in  
MC  
CMOS MPU/MCU  
R/T  
ML12016 (NOTES 2 AND 4)  
40/41 DUAL MODULUS PRESCALER  
÷
CHANNEL  
TO DISPLAY DRIVER  
SELECTION  
(e.g., MC14489)  
NOTES:  
1. For NAV: f = 50 kHz,  
÷
R = 64 using 10.7 MHz lowside injection, N  
= 1946 – 2145.  
total  
R
For COM–T: f = 25 kHz,  
÷
÷
R = 128, N  
= 4720 – 5439.  
R
total  
R = 128, using 21.4 MHz highside injection, N  
For COM–R: f = 25 kHz,  
= 5576 – 6295.  
R
total  
32/33 dual modulus approach is provided by substituting an ML12015 for the ML12016.The devices are pin equivalent.  
3. A 6.4 MHz oscillator crystal can be used by selecting R = 128 (code 010) for NAV and R = 256 (code 011) for COM.  
4. ML12013 + MC10131 combination may also be used to form the 40/41 prescale.r  
5. The φ and φ outputs are fed to an external combiner/loop filter. See the Phase–Locked Loop – Low–Pass Filter Design  
2. A  
÷
÷
÷
÷
R
V
page for additional information.The φ and φ outputs swing rail–to–rail.Therefore, the user should be careful not to exceed  
R
V
the common mode input range of the op amp used in the combiner/loop filter.  
Figure 2. Avionics Navigation or Communication Synthesizer  
ML145156 Data Sheet Continued on Page 23  
Page 16 of 35  
www.lansdale.com  
Issue A  
ML145157  
Serial–Input PLL  
Frequency Synthesizer  
Interfaces with Single–Modulus Prescalers  
Legacy Device: Motorola/Freescale MC145157-2  
The ML145157 has a fully programmable 14–bit reference  
counter, as well as a fully programmable ÷ N counter. The  
counters are programmed serially through a common data  
input and latched into the appropriate counter latch, accord-  
ing to the last data bit (control bit) entered.  
P DIP 16 = EP  
PLASTIC DIP  
CASE 648  
16  
1
• Operating Temperature Range: T = – 40 to 85°C  
A
• Low Power Consumption Through Use of CMOS  
Technology  
SOG 16 = -5P  
SOG PACKAGE  
CASE 751G  
16  
1
• 3.0 to 9.0 V Supply Range  
• Fully Programmable Reference and ÷ N Counters  
• ÷ R Range = 3 to 16383  
• ÷ N Range = 3 to 16383  
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
MOTOROLA  
LANSDALE  
P DIP 16  
MC145157P2  
ML145157EP  
SOG 20W  
MC145157DW2 ML145157-5P  
• f and f Outputs  
V
R
• Lock Detect Signal  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
• Compatible with the Serial Peripheral Interface  
(SPI) on CMOS MCUs  
• “Linearized” Digital Phase Detector  
• Single–Ended (Three–State) or Double–Ended Phase  
Detector Outputs  
PIN ASSIGNMENT  
• Chip Complexity: 6504 FETs or 1626 Equivalent Gates  
OSC  
in  
1
2
16  
15  
φ
φ
R
OSC  
out  
V
f
3
4
14  
13  
REF  
V
out  
V
f
R
DD  
out  
PD  
5
6
12  
11  
S/R  
out  
V
ENB  
DATA  
CLK  
SS  
LD  
7
10  
9
f
8
in  
Page 17 of 35  
www.lansdale.com  
Issue A  
ML145157  
LANSDALE Semiconductor, Inc.  
ML145157 BLOCK DIAGRAM  
14–BIT SHIFT REGISTER  
14  
f
R
ENB  
REFERENCE COUNTER LATCH  
14  
LOCK  
DETECT  
LD  
PD  
OSC  
14–BIT  
÷
R COUNTER  
in  
out  
out  
PHASE  
DETECTOR  
A
OSC  
REF  
out  
PHASE  
DETECTOR  
B
φ
φ
V
14–BIT  
÷
N COUNTER  
14  
f
in  
R
÷
N COUNTER LATCH  
14  
f
V
1–BIT  
CONTROL  
S/R  
DATA  
CLK  
S/R  
out  
14–BIT SHIFT REGISTER  
PIN DESCRIPTIONS  
the control bit is at a logic low. A logic low on this pin allows  
the user to change the data in the shift registers without affect-  
ing the counters. ENB is normally low and is pulsed high to  
transfer data to the latches.  
INPUT PINS  
fin  
Frequency Input (Pin 8)  
OSCin, OSCout  
Reference Oscillator Input/Output (Pins 1, 2)  
Input frequency from VCO output. A rising edge signal on  
this input decrements the ÷ N counter. This input has an invert-  
er biased in the linear region to allow use with AC coupled sig-  
nals as low as 500 mV p–p. For larger amplitude signals (stan-  
dard CMOS logic levels), DC coupling may be used.  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be con-  
nected from OSC to ground and OSC  
to ground. OSC  
in  
out  
in  
may also serve as the input for an externally–generated refer-  
CLK, DATA  
Shift Clock, Serial Data Inputs (Pins 9, 10)  
ence signal. This signal is typically AC coupled to OSC , but  
in  
for larger amplitude signals (standard CMOS logic levels) DC  
coupling may also be used. In the external reference mode, no  
Each low–to–high transition of the clock shifts one bit of  
data into the on–chip shift registers. The last data bit entered  
determines which counter storage latch is activated; a logic  
1selects the reference counter latch and a logic 0 selects the  
÷ N counter latch. The entry format is as follows:  
connection is required to OSC  
.
out  
OUTPUT PINS  
PD  
out  
Single–Ended Phase Detector A Output (Pin 5)  
This single–ended (three–state) phase detector output pro-  
duces a loop–error signal that is used with a loop filter to con-  
trol a VCO.  
Frequency fV > fR or fV Leading: Negative Pulses  
Frequency fV < fR or fV Lagging: Positive Pulses  
Frequency fV = fR and Phase Coincidence:  
High–Impedance State  
FIRST DATA BIT INTO SHIFT REGISTER  
ENB  
Latch Enable Input (Pin 11)  
φR, φV  
Double–Ended Phase Detector B Outputs (Pins 16, 15)  
These outputs can be combined externally for a loop–error  
signal. A single–ended output is also available for this purpose  
A logic high on this pin latches the data from the shift regis-  
ter into the reference divider or ÷ N latches depending on the  
control bit. The reference divider latches are activated if the  
control bit is at a logic high and the ÷ N latches are activated if  
(see PD ).  
out  
Page 18 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145157  
ML145157  
REF  
If frequency f is greater than f or if the phase of f is  
out  
V
R
V
Buffered Reference Oscillator Output (Pin 14)  
leading, then error information is provided by φ pulsing low.  
V
This output can be used as a second local oscillator, refer-  
ence oscillator to another frequency synthesizer, or as the sys-  
tem clock to a microprocessor controller.  
φ remains essentially high.  
R
If the frequency f is less than f or if the phase of fV is  
V
R
lagging, then error information is provided by φ pulsing low.  
R
φ
remains essentially high.  
V
S/R  
out  
If the frequency of f = f and both are in phase, then both  
and φ remain high except for a small minimum time peri-  
V
R
Shift Register Output (Pin 12)  
φ
V
R
od when both pulse low in phase.  
This output can be connected to an external shift register to  
provide band switching, control information, and counter pro-  
gramming code checking.  
f , f  
R V  
RCounter Output, N Counter Output (Pins 13, 3)  
Buffered, divided reference and f frequency outputs. The  
in  
POWER SUPPLY  
f and f outputs are connected internally to the ÷ R and ÷ N  
R
V
counter outputs respectively, allowing the counters to be used  
independently, as well as monitoring the phase detector inputs.  
V
DD  
Positive Power Supply (Pin 4)  
The positive power supply potential. This pin may range  
LD  
from +3 to +9 V with respect to V  
.
SS  
Lock Detector Output (Pin 7)  
This output is essentially at a high level when the loop is  
V
SS  
Negative Power Supply (Pin 6)  
locked (f , f of same phase and frequency), and pulses low  
R V  
when loop is out of lock.  
The most negative supply potential. This pin is usually  
ground.  
Page 19 of 35  
www.lansdale.com  
Issue A  
ML145158  
Serial–Input PLL  
Frequency Synthesizer  
Interfaces with Dual–Modulus Prescalers  
Legacy Device: Motorola/Freescale MC145158-2  
The ML145158 has a fully programmable 14–bit reference  
counter, as well as fully programmable ÷ N and ÷ A counters.  
The counters are programmed serially through a common  
data input and latched into the appropriate counter latch,  
according to the last data bit (control bit) entered.  
P DIP 16 = EP  
PLASTIC DIP  
CASE 648  
16  
1
• Operating Temperature Range: T  
A =  
• Low Power Consumption Through Use of CMOS  
Technology  
– 40 to 85°C  
SOG 16 = -5P  
SOG PACKAGE  
CASE 751G  
16  
1
• 3.0 to 9.0 V Supply Range  
• Fully Programmable Reference and ÷ N Counters  
• ÷ R Range = 3 to 16383  
• ÷ N Range = 3 to 1023  
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
MOTOROLA  
LANSDALE  
P DIP 16  
SOG 16  
MC145158P2  
MC145158DW2 ML145158-5P  
ML145158EP  
• Dual Modulus Capability; ÷ A Range = 0 to 127  
• f and f Outputs  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
V
R
• Lock Detect Signal  
• Compatible with the Serial Peripheral Interface (SPI) on  
CMOS MCUs  
• “Linearized” Digital Phase Detector  
• Single–Ended (Three–State) or Double–Ended Phase  
Detector Outputs  
• Chip Complexity: 6504 FETs or 1626  
Equivalent Gates  
PIN ASSIGNMENT  
OSC  
in  
1
2
16  
15  
φ
φ
R
OSC  
out  
V
f
3
4
14  
13  
REF  
out  
V
V
f
R
DD  
out  
PD  
5
6
12  
11  
MC  
V
ENB  
SS  
LD  
7
10  
9
DATA  
CLK  
f
8
in  
Page 20 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML145158  
ML145158 BLOCK DIAGRAM  
14–BIT SHIFT REGISTER  
14  
f
R
ENB  
REFERENCE COUNTER LATCH  
14  
LOCK  
DETECT  
LD  
PD  
OSC  
in  
14–BIT  
÷ RCOUNTER  
PHASE  
DETECTOR  
A
OSC  
out  
out  
out  
CONTROL LOGIC  
REF  
7–BIT  
COUNTER  
÷
A
10–BIT ÷ N  
PHASE  
DETECTOR  
B
φ
φ
V
f
in  
COUNTER  
R
7
10  
÷
A COUNTER  
LATCH  
÷
N COUNTER  
LATCH  
f
V
7
10  
1–BIT  
CONTROL  
S/R  
DATA  
CLK  
MC  
7–BIT S/R  
10–BIT S/R  
÷
A
÷
N
PIN DESCRIPTIONS  
INPUT PINS  
Frequency Input (Pin 8)  
f
in  
Input frequency from VCO output. A rising edge signal on  
this input decrements the ÷ A and ÷ N counters. This input has  
an inverter biased in the linear region to allow use with AC  
coupled signals as low as 500 mV p–p. For larger amplitude  
signals (standard CMOS logic levels), DC coupling may be  
used.  
FIRST DATA BIT INTO SHIFT REGISTER  
ENB  
Latch Enable Input (Pin 11)  
A logic high on this pin latches the data from the shift regis-  
ter into the reference divider or ÷ N, ÷ A latches depending on  
the control bit. The reference divider latches are activated if the  
control bit is at a logic high and the ÷ N, ÷ A latches are acti-  
vated if the control bit is at a logic low. A logic low on this pin  
allows the user to change the data in the shift registers without  
affecting the counters. ENB is normally low and is pulsed high  
to transfer data to the latches.  
CLK, DATA  
Shift Clock, Serial Data Inputs (Pins 9, 10)  
Each low–to–high transition of the CLK shifts one bit of  
data into the on–chip shift registers. The last data bit entered  
determines which counter storage latch is activated; a logic 1  
selects the reference counter latch and a logic 0 selects the  
÷ A, ÷ N counter latch. The data entry format is as follows:  
OSC , OSC  
in  
out  
Reference Oscillator Input/Output (Pins 1, 2)  
These pins form an on–chip reference oscillator when con-  
nected to terminals of an external parallel resonant crystal.  
Frequency setting capacitors of appropriate value must be con-  
÷
R
nected from OSC to ground and OSC  
to ground. OSC  
in  
out  
in  
may also serve as the input for an externally–generated refer-  
ence signal. This signal is typically AC coupled to OSC , but  
in  
for larger amplitude signals (standard CMOS logic levels) DC  
coupling may also be used. In the external reference mode, no  
FIRST DATA BIT INTO SHIFT REGISTER  
connection is required to OSC  
.
out  
Page 21 of 35  
www.lansdale.com  
Issue A  
ML145158  
LANSDALE Semiconductor, Inc.  
ML145158  
OUTPUT PINS  
lus prescaler divide values respectively for high and low modu-  
lus control levels, N the number programmed into the ÷ N  
counter, and A the number programmed into the ÷ A counter.  
Note that when a prescaler is needed, the dual–modulus ver-  
sion offers a distinct advantage. The dual–modulus prescaler  
allows a higher reference frequency at the phase detector input,  
increasing system performance capability, and simplifying the  
loop filter design.  
PD  
out  
Phase Detector A Output (Pin 5)  
This single–ended (three–state) phase detector output pro-  
duces a loop–error signal that is used with a loop filter to con-  
trol a VCO.  
Frequency f > f or f Leading: Negative Pulses  
V
R
V
V
Frequency f < f or f Lagging: Positive Pulses  
V
R
f , f  
R V  
Frequency f = f and Phase Coincidence:  
V
R
R Counter Output, N Counter Output (Pins 13, 3)  
High–Impedance State  
Buffered, divided reference and fin frequency outputs. The  
φR, φV  
f and f outputs are connected internally to the ÷ R and ÷ N  
R
V
Phase Detector B Outputs (Pins 16, 15)  
counter outputs respectively, allowing the counters to be used  
independently, as well as monitoring the phase detector inputs.  
Double–ended phase detector outputs. These outputs can be  
combined externally for a loop–error signal. A single–ended  
LD  
output is also available for this purpose (see PD ).  
out  
Lock Detector Output (Pin 7)  
If frequency f is greater than f or if the phase of f is  
V
R
V
leading, then error information is provided by φ pulsing low.  
This output is essentially at a high level when the loop is  
V
φ remains essentially high.  
locked (f , f of same phase and frequency), and pulses low  
R
R V  
If the frequency f is less than f or if the phase of f is  
when loop is out of lock.  
V
R
V
lagging, then error information is provided by φ pulsing low.  
R
φ
remains essentially high.  
REF  
out  
V
If the frequency of f = f and both are in phase, then both  
Buffered Reference Oscillator Output (Pin 14)  
V
R
φ
and φ remain high except for a small minimum time peri-  
V
R
This output can be used as a second local oscillator, refer-  
ence oscillator to another frequency synthesizer, or as the sys-  
tem clock to a microprocessor controller.  
od when both pulse low in phase.  
MC  
Dual–Modulus Prescaler Control Output (Pin 12)  
POWER SUPPLY  
This output generates a signal by the on–chip control logic  
circuitry for controlling an external dual–modulus prescaler.  
The MC level is low at the beginning of a count cycle and  
remains low until the ÷ A counter has counted down from its  
programmed value. At this time, MC goes high and remains  
high until the ÷ N counter has counted the rest of the way  
down from its programmed value (N – A additional counts  
since both ÷ N and ÷ A are counting down during the first por-  
tion of the cycle). MC is then set back low, the counters preset  
to their respective programmed values, and the above sequence  
repeated. This provides for a total programmable divide value  
V
DD  
Positive Power Supply (Pin 4)  
The positive power supply potential. This pin may range  
from + 3 to + 9 V with respect to VSS.  
V
SS  
Negative Power Supply (Pin 6)  
The most negative supply potential. This pin is usually-  
ground.  
(N ) = N • P + A where P and P + 1 represent the dual–modu-  
T
Page 22 of 35  
www.lansdale.com  
#
LANSDALE Semiconductor, Inc.  
ML1451xx  
ML14515X FAMILY CHARACTERISTICS AND DESCRIPTIONS - CONTINUED  
MAXIMUM RATINGS* (Voltages Referenced to V  
)
SS  
These devices contain protection circuitry to  
Symbol  
Parameter  
DC Supply Voltage  
Value  
Unit  
V
protect against damage due to high static  
voltages or electric fields. However, precau-  
tionsmust betakentoavoidapplicationsofany  
voltage higher than maximum rated voltages  
to these high–impedance circuits. For proper  
V
DD  
– 0.5 to + 10.0  
V , V  
in out  
Input or Output Voltage (DC or Transient)  
except SW1, SW2  
– 0.5 to V  
+ 0.5  
DD  
V
operation, V and V  
to the range V  
SS  
except for SW1 and SW2.  
SW1 and SW2 can be tied through external  
resistors to voltages as high as 15 V, indepen-  
dent of the supply voltage.  
Unused inputs must always be tied to an  
appropriatelogicvoltagelevel(e.g.,eitherV  
should be constrained  
V
Output Voltage (DC or Transient),  
– 0.5 to + 15  
10  
V
in  
out  
out  
(V or V  
in out  
)
V
DD  
SW1, SW2 (R  
= 4.7 k)  
pull–up  
I
, I  
in out  
Input or Output Current (DC or Transient),  
per Pin  
mA  
I
, I  
Supply Current, V  
or V  
Pins  
SS  
30  
500  
mA  
mW  
C
DD SS  
DD  
P
Power Dissipation, per Package†  
Storage Temperature  
D
SS  
orV ),exceptforinputswithpull–updevices.  
DD  
Unused outputs must be left open.  
T
stg  
– 65 to + 150  
260  
T
Lead Temperature, 1 mm from Case for  
10 seconds  
C
L
* Maximum Ratings are those values beyond which damage to the device may occur.  
Functional operation should be restricted to the limits in the Electrical Characteristics  
tables or Pin Descriptions section.  
†Power Dissipation Temperature Derating:  
Plastic DIP: – 12 mW/ C from 65 to 85 C  
SOG Package: – 7 mW/ C from 65 to 85 C  
ELECTRICAL CHARACTERISTICS (Voltages Referenced to V  
)
SS  
– 40 C  
25 C  
Max  
85 C  
Max  
V
DD  
V
Symbol  
Parameter  
Test Condition  
Unit  
Min  
Max  
Min  
Min  
V
DD  
Power Supply Voltage  
Range  
3
9
3
9
3
9
V
I
ss  
Dynamic Supply Current  
f
= OSC = 10 MHz,  
3
5
9
3.5  
10  
30  
3
7.5  
24  
3
7.5  
24  
mA  
in  
in  
1 V p–p AC coupled sine  
wave  
R = 128, A = 32, N = 128  
I
Quiescent Supply Current  
(not including pull–up  
current component)  
V
= V  
DD  
= 0 µA  
or V  
SS  
3
5
9
800  
1200  
1600  
800  
1200  
1600  
1600  
2400  
3200  
µA  
SS  
in  
I
out  
V
Input Voltage – f , OSC  
in  
Input AC coupled sine wave  
500  
500  
500  
mV p–p  
V
in  
in  
V
IL  
LowLevel Input V oltage  
– f , OSC  
V
2.1 V  
3.5 V  
6.3 V square wave  
Input DC  
coupled  
3
5
9
0
0
0
0
0
0
0
0
0
out  
V
out  
in  
in  
V
out  
V
High–Level Input Voltage  
– f , OSC  
V
0.9 V  
1.5 V  
2.7 V square wave  
Input DC  
coupled  
3
5
9
3.0  
5.0  
9.0  
3.0  
5.0  
9.0  
3.0  
5.0  
9.0  
V
V
V
IH  
out  
V
out  
in  
in  
V
out  
V
Low–Level Input Voltage  
– except f , OSC  
3
5
9
0.9  
1.5  
2.7  
0.9  
1.5  
2.7  
0.9  
1.5  
2.7  
IL  
in  
in  
V
IH  
High–Level Input Voltage  
– except f , OSC  
3
5
9
2.1  
3.5  
6.3  
2.1  
3.5  
6.3  
2.1  
3.5  
6.3  
in  
in  
I
Input Current (f , OSC  
in  
)
in  
V
V
= V  
= V  
or V  
SS  
9
9
2
50  
2
25  
2
22  
µA  
µA  
in  
in  
DD  
SS  
I
IL  
Input Leakage Current  
(Data, CLK, ENB –  
without pull–ups)  
– 0.3  
– 0.1  
– 1.0  
in  
I
IH  
Input Leakage Current (all  
inputs except f , OSC  
V
in  
= V  
9
0.3  
0.1  
1.0  
µA  
DD  
)
in  
in  
(continued)  
Page 23 of 35  
www.lansdale.com  
Issue A  
ML1451xx  
LANSDALE Semiconductor, Inc.  
DC ELECTRICAL CHARACTERISTICS (continued)  
– 40 C  
25 C  
85 C  
V
DD  
V
Symbol  
Parameter  
Test Condition  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
I
IL  
Pull–up Current (all inputs  
with pull–ups)  
V
in  
= V  
9
– 20  
– 400  
– 20  
– 200  
– 20  
– 170  
µA  
SS  
C
Input Capacitance  
Low–Level Output  
10  
10  
10  
pF  
V
in  
V
OL  
I
V
0 µA  
3
5
9
0.9  
1.5  
2.7  
0.9  
1.5  
2.7  
0.9  
1.5  
2.7  
out  
in  
Voltage – OSC  
= V  
out  
DD  
V
OH  
High–Level Output  
Voltage – OSC  
I
V
0 µA  
3
5
9
2.1  
3.5  
6.3  
2.1  
3.5  
6.3  
2.1  
3.5  
6.3  
V
out  
in  
= V  
out  
SS  
V
OL  
Low–Level Output  
Voltage – Other Outputs  
I
0 µA  
3
5
9
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
0.05  
V
out  
V
OH  
High–Level Output  
Voltage – Other Outputs  
I
0 µA  
3
5
9
2.95  
4.95  
8.95  
2.95  
4.95  
8.95  
2.95  
4.95  
8.95  
V
out  
V
Drain–to–Source  
Breakdown Voltage –  
SW1, SW2  
R
= 4.7 kΩ  
pull–up  
15  
15  
15  
V
(BR)DSS  
I
Low–Level Sinking  
Current – MC  
V
= 0.3 V  
= 0.4 V  
= 0.5 V  
3
5
9
1.30  
1.90  
3.80  
1.10  
1.70  
3.30  
0.66  
1.08  
2.10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
OL  
out  
V
out  
V
out  
I
High–Level Sourcing  
Current – MC  
V
= 2.7 V  
= 4.6 V  
= 8.5 V  
3
5
9
– 0.60  
– 0.90  
– 1.50  
– 0.50  
– 0.75  
– 1.25  
– 0.30  
– 0.50  
– 0.80  
OH  
out  
V
V
out  
out  
I
Low–Level Sinking  
Current – LD  
V
= 0.3 V  
= 0.4 V  
= 0.5 V  
3
5
9
0.25  
0.64  
1.30  
0.20  
0.51  
1.00  
0.15  
0.36  
0.70  
OL  
out  
V
V
out  
out  
I
High–Level Sourcing  
Current – LD  
V
= 2.7 V  
= 4.6 V  
= 8.5 V  
3
5
9
– 0.25  
– 0.64  
– 1.30  
– 0.20  
– 0.51  
– 1.00  
– 0.15  
– 0.36  
– 0.70  
OH  
out  
V
V
out  
out  
I
Low–Level Sinking  
Current – SW1, SW2  
V
= 0.3 V  
= 0.4 V  
= 0.5 V  
3
5
9
0.80  
1.50  
3.50  
0.48  
0.90  
2.10  
0.24  
0.45  
1.05  
OL  
OL  
OH  
out  
V
out  
V
out  
I
Low–Level Sinking  
Current – Other Outputs  
V
= 0.3 V  
= 0.4 V  
= 0.5 V  
3
5
9
0.44  
0.64  
1.30  
0.35  
0.51  
1.00  
0.22  
0.36  
0.70  
out  
V
out  
V
out  
I
High–Level Sourcing  
Current – Other Outputs  
V
= 2.7 V  
= 4.6 V  
= 8.5 V  
3
5
9
– 0.44  
– 0.64  
– 1.30  
– 0.35  
– 0.51  
– 1.00  
– 0.22  
– 0.36  
– 0.70  
out  
V
out  
V
out  
I
I
Output Leakage Current –  
V
= V  
or V  
SS  
9
0.3  
0.3  
10  
0.1  
0.1  
10  
1.0  
3.0  
10  
µA  
µA  
pF  
OZ  
out  
DD  
PD  
Output in Off State  
out  
Output Leakage Current –  
SW1, SW2  
V
out  
= V or V  
SS  
9
OZ  
DD  
Output in Off State  
C
Output Capacitance –  
PD – Three–State  
out  
out  
PD  
out  
Page 24 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML1451xx  
AC ELECTRICAL CHARACTERISTICS (C = 50 pF, Input t = t = 10 ns)  
L
r
f
V
DD  
V
Guaranteed Limit  
Guaranteed Limit  
255C  
– 40 to 85°C  
Symbol  
, t  
Parameter  
Unit  
t
Maximum Propagation Delay, f to MC  
in  
3
5
9
110  
60  
35  
120  
70  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLH PHL  
(Figures 1 and 4)  
t
Maximum Propagation Delay, ENB to SW1, SW2  
(Figures 1 and 5)  
3
5
9
160  
80  
50  
180  
95  
60  
PHL  
t
w
Output Pulse Width, φ , φ , and LD with f in Phase with f  
V
3
5
9
25 to 200  
20 to 100  
10 to 70  
25 to 260  
20 to 125  
10 to 80  
R
V
R
(Figures 2 and 4)  
t
t
Maximum Output Transition Time, MC  
(Figures 3 and 4)  
3
5
9
115  
60  
40  
115  
75  
60  
TLH  
Maximum Output Transition Time, MC  
(Figures 3 and 4)  
3
5
9
60  
34  
30  
70  
45  
38  
THL  
t
, t  
TLH THL  
Maximum Output Transition Time, LD  
(Figures 3 and 4)  
3
5
9
180  
90  
70  
200  
120  
90  
t
, t  
TLH THL  
Maximum Output Transition Time, Other Outputs  
(Figures 3 and 4)  
3
5
9
160  
80  
60  
175  
100  
65  
SWITCHING WAVEFORMS  
V
DD  
SS  
INPUT  
50%  
– V  
t
w
t
t
PHL  
PLH  
50%  
φ
, φ , LD*  
R V  
OUTPUT  
50%  
* f in phase with f .  
R
V
Figure 1.  
Figure 2.  
t
t
THL  
TLH  
ANY  
OUTPUT  
90%  
10%  
Figure 3.  
V
DD  
TEST POINT  
15 k  
TEST POINT  
OUTPUT  
OUTPUT  
DEVICE  
UNDER  
TEST  
DEVICE  
UNDER  
TEST  
C *  
C *  
L
L
* Includes all probe and fixture capacitance.  
Figure 4. Test Circuit  
* Includes all probe and fixture capacitance.  
Figure 5. Test Circuit  
Page 25 of 35  
www.lansdale.com  
Issue A  
ML1451xx  
LANSDALE Semiconductor, Inc.  
TIMING REQUIREMENTS (Input t = t = 10 ns unless otherwise indicated)  
r
f
V
DD  
V
Guaranteed Limit  
25 C  
Guaranteed Limit  
– 40 to 85 C  
Symbol  
Parameter  
Unit  
f
Serial Data Clock Frequency, Assuming 25% Duty Cycle  
3
5
9
DC to 5.0  
DC to 7.1  
DC to 10  
DC to 3.5  
DC to 7.1  
DC to 10  
MHz  
clk  
NOTE: Refer to CLK t  
(Figure 6)  
below  
w(H)  
t
Minimum Setup Time, Data to CLK  
(Figure 7)  
3
5
9
30  
20  
18  
30  
20  
18  
ns  
ns  
ns  
ns  
ns  
µs  
su  
t
Minimum Hold Time, CLK to Data  
(Figure 7)  
3
5
9
40  
20  
15  
40  
20  
15  
h
t
su  
Minimum Setup Time, CLK to ENB  
(Figure 7)  
3
5
9
70  
32  
25  
70  
32  
25  
t
Minimum Recovery Time, ENB to CLK  
(Figure 7)  
3
5
9
5
10  
20  
5
10  
20  
rec  
t
Minimum Pulse Width, CLK and ENB  
(Figure 6)  
3
5
9
50  
35  
25  
70  
35  
25  
w(H)  
t , t  
r
Maximum Input Rise and Fall Times – Any Input  
(Figure 8)  
3
5
9
5
4
2
5
4
2
f
SWITCHING WAVEFORMS  
– V  
DD  
t
DATA  
w(H)  
50%  
– V  
DD  
V
SS  
CLK,  
ENB  
t
su  
50%  
t
h
V
*
SS  
1
– V  
DD  
4 f  
clk  
LAST  
CLK  
FIRST  
CLK  
CLK  
ENB  
50%  
V
SS  
*Assumes 25% Duty Cycle.  
t
t
su  
rec  
– V  
DD  
Figure 6.  
50%  
V
SS  
PREVIOUS  
DATA  
LATCHED  
t
t
f
r
ANY  
OUTPUT  
– V  
DD  
90%  
10%  
Figure 7.  
V
SS  
Figure 8.  
Page 26 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML1451xx  
FREQUENCY CHARACTERISTICS (Voltages References to V , C = 50 pF, Input t = t =10 ns unless otherwise indicated)  
SS  
L
r
f
– 40 C  
25 C  
Max  
85 C  
Max  
V
DD  
V
Symbol  
Parameter  
Input Frequency  
Test Condition  
Min  
Max  
Min  
Min  
Unit  
f
i
R 8, A 0, N 8  
= 500 mV p–p  
AC coupled sine wave  
3
5
9
6
15  
15  
6
15  
15  
6
15  
15  
MHz  
MHz  
MHz  
(f , OSC  
)
in  
V
in  
in  
R 8, A 0, N 8  
= 1 V p–p AC coupled  
sine wave  
3
5
9
12  
22  
25  
12  
20  
22  
7
20  
22  
V
in  
R 8, A 0, N 8  
3
5
9
13  
25  
25  
12  
22  
25  
8
22  
25  
V
in  
= V  
to V  
DD  
SS  
DC coupled square wave  
NOTE: Usually, the PLL's propagation delay from f to MC plus the setup time of the prescaler determines the upper frequency limit of the system.  
in  
The upper frequency limit is found with the following formula:f = P /(t + t ) where f is the upper frequency in Hz, P is the lower of the dual  
P
set  
modulus prescaler ratios, t is the f to MC propagation delay in seconds, and t  
is the prescaler setup time in seconds.  
P
in  
set  
For example, with a 5 V supply, the f to MC delay is 70 ns. If the MC12028A prescaler is used, the setup time is 16 ns. Thus, if the 64/65  
ratio is utilized, the upper frequency limit is f = P/(t + t ) = 64/(70 + 16) = 744 MHz.  
set  
in  
P
f
V
R
H
REFERENCE  
OSC  
÷
R
V
V
L
f
H
V
FEEDBACK  
(f N)  
÷
V
V
in  
L
H
*
HIGH IMPEDANCE  
PD  
out  
V
V
L
H
φ
R
V
V
L
H
φ
V
V
V
L
H
LD  
V
L
V
H
V
L
= High Voltage Level.  
= Low Voltage Level.  
* At this point, when both f and f are in phase, the output is forced to near mid–supply.  
R
V
NOTE: The PD  
generates error pulses during out–of–lock conditions.When locked in phase and frequency the output is high  
out  
and the voltage at this pin is determined by the low–pass filter capacitor.  
Figure 9. Phase Detector/Lock Detector Output Waveforms  
Page 27 of 35  
www.lansdale.com  
Issue A  
ML1451xx  
LANSDALE Semiconductor, Inc.  
DESIGN CONSIDERATIONS  
PHASE–LOCKED LOOP – LOW–PASS FILTER DESIGN  
K
K
φ
VCO  
A)  
PD  
out  
VCO  
ω
=
=
n
NR C  
R
1
1
φ
R
V
C
Nω  
n
ζ
φ
2K  
K
VCO  
φ
1
F(s) =  
R sC + 1  
1
PD  
B)  
VCO  
out  
K
K
φ
VCO  
R
ω
=
1
n
NC(R + R )  
1
2
φ
R
R
2
N
)
(
R C +  
2
φ
ζ
=
0.5  
ω
C
V
n
K
K
VCO  
φ
R sC + 1  
2
F(s) =  
(R + R )sC + 1  
1
2
R
2
K
K
VCO  
PD  
C)  
φ
out  
ω
=
n
NCR  
C
1
R
R
1
_
+
φ
R
ω
R C  
2
A
VCO  
n
φ
V
ζ
=
2
1
ASSUMING GAIN A IS VERY LARGE, THEN:  
R sC + 1  
R
2
2
C
F(s) =  
R sC  
1
NOTE: Sometimes R is split into two series resistors, each R ÷2. A capacitor C is then placed from the midpoint to ground to further  
1
R
1
C
filter φ and φ . The value of C should be such that the corner frequency of this network does not significantly affect ω .  
V
C
n
The φ and φ outputs swing rail–to–rail.Therefore, the user should be careful not to exceed the common mode input range of the  
R
V
op amp used in the combiner/loop filter.  
DEFINITIONS:  
N = Total Division Ratio in feedback loop  
K
φ
K
φ
(Phase Detector Gain) = V /4π for PD  
DD  
out  
(Phase Detector Gain) = V /2π for φ and φ  
DD  
V
R
2π∆f  
VCO  
K
VCO  
(VCO Gain) =  
V  
VCO  
2πfr  
10  
for a typical design w (Natural Frequency)  
(at phase detector input).  
n
Damping Factor: ζ ≅ 1  
RECOMMENDED READING:  
Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley–Interscience, 1979.  
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley–Interscience, 1980.  
Blanchard, Alain, PhaseLocked Loops: Application to Coherent Receiver Design. New York, Wiley–Interscience, 1976.  
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley–Interscience, 1981.  
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice–Hall, 1983.  
Berlin, Howard M., Design of PhaseLocked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.  
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.  
AN535, Phase–Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.  
AR254, Phase–Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design,  
1987.  
Page 28 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML1451xx  
CRYSTAL OSCILLATOR CONSIDERATIONS  
The following options may be considered to provide a refer-  
ence frequency to Motorola's or Lansdales CMOS frequency  
synthesizers.  
C C  
in out  
C1 C2  
C1 + C2  
C =  
L
+ C + C +  
a o  
C
+ C  
out  
in  
where  
C
= 5 pF (see Figure 11)  
= 6 pF (see Figure 11)  
Use of a Hybrid Crystal Oscillator  
in  
C
out  
Commercially available temperature–compensated crystal  
oscillators (TCXOs) or crystal–controlled data clock oscilla-  
tors provide very stable reference frequencies. An oscillator  
capable of sinking and sourcing 50 µA at CMOS logic levels  
C = 1 pF (see Figure 11)  
a
C
= the crystal's holder capacitance  
(see Figure 12)  
O
C1 and C2 = external capacitors (see Figure 10)  
may be direct or DC coupled to OSC . In general, the highest  
in  
frequency capability is obtained utilizing a direct–coupled  
C
a
square wave having a rail–to–rail (V  
to V ) voltage  
DD  
SS  
swing. If the oscillator does not have CMOS logic levels on the  
outputs, capacitive or AC coupling to OSC may be used.  
C
C
out  
in  
in  
OSC , an unbuffered output, should be left floating.  
out  
For additional information about TCXOs and data clock  
oscillators, please consult the latest version of the eem Elec-  
tronic Engineers Master Catalog, the Gold Book, or similar  
publications.  
Figure 11. Parasitic Capacitances of the Amplifier  
R
L
C
S
S
S
Design an Off–Chip Reference  
1
2
1
2
The user may design an off–chip crystal oscillator using ICs  
specifically developed for crystal oscillator applications, such  
as the ML12061 MECL device. The reference signal from the  
C
O
MECL device is AC coupled to OSC . For large amplitude  
in  
R
X
e
signals (standard CMOS logic levels), DC coupling is used.  
e
2
1
OSC , an unbuffered output, should be left floating. In gen-  
out  
eral, the highest frequency capability is obtained with a di-  
rect–coupled square wave having rail–to–rail voltage swing.  
NOTE: Values are supplied by crystal manufacturer  
(parallel resonant crystal).  
Use of the On–Chip Oscillator Circuitry  
Figure 12. Equivalent Crystal Networks  
The on–chip amplifier (a digital inverter) along with an ap-  
propriate crystal may be used to provide a reference source fre-  
quency. A fundamental mode crystal, parallel resonant at the  
desired operating frequency, should be connected as shown in  
Figure 10.  
The oscillator can be “trimmed” on–frequency by making a  
portion or all of C1 variable. The crystal and associated com-  
ponents must be located as close as possible to the OSC and  
in  
OSC  
pins to minimize distortion, stray capacitance, stray  
out  
inductance, and startup stabilization time. In some cases, stray  
capacitance should be added to the value for C and C  
FREQUENCY  
SYNTHESIZER  
.
R
in out  
f
Power is dissipated in the effective series resistance of the  
crystal, Re, in Figure 12. The drive level specified by the crys-  
tal manufacturer is the maximum stress that a crystal can with-  
stand without damage or excessive shift in frequency. R1 in  
Figure 10 limits the drive level. The use of R1 may not be nec-  
essary in some cases (i.e., R1 = 0 ).  
OSC  
C1  
OSC  
out  
in  
R1*  
To verify that the maximum DC supply voltage does not  
overdrive the crystal, monitor the output frequency as a func-  
C2  
tion of voltage at OSC . (Care should be taken to minimize  
out  
loading.) The frequency should increase very slightly as the  
DC supply voltage is increased. An overdriven crystal will  
decrease in frequency or become unstable with an increase in  
supply voltage. The operating supply voltage must be reduced  
or R1 must be increased in value if the overdriven condition  
exists. The user should note that the oscillator start–up time is  
proportional to the value of R1.  
Through the process of supplying crystals for use with  
CMOS inverters, many crystal manufacturers have developed  
expertise in CMOS oscillator design with crystals. Discussions  
with such manufacturers can prove very helpful (see Table 1).  
* May be deleted in certain cases. See text.  
Figure 10. Pierce Crystal Oscillator Circuit  
For V  
DD  
= 5.0 V, the crystal should be specified for a loading  
capacitance, C , which does not exceed 32 pF for frequencies to  
L
approximately 8.0 MHz, 20 pF for frequencies in the area of 8.0 to  
15 MHz, and 10 pF for higher frequencies. These are guidelines  
that provide a reasonable compromise between IC capacitance,  
drive capability, swamping variations in stray and IC input/output  
capacitance, and realistic C values. The shunt load capacitance,  
L
C , presented across the crystal can be estimated to be:  
L
Page 29 of 35  
www.lansdale.com  
Issue A  
ML1451xx  
LANSDALE Semiconductor, Inc.  
Table 1. Partial List of Crystal Manufacturers  
United States Crystal Corp.  
Crystek Crystal  
Statek Corp.  
Fox Electronics  
NOTE: Lansdale and Motorola do not recommend one supplier over another and in no  
way suggests that this is a complete listing of crystal manufacturers.  
RECOMMENDED READING  
DESIGN GUIDELINES  
Technical Note TN–24, Statek Corp.  
Technical Note TN–7, Statek Corp.  
E. Hafner, “The Piezoelectric Crystal Unit – Definitions and  
Method of Measurement”, Proc. IEEE, Vol. 57, No. 2  
Feb.,1969.  
D. Kemper, L. Rosine, “Quartz Crystals for  
FrequencyControl”, Electro–Technology, June, 1969.  
P. J. Ottowitz, “A Guide to Crystal Selection”, Electronic  
Design, May, 1966.  
The system total divide value, N total (N ) will be dictated  
T
by the application:  
N is the number programmed into the ÷ N counter, A is the  
frequency into the prescaler  
N
=
= N • P + A  
T
frequency into the phase detector  
number programmed into the ÷ A counter, P and P + 1 are the  
two selectable divide ratios available in the dual–modulus  
prescalers. To have a range of N values in sequence, the  
T
DUAL–MODULUS PRESCALING  
OVERVIEW  
÷ A counter is programmed from zero through P – 1 for a par-  
ticular value N in the ÷ N counter. N is then incremented to N  
+ 1 and the ÷ A is sequenced from 0 through P – 1 again.  
There are minimum and maximum values that can be  
The technique of dual–modulus prescaling is well estab-  
lished as a method of achieving high performance frequency  
synthesizer operation at high frequencies. Basically, the  
approach allows relatively low–frequency programmable coun-  
ters to be used as high–frequency programmable counters with  
speed capability of several hundred MHz. This is possible with  
out the sacrifice in system resolution and performance that  
results if a fixed (single–modulus) divider is used for the  
prescaler.  
In dual–modulus prescaling, the lower speed counters must  
be uniquely configured. Special control logic is necessary to  
select the divide value P or P + 1 in the prescaler for the  
required amount of time (see modulus control definition).  
Lansdale's dual–modulus frequency synthesizers contain this  
feature and can be used with a variety of dual–modulus-  
prescalers to allow speed, complexity and cost to be tailored to  
the system requirements. Prescalers having P, P + 1 divide val-  
ues in the range of ÷ 3/÷4 to ÷128/÷ 129 can be controlled by  
most Lansdale frequency synthesizers.  
achieved for N . These values are a function of P and the size  
T
of the ÷ N and ÷ A counters.  
The constraint N A always applies. If A  
= P – 1, then  
P – 1. Then N min = (P – 1) P + A or (P – 1) P since  
max  
N
min  
T
A is free to assume the value of 0.  
NT = N  
• P + A  
max max  
max  
To maximize system frequency capability, the dual–modulus  
prescaler output must go from low to high after each group of  
P or P + 1 input cycles. The prescaler should divide by P when  
its modulus control line is high and by P + 1 when its MC is  
low.  
For the maximum frequency into the prescaler (f  
value used for P must be large enough such that:  
), the  
VCOmax  
1.f  
max divided by P may not exceed the frequency  
VCO  
capability of f (input to the ÷ N and ÷ A counters).  
in  
2.The period of f  
sum of the times:  
divided by P must be greater than the  
VCO  
Several dual–modulus prescaler approaches suitable for use  
with the MC145152 (Motorola), ML145156, or ML145158 are:  
a. Propagation delay through the dual–modulus prescaler.  
b. Prescaler setup or release time relative to its MC signal.  
c. Propagation time from f to the MC output for the  
frequency synthesizer device.  
A sometimes useful simplification in the programming code  
can be achieved by choosing the values for P of 8, 16, 32, or  
in  
ML12009  
ML12011  
ML12013  
ML12015  
ML12016  
ML12017  
ML12018  
MC12028A  
MC12034  
MC12038  
ML12052  
ML12054A  
÷5/÷6  
÷8/÷9  
440 MHz  
500 MHz  
500 MHz  
225 MHz  
225 MHz  
225 MHz  
520 MHz  
1.1 GHz  
2.0 GHz  
1.1 GHz  
1.1 GHz  
2.0 GHz  
÷10/÷11  
÷32/÷33  
64. For these cases, the desired value of N results when N  
T
T
÷40/÷41  
in binary is used as the program code to the ÷ N and ÷ A coun-  
ters treated in the following manner:  
÷64/÷65  
÷128/÷129  
÷32/33 or ÷64/65  
÷32/33 or ÷64/65  
÷127/128 or ÷255/256  
÷64/65 or ÷128/129  
÷64/65 or ÷128/129  
a
1.Assume the ÷A counter contains “a” bits where 2 P.  
2.Always program all higher order ÷A counter bits above  
“a” to 0.  
Page 30 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML1451xx  
3. Assume the ÷N counter and the ÷A counter (with all the  
higher order bits above “a” ignored) combined into a single  
binary counter of n + a bits in length (n = number of divider  
stages in the ÷N counter). The MSB of this “hypothetical”  
counter is to correspond to the MSB of ÷ N and the LSB is to  
correspond to the LSB of ÷ A. The system divide value, N ,  
T
now results when the value of N in binary is used to program  
T
the “new” n + a bit counter.  
By using the two devices, several dual–modulus values are  
achievable (shown in Figure 13).  
MC  
DEVICE A  
DEVICE B  
DEVICE  
B
DEVICE A  
MC10131  
MC10138  
ML12009  
ML12011  
ML12013  
÷
÷
20/  
÷
÷
21  
51  
÷
÷
32/  
÷
33  
÷
40/  
÷
÷
41  
50/  
80/÷  
81  
÷
100/  
101  
NOTE: ML12009, ML12011, and ML12013 are pin equivalent.  
ML12015, ML12016, and ML12017 are pin equivalent.  
Figure 13. Dual–Modulus Values  
Page 31 of 35  
www.lansdale.com  
Issue A  
ML1451xx  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
P DIP 16 = EP  
PLASTIC DIP  
CASE 648–08  
(ML145157EP, ML145158EP)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
9
B
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
M
S
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
2.54 BSC  
1.27 BSC  
0.21  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
0.100 BSC  
0.050 BSC  
0.008  
C
L
S
SEATING  
–T–  
PLANE  
K
M
0.015  
0.130  
0.305  
10°  
0.38  
3.30  
7.74  
10°  
H
J
0.110  
0.295  
0°  
2.80  
7.50  
0°  
G
D 16 PL  
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
P DIP 18 = VP  
PLASTIC DIP  
CASE 707–02  
(ML145155VP)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D),  
SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM  
MATERIAL CONDITION, IN RELATION TO  
SEATING PLANE AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
18  
10  
B
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
22.22  
6.10  
3.56  
0.36  
1.27  
MAX  
23.24  
6.60  
4.57  
0.56  
1.78  
MIN  
MAX  
A
0.875  
0.240  
0.140  
0.014  
0.050  
0.915  
0.260  
0.180  
0.022  
0.070  
L
C
G
H
J
K
L
M
N
2.54 BSC  
0.100 BSC  
1.02  
0.20  
2.92  
1.52  
0.30  
3.43  
0.040  
0.008  
0.115  
0.060  
0.012  
0.135  
K
N
J
F
D
M
SEATING  
PLANE  
7.62 BSC  
0.300 BSC  
H
G
0°  
15°  
0°  
15°  
0.51  
1.02  
0.020  
0.040  
Page 32 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML1451xx  
OUTLINE DIMENSIONS  
P DIP 20 = RP  
PLASTIC DIP  
CASE 738–03  
(ML145156RP)  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
B
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
C
L
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
F
G
J
K
L
M
N
MIN  
MAX  
1.070  
0.260  
0.180  
0.022  
MIN  
25.66  
6.10  
3.81  
0.39  
1.27 BSC  
1.27  
2.54 BSC  
0.21  
2.80  
7.62 BSC  
0°  
0.51  
MAX  
27.17  
6.60  
4.57  
0.55  
1.010  
0.240  
0.150  
0.015  
-T-  
K
SEATING  
M
0.050 BSC  
0.050  
0.100 BSC  
0.008  
0.110  
0.300 BSC  
0°  
0.020  
PLANE  
0.070  
1.77  
E
N
0.015  
0.140  
0.38  
3.55  
G
F
J 20 PL  
D 20 PL  
M
M
0.25 (0.010)  
T
B
15°  
0.040  
15°  
1.01  
M
M
0.25 (0.010)  
T
A
SOG 20 = -6P  
SOG PACKAGE  
CASE 751D–04  
(MC145155-6P, MC145156-6P)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
20  
11  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOW ABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
10X P  
–B–  
M
M
0.010 (0.25)  
B
1
10  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
MILLIMETERS  
INCHES  
20X D  
DIM  
A
B
C
D
MIN  
12.65  
7.40  
2.35  
0.35  
0.50  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
0.499  
0.292  
0.093  
0.014  
0.020  
M
S
S
0.010 (0.25)  
T
A
B
F
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0°  
0.32  
0.25  
7°  
0.010  
0.004  
0°  
0.012  
0.009  
7°  
R X 45°  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
–T–  
PLANE  
M
18X G  
K
Page 33 of 35  
www.lansdale.com  
Issue A  
LANSDALE Semiconductor, Inc.  
ML1451xx  
OUTLINE DIMENSIONS  
P DIP 28 = YP  
PLASTIC DIP  
CASE 710–02  
(ML145151YP, ML145152YP)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D),  
SHALL BE WITHIN 0.25mm (0.010) AT  
MAXIMUM MATERIAL CONDITION, IN  
RELATION TO SEATING PLANE AND  
EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS  
WHEN FORMED PARALLEL.  
3. DIMENSION B DOES NOT INCLUDE  
MOLD FLASH.  
28  
1
15  
14  
B
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
36.45  
13.72  
3.94  
0.36  
1.02  
MAX  
37.21  
14.22  
5.08  
0.56  
1.52  
MIN  
MAX  
1.435  
0.540  
0.155  
0.014  
0.040  
1.465  
0.560  
0.200  
0.022  
0.060  
L
A
C
N
G
H
J
K
L
M
N
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
0.065  
0.008  
0.115  
0.085  
0.015  
0.135  
J
H
G
M
K
SEATING  
PLANE  
15.24 BSC  
15  
1.02  
0.600 BSC  
15  
0.020 0.040  
F
D
0
0.51  
°
°
0°  
°
SO 28W = -6P  
SOG PACKAGE  
CASE 751F–04  
(ML145151-6P, ML145152–6P)  
-A-  
NOTES:  
28  
1
15  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15  
(0.006) PER SIDE.  
14X P  
M
M
-B-  
0.010 (0.25)  
B
14  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
28X D  
M
M
S
S
0.010 (0.25)  
T
A
B
R X 45°  
MILLIMETERS  
INCHES  
C
DIM  
A
B
C
D
F
G
J
K
M
P
R
MIN  
17.80  
7.40  
2.35  
0.35  
0.41  
1.27 BSC  
0.23  
0.13  
MAX  
MIN  
MAX  
-T-  
18.05  
0.701  
0.292  
0.093  
0.014  
0.016  
0.711  
-T-  
7.60  
2.65  
0.49  
0.90  
0.299  
0.104  
0.019  
0.035  
26X G  
SEATING  
PLANE  
K
F
0.050 BSC  
0.009  
0.005  
0.32  
0.29  
0.013  
0.011  
8°  
0.415  
0.029  
J
0°  
8°  
0°  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
Page 34 of 35  
www.lansdale.com  
Issue A  
ML1451xx  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
SOG 20 = -5P  
SOG PACKAGE  
CASE 751G–02  
(ML145157-5P, ML145158-5P)  
–A–  
16  
9
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
8X P  
0.010 (0.25)  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
M
M
B
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
1
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
J
16X D  
M
S
S
0.010 (0.25)  
T
A
B
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45°  
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
0.25  
0.10  
0°  
0.32  
0.25  
7°  
0.010  
0.004  
0°  
0.012  
0.009  
7°  
M
SEATING  
14X G  
K
PLANE  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliabili-  
ty, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights nor the rights of others. ÒTypical parameters which  
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may  
vary over time. All operating parameters, including Typicalsmust be validated for each customer application by the customer’s  
technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.  
Page 35 of 35  
www.lansdale.com  
Issue A  

相关型号:

ML145151_08

PLL Frequency Synthesizer Family
LANSDALE

ML145152

Parallel-Input PLL Frequency Synthesizer Interfaces with Single-Modulus Prescalers
LANSDALE

ML145152-6P

PLL Frequency Synthesizer Family
LANSDALE

ML145152YP

PLL Frequency Synthesizer Family
LANSDALE

ML145155

Parallel-Input PLL Frequency Synthesizer Interfaces with Single-Modulus Prescalers
LANSDALE

ML145155-6P

PLL Frequency Synthesizer Family
LANSDALE

ML145155VP

PLL Frequency Synthesizer Family
LANSDALE

ML145156

Parallel-Input PLL Frequency Synthesizer Interfaces with Single-Modulus Prescalers
LANSDALE

ML145156-6P

PLL Frequency Synthesizer Family
LANSDALE

ML145156RP

PLL Frequency Synthesizer Family
LANSDALE

ML145157

Parallel-Input PLL Frequency Synthesizer Interfaces with Single-Modulus Prescalers
LANSDALE

ML145157-5P

PLL Frequency Synthesizer Family
LANSDALE