ML145406-6P [LANSDALE]

Driver/Receiver EIA 232-E and CCITT V.28 (Formerly RS-232-D); 驱动器/接收器EIA 232 -E和CCITT V.28 (前身为RS- 232 -D )
ML145406-6P
型号: ML145406-6P
厂家: LANSDALE SEMICONDUCTOR INC.    LANSDALE SEMICONDUCTOR INC.
描述:

Driver/Receiver EIA 232-E and CCITT V.28 (Formerly RS-232-D)
驱动器/接收器EIA 232 -E和CCITT V.28 (前身为RS- 232 -D )

驱动器 接口集成电路 光电二极管
文件: 总10页 (文件大小:759K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ML145406  
Driver/Receiver  
EIA 232–E and CCITT V.28  
(Formerly RS–232–D)  
Legacy Device: Motorola MC145406  
The ML145406 is a silicon–gate CMOS IC that combines three drivers and  
three receivers to fulfill the electrical specifications of standards EIA 232–E  
and CCITT V.28. The drivers feature true TTL input compatibility,  
slew–rate–limited output, 300–power–off source impedance, and output typ-  
ically switching to within 25% of the supply rails. The receivers can handle up  
to 25 V while presenting 3 to 7 kimpedance. Hysteresis in the receivers  
aids reception of noisy signals. By combining both drivers and receivers in a  
single CMOS chip, the ML145406 provides efficient, low–power solutions for  
EIA 232–E and V.28 applications.  
P DIP 16 = EP  
PLASTIC  
CASE 648  
16  
1
SO 16W = -5P  
SOG  
CASE 751G  
This device offers the following performance features:  
16  
• Operating Temperature Range = T –40° to +85°C  
A
1
Drivers  
5 V to 12 V Supply Range  
• 300–Power–Off Source Impedance  
• Output Current Limiting  
• TTL Compatible  
CROSS REFERENCE/ORDERING INFORMATION  
PACKAGE  
MOTOROLA  
LANSDALE  
P DIP 16  
SO 16W  
MC145406P  
ML145406EP  
MC145406DW ML145406-6P  
• Maximum Slew Rate = 30 V/µs  
Receivers  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
25 V Input Voltage Range When V  
= 12 V, V = 12 V  
SS  
DD  
• 3 to 7 kInput Impedance  
• Hysteresis on Input Switchpoint  
BLOCK DIAGRAM  
RECEIVER  
PIN ASSIGNMENT  
V
DD  
V
DD  
V
V
1
2
16  
15  
CC  
V
DD  
CC  
V
CC  
*
15 k  
R
R
R
Rx  
+
DO1  
DI1  
Rx1  
Tx1  
DO  
3
4
5
6
7
14  
13  
12  
11  
10  
5.4 k  
D
D
D
V
1.0 V  
1.8 V  
SS  
DO2  
Rx2  
Tx2  
DI2  
HYSTERESIS  
DO3  
Rx3  
Tx3  
V
DD  
DRIVER  
V
CC  
DI3  
300  
+
DI  
GND  
V
8
LEVEL  
SHIFT  
9
SS  
Tx  
1.4 V  
D = DRIVER  
R = RECEIVER  
V
SS  
*Protection circuit  
Page 1 of 10  
www.lansdale.com  
Issue A  
ML145406  
LANSDALE Semiconductor, Inc.  
MAXIMUM RATINGS (Voltage polarities referenced to GND)  
This device contains protection circuitry to pro-  
tect the inputs against damage due to high static  
voltages or electric fields; however, it is advised  
that normal precautions be taken to avoid applica-  
tion of any voltage higher than maximum rated  
voltages to this high impedance circuit. For proper  
operation, it is recommended that the voltages at  
the DI and DO pins be constrained to the range  
Rating  
Symbol  
Value  
Unit  
DC Supply Voltages (V  
V  
CC  
)
V
– 0.5 to + 13.5  
+ 0.5 to – 13.5  
– 0.5 to + 6.0  
V
DD  
DD  
V
SS  
CC  
V
Input Voltage Range  
Rx1–3 Inputs  
V
IR  
V
(V  
SS  
– 15) to (V  
– 0.5 to (V  
CC  
+ 15)  
DD  
+ 0.5)  
DI1–3 Inputs  
GNDV V  
andGNDV V .Also,the  
DI CC  
DO CC  
voltage at the Rx pin should be constrained to  
(V – 15 V) V (V + 15 V), and Tx  
DC Current Per Pin  
Power Dissipation  
mA  
100  
1.0  
SS Rx1–3 DD  
should be constrained to V  
V  
V .  
P
D
W
°C  
°C  
SS Tx1–3  
DD  
Unused inputs must always be tied to an ap-  
Operating Temperature Range  
Storage Temperature Rate  
T
A
– 40 to + 85  
propriate logic voltage level (e.g., GND or V  
DI and Ground for Rx.)  
for  
CC  
T
stg  
– 85 to + 150  
DC ELECTRICAL CHARACTERISTICS (All polarities referenced to GND = 0 V, T = – 40 to +85°C)  
A
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Supply Voltage  
V
V
V
V
V
4.5  
– 4.5  
4.5  
5 to 12  
– 5 to – 12  
5.0  
13.2  
– 13.2  
5.5  
DD  
SS  
CC DD  
DD  
V
SS  
CC  
(V  
V  
CC  
)
V
Quiescent Supply Current (Outputs unloaded, inputs low)  
µA  
V
DD  
V
SS  
V
CC  
= + 12 V  
= – 12 V  
= + 5 V  
I
140  
340  
300  
400  
600  
450  
DD  
I
SS  
CC  
I
RECEIVER ELECTRICAL SPECIFICATIONS  
(Voltage polarities referenced to GND = 0 V, V  
= + 5 to + 12 V, V  
= – 5 to – 12 V, V V , T = – 40 to + 85°C)  
DD CC A  
DD  
SS  
Characteristic  
= 5.0 V 5%  
= 5.0 V 5%  
Symbol  
Min  
1.35  
Typ  
Max  
Unit  
Input Turn–on Threshold  
= V , V  
Rx1–Rx3  
Rx1–Rx3  
Rx1–Rx3  
Rx1–Rx3  
V
on  
1.80  
2.35  
V
V
DO1–DO3  
OL CC  
Input Turn–off Threshold  
= V , V  
V
off  
0.75  
0.6  
1.00  
0.8  
1.25  
V
V
k
V
DO1–DO3  
OH CC  
Input Threshold Hysteresis  
= 5.0 V 5%  
V
–V  
on off  
V
CC  
Input Resistance  
(V – 15 V) V  
R
3.0  
5.4  
7.0  
in  
(V  
Rx1–Rx3 DD  
+ 15 V)  
= – 3 V to (V  
SS  
High–Level Output Voltage (V  
Rx1–Rx3  
– 15 V))*  
V
OH  
V
SS  
DO1–DO3  
4.9  
3.8  
4.9  
4.3  
I
I
= – 20 µA, V  
= + 5.0 V  
CC  
= + 5.0 V  
OH  
OH  
= 1 mA, V  
CC  
Low–Level Output Voltage (V  
Rx1–Rx3  
= + 3 V to (V  
+ 15 V))* DO1–DO3  
V
OL  
V
DD  
I
I
I
= + 20 µA, V  
= + 5.0 V  
0.01  
0.02  
0.5  
0.1  
0.5  
0.7  
OL  
OL  
OL  
CC  
CC  
= + 2 mA, V  
= + 4 mA, V  
CC  
= + 5.0 V  
= + 5.0 V  
* This is the range of input voltages as specified by EIA 232–E to cause a receiver to be in the high or low logic state.  
Page 2 of 10  
www.lansdale.com  
Issue A  
ML145406  
LANSDALE Semiconductor, Inc.  
ELECTRICAL SPECIFICATIONS (Voltage polarities referenced to GND = 0 V, V  
= + 5 V 5%, T = – 40 to + 85°C)  
A
CC  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Digital Input Voltage  
Logic 0  
DI1–DI3  
DI1–DI3  
V
V
2.0  
0.8  
IL  
Logic 1  
V
IH  
Input Current  
I
in  
1.0  
µA  
V
= V  
CC  
DI1–DI3  
Output High Voltage (V  
DI1–3  
= Logic 0, R = 3.0 k )  
Tx1–Tx3  
= – 5.0 V  
V
OH  
V
L
V
= + 5.0 V, V  
3.5  
4.3  
9.2  
3.9  
4.7  
9.5  
DD  
SS  
= + 6.0 V, V  
V
= – 6.0  
DD  
= + 12.0 V, V  
SS  
V
= – 12.0 V  
DD  
SS  
Output Low Voltage* (V  
DI1–3  
= Logic 1, R = 3.0 k )  
Tx1–Tx3  
= – 5.0 V  
= – 6.0 V  
V
OL  
V
L
V
V
= + 5.0 V, V  
= + 6.0 V, V  
= + 12.0 V, V  
– 4.0  
– 4.5  
– 10.0  
– 4.3  
– 5.2  
– 10.3  
DD  
DD  
SS  
SS  
SS  
V
= – 12.0 V  
DD  
Off Source Resistance (Figure 1)  
= V = GND = 0 V, V  
Tx1–Tx3  
300  
V
=
2.0 V  
DD  
SS  
Tx1–Tx3  
Output Short–Circuit Current (V = + 12.0 V, V  
= – 12.0 V)  
Tx1–Tx3  
I
mA  
DD SS  
SC  
Tx1–Tx3 shorted to GND**  
Tx1–Tx3 shorted to 15.0 V***  
22  
60  
60  
100  
*The voltage specifications are in terms of absolute values.  
**Specificationis for one Tx output pin to be shorted at a time. Should all three driver outputs be shorted simultaneously, device power dissipation  
limits will be exceeded.  
***This condition could exceed package limitations.  
SWITCHING CHARACTERISTICS (V  
= + 5 V 5%, T = – 40 to + 85°C  
CC  
A
Drivers  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Propagation Delay Time  
Low–to–High  
Tx1–Tx3  
ns  
R
= 3 k , C = 50 pF  
t
t
300  
300  
500  
500  
L
L
PLH  
High–to–Low  
PHL  
R
= 3 k  
C = 50 pF  
L
L
Output Slew Rate  
Minimum Load  
Tx1–Tx3  
SR  
V/µs  
R
= 7 k , C = 0 pF, V  
= + 6 to + 12 V, V  
SS  
= – 6 to – 12 V  
9
30  
L
L
DD  
Maximum Load  
R
= 3 k , C = 2500 pF  
L
L
V
= + 12 V, V  
= – 12 V  
4
DD  
V
SS  
= + 5 V, V  
= – 5 V  
DD  
SS  
Receivers (C = 50 pF)  
L
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Propagation Delay Time  
Low–to–High  
DO1–DO3  
ns  
t
t
150  
150  
250  
40  
425  
425  
400  
100  
PLH  
High–to–Low  
Output Rise Time  
Output Fall Time  
PHL  
DO1–DO3  
DO1–DO3  
t
r
ns  
ns  
t
f
Page 3 of 10  
www.lansdale.com  
Issue A  
ML145406  
LANSDALE Semiconductor, Inc.  
PIN DESCRIPTIONS  
1
V
16  
V
CC  
VDD  
DD  
Positive Power Supply (Pin 1)  
14  
3
DI1  
Tx1  
The most positive power supply pin, which is typically + 5  
to +12V.  
V
12  
10  
5
7
in = 2 V  
VSS  
DI2  
Tx2  
Negative Power Supply (Pin 8)  
The most negative power supply pin, which is typically – 5  
to –12 V.  
DI3  
Tx3  
V
CC  
Digital Power Supply (Pin 16)  
V
8
V
in  
I
SS GND  
9
R
=
out  
The digital supply pin, which is connected to the logic power sup-  
ply (maximum +5.5 V). V must be less than or equal to V  
.
CC  
DD  
GND  
Ground (Pin 9)  
Figure 1. Power–Off Source Resistance (Drivers)  
Ground return pin is typically connected to the signal ground  
pin of the EIA 232–E connector (Pin 7) as well as to the logic  
power supply ground.  
DRIVERS  
Rx1, Rx2, Rx3  
3 V  
Receive Data Input (Pins 2, 4, 6)  
DI1–DI3  
50%  
These are the EIA 232–E receive signal inputs whose volt-  
ages can range from (V  
age between +3 and (V  
0 V  
+ 15 V) to (V – 15 V). A volt-  
SS  
DD  
DD  
t
t
f
r
+ 15 V) is decoded as a space and  
V
OH  
causes the corresponding DO pin to swing to ground (0V); a  
voltage between – 3 and (VDD – 15 V) is decoded as a mark  
90%  
Tx1–Tx3  
10%  
t
and causes the DO pin to swing up to V . The actual turn–on  
CC  
V
OL  
input switch point is typically biased at 1.8 V above ground,  
and includes 800mV of hysteresis for noise rejection. The  
nominal input impedance is 5 k. An open or grounded input  
t
PLH  
PHL  
pin is interpreted as a mark, forcing the DO pin to V  
.
CC  
RECEIVERS  
+ 3 V  
0 V  
DO1, DO2, DO3  
Data Output (Pins 11, 13, 15)  
Rx1–Rx3  
50%  
These are the receiver digital output pins, which swing from  
to GND. A space on the Rx pin causes DO to produce a  
logic 0; a mark produces a logic 1. Each output pin is capable  
of driving one LSTTL input load.  
t
t
PLH  
PHL  
V
CC  
V
OH  
90%  
DO1–DO3  
50%  
10%  
V
OL  
t
t
r
DI1, DI2, DI3  
Data Input (Pins 10, 12,14)  
f
These are the high–impedance digital input pins to the driv-  
ers. TTL compatibility is accomplished by biasing the input  
switchpoint at 1.4 V above GND. However, 5V CMOS compat-  
ibility is maintained as well. Input voltage levels on these pins  
Figure 2. Switching Characteristics  
must be between V  
and GND.  
CC  
DRIVERS  
Tx1–Tx3  
Tx1, Tx2, Tx3  
Transmit Data Output(Pins 3, 5, 7)  
3 V  
3 V  
These are the EIA 232–E transmit signal output pins, which  
– 3 V  
– 3 V  
t
swing toward V  
and V . A logic 1 at a DI input causes the  
SS  
DD  
t
SHL  
SLH  
corresponding Tx output to swing toward V . A logic 0 caus-  
SS  
es the output to swing toward V  
(the output voltages will be  
DD  
or V depending upon the output  
– 3 V – (3 V)  
3 V – ( – 3 V)  
SLEW RATE (SR) =  
OR  
slightly less than V  
DD  
t
t
SS  
load). Output slew rates are limited to a maximum of 30 V per  
µs. When the ML145406 is off (V = V = V = GND),  
SLH  
SHL  
DD SS CC  
Figure 3. Slew–Rate Characterization  
the minimum output impedance is 300 .  
Page 4 of 10  
www.lansdale.com  
Issue A  
ML145406  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
The ML145406 has been designed to meet the electrical-  
specifications of standards EIA 232–E and CCITT V.28. EIA  
232–E defines the electrical and physical interface between  
Data Communication Equipment (DCE) and DataTerminal  
forces the appropriate DO pin to a logic 1 when its Rx input is  
open or grounded as called for in the EIA 232–E specification.  
Notice that TTL logic levels can be applied to the Rx inputs in  
lieu of normal EIA 232–E signal levels. This might be helpful  
Equipment (DTE). A DCE is connected to a DTE using a cable in situations where access to the modem or computer through  
that typically carries up to 25 leads. These leads, referred to as the EIA 232–E connector is necessary with TTL devices.  
interchange circuits, allow the transfer of timing, data, control, However, it is important not to connect the EIA 232–E outputs  
and test signals. Electrically this transfer requires level shifting (Tx1–Tx3) to TTL inputs since TTL operates off + 5 V only,  
between the TTL/CMOS logic levels of the computer or  
modem and the high voltage levels of EIA 232–E, which can  
range from 3 to 25 V. The ML145406 provides the neces-  
sary level shifting as well as meeting other aspects of the EIA  
232–E specification.  
and may be damaged by the high output voltage of the  
ML145406.  
The DO outputs are to be connected to a TTL or CMOS  
input (such as an input to a modem chip). These outputs will  
swing from V  
to ground, allowing the designer to operate  
CC  
the DO and DI pins from digital power supply. The Tx and Rx  
sections are independently powered by V andV so that  
one may run logic at + 5 V and the EIA 232–E signals at 12V.  
DRIVERS  
DD  
SS  
As defined by the specification, an EIA 232–E driver pres-  
ents a voltage of between 5 to 15 V into a load of between 3  
to 7 k. A logic 1 at the driver input results in a voltage of  
between –5 to – 15 V. A logic 0 results in a voltage between +  
POWER SUPPLY CONSIDERATIONS  
Figure 4 shows a technique to guard against excessive device  
current.  
The diode D1 prevents excessive current from flowing  
5 to + 15V. When operating V  
ML145406 meets this requirement. When operating at 5 V,  
the ML145406 drivers produce less than 5 V at the output  
and V at 7 to 12 V, the  
DD  
SS  
through an internal diode from the V  
pin to the V  
pin  
CC  
DD  
(when terminated), which does not meet EIA 232–E specifica- when V  
tion. However, the output voltages when using a 5 V power  
supply are high enough (around 4 V) to permit proper recep-  
< V  
by approximately 0.6 V. This high current  
DD  
CC  
condition can exist for a short period of time during  
powerup/down. Additionally, if the + 12 V supply is switched  
tion by an EIA 232–E receiver, and can be used in applications off while the + 5 V is on and the off supply is a low impedance  
where strict compliance to EIA 232–E is not required.  
Another requirement of the ML145406 drivers is that they  
withstand a short to another driver in the EIA 232–E cable.  
The worst–case condition that is permitted by EIA 232–E is a  
15V source that is current limited to 500 mA. The ML145406 removed from V (Pin 12). If V power is removed, and the  
drivers can withstand this condition momentarily. In most short impedance from the V pin to ground is greater than approxi-  
SS  
circuit conditions the source driver will have a series 300 Ω  
output impedance needed to satisfy the EIA 232–E driver  
requirements. This will reduce the short circuit current to  
under 40 mA which is an acceptable level for the ML145406  
to withstand.  
to ground, the diode D1 will prevent current flow through the  
internal diode.  
The diode D2 is used as a voltage clamp, to prevent V  
from drifting positive to V , in the event that power is  
CC  
SS  
SS SS  
mately 3 k, this pin will be pulled to V  
by internal circuit-  
pin.  
CC  
ry causing excessive current in the V  
CC  
If by design, neither of the above conditions are allowed to  
exist, then the diodes D1 and D2 are not required.  
Unlike some other drivers, the ML145406 drivers feature an  
internally–limited output slew–rate that does not exceed 30 V  
per µs.  
ESD PROTECTION  
ESD protection on IC devices that have their pins accessible  
to the outside world is essential. High static voltages applied to  
the pins when someone touches them either directly or indi-  
rectly can cause damage to gate oxides and transistor junctions  
by coupling a portion of the energy from the I/O pin to the  
power supply buses of the IC. This coupling will usually occur  
through the internal ESD protection diodes. The key to protect-  
ing the IC is to shunt as much of the energy to ground as pos-  
sible before it enters the IC. Figure 4 shows a technique which  
will clamp the ESD voltage at approximately 15 V using the  
RECEIVERS  
The job of an EIA 232–E receiver is to level–shift voltages  
in the range of – 25 to + 25 V down to TTL/CMOS logic lev-  
els (0 to + 5 V). A voltage of between – 3 and – 25 V on Rx1  
is defined as a mark and produces a logic 1 at DO1. A voltage  
between + 3 and + 25 V is a space and produces a logic zero.  
While receiving these signals, the Rx inputs must present a  
resistance between 3 and 7 k. Nominally, the input resistance MMVZ15VDLT1. Any residual voltage which appears on the  
of the Rx1–Rx3 inputs is 5.4 k.  
The input threshold of the Rx1–Rx3 inputs is typically  
supply pins is shunted to ground through the capacitors  
C1–C3. This scheme has provided protection to the interface  
biased at 1.8 V above ground (GND) with typically 800 mV of part up to 10kV, using the human body model test.  
hysteresis included to improve noise immunity. The 1.8 V bias  
Page 5 of 10  
www.lansdale.com  
Issue A  
ML145406  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
V
DD  
D1  
MMBZ15VDLT  
× 6  
IN4001  
0.1  
V
CC  
µF  
0.1 µF  
C1  
C2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RxI  
TxO  
RxI  
TO  
ML145406  
CONNECTOR  
TxO  
RxI  
TxO  
IN5818  
D2  
C3  
V
0.1 µF  
SS  
Figure 4. ESD and Power Supply Networks  
Page 6 of 10  
www.lansdale.com  
Issue A  
ML145406  
LANSDALE Semiconductor, Inc.  
+ 5 V  
0.1  
16  
µF  
0.1 µF  
1
6
V
20 k  
9
V
V
CC  
TLA  
DSI  
DD  
DD  
ML145406  
X
in  
C
R
DSI  
TLA**  
3.579  
MHz  
R
DSI  
DTMF  
INPUT  
1
ML145442/3  
8
3
3
14  
15  
12  
Tx1  
8
X
out  
DI1  
20 k  
17  
15  
0.1  
µF  
TxA  
CD  
TxD  
RxD  
RxA2  
11  
5
2
5
4
DO1  
2
3
Rx1  
Tx2  
R
600  
Tx  
EIA 232–E  
DB–25  
CONNECTOR  
10 kΩ  
10 kΩ  
10  
µ
F
+
16  
DI2  
TIP  
RxA1  
14  
2
SQT  
LB  
*
7
600:600  
NC 13 DO2  
Rx2  
Tx3  
10 k  
RING  
18  
10  
10  
7 NC  
6
ExI  
FB  
V
DI3  
DD  
C
FB  
10 k  
10 k  
0.1  
µF  
DO3  
NC11  
Rx3  
13  
7
0.1  
µF  
MODE  
CDA  
19  
4
V
BYPASS  
DD  
V
AG  
V
CDT  
GND  
12  
GND  
9
SS  
C
CDA**  
0.1  
0.1  
µF  
0.1  
C
µ
CDT  
F
8
µF  
V
BYPASS  
SS  
0.1  
– 5 V  
µF  
*Line protection circuit  
**Refer to the applications information for values of C  
and R  
CDA  
TLA  
Figure 5. 5–V 300–Baud Modem with EIA 232–E Interface  
Page 7 of 10  
www.lansdale.com  
Issue A  
ML145406  
LANSDALE Semiconductor, Inc.  
Legacy Applications Information  
1
4
7
*
2
5
8
0
3
6
9
#
MC34119  
SPEAKER  
DRIVER  
MC145412/13/16  
PULSE/TONE  
DIALER  
HOOKSWITCH  
LINE  
INTERFACE  
(TRANSFORMER  
AND  
RINGING  
ML145503  
FILTER/  
CODEC  
MC145426  
UDLT  
TWISTED  
PAIR  
PROTECTION)  
SYNC  
MC34129  
SWITCHING  
POWER  
SUPPLY  
(ISOLATED)  
+ 5 V  
GND  
– 5 V  
CONNECTION  
TO EXTERNAL  
TERMINAL  
OR PC  
ML145406  
RS–232  
DRIVER  
ML145428  
DATA  
SET  
LINE  
FILTER  
RECEIVER  
INTERFACE  
Figure 6. Line–Powered Voice/Data Telephone with Electrically Isolated EIA 232–E Interface  
Page 8 of 10  
www.lansdale.com  
Issue A  
ML145406  
LANSDALE Semiconductor, Inc.  
TR1  
Figure 7. 80–kbps Limited Distance Modem with EIA 232–E Interface (Master)  
Page 9 of 10  
www.lansdale.com  
Issue A  
ML145406  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
P DIP 16 = EP  
(ML145406EP)  
CASE 648–08  
NOTES:  
-A-  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
8
B
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
G
H
J
K
L
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.070  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
2.54 BSC  
1.27 BSC  
0.21  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
C
L
0.740  
0.250  
0.145  
0.015  
0.040  
0.100 BSC  
0.050 BSC  
0.008  
S
SEATING  
-T-  
PLANE  
M
K
0.015  
0.130  
0.305  
0.38  
3.30  
7.74  
H
J
0.110  
0.295  
2.80  
7.50  
G
D 16 PL  
M
S
0°  
10  
0.040  
°
0°  
10  
1.01  
°
M
M
0.25 (0.010)  
T
A
0.020  
0.51  
SOG 16 = -5P  
(ML145406-5P)  
CASE 751G–02  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
16  
9
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
-B- P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
M
0.25 (0.010)  
B
1
8
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
G 14 PL  
J
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45°  
F
1.27 BSC  
0.050 BSC  
G
J
K
M
P
R
C
0.25  
0.10  
0.32  
0.25  
0.010  
0.004  
0.012  
0.009  
-T-  
0°  
7
°
0°  
7°  
SEATING  
M
K
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
PLANE  
D 16 PL  
0.25 (0.010)  
M
S
S
T
A
B
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliabil-  
ity, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which  
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the cus-  
tomer’s technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.  
Page 10 of 10  
www.lansdale.com  
Issue A  

相关型号:

ML145406EP

Driver/Receiver EIA 232-E and CCITT V.28 (Formerly RS-232-D)
LANSDALE

ML145407

5 Volt Only Driver/Receiver RS232 EIA-232-E and CCITT V.28
LANSDALE

ML145407-6P

5 Volt Only Driver/Receiver RS232 EIA-232-E and CCITT V.28
LANSDALE

ML145407RP

5 Volt Only Driver/Receiver RS232 EIA-232-E and CCITT V.28
LANSDALE

ML145408

Drivers/Receivers RS 232/EIA-232-E and CCITT V.28
LANSDALE

ML145408-6P

Drivers/Receivers RS 232/EIA-232-E and CCITT V.28
LANSDALE

ML145408DW

Drivers/Receivers RS 232/EIA-232-E and CCITT V.28
LANSDALE

ML145408P

Drivers/Receivers RS 232/EIA-232-E and CCITT V.28
LANSDALE

ML145408RP

Drivers/Receivers RS 232/EIA-232-E and CCITT V.28
LANSDALE

ML145428

Asynchronous-to-Synchronous and Synchronous-to-Asynchronous Converter
LANSDALE

ML145428-6P

Asynchronous-to-Synchronous and Synchronous-to-Asynchronous Converter
LANSDALE

ML145428RP

Asynchronous-to-Synchronous and Synchronous-to-Asynchronous Converter
LANSDALE