ML145503 [LANSDALE]

PCM Codec-Filter Mono-Circuit; PCM编解码器过滤单在线
ML145503
型号: ML145503
厂家: LANSDALE SEMICONDUCTOR INC.    LANSDALE SEMICONDUCTOR INC.
描述:

PCM Codec-Filter Mono-Circuit
PCM编解码器过滤单在线

解码器 编解码器 PC
文件: 总26页 (文件大小:1719K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ML145502  
ML145503  
ML145505  
PCM Codec–Filter Mono–Circuit  
Legacy Device: Motorola MC145502, MC145503, MC145505  
P DIP 16 = EP  
The ML145502, ML145503, and ML145505 are all per channel PCM  
Codec–Filter mono–circuits. These devices perform the voice digitization  
and reconstruction as well as the band limiting and smoothing required  
for PCM systems. The ML145503 is a general purpose device that is  
offered in a 16–pin package. These are designed to operate in both syn-  
chronous and asynchronous applications and contain an on–chip preci-  
sion reference voltage. The ML145505 is a synchronous device offered in  
a 16–pin DIP and wide body SOIC package intended for instrument use.  
The ML145502 is the full–featured device which presents all of the  
options of the chip. This device is packaged in a 22–pin DIP and a  
28–pin chip carrier package  
These devices are pin–for–pin replacements for Motorolas first genera-  
tion of MC14400/01/02/03/05 PCM mono–circuits and are upwardly  
compatible with the MC14404/06/07 codecs and other industry standard  
codecs. They also maintain compatibility with Motorolas family of  
MC33120 and MC3419 SLIC products.  
PLASTIC DIP  
CASE 648  
16  
22  
1
P DIP 22 = WP  
PLASTIC DIP  
CASE 708  
1
SOG 16 = -5P  
SOG PACKAGE  
CASE 751G  
16  
1
PLCC 28 = -4P  
PLCC PACKAGE  
CASE 776  
The ML1455xx family of PCM Codec–Filter mono–circuits utilizes  
CMOS due to its reliable low–power performance and proven capability  
for complex analog/digital VLSI functions.  
28  
1
CROSS REFERENCE/ORDERING INFORMATION  
ML145502  
PACKAGE  
MOTOROLA  
LANSDALE  
• 22 Pin and 28 Pin Packages  
P DIP 22  
PLCC 28  
P DIP 16  
SO 16W  
P DIP 16  
SO 16W  
MC145502P  
MC145502FN  
MC145503P  
ML145502WP  
ML145502-4P  
ML145503EP  
• Transmit Bandpass and Receive Low–Pass Filter On–Chip  
• Pin Selectable Mu–Law/A–Law Companding with Corresponding  
Data Format  
• On–Chip Precision Reference Voltage (3.15 V)  
• Power Dissipation of 50 mW, Power–Down of 0.1 mW at 5 V  
• Automatic Prescaler Accepts 128 kHz, 1.536, 1.544, 2.048, and 2.56  
MHz for Internal Sequencing  
• Selectable Peak Overload Voltages (2.5, 3.15, 3.78 V)  
• Access to the Inverting Input of the TxI Input Operational Amplifier  
Variable Data Clock Rates (64 kHz to 4.1 MHz)  
• Complete Access to the Three Terminal Transmit Input Operational  
Amplifiers  
MC145503DW ML145503-5P  
MC145505P  
MC145505DW ML145505-5P  
ML145505EP  
Note: Lansdale lead free (Pb) product, as it  
becomes available, will be identified by a part  
number prefix change from ML to MLE.  
• An External Precision Reference May Be Used  
ML145503— Similar to the ML145502 Plus:  
• 16–Pin Dip and SOIC 16 Packages  
• Complete Access to the Three Terminal Transmit Input Operational  
Amplifiers  
ML145505 — Somewhat Similar To ML145503 Except:  
• Common 64 kHz to 4.1 MHz Transmit/Receive Data Clock  
Page 1 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
ML145502/03/05 PCM CODEC–FILTER MONO–CIRCUIT BLOCK DIAGRAM  
RDD  
RCE  
RDC  
RECEIVE SHIFT  
REGISTER  
1
RxO  
RxG  
RxO  
D/A  
FREQUENCY  
Rx  
Rx  
V
SHARED  
DAC  
DD  
+
400 µA  
÷
1, 12, 16, 20  
CCI PRESCALER  
CCI  
MSI  
V
DD  
V
V
SS  
2.5 V  
REF  
+
AG  
SEQUENCE  
AND  
V
LS  
CONTROL  
PDI  
V
SS  
V
RSI  
ref  
RSI  
TxI  
CIRCUITRY  
TDD  
+
– Tx  
TRANSMIT SHIFT  
REGISTER  
A/D  
TDE  
TDC  
+ Tx  
FREQUENCY  
FREQUENCY  
NOTES:  
Controlled by V  
LS  
Rx 100 k(internal resistors)  
Page 2 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
PIN ASSIGNMENTS  
(DRAWINGS DO NOT REFLECT RELATIVE SIZE)  
ML145505EP  
ML145503EP  
V
1
2
3
16  
15  
14  
V
DD  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
DD  
AG  
AG  
RxO  
+ Tx  
RxO  
+ Tx  
TxI  
RDD  
RCE  
DCLK  
CCI  
RDD  
RCE  
RDC  
TDC  
TxI  
– Tx  
Mu/A  
PDI  
4
5
6
7
8
13  
12  
11  
10  
9
– Tx  
Mu/A  
PDI  
TDD  
TDE  
TDD  
TDE  
V
V
V
V
SS  
SS  
LS  
LS  
ML145502WP  
ML145503-5P  
ML145505-5P  
ML145502-4P  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
V
V
V
1
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
RSI  
AG  
DD  
AG  
DD  
ref  
RxO  
+ Tx  
TxI  
RDD  
RCE  
RDC  
TDC  
TDD  
TDE  
RxO  
+ Tx  
TxI  
RDD  
RCE  
DCLK  
CCI  
V
2
V
DD  
AG  
4
3
2
1
28 27 26  
25  
RxG  
RxO  
+ Tx  
NC  
NC  
TxI  
5
6
7
8
9
10  
11  
RCE  
RDC  
TDC  
NC  
NC  
CCI  
RxO  
3
RDD  
RCE  
RDC  
TDC  
CCI  
24  
RxG  
RxO  
+ Tx  
TxI  
4
23  
22  
21  
20  
28–PIN PQLCC  
(TOP VIEW)  
5
– Tx  
Mu/A  
PDI  
– Tx  
Mu/A  
PDI  
6
TDD  
TDE  
– Tx  
19  
TDD  
7
12 13 14 15 16 17 18  
– Tx  
Mu/A  
PDI  
8
TDD  
TDE  
MSI  
V
V
V
V
LS  
LS  
SS  
SS  
9
10  
11  
NC = NO CONNECTION  
V
V
LS  
SS  
Page 3 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
ABSOLUTE MAXIMUM RATINGS (Voltage Referenced to V  
)
SS  
This device contains circuitry to protect  
Rating  
DC Supply Voltage  
Voltage, Any Pin to V  
Symbol  
Value  
Unit  
V
against damage due to high static voltages or  
electric fields; however, it is advised that  
normal precautions be taken to avoid applica-  
tion of any voltage higher than maximum rated  
voltages to this high impedance circuit. For  
V , V  
DD SS  
– 0.5 to 13  
V
I
– 0.5 to V  
DD  
+ 0.5  
V
SS  
DC Drain Per Pin (Excluding V , V  
)
10  
mA  
°C  
°C  
DD SS  
proper operation it is recommended that V  
in  
(V  
Operating Temperature Range  
Storage Temperature Range  
T
– 40 to + 85  
A
andV  
or V  
be constrained to the range V  
out  
)
SS  
in  
V
DD  
.
T
stg  
– 85 to + 150  
out  
Unused inputs must always be tied to an  
appropriatelogicvoltagelevel(e.g.,V ,V  
,
SS DD  
V , or V ).  
LS AG  
RECOMMENDED OPERATING CONDITIONS (T = – 40 to + 85°C)  
A
Characteristic  
Min  
Typ  
Max  
Unit  
DC Supply Voltage  
V
Dual Supplies: V  
Single Supply: V  
ML145502, ML145503, ML145505 (Using Internal 3.15 V Reference)  
= – V , (V  
SS AG  
= V = 0 V)  
LS  
4.75  
8.5  
5.0  
6.3  
DD  
DD  
to V  
(V  
is an Output, V = V  
or V )  
SS  
SS AG LS DD  
12.6  
ML145502 Using Internal 2.5 V Reference  
ML145502 Using Internal 3.78 V Reference  
ML145502 Using External 1.5 V Reference, Referenced to V  
7.0  
9.5  
4.75  
12.6  
12.6  
12.6  
AG  
Power Dissipation  
mW  
CMOS Logic Mode (V  
TTL Logic Mode (V  
DD  
to V  
SS  
= 10 V, V = V  
LS DD  
)
40  
50  
70  
90  
DD  
= + 5 V, V  
SS  
= – 5 V, V = V = 0 V)  
LS AG  
Power Down Dissipation  
0.1  
8.0  
1.0  
8.5  
mW  
kHz  
kHz  
Frame Rate Transmit and Receive  
7.5  
Data Rate  
ML145503  
128  
1536  
1544  
2048  
2560  
Must Use One of These Frequencies, Relative to MSI Frequency of 8 kHz  
Data Rate for ML145502, ML145505  
64  
4096  
kHz  
Vp  
Full Scale Analog Input and Output Level  
ML145503, ML145505  
3.15  
3.78  
3.15  
ML145502 (V = V  
)
RSI = V  
DD  
ref SS  
RSI = V  
SS  
RSI = V  
2.5  
1.51 x V  
1.26 x V  
AG  
DD  
ML145502 Using an External Reference Voltage Applied at V Pin  
ref  
RSI = V  
RSI = V  
ref  
ref  
SS  
RSI = V  
V
ref  
AG  
DIGITAL LEVELS (V  
SS  
to V  
DD  
= 4.75 V to 12.6 V, T = – 40 to + 85°C)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
Input Voltage Levels (TDE, TDC, RCE, RDC, RDD, DC, MSI, CCI, PDI)  
V
CMOS Mode (V = V , V  
is Digital Ground)  
“0”  
“1”  
V
0.7 x V  
0.3 x V  
LS  
DD SS  
IL  
DD  
V
V
V
IH  
IL  
DD  
V
LS  
+ 0.8 V  
TTL Mode (V V – 4.0 V, V is Digital Ground)  
DD LS  
“0”  
“1”  
LS  
V
LS  
+ 2.0 V  
IH  
Output Current for TDD (Transmit Digital Data)  
mA  
CMOS Mode (V = V , V  
= 0 V and is Digital Ground)  
(V  
LS  
DD SS  
= 5 V, V  
= 10 V, V  
= 5 V, V  
= 10 V, V  
= 0.4 V)  
= 0.5 V)  
= 4.5 V)  
= 9.5 V)  
I
1.0  
3.0  
– 1.0  
– 3.0  
1.6  
DD  
out  
out  
out  
out  
OL  
(V  
DD  
(V  
DD  
I
OH  
(V  
DD  
I
TTL Mode (V V  
– 4.75 V, V = 0 V and is Digital Ground)  
LS  
(V  
= 0.4 V)  
= 2.4 V)  
OL  
LS  
DD  
OL  
I
– 0.2  
(V  
OH  
OH  
Page 4 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
ANALOG TRANSMISSION PERFORMANCE  
(V  
DD  
= + 5 V 5%, V  
= – 5 V 5%, V = V  
= 0 V, V = RSI = V  
(Internal 3.15 V Reference), 0 dBm0 = 1.546 Vrms = + 6 dBm @  
SS  
LS AG  
ref SS  
600 , T = – 40 to + 85°C, TDC = RDC = CC = 2.048 MHz, TDE = RCE = MSI = 8 kHz, Unless Otherwise Noted)  
A
End–to–End  
A/D  
D/A  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
dB  
dB  
dB  
dB  
dB  
Absolute Gain (0 dBm0 @ 1.02 kHz, T = 25°C, V  
= 5 V, V = – 5 V)  
SS  
– 0.30 + 0.30 – 0.30 + 0.30  
A
DD  
Absolute Gain Variation with Temperature 0 to + 70°C  
Absolute Gain Variation with Temperature – 40 to +85°C  
Absolute Gain Variation with Power Supply (V = 5 V, V  
0.03  
0.1  
0.03  
0.1  
= – 5 V, 5%)  
0.02  
0.02  
DD SS  
Gain vs Level Tone (Relative to – 10 dBm0, 1.02 kHz) + 3 to – 40 dBm0 – 0.4  
– 40 to – 50 dBm0 – 0.8  
+ 0.4  
+ 0.8  
+ 1.6  
– 0.2  
– 0.4  
– 0.8  
+ 0.2  
+ 0.4  
+ 0.8  
– 0.2  
– 0.4  
– 0.8  
+ 0.2  
+ 0.4  
+ 0.8  
– 50 to – 55 dBm0 – 1.6  
Gain vs Level Pseudo Noise (A–Law Relative to – 10 dBm0)  
dB  
CCITT G.714  
– 10 to – 40 dBm0  
– 40 to – 50 dBm0  
– 50 to – 55 dBm0  
– 0.25 + 0.25 – 0.25 + 0.25  
– 0.30 + 0.30 – 0.30 + 0.30  
– 0.45 + 0.45 – 0.45 + 0.45  
Total Distortion – 1.02 kHz Tone (C–Message)  
0 to – 30 dBm0  
– 40 dBm0  
35  
29  
24  
36  
29  
24  
36  
30  
25  
dBC  
dB  
– 45 dBm0  
Total Distortion With Pseudo Noise (A–Law)  
CCITT G.714  
– 3 dBm0  
– 6 to – 27 dBm0  
27.5  
35  
28  
28.5  
36  
34.2  
30.0  
15.0  
35.5  
33.5  
28.5  
13.5  
– 34 dBm0 33.1  
– 40 dBm0 28.2  
– 55 dBm0 13.2  
Idle Channel Noise (For End–End and A/D, See Note 1)  
Mu–Law, C–Message Weighted  
A–Law, Psophometric Weighted  
15  
– 69  
15  
– 69  
9
– 78  
dBrnC0  
dBm0p  
Frequency Response (Relative to 1.02 kHz @ 0 dBm0)  
15 to 60 Hz  
300 to 3000 Hz – 0.3  
3400 Hz – 1.6  
– 23  
+ 0.3  
0
– 28  
– 60  
– 23  
0.15  
dB  
– 0.15 + 0.15 – 0.15 + 0.15  
– 0.8  
0
– 14  
– 32  
– 0.8  
0
– 14  
– 30  
4000 Hz  
4600 Hz  
Inband Spurious (1.02 kHz @ 0 dBm0, Transmit and RxO)  
– 43  
– 43  
dBm0  
dB  
300 to 3000 Hz  
Out–of–Band Spurious at RxO (300 – 3400 Hz @ 0 dBm0 In)  
4600 to 7600 Hz  
– 30  
– 40  
– 30  
– 30  
– 40  
– 30  
7600 to 8400 Hz  
8400 to 100,000 Hz  
Idle Channel Noise Selective @ 8 kHz, Input = V , 30 Hz Bandwidth  
AG  
– 70  
– 70  
180  
dBm0  
µs  
Absolute Delay @ 1600 Hz (TDC = 2.048 MHz, TDE = 8 kHz)  
310  
Group Delay Referenced to 1600 Hz (TDC = 2048 kHz,  
µs  
TDE = 8 kHz)  
500 to 600 Hz  
200  
140  
70  
40  
75  
– 40  
– 40  
– 30  
– 20  
90  
600 to 800 Hz  
800 to 1000 Hz  
1000 to 1600 Hz  
1600 to 2600 Hz  
2600 to 2800 Hz  
2800 to 3000 Hz  
110  
170  
120  
160  
Crosstalk of 1020 Hz @ 0 dBm0 From A/D or D/A (Note 2)  
– 75  
– 41  
– 80  
– 41  
dB  
dB  
Intermodulation Distortion of Two Frequencies of Amplitudes – 4 to  
– 21 dBm0 from the Range 300 to 3400 Hz  
NOTES:  
1. Extrapolated from a 1020 Hz @ – 50 dBm0 distortion measurement to correct for encoder enhancement.  
2. Selectively measured while the A/D is stimulated with 2667 Hz @ – 50 dBm0.  
Page 5 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
ANALOG ELECTRICAL CHARACTERISTICS (V  
= – V = 5 V to 6 V 5%, T = – 40 to + 85°C)  
SS A  
DD  
Characteristic  
Symbol  
Min  
5
Typ  
0.01  
10  
Max  
Unit  
µA  
Input Current  
+Tx, –Tx  
+Tx, –Tx  
I
in  
0.2  
AC Input Impedance to V  
AG  
(1 kHz)  
Z
in  
MΩ  
Input Capacitance  
+Tx, –Tx  
30  
70  
10  
pF  
mV  
V
Input Offset Voltage of Txl Op Amp  
Input Common Mode Voltage Range  
Input Common Mode Rejection Ratio  
Txl Unity Gain Bandwidth  
<
+Tx, –Tx  
+Tx, –Tx  
V
V
+ 1.0  
V
– 2.0  
ICR  
CMRR  
BW  
SS  
DD  
0
dB  
R
R
10 kΩ  
10 kΩ  
1000  
75  
kHz  
dB  
L
L
p
Txl Open Loop Gain  
A
VOL  
Equivalent Input Noise (C–Message) Between +Tx and –Tx, at Txl  
Output Load Capacitance for Txl Op Amp  
– 20  
dBrnC0  
pF  
100  
Output Voltage Range Txl Op Amp, RxO or RxO  
V
out  
V
R
R
= 10 kto V  
V
SS  
V
SS  
+ 0.8  
+ 1.5  
V
DD  
V
DD  
– 1.0  
– 1.5  
L
L
AG  
= 600 to V  
AG  
5.5  
mA  
Output Current Txl, RxO, RxO  
Output Impedance RxO, RxO*  
V
+ 1.5 V V  
out  
V – 1.5 V  
DD  
SS  
0 to 3.4 kHz  
Z
out  
0
3
Output Load Capacitance for RxO and RxO*  
Output dc Offset Voltage Referenced to V  
200  
pF  
mV  
Pin  
RxO  
RxO*  
100  
150  
AG  
Internal Gainsetting Resistors for RxG to RxO and RxO  
62  
0.5  
100  
225  
kΩ  
V
External Reference Voltage Applied to V (Referenced to V  
)
V
– 1.0  
ref AG  
DD  
V
ref  
Input Current  
20  
µA  
V
V
AG  
Output Bias Voltage  
0.53 V  
0.47 V  
+
DD  
SS  
V
Output Current  
Source  
Sink  
I
0.4  
10.0  
0.8  
mA  
µA  
AG  
VAG  
Output Leakage Current During Power Down for the Txl Op Amp, V  
RxO, and RxO  
,
30  
AG  
Positive Power Supply Rejection Ratio,  
0 – 100 kHz @ 250 mV, C–Message Weighting  
Transmit  
Receive  
45  
55  
50  
65  
dBC  
dBC  
Negative Power Supply Rejection Ratio,  
0 – 100 kHz @ 250 mV, C–Message Weighting  
Transmit  
Receive  
50  
50  
55  
60  
* Assumes that RxG is not connected for gain modifications to RxO.  
Page 6 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
MODE CONTROL LOGIC (V  
SS  
to V = 4.75 V to 12.6 V, T = – 40 to + 85°C)  
DD A  
Characteristic  
Min  
Typ  
Max  
V – 4.0  
DD  
Unit  
V
V
V
Voltage for TTL Mode (TTL Logic Levels Referenced to V  
)
LS  
V
SS  
LS  
Voltage for CMOS Mode (CMOS Logic Levels of V  
SS  
to V  
)
V
V
– 0.5  
V
V
LS  
DD  
DD  
DD  
Mu/A Select Voltage  
Mu–Law Mode  
V
– 0.5  
– 0.5  
V
DD  
DD  
Sign Magnitude Mode  
A–Law Mode  
V
AG  
V
+ 0.5  
+ 0.5  
AG  
V
SS  
V
SS  
RSI Voltage for Reference Select Input (ML145502)  
3.78 V Mode  
2.5 V Mode  
3.15 V Mode  
V
– 0.5  
– 0.5  
V
V
V
DD  
DD  
V
AG  
V
+ 0.5  
+ 0.5  
AG  
V
SS  
V
SS  
V
ref  
Voltage for Internal or External Reference (ML145502 Only)  
Internal Reference Mode  
External Reference Mode  
V
V
V
+ 0.5  
– 1.0  
SS  
+ 0.5  
SS  
DD  
V
AG  
Analog Test Mode Frequency, MS = CCI (ML145502 Only)  
See Pin Description; Test Modes  
128  
kHz  
SWITCHING CHARACTERISTICS (V  
SS  
to V  
DD  
= 9.5 V to 12.6 V, T = – 40 to + 85°C, C = 150 pF, CMOS or TTL Mode)  
A
L
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Rise Time  
Output Fall Time  
TDD  
t
t
30  
30  
80  
80  
ns  
TLH  
THL  
Input Rise Time  
Input Fall Time  
TDE, TDC, RCE, RDC, DC, MSI, CCI  
t
t
4
4
µs  
TLH  
THL  
Pulse Width  
TDE Low, TDC, RCE, RDC, DC, MSI, CCI  
t
100  
64  
ns  
w
DCLK Pulse Frequency (ML145502/05 Only)  
CCI Clock Pulse Frequency (MSI = 8 kHz)  
CCI is internally tied to TDC on the ML145503, therefore, the  
transmit data clock must be one of these frequencies. This pin will accept  
one of these discrete clock frequencies and will compensate to produce  
internal sequencing.  
TDC, RDC, DC  
f
4096  
kHz  
kHz  
CL  
f
f
f
f
f
128  
CL1  
CL2  
CL3  
CL4  
CL5  
1536  
1544  
2048  
2560  
Propagation Delay Time  
ns  
TDE Rising to TDD Low Impedance  
TTL  
CMOS  
TTL  
CMOS  
TTL  
CMOS  
TTL  
CMOS  
t
t
t
t
90  
90  
90  
90  
90  
90  
180  
150  
55  
P1  
P2  
P3  
P4  
TDE Falling to TDD High Impedance  
40  
TDC Rising Edge to TDD Data, During TDE High  
TDE Rising Edge to TDD Data, During TDC High  
180  
150  
180  
150  
TDC Falling Edge to TDE Rising Edge Setup Time  
TDE Rising Edge to TDC Falling Edge Setup Time  
t
20  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
µA  
pF  
µA  
su1  
su2  
su8  
su3  
su4  
su5  
su6  
su7  
t
t
t
t
t
t
t
TDE Falling Edge to TDC Rising Edge to Preserve the Next TDD Data  
RDC Falling Edge to RCE Rising Edge Setup Time  
RCE Rising Edge to RDC Falling Edge Setup Time  
RDD Valid to RDC Falling Edge Setup Time  
20  
100  
60  
CCI Falling Edge to MSI Rising Edge Setup Time  
MSI Rising Edge to CCI Falling Edge Setup Time  
RDD Hold Time from RDC Falling Edge  
20  
100  
100  
t
h
TDE, TDC, RCE, RDC, RDD, DC, MSI, CCI Input Capacitance  
TDE,TDC, RCE, RDC, RDD, DC, MSI, CCI Input Current  
TDD Capacitance During High Impedance (TDE Low)  
TDD Input Current During High Impedance (TDE Low)  
10  
10  
15  
10.0  
0.01  
12  
0.1  
Page 7 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
DEVICE DESCRIPTIONS  
structs a staircase version of the desired inband signal which has  
spectral images of the in-band signal modulated about the sample  
frequency and its harmonics. These spectral images are called alias-  
ing components which need to be attenuated to obtain the desired  
signal. The low–pass filter used to attenuate filter aliasing compo-  
nents is typically called a reconstruction or smoothing filter.  
The ML1455XX series PCM Codec–Filters have the codec, both  
presampling and reconstruction filters, a precision voltage refer-  
ence on chip, and require no external components. There are three  
distinct versions of the Lansdale ML1455XX Series.  
A codec–filter is a device which is used for digitizing and recon-  
structing the human voice. These devices were developed primarily  
for the telephone network to facilitate voice switching and trans-  
mission. Once the voice is digitized, it may be switched by digital  
switching methods or transmitted long distance (T1, microwave,  
satellites, etc.) without degradation. The name codec is an acronym  
from “Coder” for the A/D used to digitize voice, and “Decoder” for  
the D/A used for reconstructing voice. A codec is a single device  
that does both the A/D and D/A conversions.  
To digitize intelligible voice requires a signal to distortion of  
about 30 dB for a dynamic range of about 40 dB. This may be  
accomplished with a linear 13–bit A/D and D/A, but will far  
exceed the required signal to distortion at amplitudes greater than  
40 dB below the peak amplitude. This excess performance is at the  
expense of data per sample. Two methods of data reduction are  
implemented by compressing the 13–bit linear scheme to compand-  
ed 8–bit schemes. These companding schemes follow a segmented  
or “piecewise–linear”curve formatted as sign bit, three chord bits,  
and four stepbits. For a given chord, all 16 of the steps have the  
same voltage weighting. As the voltage of the analog input increas-  
es, the four step bits increment and carry to the three chord bits  
which increment. With the chord bits incremented, the step bits  
double their voltage weighting. This results in an effective resolu-  
tion of 6–bits (sign + chord + four step bits) across a 42 dB dynam-  
ic range (7 chords above zero, by 6 dB per chord). There are two  
companding schemes used; Mu–255 Law specifically in North  
America, and A–Law specifically in Europe. These companding  
schemes are accepted worldwide. The tables show the linear quanti-  
zation levels to PCM words for the two companding schemes.  
In a sampling environment, Nyquist theory says that to properly  
sample a continuous signal, it must be sampled at a frequency high-  
er than twice the signals highest frequency component. Voice con-  
tains spectral energy above 3 kHz, but its absence is not detrimental  
to intelligibility. To reduce the digital data rate, which is proportion-  
al to the sampling rate, a sample rate of 8 kHz was adopted, consis-  
tent with a band-width of 3 kHz. This sampling requires a low–pass  
filter to limit the high frequency energy above 3 kHz from distort-  
ing the inband signal. The telephone line is also subject to 50/60 Hz  
power line coupling which must be attenuated from the signal by a  
high–pass filter before the A/D converter. The D/A process recon-  
ML145502  
The ML145502 PCM Codec–Filter is the full feature 22–pin  
device. It is intended for use in applications requiring maximum  
flexibility. The ML145502 is intended for bit interleaved or byte  
interleaved applications with data clock frequencies which are non-  
standard or time varying. One of the five standard frequencies (see  
ML145503 below) is applied to the CCI input, and the data clock  
inputs can be any frequency between 64 kHz and 4.096 MHz. The  
V
pin allows for use of an external shared reference or selection  
ref  
of the internal reference. The RxG pin accommodates gain adjust-  
ments for the inverted analog output. All three pins of the input  
gain–setting operational amplifier are present, providing maximum  
flexibility for the analog interface.  
ML145503  
The ML145503 PCM Codec–Filter is intended for standard byte  
interleaved synchronous or asynchronous applications. TDC can be  
one of five discrete frequencies. These are 128 kHz (40 to 60%  
duty cycle), 1.536, 1.544, 2.048, or 2.56 MHz. (For other data  
clock frequencies, see ML145502 or ML145505.) The internal ref-  
erence is set for 3.15 V peak full scale, and the full scale input level  
at Txl and output level at RxO is 6.3 V peak–to–peak. This is the +  
3 dBm0 level of the PCM Codec–Filter. The +Tx and –Tx inputs  
provide maximum flexibility for analog interface. All other func-  
tions are described in the pin description.  
ML145505  
The ML145505 PCM Codec–Filter is intended for byte inter-  
leaved synchronous applications. The ML145505 has all the fea-  
tures of the ML145503 but internally connects TDC and RDC (see  
pin description) to the DC pin. One of the five standard frequencies  
(listed above) should be applied to CCI. The data clock input  
(DC) can be any frequency between 64 kHz and 4.096 MHz.  
Page 8 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
PIN DESCRIPTIONS  
the output shift register for clocking out the 8–bit serial PCM  
word. The logical AND of the TDE pin with the TDC pin-  
clocks out a new data bit at TDD. TDE should be held high  
for eight consecutive TDC cycles to clock out a complete  
PCM word for byte interleaved applications. The transmit shift  
register feeds back on itself to allow multiple reads of the  
transmit data. If the PCM word is clocked out once per frame  
in a byte interleaved system, the MSI pin function is transpar-  
ent and may be connected to TDE.  
DIGITAL  
VLS  
Logic Level Select input and TTL Digital Ground  
VLS controls the logic levels and digital ground reference  
for all digital inputs and the digital output. These devices can  
operate with logic levels from full supply (V to V ) or  
SS DD  
with TTL logic levels using V as digital ground. For V  
=
LS  
LS  
swing) with CMOS  
V
, all I/O is full supply (V to V  
DD SS  
DD  
switch points. For V < V < (V – 4 V), all inputs and  
DD  
The TDE pin may be cycled during a PCM word for bit  
interleaved applications. TDE controls both the high imped-  
ance state of the TDD output and the internal shift clock. TDE  
SS  
LS  
outputs are TTL compatible with V being the digital  
LS  
ground. The pins controlled by V are inputs MSI, CCI, TDE,  
TDC, RCE, RDC, RDD, PDI, and output TDD.  
must fall before TDC rises (t ) to ensure integrity of the  
su8  
next data bit. There must be at least two TDC falling edges  
between the last TDE rising edge of one frame and the first  
TDE rising edge of the next frame. MSI must be available  
separate from TDE for bit interleaved applications.  
MSI  
Master Synchronization Input  
MSI is used for determining the sample rate of the transmit  
side and as a time base for selecting the internal prescale  
divider for the convert clock input (CCI) pin. The MSI pin  
should be tied to an 8 kHz clock which may be a frame sync  
or system sync signal. MSI has no relation to transmit or  
receive data timing, except for determining the internal trans-  
mit strobe as described under the TDE pin description. MSI  
should be derived from the transmit timing in asynchronous  
applications. In many applications MSI can be tied to TDE.  
(MSI is tied internally to TDE in ML145503/05.)  
TDD  
Transmit Digital Data Output  
The output levels at this pin are controlled by the V pin.  
LS  
For V connected to V , the output levels are from V to  
LS DD SS  
V
. For a voltage of V between V – 4 V and V , the  
DD  
LS  
DD  
LS  
SS  
output levels are TTL compatible with V being the digital  
ground supply. The TDD pin is a three–state output controlled  
by the TDE pin. The timing of this pin is controlled by TDC  
and TDE. When in TTL mode, this output may be made  
high–speed CMOS compatible using a pull–up resistor. The  
data format (Mu–Law, A–Law, or sign magnitude) is con-  
trolled by the Mu/A pin.  
CCI  
Convert Clock Input  
CCI is designed to accept five discrete clock frequencies.  
These are 128 kHz, 1.536 MHz, 1.544 MHz, 2.048 MHz, or  
2.56 MHz. The frequency at this input is compared with MSI  
and prescale divided to produce the internal sequencing clock  
at 128 kHz (or 16 times the sampling rate). The duty cycle of  
CCI is dictated by the minimum pulse width except for 128  
kHz, which is used directly for internal sequencing and must  
have a 40 to 60% duty cycle. In asynchronous applications,  
CCI should be derived from transmit timing. (CCI is tied  
internally to TDC in ML145503.)  
RDC  
Receive Data Clock Input  
RDC can be any frequency from 64 kHz to 4.096 MHz.  
This pin is often tied to the TDC pin for applications that can  
use a common clock for both transmit and receive data trans-  
fers. The receive shift register is controlled by the receive  
clock enable (RCE) pin to clock data into the receive digital  
data (RDD) pin on falling RDC edges. These three signals can  
be asynchronous with all other digital pins. The RDC input is  
internally tied to the TDC input on the ML145505 and called  
DC.  
TDC  
Transmit Data Clock Input  
RCE  
TDC can be any frequency from 64 kHz to 4.096 MHz, and  
is often tied to CCI if the data rate is equal to one of the five  
discrete frequencies. This clock is the shift clock for the trans-  
mit shift register and its rising edges produce successive data  
bits at TDD. TDE should be derived from this clock. (TDC  
and RDC are tied together internally in the ML145505 and are  
called DC.) CCI is internally tied to TDC on the ML145503.  
Therefore, TDC must satisfy CCI timing requirements also.  
Receive Clock Enable Input  
The rising edge of RCE should identify the sign bit of a re-  
ceive PCM word on RDD. The next falling edge of RDC, after  
a rising RCE, loads the first bit of the PCM word into the re-  
ceive register. The next seven falling edges enter the remain-  
der of the PCM word. On the ninth rising edge, the receive  
PCM word is transferred to the receive buffer register and the  
A/D sequence is interrupted to commence the decode process.  
In asynchronous applications with an 8 kHz transmit sample  
rate, the receive sample rate should be between 7.5 and 8.5  
kHz. Two receive PCM words may be decoded and analog  
summed each transmit frame to allow on–chip conferencing.  
The two PCM words should be clocked in as two single PCM  
words, a minimum of 31.25 µs apart, with a receive data clock  
of 512 kHz or faster.  
TDE  
Transmit Data Enable Input  
TDE serves three major functions. The first TDE rising  
edge following an MSI rising edge generates the internal  
transmit strobe which initiates an A/D conversion. The inter-  
nal transmit strobe also transfers a new PCM data word into  
the transmit shift register (sign bit first) ready to be output at  
TDD. The TDE pin is the high impedance control for the  
transmit digital data (TDD) output. As long as this pin is high,  
the TDD output stays low impedance. This pin also enables  
Page 9 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
RDD  
V
is the analog ground power supply input/output. All analog  
AG  
Receive Digital Data Input  
signals into and out of the device use this as their ground reference.  
Each version of the ML1455xx PCM Codec–Filter family can pro-  
vide its own analog ground supply internally. The DC voltage of this  
RDD is the receive digital data input. The timing for this pin is  
controlled by RDC and RCE. The data format is determined by the  
Mu/A pin.  
internal supply is 6% positive of the midway between V  
and  
. This supply can sink more than 8 mA but has a current source  
DD  
V
SS  
Mu/A  
Select  
limited to 400 µA.The output of this supply is internally connected  
to the analog ground input of the part. The node where this supply  
This pin selects the companding law and the data format at TDD  
and RDD.  
Mu/A = V ; Mu–255 Companding D3 Data Format with Zero  
Code Suppress  
Mu/A = VAG; Mu–255 Companding with Sign Magnitude  
Data Format  
and the analog ground are connected is brought out to the V pin.  
In symmetric dual supply systems ( 5, 6, etc.), V may be exter-  
nally tied to the system analog ground supply. When RxO or RxO  
drive low impedance loads tied to V , a pull–up resistor to V  
will be required to boost the source current capability if V is not  
tied to the supply ground. All analog signals for the part are refer-  
enced to V , including noise; therefore, decoupling capacitors (0.1  
AG  
µF) should be used from V  
DD  
AG  
AG  
DD  
AG  
DD  
AG  
Mu/A = VSS; A–Law Companding with CCITT Data Format  
Bit Inversions  
to V and V to V .  
AG SS AG  
Sign/  
Magnitude  
A–Law  
(CCITT)  
V
ref  
Positive Voltage Reference Input (ML145502 Only)  
Code  
Mu–Law  
+ Full Scale  
+ Zero  
– Zero  
1111 1111  
1000 0000  
0000 0000  
0111 1111  
1000 0000  
1111 1111  
0111 1111  
0000 0010  
1010 1010  
1101 0101  
0101 0101  
0010 1010  
The V pin allows an external reference voltage to be used for  
ref  
the A/D and D/A conversions. If V is tied to V , the internal ref-  
ref SS  
erence is selected. If V > V , then the external mode is selected  
ref  
AG  
– Full Scale  
and the voltage applied to V is used for generating the internal  
ref  
converter reference voltage. In either internal or external reference  
mode, the actual voltage used for conversion is multiplied by the  
ratio selected by the RSI pin. The RSI pin circuitry is explained  
under its pin description below. Both the internal and external refer-  
ences are inverted within the PCM Codec–Filter for negative input  
voltages such that only one reference is required.  
SIGN  
BIT  
CHORD BITS  
STEP BITS  
0
1
2
3
4
5
6
7
NOTE: Starting from sign magnitude, to change format:  
To Mu–Law —  
External Mode — In the external reference mode (V >V ),  
ref AG  
MSB is unchanged (sign)  
a 2.5 V reference like the MC1403 may be connected from V to  
ref  
Invert remaining seven bits  
If code is 0000 0000, change to 0000 0010 (for zero  
code suppression)  
To A–Law —  
MSB is unchanged (sign)  
V
AG  
. A single external reference may be shared by tying together a  
number of V pins and V pins from different codec–filters. In  
ref  
AG  
special applications, the external reference voltage may be between  
0.5 and 5 V. However, the reference voltage gain selection circuitry  
associated with RSI must be considered to arrive at the desired  
codec–filter gain.  
Invert odd numbered bits  
Ignore zero code suppression  
Internal Mode — In the internal reference mode (V =V ),  
ref SS  
an internal 2.5 V reference supplies the reference voltage for the RSI  
PDI  
circuitry. The V pin is functionally connected to V for the  
ML145503,and ML145505 pinouts.  
ref  
SS  
Power Down Input  
The power down input disables the bias circuitry and gates off all  
RSI  
clock inputs. This puts the V , Txl, RxO, RxO, and TDD outputs  
Reference Select Input (ML145502 Only)  
AG  
into a high–impedance state. The power dissipation is reduced to 0.1  
mW when PDI is a low logic level. The circuit operates normally  
The RSI input allows the selection of three different overload or  
full–scale A/D and D/A converter reference voltages independent of  
the internal or external reference mode. The RSI pin is a digital  
input that senses three different logic states: V , V , and V  
For RSI = V , the reference voltage is used directly for the con-  
verters. The internal reference is 2.5 V. For RSI = V , the reference  
voltage is multiplied by the ratio of 1.26, which results in an internal  
with PDI = V  
or with a logic high as defined by connection at  
. TDD will not come out of high impedance for two MSI cycles  
DD  
V
LS  
.
SS AG DD  
after PDI goes high.  
AG  
DCLK  
Data Clock Input  
SS  
converter reference of 3.15 V. For RSI = V , the reference voltage  
is multiplied by 1.51, which results in an internal converter reference  
of 3.78 V. The device requires a minimum of 1.0 V of headroom  
DD  
In the ML145505, TDC and RDC are internally connected to  
DCLK.  
between the internal converter reference to V . V has this same  
DD SS  
ANALOG  
absolute valued minimum, also measured from V pin. The vari-  
AG  
ous modes of operation are summarized in Table 2. The RSI pin is  
V
AG  
functionally connected to V for the ML145503, and ML145505  
SS  
Analog Ground input/Output Pin  
pinouts.  
Page 10 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
RxO, RxO  
Receive Analog Outputs  
+Tx/–Tx  
Positive Tx Amplifier Input  
Negative Tx Amplifier Input  
These two complimentary outputs are generated from the out-  
put of the receive filter. They are equal in magnitude and out of  
The Txl pin is the input to the transmit band–pass filter. If  
phase. The maximum signal output of each is equal to the maxi- +Tx or –Tx is available, then there is an internal amplifier pre-  
mum peak–to–peak signal described with the reference. If a  
3.15 V reference is used with RSI tied to V and a + 3 dBm0  
ceding the filter whose pins are +Tx, –Tx, and TxI. These pins  
allow access to the amplifier terminals to tailor the input gain  
with external resistors. The resistors should be in the range of  
AG  
sine wave is decoded, the RxO output will be a 6.3 V  
peak–to–peak signal. RxO will also have an inverted signal out- 10 k. If +Tx is not available, it is internally tied to V . If  
AG  
put of 6.3 V peak–to–peak. External loads may be connected  
from RxO to RxO for a 6 dB push–pull signal gain or from  
–Tx and +Tx are not available, the TxI is a unity gain  
high–impedance input.  
either RxO or RxO to V . With a 3.15 V reference each output  
AG  
POWER SUPPLIES  
will drive 600 to + 9 dBm. With RSI tied to V , each out-  
DD  
V
DD  
Most Positive Power Supply  
put will drive 900 to + 9 dBm.  
RxG  
V
DD  
is typically 5 to 12 V.  
Receive Output Gain Adjust (ML145502 Only)  
The purpose of the RxG pin is to allow external gain adjust-  
ment for the RxO pin. If RxG is left open, then the output signal  
at RxO will be inverted and output at RxO. Thus the push–pull  
gain to a load from RxO to RxO is two times the output level at  
RxO. If external resistors are applied from RxO to RxG (RI)  
and from RxG to RxO (RG), the gain of RxO can be set differ-  
ently from inverting unity. These resistors should be in the range  
of 10 k. The RxO output level is unchanged by the resistors  
and the RxO gain is approximately equal to minus RG/RI. The  
actual gain is determined by taking into account the internal  
resistors which will be in parallel to these external resistors. The  
internal resistors have a large tolerance, but they match each  
other very closely. This matching tends to minimize the effects  
of their tolerance on external gain configurations. The circuit for  
RxG and RxO is shown in the block diagram.  
V
SS  
Most Negative Power Supply  
V
SS  
is typically 10 to 12 V negative of V .  
DD  
For a 5 V dual–supply system, the typical power supply con-  
figuration is V = + 5 V, V = – 5 V, V = 0 V (digital  
ground accommodating TTL logic levels), and V  
tied to system analog ground.  
For single–supply applications, typical power supply configu-  
rations include:  
DD SS LS  
= 0 V being  
AG  
V
V
V
AG  
= 10 V to 12 V  
= 0 V  
generates a mid supply voltage for referencing all analog  
DD  
SS  
signals.  
V
LS  
controls the logic levels. This pin should be connected to  
for CMOS logic levels from V to V . This pin should  
V
DD  
SS DD  
Txl  
be connected to digital ground for true TTL logic levels refer-  
Transmit Analog Input  
enced to V  
.
LS  
TxI is the input to the transmit filter. It is also the output of  
the transmit gain amplifiers of the ML145502/03/05. The TxI  
input has an internal gain of 1.0, such that a +3 dBm0 signal at  
TxI corresponds to the peak converter reference voltage as  
TESTING CONSIDERATIONS (ML145502 ONLY)  
An analog test mode is activated by connecting MSI and CCI  
to 128 kHz. In this mode, the input of the A/D (the output of the  
Tx filter) is available at the PDI pin. This input is direct coupled  
to the A/D side of the codec. The A/D is a differential design.  
This results in the gain of this input being effectively attenuated  
by half. If monitored with a high–impedance buffer, the output  
of the Tx low–pass filter can also be measured at the PDI pin.  
This test mode allows independent evaluation of the transmit  
low–pass filter and A/D side of the codec. The transmit and  
receive channels of these devices are tested with the codec–filter  
fully functional.  
described in the V and RSI pin descriptions. For 3.15 V refer-  
ref  
ence, the + 3 dBm0 input should be 6.3 V peak–to–peak.  
Page 11 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
ML145503  
V
5 V  
AG  
51 k*  
1
16  
0.1 µF  
V
V
DD  
AG  
600  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
Rx  
Tx  
RxO  
+ Tx  
RDD  
RCE  
ENABLE  
CLOCK  
5 k  
10 kΩ  
TxI  
RDC  
– Tx  
Mu/A  
PDI  
TDC  
TDD  
TDE  
681  
V
V
LS  
SS  
0.1 µF  
– 5 V  
* To define RDD when TDD is high Z.  
Figure 1. Test Circuit  
Table 1. Options Available by Pin Selection  
RSI*  
Pin Level  
V
*
Peak–to–Peak Overload Voltage  
(Txl, RxO)  
ref  
Pin Level  
V
V
V
7.56 V p–p  
DD  
SS  
V
+ V  
(3.02 x V  
) V p–p  
5 V p–p  
DD  
AG  
EXT  
EXT  
EXT  
EXT  
V
AG  
V
SS  
V
AG  
V
+ V  
(2 x V ) V p–p  
EXT  
AG  
V
V
V
SS  
6.3 V p–p  
SS  
V
+ V  
(2.52 x V ) V p–p  
EXT  
SS  
AG  
* On ML145503/05, RSI and V tied internally to V  
ref  
.
SS  
Table 2. Summary of Operation Conditions User Programmed Through Pins V , V , and V  
DD AG  
SS  
Pin  
RSI  
Programmed  
Peak Overload  
Voltage  
Logic  
Level  
Mu/A  
V
LS  
V
Mu–Law Companding Curve and D3/D4 Digital  
Formats with Zero Code Suppress  
3.78  
2.50  
3.15  
CMOS  
DD  
Logic Levels  
TTL Levels  
V
AG  
Mu–Law Companding Curve and Sign  
Magnitude Data Format  
V
Up  
AG  
TTL Levels  
Up  
V
A–Law Companding Curve and CCITT Digital  
Format  
SS  
V
SS  
Page 12 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
TDE  
t
t
w
f
P4  
CL  
t
su2  
t
t
t
w
su8  
su1  
TDC  
1
2
3
t
4
5
6
7
8
t
9
10  
11  
t
t
P3  
P2  
P3  
P2  
t
P1  
MSB  
LSB  
*
TDD  
PCM WORD REPEATED  
* Data output during this time will vary depending on TDC rate and TDE timing.  
Figure 2. Transmit Timing Diagram  
t
w
RCE  
t
su4  
f
t
w
CL  
t
su3  
t
w
1
2
3
4
5
6
7
8
9
10  
11  
RDC  
RDD  
t
h
t
su5  
DON’T  
CARE  
DON’T  
CARE  
MSB  
LSB  
Figure 3. Receive Timing Diagram  
t
w
MSI  
CCI  
t
t
w
su7  
t
t
w
su6  
1
2
3
4
5
6
7
8
9
10  
11  
Figure 4. MSI/CCI Timing Diagram  
Page 13 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
1.00  
0.80  
1.00  
0.80  
V
V
= + 5 V  
= – 5 V  
V
V
= + 5 V  
= – 5 V  
DD  
SS  
DD  
SS  
2048 kHz CLOCK  
0.60  
2048 kHz CLOCK  
0.60  
0.40  
0.20  
0
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
0.40  
0.20  
0
TYPICAL  
PEFORMANCE  
TYPICAL  
PEFORMANCE  
– 0.20  
– 0.40  
– 0.60  
– 0.20  
– 0.40  
– 0.60  
– 0.80  
– 1.00  
– 0.80  
– 1.00  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
INPUT LEVEL AT 1.02 kHz  
INPUT LEVEL AT 1.02 kHz  
Figure 5. ML145502 Gain vs Level Mu–Law Transmit  
Figure 6. ML145502 Gain vs Level Mu–Law Receive  
45.0  
45.0  
40.0  
40.0  
35.0  
30.0  
25.0  
TYPICAL  
PEFORMANCE  
TYPICAL  
PEFORMANCE  
35.0  
30.0  
25.0  
C–MESSAGE WEIGHTED  
C–MESSAGE WEIGHTED  
V
V
= + 5 V  
= – 5 V  
V
V
= + 5 V  
= – 5 V  
DD  
SS  
DD  
SS  
2048 kHz CLOCK  
2048 kHz CLOCK  
20.0  
15.0  
20.0  
15.0  
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
10.0  
10.0  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
INPUT LEVEL AT 1.02 kHz  
INPUT LEVEL AT 1.02 kHz  
Figure 7. ML145502 Quantization  
Distortion Mu–Law Transmit  
Figure 8. ML145502 Quantization  
Distortion Mu–Law Receive  
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
V
V
= + 5 V  
= – 5 V  
V
V
= + 5 V  
= – 5 V  
DD  
SS  
DD  
SS  
2048 kHz CLOCK  
2048 kHz CLOCK  
0.2  
0
0.2  
0
TYPICAL PEFORMANCE  
TYPICAL PEFORMANCE  
GUARANTEED  
– 0.2  
– 0.4  
– 0.2  
– 0.4  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
– 0.6  
– 0.8  
– 0.6  
– 0.8  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
INPUT LEVEL PSEUDO NOISE (dBm0)  
INPUT LEVEL PSEUDO NOISE (dBm0)  
Figure 9. ML145502 Gain vs Level A–Law Transmit  
Figure 10. ML145502 Gain vs Level A–Law Receive  
Page 14 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
40.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
TYPICAL  
PERFORMANCE  
TYPICAL  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
GUARANTEED  
PERFORMANCE  
PSOPHOMETRIC  
WEIGHTED  
PSOPHOMETRIC  
WEIGHTED  
V
V
= + 5 V  
= – 5 V  
V
V
= + 5 V  
= – 5 V  
DD  
SS  
DD  
SS  
2048 kHz  
2048 kHz  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
INPUT LEVEL PSEUDO NOISE (dBm0)  
INPUT LEVEL PSEUDO NOISE (dBm0)  
Figure 11. ML145502 Quantization Distortion  
A–Law Transmit  
Figure 12. ML145502 Quantization Distortion  
A–Law Receive  
70  
60  
70  
TYPICAL PERFORMANCE  
TYPICAL PERFORMANCE  
60  
50  
50  
40  
30  
40  
30  
20  
10  
0
20  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 13. ML145502 Power Supply Rejection  
Ratio Positive Transmit VAC = 250 mVrms,  
C–Message Weighted  
Figure 14. ML145502 Power Supply Rejection  
Ratio Negative Transmit VAC = 250 mVrms,  
C–Message Weighted  
70  
60  
50  
40  
30  
20  
10  
0
70  
TYPICAL PERFORMANCE  
TYPICAL PERFORMANCE  
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 15. ML145502 Power Supply Rejection  
Ratio Positive Receive VAC = 250 mVrms,  
C–Message Weighted  
Figure 16. ML145502 Power Supply Rejection  
Ratio Negative Receive VAC = 250 mVrms,  
C–Message Weighted  
Page 15 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
0.2  
0.1  
2.0  
0
0
– 2.0  
TYPICAL  
PERFORMANCE  
– 0.1  
– 4.0  
– 6.0  
– 0.2  
– 0.3  
– 0.4  
– 0.5  
– 0.6  
– 0.7  
– 0.8  
GUARANTEED  
PERFORMANCE  
– 8.0  
TYPICAL  
PERFORMANCE  
– 10.0  
GUARANTEED  
PERFORMANCE  
– 12.0  
GUARANTEED  
PERFORMANCE  
– 14.0  
– 16.0  
– 18.0  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 17. ML145502 Pass–Band  
Filter Response Transmit  
Figure 18. ML145502 Low–Pass Filter  
Response Transmit  
2.0  
– 2.0  
0.2  
0.1  
TYPICAL  
PERFORMANCE  
0
– 0.1  
– 0.2  
– 0.3  
– 0.4  
– 0.5  
– 6.0  
TYPICAL  
PERFORMANCE  
– 10.0  
– 14.0  
– 18.0  
– 22.0  
– 26.0  
– 30.0  
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
– 0.6  
– 0.7  
– 0.8  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
0
0.04  
0.08  
0.12  
0.16  
0.20  
0.24  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 19. ML145502 High–Pass Filter  
Response Transmit  
Figure 20. ML145502 Pass–Band  
Filter Response Receive  
2.0  
0
GUARANTEED  
– 2.0  
PERFORMANCE  
– 4.0  
– 6.0  
– 8.0  
TYPICAL  
PERFORMANCE  
– 10.0  
– 12.0  
GUARANTEED  
PERFORMANCE  
– 14.0  
– 16.0  
– 18.0  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
FREQUENCY (kHz)  
Figure 21. ML145502 Low–Pass Filter Response Receive  
Page 16 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
2.048 MHz  
18 pF  
18 pF  
10 MΩ  
300  
2.048 MHz  
+ 5 V  
(TDC, RDC, CCI)  
V
R
OSC  
IN  
OSC  
OUT 1 OUT 2  
OSC  
CC  
8 kHz  
(TDE, RCE, MSI)  
0.1 µF  
MC74HC4060  
GND Q8  
Q4  
+ 5 V  
V
CC  
J
Q
J
Q
Q
1/2  
MC74HC73  
1/2  
MC74HC73  
K
Q
K
GND  
R
R
+ 5 V  
255  
256  
1
2
3
4
5
6
7
8
9
10  
2.048 MHz  
8 kHz  
Figure 22. Simple Clock Circuit for Driving ML145502/03/05 Codec–Filters  
Page 17 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
V
V
DD  
AG  
N = 1  
R0  
RxO  
+ Tx  
TxI  
RDD  
RCE  
R0  
N = 2  
– 48 V  
10 kΩ  
N = 1  
RDC  
TDC  
10 kΩ  
– Tx  
TDD  
TDE  
Mu/A  
PDI  
V
V
LS  
SS  
MC145503  
23a. Simplified Transformer Hybrid Using ML145503  
V
V
DD  
AG  
N = 1  
R3  
RxO  
+ Tx  
TxI  
RDD  
RCE  
R0  
R5  
R6  
N = 2  
R4  
– 48 V  
R1  
N = 1  
RDC  
TDC  
R2  
– Tx  
TDD  
TDE  
Mu/A  
PDI  
R0 = R3 R4 (R2 + R1) R3 R4  
R0 R4 (R2 + R1)  
R0 R4  
A
=
=
V
out  
R3 + R0 R4 (R2 + R1)  
R3 + R0 R4  
V
V
LS  
SS  
– R1  
R2  
A
V
MC145503  
in  
NOTE: Hybrid Balance by R5 and R6 to equate the RxO signal gain at Txl through the  
inverting and non–inverting signal paths.  
23b. Universal Transformer Hybrid Using ML145503  
Figure 23. Hybrid Interfaces to the ML145503 PCM Codec–Filter Mono–Circuit  
Page 18 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
R0 = 600  
R0 = 900 Ω  
+ V  
ref  
RSI  
V
SS  
V
V
DD  
AG  
N = 1  
RxO  
RxG  
RDD  
RCE  
RDC  
TDC  
R5  
R6  
R4  
R3  
R0  
N = 2  
RxO  
+ Tx  
– 48  
N = 1  
R0  
TxI  
CCI  
TDD  
TDE  
MSI  
R2  
R1  
– Tx  
NOTE: Balance by R5 and R6 to equate the Txl gains through the inverting  
and non–inverting input signal paths, respectively, is given by:  
Mu/A  
PDI  
R1  
R3  
R4  
R1  
R2  
R6  
R3  
R5  
1 –  
=
1 +  
2 × R2  
R5 + R6  
R4 R5 + R6  
V
V
LS  
SS  
Tx Gain = R1/R2  
Rx Gain = 1 + R3/R4  
R5, R6 10 kΩ  
ML145502  
Adjust Rx Gain with R3  
Adjust Tx Gain with R1  
24a. Universal Transformer Hybrid Using ML145502  
R0 = 600  
R0 = 900  
T
+ V  
V
ref  
RSI  
N = 1  
V
SS  
10 kΩ  
AG  
V
DD  
N = 2  
R0  
R0  
RxO  
RxG  
RDD  
20 kΩ  
RCE  
RDC  
TDC  
– 48  
R
N = 1  
RxO  
+ Tx  
TxI  
CCI  
20 kΩ  
– Tx  
10 kΩ  
TDD  
TDE  
Mu/A  
PDI  
MSI  
V
V
LS  
SS  
ML145502  
24b. Single–Ended Hybrid Using ML145502  
Figure 24. Hybrid Interfaces to the ML145502 PCM Codec–Filter Mono–Circuit  
Page 19 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
Figure 25. A Complete Single Party Channel Unit Using  
MC3419 SLIC and ML145503 PCM Mono–Circuit  
Page 20 of 26  
www.lansdale.com  
Issue Aj  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
ML145406  
ML145428  
MC145426  
MC34119  
ML145503  
MC145412  
Figure 26. Digital Telephone Schematic  
Page 21 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
Table 3. Mu–Law Encode–Decode Characteristics  
Normalized  
Digital Code  
Encode  
Decision  
Levels  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
8159  
7903  
4319  
4063  
2143  
2015  
1055  
991  
511  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
8031  
4191  
2079  
1023  
495  
231  
99  
8
16  
256  
7
6
5
4
3
2
1
16  
16  
16  
16  
16  
16  
128  
64  
32  
16  
8
479  
239  
223  
103  
95  
4
35  
33  
31  
15  
1
2
1
3
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes inversion of all magnitude bits.  
Page 22 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
Table 4. A–Law Encode–Decode Characteristics  
Normalized  
Digital Code  
Encode  
Decision  
Levels  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
4096  
3968  
2176  
2048  
1088  
1024  
544  
512  
272  
256  
136  
128  
68  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
4032  
2112  
1056  
528  
264  
132  
66  
7
16  
128  
6
5
4
3
2
16  
16  
16  
16  
16  
32  
64  
32  
16  
8
4
64  
1
2
2
1
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes alternate bit inversion, as specified by CCITT.  
Page 23 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
P DIP 16 = EP  
(ML145503EP, ML145505EP)  
PLASTIC DIP  
CASE 648–08  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
9
8
B
S
1
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
SEATING  
PLANE  
–T–  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
P DIP 22 = WP  
(ML145502WP)  
PLASTIC DIP  
CASE 708–04  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D),  
SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM  
MATERIAL CONDITION, IN RELATION TO  
SEATING PLANE AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
22  
1
12  
B
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
11  
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
27.56  
8.64  
3.94  
0.36  
1.27  
MAX  
28.32  
9.14  
5.08  
0.56  
1.78  
MIN  
MAX  
1.115  
0.360  
0.200  
0.022  
0.070  
L
1.085  
0.340  
0.155  
0.014  
0.050  
A
N
C
2.54 BSC  
0.100 BSC  
1.02  
0.20  
2.92  
1.52  
0.38  
3.43  
0.040  
0.008  
0.115  
0.060  
0.015  
0.135  
K
10.16 BSC  
15  
1.02  
0.400 BSC  
15  
0.040  
0.020  
H
G
F
D
J
SEATING  
PLANE  
M
°
°
0
0.51  
°
0°  
Page 24 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
PLCC 28 = -4P  
(ML145502-4P)  
PLCC PACKAGE  
CASE 776–02  
M
S
S
0.007 (0.180)  
T
L–M  
N
B
Z
Y BRK  
D
–N–  
M
S
S
0.007 (0.180)  
T
L–M  
N
U
–M–  
–L–  
W
D
S
S
S
0.010 (0.250)  
T
L–M  
N
X
G1  
V
28  
1
VIEW D–D  
M
S
S
S
A
0.007 (0.180)  
0.007 (0.180)  
T
L–M  
L–M  
N
M
S
S
0.007 (0.180)  
T
L–M  
N
H
Z
M
S
T
N
R
K1  
C
E
0.004 (0.100)  
G
K
SEATING  
–T–  
VIEW S  
J
PLANE  
M
S
S
0.007 (0.180)  
T
L–M  
N
F
G1  
S
S
S
0.010 (0.250)  
T
L–M  
N
VIEW S  
NOTES:  
INCHES  
MILLIMETERS  
1. DATUMS –L–, –M–, AND –N– DETERMINED  
WHERE TOP OF LEAD SHOULDER EXITS  
PLASTIC BODY AT MOLD PARTING LINE.  
2. DIMENSION G1, TRUE POSITION TO BE  
MEASURED AT DATUM –T–, SEATING PLANE.  
3. DIMENSIONS R AND U DO NOT INCLUDE  
MOLD FLASH. ALLOWABLE MOLD FLASH IS  
0.010 (0.250) PER SIDE.  
DIM  
A
B
C
E
F
G
H
J
K
R
U
V
W
X
Y
Z
G1  
K1  
MIN  
MAX  
0.495  
0.495  
0.180  
0.110  
0.019  
MIN  
12.32  
12.32  
4.20  
MAX  
12.57  
12.57  
4.57  
0.485  
0.485  
0.165  
0.090  
0.013  
2.29  
2.79  
0.33  
0.48  
0.050 BSC  
1.27 BSC  
4. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
0.026  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
–––  
0.032  
–––  
–––  
0.456  
0.456  
0.048  
0.048  
0.056  
0.020  
10  
0.66  
0.51  
0.64  
11.43  
11.43  
1.07  
1.07  
1.07  
–––  
0.81  
–––  
–––  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
10  
5. CONTROLLING DIMENSION: INCH.  
6. THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKAGE BOTTOM BY UP TO 0.012  
(0.300). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR  
BURRS, GATE BURRS AND INTERLEAD  
FLASH, BUT INCLUDING ANY MISMATCH  
BETWEEN THE TOP AND BOTTOM OF THE  
PLASTIC BODY.  
2
2
0.410  
0.040  
0.430  
–––  
10.42  
1.02  
10.92  
–––  
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037  
(0.940). THE DAMBAR INTRUSION(S) SHALL  
NOT CAUSE THE H DIMENSION TO BE  
SMALLER THAN 0.025 (0.635).  
Page 25 of 26  
www.lansdale.com  
Issue A  
ML145502, ML145503, ML145505  
LANSDALE Semiconductor, Inc.  
OUTLINE DIMENSIONS  
SO 16 = -5P  
(ML145503-5P, ML145505-5P)  
SOG PACKAGE  
CASE 751G–02  
–A–  
16  
9
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
–B–  
8X P  
0.010 (0.25)  
M
M
B
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
1
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
J
16X D  
M
S
S
0.010 (0.25)  
T
A
B
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45  
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
M
14X G  
K
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliabil-  
ity, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which  
may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the cus-  
tomer’s technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.  
Page 26 of 26  
www.lansdale.com  
Issue A  

相关型号:

ML145503-5P

PCM Codec-Filter Mono-Circuit
LANSDALE

ML145503EP

PCM Codec-Filter Mono-Circuit
LANSDALE

ML145505

PCM Codec-Filter Mono-Circuit
LANSDALE

ML145505-5P

PCM Codec-Filter Mono-Circuit
LANSDALE

ML145505EP

PCM Codec-Filter Mono-Circuit
LANSDALE

ML145506

PCM Codec-Filter Mono-Circuit
LANSDALE

ML145506P

PCM Codec-Filter Mono-Circuit
LANSDALE

ML145506WP

PCM Codec-Filter Mono-Circuit
LANSDALE

ML145554

PCM Codec-Filter
LANSDALE

ML145554-5P

PCM Codec-Filter
LANSDALE

ML145554EP

PCM Codec-Filter
LANSDALE

ML145557

PCM Codec-Filter
LANSDALE