5962-9476101MXC [LATTICE]

EE PLD, 25ns, 96-Cell, CMOS, PQCC68, JLCC-68;
5962-9476101MXC
型号: 5962-9476101MXC
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

EE PLD, 25ns, 96-Cell, CMOS, PQCC68, JLCC-68

时钟 输入元件 可编程逻辑
文件: 总12页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
ispLSI 1024/883  
In-System Programmable High Density PLD  
Functional Block Diagram  
Features  
• HIGH-DENSITY PROGRAMMABLE LOGIC  
— High-Speed Global Interconnect  
— 4000 PLD Gates  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
— 48 I/O Pins, Six Dedicated Inputs  
— 144 Registers  
— Wide Input Gating for Fast Counters, State  
Machines, Address Decoders, etc.  
— Small Logic Block Size for Fast Random Logic  
— Security Cell Prevents Unauthorized Copying  
D
D
D
D
Q
Q
Q
Q
Logic  
Array  
GLB  
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY  
fmax = 60 MHz Maximum Operating Frequency  
tpd = 20 ns Propagation Delay  
Global Routing Pool (GRP)  
— TTL Compatible Inputs and Outputs  
— Electrically Erasable and Reprogrammable  
— Non-Volatile E2CMOS Technology  
— 100% Tested  
B0 B1 B2 B3 B4 B5 B6 B7  
Output Routing Pool  
CLK  
• IN-SYSTEM PROGRAMMABLE  
— In-System Programmable™ (ISP™) 5-Volt Only  
— Increased Manufacturing Yields, Reduced Time-to-  
Market, and Improved Product Quality  
0139-A-isp  
Description  
— Reprogram Soldered Devices for Faster Debugging  
• COMBINES EASE OF USE AND THE FAST SYSTEM  
SPEED OF PLDs WITH THE DENSITY AND FLEX-  
IBILITY OF FIELD PROGRAMMABLE GATE ARRAYS  
The ispLSI 1024/883 is a High-Density Programmable  
Logic Device processed in full compliance to MIL-STD-  
883. This military grade device contains 144 Registers,  
48 Universal I/O pins, six Dedicated Input pins, four  
Dedicated Clock Input pins and a Global Routing Pool  
(GRP). The GRP provides complete interconnectivity  
between all of these elements. The ispLSI 1024/883  
features5-Voltin-systemprogrammabilityandin-system  
diagnostic capabilities. It is the first device which offers  
non-volatile reprogrammability of the logic, as well as the  
interconnect to provide truly reconfigurable systems.  
— Complete Programmable Device Can Combine Glue  
Logic and Structured Designs  
— Four Dedicated Clock Input Pins  
— Synchronous and Asynchronous Clocks  
— Flexible Pin Placement  
— Optimized Global Routing Pool Provides Global  
Interconnectivity  
• ispDesignEXPERT™ – LOGIC COMPILER AND COM-  
PLETE ISP DEVICE DESIGN SYSTEMS FROM HDL  
SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING  
— Superior Quality of Results  
The basic unit of logic on the ispLSI 1024/883 device is  
theGenericLogicBlock(GLB).TheGLBsarelabeledA0,  
A1 .. C7 (see figure 1). There are a total of 24 GLBs in the  
ispLSI 1024/883 device. Each GLB has 18 inputs, a  
programmable AND/OR/XOR array, and four outputs  
which can be configured to be either combinatorial or  
registered. Inputs to the GLB come from the GRP and  
dedicatedinputs. AlloftheGLBoutputsarebroughtback  
into the GRP so that they can be connected to the inputs  
of any other GLB on the device.  
— Tightly Integrated with Leading CAE Vendor Tools  
— Productivity Enhancing Timing Analyzer, Explore  
Tools, Timing Simulator and ispANALYZER™  
— PC and UNIX Platforms  
unctional Block Diagram  
Copyright©2000LatticeSemiconductorCorp. Allbrandorproductnamesaretrademarksorregisteredtrademarksoftheirrespectiveholders. Thespecificationsandinformationhereinaresubject  
to change without notice.  
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.  
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com  
September 2000  
1024MIL_01  
1
Specifications ispLSI 1024/883  
Functional Block Diagram  
Figure 1.ispLSI 1024/883 Functional Block Diagram  
RESET  
Generic  
Logic Blocks  
(GLBs)  
IN 5  
IN 4  
I/O 47  
C7  
I/O 46  
I/O 0  
I/O 45  
A0  
I/O 1  
I/O 44  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
I/O 2  
I/O 3  
A1  
I/O 43  
I/O 42  
I/O 41  
I/O 4  
A2  
I/O 5  
I/O 40  
Global  
Routing  
Pool  
I/O 6  
I/O 7  
A3  
A4  
A5  
A6  
A7  
I/O 39  
I/O 38  
I/O 37  
I/O 36  
(GRP)  
I/O 8  
I/O 9  
I/O 10  
I/O 11  
I/O 35  
I/O 34  
I/O 33  
I/O 32  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
SDI/IN 0  
SDO/IN 1  
CLK 0  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
CLK 1  
CLK 2  
Clock  
Distribution  
Network  
IOCLK 0  
IOCLK 1  
Megablock  
Output Routing Pool (ORP)  
Input Bus  
ispEN  
SCLK/IN 2  
MODE/IN 3  
I/O I/O I/O I/O  
16 17 18 19  
I/O I/O I/O I/O  
20 21 22 23  
I/O I/O I/O I/O  
24 25 26 27  
I/O I/O I/O I/O  
28 29 30 31  
Y
0
Y
1
Y
2
Y
3
0139D_1024.eps  
The device also has 48 I/O cells, each of which is directly TheGRPhasasitsinputstheoutputsfromalloftheGLBs  
connected to an I/O pin. Each I/O cell can be individually and all of the inputs from the bi-directional I/O cells. All of  
programmed to be a combinatorial input, registered in- these signals are made available to the inputs of the  
put, latched input, output or  
bi-directional GLBs. Delays through the GRP have been equalized to  
I/O pin with 3-state control. Additionally, all outputs are minimize timing skew.  
polarity selectable, active high or active low. The signal  
Clocks in the ispLSI 1024/883 device are selected using  
levelsareTTLcompatiblevoltagesandtheoutputdrivers  
can source 4 mA or sink 8 mA.  
theClockDistributionNetwork.Fourdedicatedclockpins  
(Y0, Y1, Y2 and Y3) are brought into the distribution  
network, and five clock outputs (CLK 0, CLK 1, CLK 2,  
IOCLK 0 and IOCLK 1) are provided to route clocks to the  
GLBs and I/O cells. The Clock Distribution Network can  
alsobedrivenfromaspecialclockGLB (B4ontheispLSI  
1024/883 device). The logic of this GLB allows the user  
to create an internal clock from a combination of internal  
signals within the device.  
Eight GLBs, 16 I/O cells, two dedicated inputs and one  
ORP are connected together to make a Megablock (see  
figure 1). The outputs of the eight GLBs are connected  
toaset of 16universalI/O cellsby theORP. TheI/O cells  
within the Megablock also share a common Output  
Enable (OE) signal. The ispLSI 1024/883 device con-  
tains three of these Megablocks.  
2
Specifications ispLSI 1024/883  
1
Absolute Maximum Ratings  
Supply Voltage V ...................................-0.5 to +7.0V  
cc  
Input Voltage Applied........................ -2.5 to V +1.0V  
CC  
Off-State Output Voltage Applied ..... -2.5 to V +1.0V  
CC  
Storage Temperature................................ -65 to 150°C  
Case Temp. with Power Applied .............. -55 to 125°C  
Max. Junction Temp. (T ) with Power Applied ... 150°C  
J
1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional  
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification  
is not implied (while programming, follow the programming specifications).  
DC Recommended Operating Conditions  
SYMBOL  
PARAMETER  
MIN.  
MAX.  
5.5  
UNITS  
Supply Voltage  
Input Low Voltage  
Input High Voltage  
Military/883  
TC = -55°C to +125°C  
V
V
V
CC  
IL  
4.5  
0
V
V
0.8  
IH  
2.0  
Vcc + 1  
0005A mil.eps  
Capacitance (TA=25oC, f=1.0 MHz)  
1
SYMBOL PARAMETER  
MAXIMUM  
UNITS  
TEST CONDITIONS  
CC=5.0V, VIN=2.0V  
Dedicated Input Capacitance  
10  
10  
pf  
pf  
V
C1  
C2  
I/O and Clock Capacitance  
VCC=5.0V, VI/O, VY=2.0V  
Table 2- 0006mil  
1. Characterized but not 100% tested.  
Data Retention Specifications  
PARAMETER  
Data Retention  
MINIMUM  
20  
MAXIMUM  
UNITS  
Years  
Erase/Reprogram Cycles  
10000  
Cycles  
Table 2- 0008B  
3
Specifications ispLSI 1024/883  
Switching Test Conditions  
Figure 2. Test Load  
Input Pulse Levels  
GND to 3.0V  
3ns 10% to 90%  
1.5V  
Input Rise and Fall Time  
Input Timing Reference Levels  
Output Timing Reference Levels  
Output Load  
+ 5V  
1.5V  
R
1
2
See figure 2  
Device  
Output  
Test  
Point  
3-state levels are measured 0.5V from steady-state  
active level.  
Table 2- 0003  
R
C *  
L
Output Load Conditions (see figure 2)  
*
C includes Test Fixture and Probe Capacitance.  
L
Test Condition  
R1  
R2  
CL  
A
470  
390Ω  
390Ω  
390Ω  
390Ω  
35pF  
35pF  
35pF  
5pF  
B
Active High  
Active Low  
470Ω  
Active High to Z  
at VOH - 0.5V  
C
Active Low to Z  
470Ω  
390Ω  
5pF  
at VOL + 0.5V  
Table 2- 0004A  
DC Electrical Characteristics  
Over Recommended Operating Conditions  
3
CONDITION  
IOL =8 mA  
PARAMETER  
Output Low Voltage  
MIN. TYP.  
MAX.  
0.4  
UNITS  
SYMBOL  
2.4  
V
V
V
V
OL  
IOH =-4 mA  
Output High Voltage  
OH  
0V VIN VIL (MAX.)  
3.5V VIN VCC  
Input or I/O Low Leakage Current  
Input or I/O High Leakage Current  
isp Input Low Leakage Current  
I/O Active Pull-Up Current  
-10  
10  
µA  
I
I
I
I
I
IL  
IH  
µA  
µA  
µA  
mA  
mA  
0V VIN VIL (MAX.)  
0V VIN VIL  
-150  
-150  
IL-isp  
IL-PU  
1
VCC = 5V, VOUT = 0.5V  
VIL = 0.5V, VIH = 3.0V  
fTOGGLE = 1 MHz  
Output Short Circuit Current  
Operating Power Supply Current  
OS  
-200  
215  
2,4  
135  
I
CC  
1. One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems by tester ground  
degradation. Characterized but not 100% tested.  
2. Measured using six 16-bit counters.  
3. Typical values are at VCC = 5V and TA = 25oC.  
4. Maximum ICC varies widely with specific device configuration and operating frequency. Refer to the Power Consumption sec-  
tion of this datasheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate maximum  
ICC.  
0007A-24 mil  
4
Specifications ispLSI 1024/883  
External Timing Parameters  
Over Recommended Operating Conditions  
-60  
5
2
DESCRIPTION1  
UNITS  
TEST  
PARAMETER  
#
COND.  
MIN. MAX.  
A
A
A
A
A
B
C
1
Data Propagation Delay, 4PT bypass, ORP bypass  
Data Propagation Delay, Worst Case Path  
Clock Frequency with Internal Feedback3  
20  
25  
t
pd1  
ns  
ns  
2
3
4
5
6
7
8
9
t
f
f
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
pd2  
60  
38  
83  
9
MHz  
MHz  
MHz  
ns  
max (Int.)  
max (Ext.)  
max (Tog.)  
su1  
1
Clock Frequency with External Feedback  
Clock Frequency, Max Toggle4  
(
)
tsu2 + tco1  
GLB Reg. Setup Time before Clock, 4PT bypass  
GLB Reg. Clock to Output Delay, ORP bypass  
GLB Reg. Hold Time after Clock, 4 PT bypass  
GLB Reg. Setup Time before Clock  
13  
co1  
ns  
0
h1  
ns  
13  
su2  
ns  
10 GLB Reg. Clock to Output Delay  
11 GLB Reg. Hold Time after Clock  
12 Ext. Reset Pin to Output Delay  
13 Ext. Reset Pulse Duration  
16  
co2  
ns  
0
h2  
ns  
22.5  
r1  
ns  
13  
rw1  
ns  
14 Input to Output Enable  
24  
24  
en  
ns  
15 Input to Output Disable  
dis  
ns  
16 Ext. Sync. Clock Pulse Duration, High  
17 Ext. Sync. Clock Pulse Duration, Low  
6
wh  
ns  
6
wl  
ns  
18 I/O Reg. Setup Time before Ext. Sync. Clock (Y2, Y3)  
19 I/O Reg. Hold Time after Ext. Sync. Clock (Y2, Y3)  
2.5  
8.5  
su5  
ns  
h5  
ns  
Table 2-0030-24 mil  
1. Unless noted otherwise, all parameters use a GRP load of 4 GLBs, 20 PTXOR path, ORP and Y0 clock.  
2. Refer to Timing Model in this data sheet for further details.  
3. Standard 16-Bit loadable counter using GRP feedback.  
4. fmax (Toggle) may be less than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%.  
5. Reference Switching Test Conditions Section.  
5
Specifications ispLSI 1024/883  
1
Internal Timing Parameters  
-60  
2
PARAMETER  
DESCRIPTION  
UNITS  
#
MIN. MAX.  
Inputs  
tiobp  
tiolat  
tiosu  
tioh  
tioco  
tior  
tdin  
I/O Register Bypass  
2.7  
4.0  
20  
21  
22  
23  
24  
25  
26  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
I/O Latch Delay  
I/O Register Setup Time before Clock  
I/O Register Hold Time after Clock  
I/O Register Clock to Out Delay  
I/O Register Reset to Out Delay  
Dedicated Input Delay  
7.3  
1.3  
4.0  
3.3  
5.3  
GRP  
tgrp1  
tgrp4  
GRP Delay, 1 GLB Load  
GRP Delay, 4 GLB Loads  
GRP Delay, 8 GLB Loads  
GRP Delay, 12 GLB Loads  
GRP Delay, 16 GLB Loads  
GRP Delay, 24 GLB Loads  
2.0  
2.7  
4.0  
5.0  
6.0  
8.3  
27  
28  
29  
30  
31  
32  
ns  
ns  
ns  
ns  
ns  
ns  
tgrp8  
tgrp12  
tgrp16  
tgrp24  
GLB  
t4ptbp  
t1ptxor  
t20ptxor  
txoradj  
tgbp  
tgsu  
tgh  
tgco  
tgr  
4 Product Term Bypass Path Delay  
1 Product Term/XOR Path Delay  
20 Product Term/XOR Path Delay  
XOR Adjacent Path Delay3  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
8.6  
9.3  
10.6  
12.7  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
GLB Register Bypass Delay  
GLB Register Setup Time before Clock  
GLB Register Hold Time after Clock  
GLB Register Clock to Output Delay  
GLB Register Reset to Output Delay  
GLB Product Term Reset to Register Delay  
GLB Product Term Output Enable to I/O Cell Delay  
GLB Product Term Clock Delay  
1.3  
6.0  
2.7  
3.3  
13.3  
12.0  
tptre  
tptoe  
tptck  
4.6 9.9  
ORP  
torp  
torpbp  
ORP Delay  
3.3  
0.7  
45  
46  
ns  
ns  
ORP Bypass Delay  
1. Internal Timing Parameters are not tested and are for reference only.  
2. Refer to Timing Model in this data sheet for further details.  
3. The XOR Adjacent path can only be used by Lattice Hard Macros.  
6
Specifications ispLSI 1024/883  
1
Internal Timing Parameters  
-60  
2
PARAMETER  
DESCRIPTION  
UNITS  
#
MIN. MAX.  
Outputs  
t
t
t
ob  
Output Buffer Delay  
4.0  
6.7  
6.7  
47  
48  
49  
ns  
ns  
ns  
I/O Cell OE to Output Enabled  
I/O Cell OE to Output Disabled  
oen  
odis  
Clocks  
t
t
t
t
t
gy0  
Clock Delay, Y0 to Global GLB Clock Line (Ref. clock)  
Clock Delay, Y1 or Y2 to Global GLB Clock Line  
Clock Delay, Clock GLB to Global GLB Clock Line  
Clock Delay, Y2 or Y3 to I/O Cell Global Clock Line  
Clock Delay, Clock GLB to I/O Cell Global Clock Line  
6.0 6.0  
4.6 7.3  
1.3 6.6  
4.6 7.3  
1.3 6.6  
50  
51  
52  
53  
54  
ns  
ns  
ns  
ns  
ns  
gy1/2  
gcp  
ioy2/3  
iocp  
Global Reset  
tgr  
Global Reset to GLB and I/O Registers  
12.0  
55  
ns  
1. Internal Timing Parameters are not tested and are for reference only.  
2. Refer to Timing Model in this data sheet for further details.  
7
Specifications ispLSI 1024/883  
ispLSI Timing Model  
I/O Cell  
GRP  
GLB  
ORP  
I/O Cell  
Feedback  
Ded. In  
#26  
I/O Reg Bypass  
GRP 4  
#28  
4 PT Bypass  
#33  
GLB Reg Bypass  
#37  
ORP Bypass  
#46  
#47  
I/O Pin  
#20  
I/O Pin  
(Output)  
#48, 49  
(Input)  
Input  
Register  
GRP  
Loading  
Delay  
20 PT  
XOR Delays  
GLB Reg  
Delay  
ORP  
Delay  
Q
D
RST  
D
Q
#45  
#34, 35, 36  
#55  
#27, 29,  
30, 31, 32  
#55  
#21 - 25  
RST  
#38, 39,  
40, 41  
Reset  
Clock  
Control  
PTs  
RE  
OE  
CK  
Distribution  
Y1,2,3  
Y0  
#51, 52,  
53, 54  
#42, 43,  
44  
#50  
Derivations of tsu, th and t  
co from the Product Term Clock1  
t
t
t
su  
= Logic + Reg su - Clock (min)  
=
=
(tiobp +  
t
grp4 +  
#20 + #28 + #35  
t
20ptxor  
)
+
(tgsu) - (tiobp +  
t
grp4 +  
t
ptck(min)  
)
(
)
+
(#38) - (#20 + #28 + #44  
)
7.3 ns = (2.7 + 2.7 + 10.6) + (1.3) - (2.7 + 2.7 + 4.6)  
h
= Clock (max) + Reg h - Logic  
=
=
(tiobp +  
t
grp4 +  
#20 + #28 + #44  
t
ptck(max)  
)
+
(tgh) - (tiobp +  
tgrp4 +  
t20ptxor  
)
(
)
+
(#39) - (#20 + #28 + #35  
)
5.3 ns = (2.7 + 2.7 + 9.9) + (6.0) - (2.7 + 2.7 + 10.6)  
co = Clock (max) + Reg co + Output  
=
=
(tiobp +  
t
grp4 +  
#20 + #28 + #44  
t
ptck(max)  
)
+
(tgco  
)
+
)
(torp +  
tob  
)
(
)
+
(#40  
)
+
(#45 + #47  
25.3 ns = (2.7+ 2.7 +9.9) + (2.7) + (3.3 + 4.0)  
Derivations of tsu, th and t  
co from the Clock GLB1  
t
t
t
su  
= Logic + Reg su - Clock (min)  
=
=
(tiobp +  
t
grp4 +  
#20 + #28 + #35  
t
20ptxor  
)
+
(tgsu) - (tgy0(min) +  
t
gco +  
t
gcp(min)  
)
(
)
+
(#38) - (#50 + #40 + #52  
)
7.3 ns = (2.7 + 2.7 + 10.6) + (1.3) - (6.0 + 2.7 + 1.3)  
h
= Clock (max) + Reg h - Logic  
=
=
(tgy0(max) +  
t
gco +  
t
gcp(max)  
#39) - (#20 + #28 + #35  
)
+
(tgh) - (tiobp +  
tgrp4 +  
t
20ptxor  
)
(
#50 + #40 + #52  
)
+
(
)
5.3 ns = (6.0 + 2.7 + 6.6) + (6.0) - (2.7 + 2.7 + 10.6)  
co = Clock (max) + Reg co + Output  
=
=
(tgy0(max) +  
t
gco +  
t
gcp(max)  
)
+
(tgco  
)
+
(torp +  
t )  
ob  
(
#50 + #40 + #52  
)
+
(
#40 #45 + #47  
)
+
(
)
25.3 ns = (6.0 + 2.7 + 6.6) + (2.7) + (3.3 + 4.0)  
1. Calculations are based upon timing specifications for the ispLSI 1024-60.  
8
Specifications ispLSI 1024/883  
Maximum GRP Delay vs GLB Loads  
ispLSI 1024-60  
6
5
4
3
2
1
0
4
8
12  
16  
GLB Loads  
0126A-80-24-mil.eps  
Power Consumption  
Power consumption in the ispLSI 1024/883 device de- used. Figure 3 shows the relationship between power  
pends on two primary factors: the speed at which the and operating speed.  
device is operating, and the number of Product Terms  
Figure 3. Typical Device Power Consumption vs fmax  
200  
ispLSI 1024  
150  
100  
50  
0
10  
20 30  
40 50 60 70 80  
max (MHz)  
f
Notes: Configuration of Six 16-bit Counters  
Typical Current at 5V, 25˚C  
I
I
can be estimated for the ispLSI 1024 using the following equation:  
= 42 + (# of PTs * 0.45) + (# of nets * Max. freq * 0.008) where:  
CC  
CC  
# of PTs = Number of Product Terms used in design  
# of nets = Number of Signals used in device  
Max. freq = Highest Clock Frequency to the device  
The I  
estimate is based on typical conditions (V  
= 5.0V, room temperature) and an assumption of 2 GLB loads on  
CC  
CC  
average exists. These values are for estimates only. Since the value of I  
program in the device, the actual I  
is sensitive to operating conditions and the  
CC  
should be verified.  
CC  
0127A-24-80-isp  
9
Specifications ispLSI 1024/883  
Pin Description  
JLCC  
PIN NUMBERS  
NAME  
DESCRIPTION  
I/O 0 - I/O 3  
I/O 4 - I/O 7  
22,  
24, 25,  
28, 29,  
32, 33,  
39, 40,  
43, 44,  
47, 48,  
58, 59,  
62, 63,  
66, 67,  
Input/Output Pins - These are the general purpose I/O pins used by the  
logic array.  
23,  
27,  
31,  
38,  
42,  
46,  
57,  
61,  
65,  
4,  
26,  
30,  
37,  
41,  
45,  
56,  
60,  
64,  
3,  
I/O 8 - I/O 11  
I/O 12 - I/O 15  
I/O 16 - I/O 19  
I/O 20 - I/O 23  
I/O 24 - I/O 27  
I/O 28 - I/O 31  
I/O 32 - I/O 35  
I/O 36 - I/O 39  
I/O 40 - I/O 43  
I/O 44 - I/O 47  
5,  
9,  
6,  
10,  
7,  
11,  
8,  
12,  
13, 14  
IN 4 - IN 5  
ispEN  
Input - These pins are dedicated input pins to the device.  
2,  
15  
Input - Dedicated in-system programming enable input pin. This pin is  
brought low to enable the programming mode. The MODE, SDI, SDO  
and SCLK options become active.  
19  
1
SDI/IN 0  
21  
Input - This pin performs two functions. When ispEN is logic low, it  
functions as an input pin to load programming data into the device.  
SDI/IN 0 is also used as one of the two control pins for the isp state  
machine. It is a dedicated input pin when ispEN is logic high.  
1
MODE/IN 3  
55  
34  
49  
Input - This pin performs two functions. When ispEN is logic low, it  
functions as pin to control the operation of the isp state machine. It is a  
dedicated input pin when ispEN is logic high.  
1
SDO/IN 1  
Output/Input - This pin performs two functions. When ispEN is logic low,  
it functions as an output pin to read serial shift register data. It is a  
dedicated input pin when ispEN is logic high.  
1
SCLK/IN 2  
Input - This pin performs two functions. When ispEN is logic low, it  
functions as a clock pin for the Serial Shift Register. It is a dedicated  
input pin when ispEN is logic high.  
2
NC  
No Connect  
RESET  
Y0  
20  
16  
54  
Active Low (0) Reset pin which resets all of the GLB and I/O registers in  
the device.  
Dedicated Clock input. This clock input is connected to one of the clock  
inputs of all of the GLBs on the device.  
Y1  
Dedicated Clock input. This clock input is brought into the clock  
distribution network, and can optionally be routed to any GLB on the  
device.  
Y2  
Y3  
51  
50  
Dedicated Clock input. This clock input is brought into the clock  
distribution network, and can optionally be routed to any GLB and/or  
any I/O cell on the device.  
Dedicated Clock input. This clock input is brought into the clock  
distribution network, and can optionally be routed to any I/O cell on the  
device.  
1,  
35, 52  
53, 68  
18,  
36,  
GND  
VCC  
Ground (GND)  
17,  
VCC  
Table 2 - 0002C-24 mil  
1. Pins have dual function capability.  
2. NC pins are not to be connected to any active signals, Vcc or GND.  
10  
Specifications ispLSI 1024/883  
Pin Configuration  
ispLSI 1024/883 68-Pin JLCC Pinout Diagram  
9
8
7
6
5
4
3
2
1 68 67 66 65 64 63 62 61  
I/O 43  
I/O 44  
I/O 45  
I/O 46  
I/O 47  
IN 5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
I/O 28  
I/O 27  
I/O 26  
I/O 25  
I/O 24  
IN 3/MODE  
Y1  
1
Y0  
VCC  
VCC  
ispLSI 1024/883  
GND  
GND  
Y2  
Top View  
ispEN  
RESET  
SDI/IN 0  
I/O 0  
Y3  
1
1
IN 2/SCLK  
I/O 23  
I/O 1  
I/O 22  
I/O 2  
I/O 21  
I/O 20  
I/O 3  
I/O 4  
I/O 19  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
1. Pins have dual function capability.  
0123-24-isp/JLCC  
11  
Specifications ispLSI 1024/883  
Part Number Description  
ispLSI  
1024  
XX  
X
X
X
Device Family  
ispLSI  
Grade  
/883 = 883 Military Process  
Device Number  
Package  
H = JLCC  
Speed  
60 = 60 MHz fmax  
Power  
L = Low  
00212-80B-isp1024 mil  
Ordering Information  
MILITARY/883  
f
max (MHz)  
t
pd (ns)  
Ordering Number  
Package  
Family  
ispLSI  
SMD #  
60  
20  
ispLSI 1024-60LH/883  
68-Pin JLCC  
5962-9476101MXC  
Table 2-0041A-24-mil  
Note: Lattice Semiconductor recognizes the trend in military device procurement towards  
using SMD compliant devices, as such, ordering by this number is recommended.  
12  

相关型号:

5962-9476101MXX

Electrically-Erasable Complex PLD
ETC

5962-9476201MXX

Electrically-Erasable Complex PLD
ETC

5962-9476301MXC

EE PLD, 25ns, 64-Cell, CMOS, PQCC44, JLCC-44
LATTICE

5962-9476301MXX

Electrically-Erasable Complex PLD
ETC

5962-9477101MXB

IC 1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, CQFP44, CERAMIC, QFP-44, Analog to Digital Converter
WEDC

5962-9477101MXX

Analog-to-Digital Converter, 8-Bit
ETC

5962-9477101MYC

ADC, Flash Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, DIP-42
WEDC

5962-9477101MYX

Analog-to-Digital Converter, 8-Bit
ETC

5962-9477102MXB

ADC, Flash Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CQFP44, CERAMIC, QFP-44
WEDC

5962-9477102MXX

Analog-to-Digital Converter, 8-Bit
ETC

5962-9477102MYC

IC 1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, DIP42, DIP-42, Analog to Digital Converter
WEDC

5962-9477102MYX

Analog-to-Digital Converter, 8-Bit
ETC