GAL20RA10B-10LJ [LATTICE]

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩; 高速异步E2CMOS PLD通用阵列Logic⑩
GAL20RA10B-10LJ
型号: GAL20RA10B-10LJ
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
高速异步E2CMOS PLD通用阵列Logic⑩

可编程逻辑器件 输入元件 时钟
文件: 总15页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GAL20RA10  
High-Speed Asynchronous E2CMOS PLD  
Generic Array Logic™  
Features  
Functional Block Diagram  
HIGH PERFORMANCE E2CMOS® TECHNOLOGY  
7.5 ns Maximum Propagation Delay  
Fmax = 83.3 MHz  
PL  
9 ns Maximum from Clock Input to Data Output  
8
OLMC  
I/O/Q  
I/O/Q  
I
I
I
I
I
I
I
I
I
I
TTL Compatible 8 mA Outputs  
UltraMOS® Advanced CMOS Technology  
8
8
50% to 75% REDUCTION IN POWER FROM BIPOLAR  
75mA Typical Icc  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
OLMC  
ACTIVE PULL-UPS ON ALL PINS  
E2 CELL TECHNOLOGY  
Reconfigurable Logic  
Reprogrammable Cells  
100% Tested/100% Yields  
High Speed Electrical Erasure (<100 ms)  
20 Year Data Retention  
I/O/Q  
I/O/Q  
8
8
8
8
8
8
I/O/Q  
I/O/Q  
TEN OUTPUT LOGIC MACROCELLS  
Independent Programmable Clocks  
Independent Asynchronous Reset and Preset  
Registered or Combinatorial with Polarity  
Full Function and Parametric Compatibility with  
PAL20RA10  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
PRELOAD AND POWER-ON RESET OF ALL REGISTERS  
100% Functional Testability  
APPLICATIONS INCLUDE:  
State Machine Control  
Standard Logic Consolidation  
Multiple Clock Logic Designs  
8
ELECTRONIC SIGNATURE FOR IDENTIFICATION  
Description  
OE  
The GAL20RA10 combines a high performance CMOS process  
with electrically erasable (E2) floating gate technology to provide  
the highest speed performance available in the PLD market. Lattice  
Semiconductor’s E2CMOS circuitry achieves power levels as low  
as 75mA typical ICC which represents a substantial savings in power  
when compared to bipolar counterparts. E2 technology offers high  
speed (<100ms) erase times providing the ability to reprogram,  
reconfigure or test the devices quickly and efficiently.  
Pin Configuration  
DIP  
1
Vcc  
24  
PLCC  
PL  
I/O/Q  
I
I
I
I
I
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
GAL  
4
2
28  
26  
5
7
I
25  
I/O/Q  
I/O/Q  
20RA10  
The generic architecture provides maximum design flexibility by  
allowing the Output Logic Macrocell (OLMC) to be configured by  
the user. The GAL20RA10 is a direct parametric compatible CMOS  
replacement for the PAL20RA10 device.  
I
I
6
23 I/O/Q  
NC  
18  
I
I
GAL20RA10  
Top View  
NC  
I
I
I
9
21  
I/O/Q  
Unique test circuitry and reprogrammable cells allow completeAC,  
DC, and functional testing during manufacturing. Therefore, Lattice  
Semiconductor delivers 100% field programmability and function-  
ality of all GAL products. In addition, 100 erase/write cycles and  
data retention in excess of 20 years are specified.  
I
I
I
I/O/Q  
11  
19  
18  
I/O/Q  
12  
14  
16  
GND  
13 OE  
12  
Copyright © 1997 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject  
to change without notice.  
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.  
Tel. (503) 681-0118; 1-888-ISP-PLDS; FAX (503) 681-3037; http://www.latticesemi.com  
July 1997  
1
20ra10_02  
Specifications GAL20RA10  
GAL20RA10 Ordering Information  
Commercial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
7.5  
10  
3
4
9
100  
100  
GAL20RA10B-7LJ  
28-Lead PLCC  
11  
GAL20RA10B-10LP  
GAL20RA10B-10LJ  
GAL20RA10B-15LP  
GAL20RA10B-15LJ  
GAL20RA10B-20LP  
GAL20RA10B-20LJ  
GAL20RA10B-30LP  
GAL20RA10B-30LJ  
24-Pin Plastic DIP  
100  
100  
100  
100  
100  
100  
100  
28-Lead PLCC  
24-Pin Plastic DIP  
28-Lead PLCC  
24-Pin Plastic DIP  
28-Lead PLCC  
24-Pin Plastic DIP  
28-Lead PLCC  
15  
20  
30  
7
15  
20  
30  
10  
20  
Industrial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
24-Pin Plastic DIP  
28-Lead PLCC  
20  
10  
20  
120  
120  
GAL20RA10B-20LPI  
GAL20RA10B-20LJI  
Part Number Description  
_
XXXXXXXX XX  
X
X X  
GAL20RA10B Device Name  
Speed (ns)  
Grade  
Blank = Commercial  
I = Industrial  
L = Low Power Power  
Package P = Plastic DIP  
J = PLCC  
2
Specifications GAL20RA10  
Output Logic Macrocell (OLMC)  
Asynchronous Reset and Preset  
The GAL20RA10 OLMC consists of 10 D flip-flops with indi- Each GAL20RA10 macrocell has an independent asynchronous  
vidual asynchronous programmable reset, preset and clock product reset and preset control product term. The reset and preset product  
terms. The sum of four product terms and an Exclusive-OR pro- terms are level sensitive, and will hold the flip-flop in the reset or  
vide a programmable polarity D-input to each flip-flop. An output preset state while the product term is active independent of the clock  
enable term combined with the dedicated output enable pin pro- or D-inputs. It should be noted that the reset and preset term al-  
vides tri-state control of each output. Each OLMC has a flip-flop ter the state of the flip-flop whose output is inverted by the output  
bypass, allowing any combination of registered or combinatorial buffer. A reset of the flip-flop will result in the output pin becoming  
outputs.  
a logic high and a preset will result in a logic low.  
The GAL20RA10 has 10 dedicated input pins and 10 program-  
mable I/O pins, which can be either inputs, outputs, or dynamic I/  
O. Each pin has a unique path to the logic array. All macrocells  
have the same type and number of data and control product terms,  
allowing the user to exchange I/O pin assignments without restric-  
tion.  
RESET PRESET  
FUNCTION  
0
1
0
1
0
0
1
1
Registered function of data product term  
Reset register to "0" (device pin = "1")  
Preset register to "1" (device pin = "0")  
Register-bypass (combinatorial output)  
Independent Programmable Clocks  
Combinatorial Control  
An independent clock control product term is provided for each  
GAL20RA10 macrocell. Data is clocked into the flip-flop on the  
active edge of the clock product term. The use of individual clock  
control product terms allow up to ten separate clocks. These clocks  
can be derived from any pin or combination of pins and/or feedback  
from other flip-flops. Multiple clock sources allow a number of  
asynchronous register functions to be combined into a single  
GAL20RA10. This allows the designer to combine discrete logic  
functions into a single device.  
The register in each GAL20RA10 macrocell may be bypassed by  
asserting both the reset and preset product terms. While both  
product terms are active the flip-flop is bypassed and the D- input  
is presented directly to the inverting output buffer. This provides  
the designer the ability to dynamically configure any macrocell as  
a combinatorial output, or to fix the macrocell as combinatorial only  
by forcing both reset and preset product terms active. Some logic  
compilers will configure macrocells as registered or combinatorial  
based on the logic equations, others require the designer to force  
the reset and preset product terms active for combinatorial  
macrocells.  
Programmable Polarity  
The polarity of the D-input to each macrocell flip-flop is individually  
programmable to be active high or low. This is accomplished with  
a programmable Exclusive-OR gate on the D-input of each flip-  
flop. The polarity of the pin is active low when XOR bit is pro-  
grammed (or zero) and is active high when XOR bit is erased (or  
one). Because of the inverted output buffer, the XOR gate output  
node is opposite polarity from the pin. It should be noted that the  
programmable polarity only affects the data latched into the flip-flop  
on the active edge of the clock product term. The reset, preset and  
preload will alter the state of the flip-flop independent of the state  
of programmable polarity bit. The ability to program the active po-  
larity of the D-inputs can be used to reduce the total number of  
product terms used, by allowing the DeMorganization of the logic  
functions. This logic reduction is accomplished by the logic com-  
piler, and does not require the designer to define the polarity.  
Parallel Flip-Flop Preload  
The flip-flops of a GAL20RA10 can be reset or preset from the  
I/O pins by applying a logic low to the preload pin (pin 1 on DIP  
package / pin 2 on PLCC package) and applying the desired logic  
level to each I/O pin. The I/O pins must remain valid for the preload  
setup and hold time. All 10 flip-flops are reset or preset during  
preload, independent of all other OLMC inputs.  
A logic low on an I/O pin during preload will preset the flip-flop, a  
logic high will reset the flip-flop. The output of any flip-flop to be  
preloaded must be disabled. Enabling the output during preload  
will maintain the current logic state. It should be noted that the  
preload alters the state of the flip-flop whose output is inverted by  
the output buffer. A reset of the flip-flop will result in the output pin  
becoming a logic high and a preset will result in a logic low. Note  
that the common output enable pin will disable all 10 outputs of the  
GAL20RA10 when held high.  
Output Enable  
The output of each GAL20RA10 macrocell is controlled by the  
ANDingof an independent output enable product term and a  
common active low output enable pin (pin 13 on DIP package / pin  
16 on PLCC package). The output is enabled while the output en-  
able product term is active and the output enable pin is low. This  
output control structure allows several output enable alternatives.  
3
Specifications GAL20RA10  
Output Logic Macrocell Diagram  
PL  
OE  
AR  
PL  
D
PD  
Q
0
1
AP  
XOR (n)  
Output Logic Macrocell Configuration (Registered With Polarity)  
PL  
OE  
AR  
PL PD  
D
Q
AP  
XOR (n)  
Output Logic Macrocell Configuration (Combinatorial With Polarity)  
OE  
XOR (n)  
4
Specifications GAL20RA10  
GAL20RA10 Logic Diagram  
DIP (PLCC) Package Pinouts  
1 (2)  
0
4
8
12 16 20  
24 28 32 36  
PL  
0
OLMC  
23 (27)  
22 (26)  
280  
XOR - 3200  
2 (3)  
3 (4)  
4 (5)  
5 (6)  
6 (7)  
7 (9)  
320  
600  
OLMC  
XOR - 3201  
640  
920  
OLMC  
21 (25)  
20 (24)  
XOR - 3202  
960  
OLMC  
1240  
XOR - 3203  
1280  
1560  
OLMC  
19 (23)  
18 (21)  
17 (20)  
16 (19)  
15 (18)  
XOR - 3204  
1600  
1880  
OLMC  
XOR - 3205  
1920  
2200  
OLMC  
XOR - 3206  
8 (10)  
9 (11)  
2240  
2520  
OLMC  
XOR - 3207  
2560  
2840  
OLMC  
XOR - 3208  
10 (12)  
11 (13)  
2880  
3160  
OLMC  
14 (17)  
13 (16)  
XOR - 3209  
OE  
64-USER ELECTRONIC SIGNATURE FUSES  
3210, 3211, ....  
Byte7 Byte6 ....  
.... 3272, 3273  
.... Byte1 Byte0  
MSB  
LSB  
5
Specifications GAL20RA10B  
(1)  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Supply voltage VCC ....................................... -0.5 to +7V  
Input voltage applied ........................... -2.5 to VCC +1.0V  
Off-state output voltage applied .......... -2.5 to VCC +1.0V  
Storage Temperature .................................-65 to 150°C  
Ambient Temperature with  
Commercial Devices:  
Ambient Temperature (TA) ............................. 0 to +75°C  
Supply voltage (VCC)  
with Respect to Ground ..................... +4.75 to +5.25V  
Power Applied .........................................-55 to 125°C  
Industrial Devices:  
1.Stresses above those listed under the Absolute Maximum  
Ratingsmay cause permanent damage to the device. These  
are stress only ratings and functional operation of the device at  
these or at any other conditions above those indicated in the  
operational sections of this specification is not implied (while  
programming, follow the programming specifications).  
Ambient Temperature (TA) ..........................-40 to +85°C  
Supply voltage (VCC)  
with Respect to Ground ..................... +4.50 to +5.50V  
DC Electrical Characteristics  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP.3  
MAX. UNITS  
VIL  
VIH  
IIL1  
Input Low Voltage  
Vss 0.5  
2.0  
0.8  
Vcc+1  
-100  
10  
V
V
Input High Voltage  
Input or I/O Low Leakage Current  
Input or I/O High Leakage Current  
Output Low Voltage  
0V VIN VIL (MAX.)  
3.5V VIN VCC  
µA  
µA  
V
IIH  
VOL  
VOH  
IOL  
IOL = MAX. Vin = VIL or VIH  
IOH = MAX. Vin = VIL or VIH  
0.5  
Output High Voltage  
2.4  
V
Low Level Output Current  
High Level Output Current  
Output Short Circuit Current  
8
mA  
mA  
mA  
IOH  
IOS2  
-3.2  
-135  
VCC = 5V VOUT = 0.5V TA = 25°C  
-50  
COMMERCIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
L -7/-10/-15/-20/-30  
75  
75  
100  
120  
mA  
mA  
ftoggle = 15MHz Outputs Open  
INDUSTRIAL  
ICC  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
L -20  
ftoggle = 15MHz Outputs Open  
1) The leakage current is due to the internal pull-up resistor on all pins. See Input Buffer section for more information.  
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester  
ground degradation. Characterized but not 100% tested.  
3) Typical values are at Vcc = 5V and TA = 25 °C  
6
Specifications GAL20RA10B  
AC Switching Characteristics  
Over Recommended Operating Conditions  
COM  
-7  
COM  
-10  
COM  
-15  
COM / IND  
-20  
COM  
-30  
TEST  
COND1.  
DESCRIPTION  
PARAM.  
UNITS  
MIN. MAX.  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
tpd  
tco  
A
A
Input or I/O to Combinatorial Output  
Clock to Output Delay  
2
2
7.5  
9
2
2
10  
11  
15  
15  
20  
20  
30  
30  
ns  
ns  
tsu  
A
Setup Time, Input or Fdbk before Clk↑  
Hold Time, Input or Fdbk after Clk↑  
3
4
7
10  
3
20  
ns  
th  
fmax3  
2
3
3
10  
ns  
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
83.3  
66.7  
45.0  
33.3  
20.0  
MHz  
A
Maximum Clock Frequency with  
No Feedback  
83.3  
71.4  
50.0  
41.7  
25.0  
MHz  
twh  
twl  
Clock Pulse Duration, High  
Clock Pulse Duration, Low  
6
6
7.5  
5
7
7
10  
9
10  
10  
15  
10  
15  
10  
10  
15  
12  
15  
12  
12  
20  
12  
20  
15  
15  
20  
15  
20  
20  
20  
20  
20  
30  
25  
25  
30  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ten/tdis B,C  
ten/tdis B,C  
I or I/O to Output Enabled / Disabled  
OE to Output Enabled / Disabled  
Input or I/O to Async. Reset / Preset  
Async. Reset / Preset Pulse Duration  
Async. Reset / Preset Recovery Time  
Preload Pulse Duration  
6
10  
7
tar/tap  
tarw/tapw  
tarr/tapr  
twp  
A
9
11  
7
8
10  
7
tsp  
Preload Setup Time  
5
thp  
Preload Hold Time  
5
7
1) Refer to Switching Test Conditions section.  
2) Refer to fmax Descriptions section.  
Capacitance (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
pF  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
CI/O  
10  
pF  
*Characterized but not 100% tested.  
7
Specifications GAL20RA10  
Switching Waveforms  
INPUT or  
I/O FEEDBACK  
INPUT or  
I/O FEEDBACK  
VALID INPUT  
VALID INPUT  
pd  
tsu  
VALID CLOCK  
th  
t
VALID CLOCK  
COMBINATORIAL  
OUTPUT  
CLK  
tco  
REGISTERED  
OUTPUT  
Combinatorial Output  
Registered Output  
INPUT or  
I/O FEEDBACK  
t
dis  
ten  
INPUT or  
VALID INPUT  
I/O FEEDBACK  
OUTPUT  
t
ar  
Q-OUTPUT OF  
REGISTER  
Input or I/O to Output Enable/Disable  
t
wl  
twh  
REGISTERED  
OUTPUT PIN  
CLK  
t
ap  
Q-OUTPUT OF  
REGISTER  
Clock Width  
t
wp  
REGISTERED  
OUTPUT PIN  
PL  
t
sp  
thp  
Asynchronous Reset and Preset  
ALL I/O  
PINS  
INPUT or  
VALID INPUT  
I/O FEEDBACK  
DRIVING AP or AR  
Parallel Preload  
t
apr/arr  
t
apw/arw  
CLK  
OE  
Asynchronous Reset and Preset Recovery  
tdis  
ten  
OUTPUT  
OE to Enable / Disable  
8
Specifications GAL20RA10  
fmax Descriptions  
CLK  
CLK  
LOGIC  
ARRAY  
REGISTER  
LOGIC  
REGISTER  
ARRAY  
t
su  
tco  
fmax with No Feedback  
fmax with External Feedback 1/(tsu+tco)  
Note: fmax with no feedback may be less  
than 1/(twh + twl). This is to allow for a  
clock duty cycle of other than 50%.  
Note: fmax with external feedback is cal-  
culated from measured tsu and tco.  
Switching Test Conditions  
Input Pulse Levels  
Input Rise and  
Fall Times  
GND to 3.0V  
+5V  
-7/-10  
2ns 10% 90%  
3ns 10% 90%  
1.5V  
-15/-20/-30  
R
1
Input Timing Reference Levels  
Output Timing Reference Levels  
Output Load  
1.5V  
See Figure  
FROM OUTPUT (O/Q)  
UNDER TEST  
TEST POINT  
3-state levels are measured 0.5V from steady-state active  
level.  
C L*  
R
2
Output Load Conditions (see figure)  
Test Condition  
R1  
R2  
CL  
A
B
470Ω  
470Ω  
390Ω  
390Ω  
390Ω  
390Ω  
390Ω  
50pF  
50pF  
50pF  
5pF  
Active High  
Active Low  
Active High  
Active Low  
*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE  
C
470Ω  
5pF  
9
Specifications GAL20RA10  
Electronic Signature  
Device Programming  
An electronic signature word is provided in every GAL20RA10 GAL devices are programmed using a Lattice Semiconductor-  
device. It contains 64 bits of reprogrammable memory that con- approved Logic Programmer, available from a number of manu-  
tains user defined data. Some uses include user ID codes, revi- facturers (see the the GAL Development Tools section). Complete  
sion numbers, pattern identification or inventory control codes. The programming of the device takes only a few seconds. Erasing of  
signature data is always available to the user independent of the the device is transparent to the user, and is done automatically as  
state of the security cell.  
part of the programming cycle.  
NOTE: The electronic signature bits if programmed to any value  
other then zero(0) will alter the checksum of the device.  
Input Buffers  
GAL20RA10 devices are designed with TTL level compatible in-  
put buffers. These buffers have a characteristically high impedance  
and present a much lighter load to the driving logic than traditional  
Security Cell  
A security cell is provided in every GAL20RA10 device as a deter- bipolar devices.  
rent to unauthorized copying of the device pattern. Once pro-  
grammed, this cell prevents further read access of the device GAL20RA10 input buffers have active pull-ups within their input  
pattern information. This cell can be only be reset by reprogram- structure. As a result, unused inputs and I/Os will float to a TTL  
ming the device. The original pattern can never be examined once high(logical 1). Lattice Semiconductor recommends that all un-  
this cell is programmed. The Electronic Signature is always avail- used inputs and tri-stated I/O pins be connected to another active  
able regardless of the security cell state.  
input, Vcc, or GND. Doing this will tend to improve noise immu-  
nity and reduce Icc for the device.  
Latch-Up Protection  
Typical Input Pull-up Characteristic  
GAL20RA10 devices are designed with an on-board charge pump  
to negatively bias the substrate. The negative bias is of sufficient  
magnitude to prevent input undershoots from causing the circuitry  
to latch. Additionally, outputs are designed with n-channel pullups  
instead of the traditional p-channel pullups to eliminate any pos-  
sibility of SCR induced latching.  
0
- 2 0  
- 4 0  
- 6 0  
0
1 . 0  
2 . 0  
3 . 0  
4 . 0  
5 . 0  
Input Voltage (Volts)  
10  
Specifications GAL20RA10  
Power-Up Reset  
Vcc (min.)  
Vcc  
tsu  
twl  
CLK  
tpr  
Internal Register  
Reset to Logic "0"  
INTERNAL REGISTER  
Q - OUTPUT  
FEEDBACK/EXTERNAL  
OUTPUT REGISTER  
Device Pin  
Reset to Logic "1"  
Circuitry within the GAL20RA10 provides a reset signal to all reg-  
isters during power-up. All internal registers will have their Q  
outputs set low after a specified time (tpr, 1µs MAX). As a result,  
the state on the registered output pins (if they are enabled) will  
be high on power-up, because of the inverting buffer on the output  
pins. This feature can greatly simplify state machine design by  
providing a known state on power-up. The timing diagram for  
power-up is shown to the right. Because of the asynchronous  
nature of system power-up, some conditions must be met to  
provide a valid power-up reset of the GAL20RA10. First, the Vcc  
rise must be monotonic. Second, the clock input must be at a static  
TTL level as shown in the diagram during power up. The regis-  
ters will reset within a maximum of 1µs. As in normal system op-  
eration, avoid clocking the device until all input and feedback path  
setup times have been met. The clock must also meet the mini-  
mum pulse width requirements.  
Input/Output Equivalent Schematics  
PIN  
PIN  
Feedback  
Active Pull-up  
Circuit  
Vcc  
(Vref Typical = 3.2V)  
Active Pull-up  
Circuit  
(Vref Typical = 3.2V)  
Vcc  
Tri-State  
Control  
Vref  
Vcc  
Vcc  
Vref  
ESD  
Protection  
Circuit  
Data  
Output  
PIN  
PIN  
ESD  
Protection  
Circuit  
Feedback  
(To Input Buffer)  
Typical Input  
Typical Output  
11  
Specifications GAL20RA10  
GAL10RA10B-7/-10: Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.4  
1.2  
1
1.2  
1.1  
1
0.9  
0.8  
0.9  
0.8  
0.8  
0.6  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.6  
1.4  
1.2  
1
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.8  
0.6  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.5  
-1  
0
-0.5  
-1  
-1.5  
-2  
-1.5  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output  
Loading  
Delta Tco vs Output  
Loading  
8
6
4
2
0
8
6
RISE  
FALL  
RISE  
FALL  
4
2
0
-2  
-2  
-4  
-4  
0
50  
100  
150  
0
50  
100  
150  
Output Loading (pF)  
Output Loading (pF)  
12  
Specifications GAL20RA10  
GAL10RA10B-7/-10: Typical AC and DC Characteristic Diagrams  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
1
0.8  
0.6  
0.4  
0.2  
0
5
4
3
2
1
0
4
3.75  
3.5  
3.25  
3
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
60  
70  
80  
0.00  
1.00  
2.00  
3.00  
4.00  
Iol (mA)  
Ioh(mA)  
Ioh(mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.9  
0.8  
0.7  
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
0
25  
50  
75  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Icc vs Vin (1 input)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
8
6
4
2
0
0.20 0.70 1.20 1.70 2.20 2.70 3.20 3.70  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
13  
Specifications GAL20RA10  
GAL10RA10B-15/-20/-30: Typical AC and DC Characteristic Diagrams  
Normalized Tpd vs Vcc  
Normalized Tsu vs Vcc  
Normalized Tco vs Vcc  
1.2  
1.1  
1
1.6  
1.4  
1.2  
1
1.1  
1.05  
1
PT H->L  
PT L->H  
RISE  
FALL  
0.8  
0.6  
0.4  
0.9  
0.95  
0.8  
0.9  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.4  
1.3  
1.2  
1.1  
1
1.3  
1.3  
1.2  
1.1  
1
PT H->L  
PT L->H  
RISE  
FALL  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
RISE  
RISE  
FALL  
9
FALL  
9
-1.2  
-1.2  
1
2
3
4
5
6
7
8
10  
1
2
3
4
5
6
7
8
10  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output  
Loading  
Delta Tco vs Output  
Loading  
14  
12  
10  
8
12  
10  
8
RISE  
FALL  
RISE  
FALL  
6
6
4
4
2
2
0
-2  
-4  
0
0
-2  
-4  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
14  
Specifications GAL20RA10  
GAL10RA10B-15/-20/-30: Typical AC and DC Characteristic Diagrams  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
3
2.5  
2
5
4
3
2
1
0
3.75  
3.625  
3.5  
1.5  
1
3.375  
0.5  
0
3.25  
0.00  
20.00  
40.00  
60.00  
80.00  
0.00 10.00 20.00 30.00 40.00 50.00 60.00  
0.00  
1.00  
2.00  
3.00  
4.00  
Iol (mA)  
Ioh(mA)  
Ioh(mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.20  
1.10  
1.00  
0.90  
0.80  
1.2  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
1.1  
1
0.9  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
0
25  
50  
75  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Delta Icc vs Vin (1 input)  
Input Clamp (Vik)  
5
4
3
2
1
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00  
-2.00  
-1.00  
0.00  
Vin (V)  
Vik (V)  
15  

相关型号:

GAL20RA10B-10LP

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE

GAL20RA10B-15LJ

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE

GAL20RA10B-15LP

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE

GAL20RA10B-20LJ

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE

GAL20RA10B-20LJ

EE PLD, 20ns, PQCC28, PLASTIC, LCC-28
ROCHESTER

GAL20RA10B-20LJI

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE

GAL20RA10B-20LP

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE

GAL20RA10B-20LPI

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE

GAL20RA10B-30LJ

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE

GAL20RA10B-30LJ

EE PLD, 30 ns, PQCC28, PLASTIC, LCC-28
ROCHESTER

GAL20RA10B-30LP

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE

GAL20RA10B-7LJ

High-Speed Asynchronous E2CMOS PLD Generic Array Logic⑩
LATTICE