GAL26V12C-20LP [LATTICE]

EE PLD, 20ns, PAL-Type, CMOS, PDIP28, PLASTIC, DIP-28;
GAL26V12C-20LP
型号: GAL26V12C-20LP
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

EE PLD, 20ns, PAL-Type, CMOS, PDIP28, PLASTIC, DIP-28

时钟 输入元件 光电二极管 可编程逻辑
文件: 总16页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GAL26V12  
High Performance E2CMOS PLD  
Generic Array LogicTM  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY  
— 7.5 ns Maximum Propagation Delay  
— Fmax = 142.8 MHz  
I/CLK 1  
INPUT  
I/O/Q  
PRESET  
— 4.5 ns Maximum from Clock Input to Data Output  
— TTL Compatible 16 mA Outputs  
8
OLMC 0  
INPUT  
— UltraMOS® Advanced CMOS Technology  
8
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
OLMC 1  
OLMC 2  
• LOW POWER CMOS  
— 90 mA Typical Icc  
• E2 CELL TECHNOLOGY  
— Reconfigurable Logic  
— Reprogrammable Cells  
— 100% Tested/Guaranteed 100% Yields  
— High Speed Electrical Erasure (<100ms)  
— 20 Year Data Retention  
INPUT  
INPUT/CLK 2  
INPUT  
10  
12  
14  
16  
16  
14  
12  
10  
8
OLMC 3  
OLMC 4  
OLMC 5  
INPUT  
• TWELVE OUTPUT LOGIC MACROCELLS  
— Maximum Flexibility for Complex Logic Designs  
INPUT  
OLMC 6  
OLMC 7  
OLMC 8  
OLMC 9  
OLMC 10  
OLMC 11  
• PRELOAD AND POWER-ON RESET OF REGISTERS  
— 100% Functional Testability  
INPUT  
INPUT  
• APPLICATIONS INCLUDE:  
— DMA Control  
— State Machine Control  
— High Speed Graphics Processing  
— Standard Logic Speed Upgrade  
INPUT  
INPUT  
• ELECTRONIC SIGNATURE FOR IDENTIFICATION  
INPUT  
DESCRIPTION  
8
INPUT  
The GAL26V12, at 7.5ns maximum propagation delay time, com-  
bines a high performance CMOS process with Electrically Eras-  
able (E2) floating gate technology to provide the highest perform-  
ance available of any 26V12 device on the market. E2 technol-  
ogy offers high speed (<100ms) erase times, providing the ability  
to reprogram or reconfigure the device quickly and efficiently.  
RESET  
PACKAGE DIAGRAMS  
DIP  
The generic architecture provides maximum design flexibility by  
allowing the Output Logic Macrocell (OLMC) to be configured by  
the user. The GAL26V12 is fully function/fuse map/parametric  
compatible with other 26V12 devices.  
1
28  
I
I/CLK1  
PLCC  
I/O/Q  
I
I
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
GND  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
Unique test circuitry and reprogrammable cells allow complete  
AC, DC, and functional testing during manufacture. As a result,  
LATTICE is able to guarantee 100% field programmability and  
functionality of all GAL® products. LATTICE also guarantees 100  
erase/rewrite cycles.  
I/CLK2  
GAL  
26V12  
I
4
2
28  
26  
25  
I
5
7
I
I/O/Q  
I/O/Q  
I/O/Q  
I/O/Q  
GND  
I/O/Q  
I/O/Q  
Vcc  
7
I
I
I
I
I
21  
VCC  
23  
GAL26V12  
Top View  
I
I
I
I
9
21  
19  
11  
I
I
12  
14  
16  
18  
14  
15 I/O/Q  
I
Copyright ©2000 Lattice Semiconductor Corp. GAL, E2CMOS and UltraMOS are registered trademarks of Lattice Semiconductor Corp. Generic Array Logic is a trademark of Lattice Semiconduc-  
tor Corp. The specifications herein are subject to change without notice.  
LATTICE SEMICONDUCTOR CORP., 5555 N.E. Moore Ct., Hillsboro, Oregon 97124 U.S.A.  
Tel. (503) 268-8000 or 1-800-LATTICE; FAX (503) 268-8556  
November 2000  
Specifications GAL26V12  
GAL 26V12 ORDERING INFORMATION  
Commercial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
7.5  
10  
6
7
4.5  
7
130  
130  
130  
105  
105  
105  
105  
GAL26V12C-7LJ  
28-Lead PLCC  
28-Pin Plastic DIP  
28-Lead PLCC  
28-Pin Plastic DIP  
28-Lead PLCC  
28-Pin Plastic DIP  
28-Lead PLCC  
GAL26V12C-10LP  
GAL26V12C-10LJ  
GAL26V12C-15LP  
GAL26V12C-15LJ  
GAL26V12C-20LP  
GAL26V12C-20LJ  
15  
20  
10  
12  
8
12  
Industrial Grade Specifications  
Tpd (ns) Tsu (ns) Tco (ns) Icc (mA)  
Ordering #  
Package  
28-Pin Plastic DIP  
28-Lead PLCC  
10  
15  
20  
7
7
8
150  
150  
150  
150  
150  
150  
GAL26V12C-10LPI  
GAL26V12C-10LJI  
GAL26V12C-15LPI  
GAL26V12C-15LJI  
GAL26V12C-20LPI  
GAL26V12C-20LJI  
10  
12  
28-Pin Plastic DIP  
28-Lead PLCC  
12  
28-Pin Plastic DIP  
28-Lead PLCC  
PART NUMBER DESCRIPTION  
_
XXXXXXXX XX X X X  
GAL26V12C Device Name  
Speed (ns)  
Grade  
Blank = Commercial  
I = Industrial  
L = Low Power Power  
Package P = Plastic DIP  
J = PLCC  
2
Specifications GAL26V12  
OUTPUT LOGIC MACROCELL (OLMC)  
The GAL26V12 has a variable number of product terms per  
OLMC. Of the ten available OLMCs, four OLMCs have access  
to eight product terms (pins 15, 16, 26 and 27), two have ten prod-  
uct terms (pins 17 and 25), two have twelve product terms (pins  
18 and 24), two have fourteen product terms (pins 19 and 23), and  
two OLMCs have sixteen product terms (pins 20 and 22). In ad-  
dition to the product terms available for logic, each OLMC has an  
additional product-term dedicated to output enable control.  
The output polarity of each OLMC can be individually programmed  
to be true or inverting, in either combinatorial or registered mode.  
This allows each output to be individually configured as either  
active high or active low.  
In the registered mode configuration the clock source for the  
register can be selected. The two clock options, CLK1 and CLK2,  
originate from input pin1 and pin4 respectively.  
The GAL26V12 has a product term forAsynchronous Reset (AR)  
and a product term for Synchronous Preset (SP). These two  
product terms are common to all registered OLMCs. The Asyn-  
chronous Reset sets all registers to zero any time this dedicated  
product term is asserted. The Synchronous Preset sets all reg-  
isters to a logic one on the rising edge of the next clock pulse after  
this product term is asserted.  
A R  
D
4 TO 1  
M U X  
Q
CLK1/  
CLK2  
Q
NOTE: The AR and SP product terms will force the Q output of  
the flip-flop into the same state regardless of the polarity of the  
output. Therefore, a reset operation, which sets the register output  
to a zero, may result in either a high or low at the output pin,  
depending on the pin polarity chosen.  
S P  
2 TO 1  
MUX  
GAL26V12 OUTPUT LOGIC MACROCELL (OLMC)  
OUTPUT LOGIC MACROCELL CONFIGURATIONS  
COMBINATORIAL MODE  
Each of the Macrocells of the GAL26V12 has two primary func-  
tional modes: registered, and combinatorial I/O. The modes and  
the output polarity are set by four architecture bits (S0, S1, S2 and  
S3), which are normally controlled by the logic compiler. Each  
of these two primary modes, and the bit settings required to enable  
them, are described below and on the following page.  
In combinatorial mode the pin associated with an individual OLMC  
is driven by the output of the sum term gate. Logic polarity of the  
output signal at the pin may be selected by specifying that the  
output buffer drive either true (active high) or inverted (active low).  
Output tri-state control is available as an individual product-term  
for each output, and may be individually set by the compiler as  
either on(dedicated output), off(dedicated input), or product-  
term driven(dynamic I/O).  
REGISTERED MODE  
In registered mode the output pin associated with an individual  
OLMC is driven by the Q output of that OLMCs D-type flip-flop.  
Logic polarity of the output signal at the pin may be selected by  
specifying that the output buffer drive either true (active high) or  
inverted (active low). Output tri-state control is available as an in-  
dividual product-term for each OLMC, and can therefore be de-  
fined by a logic equation.  
In combinatorial mode there are also two options for the feedback.  
The first feedback option into the AND array is from the I/O pin  
side of the output buffer. Both polarities (true and inverted) of the  
pin are fed back into theAND array. The second option is to drive  
the feedback from /Q of the buried register. This option provides  
the combinatorial output with the ability to register the feedback  
of the same combinatorial output.  
There are two options for the feedback of the registered mode -  
- internal /Q feedback and I/O pin feedback. The D flip-flops /Q  
output is fed back into theAND array, with both the true and com-  
plement of the feedback available as inputs to the AND array.  
Similarly the I/O pin feedback with both true and complement input  
to the AND array. The resulting polarity depends on the input  
polarity selection as well as the registered I/O output polarity  
configuration.  
3
Specifications GAL26V12  
REGISTERED MODE  
A R  
A R  
D
Q
Q
D
Q
Q
CLK1/  
CLK2  
CLK1/  
CLK2  
S P  
S P  
ACTIVE HIGH REGISTERED OUTPUT  
WITH BURIED FEEDBACK  
ACTIVE LOW REGISTERED OUTPUT  
WITH BURIED FEEDBACK  
S0 = 1  
S1 = 0  
S3 = 1  
S2 = 1 Selects CLK1  
S2 = 0 Selects CLK2  
S0 = 0  
S1 = 0  
S3 = 1  
S2 = 1 Selects CLK1  
S2 = 0 Selects CLK2  
A R  
A R  
D
D
Q
Q
Q
Q
CLK1/  
CLK2  
CLK1/  
CLK2  
S P  
S P  
ACTIVE LOW REGISTERED OUTPUT  
WITH I/O FEEDBACK  
ACTIVE HIGH REGISTERED OUTPUT  
WITH I/O FEEDBACK  
S0 = 0  
S1 = 0  
S3 = 0  
S2 = 1 Selects CLK1  
S2 = 0 Selects CLK2  
S0 = 1  
S1 = 0  
S3 = 0  
S2 = 1 Selects CLK1  
S2 = 0 Selects CLK2  
4
Specifications GAL26V12  
COMBINATORIAL MODE  
ACTIVE HIGH COMBINATORIAL OUTPUT  
WITH I/O FEEDBACK  
ACTIVE LOW COMBINATORIAL OUTPUT  
WITH I/O FEEDBACK  
S0 = 1  
S1 = 1  
S3 = 1  
S2 = 1 Selects CLK1  
S2 = 0 Selects CLK2  
S0 = 0  
S1 = 1  
S3 = 1  
S2 = 1 Selects CLK1  
S2 = 0 Selects CLK2  
A R  
AR  
D
Q
Q
D
Q
Q
CLK1/  
CLK2  
CLK1/  
CLK2  
SP  
SP  
ACTIVE LOW COMBINATORIAL OUTPUT  
WITH BURIED REGISTER FEEDBACK  
ACTIVE HIGH COMBINATORIAL OUTPUT  
WITH BURIED REGISTER FEEDBACK  
S0 = 0  
S1 = 1  
S3 = 0  
S2 = 1 Selects CLK1  
S2 = 0 Selects CLK2  
S0 = 1  
S1 = 1  
S3 = 0  
S2 = 1 Selects CLK1  
S2 = 0 Selects CLK2  
5
Specifications GAL26V12  
GAL26V12 LOGIC DIAGRAM / JEDEC FUSEMAP  
1
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
28  
27  
ASYNCH  
RESET  
0000  
0052  
.
.
.
OLMC 27  
S0-7800  
S1-7812  
S2-7824  
S3-7836  
0468  
2
3
0520  
.
.
.
OLMC 26  
26  
25  
S0-7801  
S1-7813  
S2-7825  
S3-7837  
0936  
0988  
.
.
.
.
OLMC 25  
S0-7802  
S1-7814  
S2-7826  
S3-7838  
1508  
4
5
1560  
.
.
.
.
.
OLMC 24  
24  
23  
S0-7803  
S1-7815  
S2-7827  
S3-7839  
2184  
2236  
.
.
.
.
.
.
OLMC 23  
S0-7804  
S1-7816  
S2-7828  
S3-7840  
2964  
6
3016  
.
.
OLMC 22  
.
.
.
.
.
22  
21  
S0-7805  
S1-7817  
S2-7829  
S3-7841  
7
VCC  
3848  
8
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
CLK1 CLK2 AR SP  
6
Specifications GAL26V12  
GAL26V12 LOGIC DIAGRAM / JEDEC FUSEMAP (CONT.)  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
CLK1 CLK2 AR SP  
3900  
.
.
OLMC 20  
.
.
.
.
.
20  
19  
S0-7806  
S1-7818  
S2-7830  
S3-7842  
4732  
9
4784  
.
.
.
.
.
.
OLMC 19  
S0-7807  
S1-7819  
S2-7831  
S3-7843  
5512  
10  
11  
5564  
.
.
.
.
.
OLMC 18  
18  
17  
S0-7808  
S1-7820  
S2-7832  
S3-7844  
6136  
6188  
.
.
.
.
OLMC 17  
S0-7809  
S1-7821  
S2-7833  
S3-7845  
6760  
12  
13  
14  
6812  
.
.
.
OLMC 16  
16  
15  
S0-7810  
S1-7822  
S2-7834  
S3-7846  
7228  
7280  
.
.
.
OLMC 15  
S0-7811  
S1-7823  
S2-7835  
S3-7847  
7696  
SYNCH  
PRESET  
7748  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
L
S
B
M
S
B
B0  
B1  
B3  
B4  
B5  
B6  
B7  
7848 7849...  
...7910 7911  
Electronic Signature  
7
SpecificationsGAL26V12C
ABSOLUTE MAXIMUM RATINGS(1)  
RECOMMENDED OPERATING COND.  
Commercial Devices:  
Supply voltage VCC ....................................... -0.5 to +7V  
Ambient Temperature (TA) ............................. 0 to +75°C  
Supply voltage (VCC)  
with Respect to Ground ..................... +4.75 to +5.25V  
Input voltage applied ........................... -2.5 to VCC +1.0V  
Off-state output voltage applied........... -2.5 to VCC +1.0V  
Storage Temperature..................................-65 to 150°C  
Ambient Temperature with  
Industrial Devices:  
Ambient Temperature (TA) ........................... 40 to 85°C  
Supply voltage (VCC)  
Power Applied .........................................-55 to 125°C  
1. Stresses above those listed under the Absolute Maximum  
Ratingsmay cause permanent damage to the device. These  
are stress only ratings and functional operation of the device  
at these or at any other conditions above those indicated in  
the operational sections of this specification is not implied  
(while programming, follow the programming specifications).  
with Respect to Ground ......................... +4.5 to +5.5V  
DC ELECTRICAL CHARACTERISTICS  
Over Recommended Operating Conditions (Unless Otherwise Specified)  
SYMBOL  
PARAMETER  
CONDITION  
MIN.  
TYP.4  
MAX. UNITS  
VIL  
VIH  
IIL1  
Input Low Voltage  
Vss 0.5  
2.0  
0.8  
Vcc+1  
10  
10  
V
V
Input High Voltage  
Input or I/O Low Leakage Current  
Input or I/O High Leakage Current  
Output Low Voltage  
0V VIN VIL (MAX.)  
3.5V VIN VCC  
µA  
µA  
V
IIH  
VOL  
VOH  
IOL  
IOL = MAX. Vin = VIL or VIH  
IOH = MAX. Vin = VIL or VIH  
0.5  
Output High Voltage  
2.4  
V
Low Level Output Current  
High Level Output Current  
Output Short Circuit Current  
16  
mA  
mA  
mA  
IOH  
IOS2  
3.2  
130  
VCC = 5V VOUT = 0.5V TA = 25°C  
30  
COMMERCIAL  
ICC3  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
ftoggle = 15MHz  
ftoggle = 15MHz  
-7/-10  
90  
75  
130  
105  
mA  
mA  
Outputs Open  
-15/-20  
INDUSTRIAL  
ICC3  
Operating Power  
Supply Current  
VIL = 0.5V VIH = 3.0V  
-10/-15/-20  
110  
150  
mA  
Outputs Open  
1) The leakage current is due to the internal pull-up on all pins. See Input Buffer section for more information.  
2) One output at a time for a maximum duration of one second. Vout = 0.5V was selected to avoid test problems caused by tester  
ground degradation. Guaranteed but not 100% tested.  
3) Icc specified for a ten-bit binary counter pattern.  
4) Typical values are at Vcc = 5V and TA = 25 °C  
8
SpecificationsGAL26V12C
Commercial  
AC SWITCHING CHARACTERISTICS  
Over Recommended Operating Conditions  
-7 -10  
MIN. MAX. MIN. MAX. MIN. MAX. MIN. MAX.  
-15  
-20  
TEST  
COND.1  
DESCRIPTION  
PARAM.  
UNITS  
tpd  
tco  
tcf2  
tsu1  
tsu2  
th  
A
A
Input or I/O to Combinatorial Output  
Clock to Output Delay  
6
7.5  
4.5  
2
7
10  
7
10  
10  
15  
8
12  
12  
20  
12  
10  
ns  
ns  
ns  
ns  
ns  
Clock to Feedback Delay  
2.5  
2.5  
Setup Time, Input or Fdbk before Clk↑  
Synch. Preset before Clk↑  
5.5  
6.5  
Hold Time, Input or Feedback after Clock↑  
0
0
0
0
ns  
A
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
95.2  
71.4  
55.5  
41.6  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
125.0  
142.8  
105.2  
125  
80.0  
83.3  
45.4  
62.5  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
twh  
twl  
B
Clock Pulse Duration, High  
3.5  
3.5  
6
7.5  
7.5  
9
4
4
10  
10  
13  
6
15  
15  
20  
8
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Pulse Duration, Low  
6
8
ten  
tdis  
tar  
Input or I/O to Output Enabled  
8
10  
10  
10  
15  
15  
12  
C
Input or I/O to Output Disabled  
Input or I/O to Asynch. Reset of Register  
Asynchronous Reset Pulse Duration  
Asynch. Reset to Clock Recovery Time  
Synch. Preset to Clock Recovery Time  
A
tarw  
tarr  
tspr  
5
8
5
8
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Description section.  
3) Refer to fmax Description section.  
CAPACITANCE (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
pF  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
CI/O  
pF  
*Guaranteed but not 100% tested.  
9
SpecificationsGAL26V12C
Commercial  
AC SWITCHING CHARACTERISTICS  
Over Recommended Operating Conditions  
-10  
MIN. MAX. MIN. MAX. MIN. MAX.  
-15  
-20  
TEST  
COND.1  
DESCRIPTION  
PARAM.  
UNITS  
tpd  
tco  
tcf2  
tsu1  
tsu2  
th  
A
A
Input or I/O to Combinatorial Output  
Clock to Output Delay  
7
10  
7
10  
10  
15  
8
12  
12  
20  
12  
10  
ns  
ns  
ns  
ns  
ns  
Clock to Feedback Delay  
2.5  
2.5  
Setup Time, Input or Fdbk before Clk↑  
Synch. Preset before Clk↑  
6.5  
Hold Time, Input or Feedback after Clock↑  
0
0
0
ns  
A
Maximum Clock Frequency with  
External Feedback, 1/(tsu + tco)  
71.4  
55.5  
41.6  
MHz  
fmax3  
A
A
Maximum Clock Frequency with  
Internal Feedback, 1/(tsu + tcf)  
105.2  
125.0  
80.0  
83.3  
45.4  
62.5  
MHz  
MHz  
Maximum Clock Frequency with  
No Feedback  
twh  
twl  
B
Clock Pulse Duration, High  
4
4
10  
10  
13  
6
15  
15  
20  
8
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Pulse Duration, Low  
6
8
ten  
tdis  
tar  
Input or I/O to Output Enabled  
8
10  
10  
10  
15  
15  
12  
C
Input or I/O to Output Disabled  
Input or I/O to Asynch. Reset of Register  
Asynchronous Reset Pulse Duration  
Asynch. Reset to Clock Recovery Time  
Synch. Preset to Clock Recovery Time  
A
tarw  
tarr  
tspr  
8
8
1) Refer to Switching Test Conditions section.  
2) Calculated from fmax with internal feedback. Refer to fmax Description section.  
3) Refer to fmax Description section.  
CAPACITANCE (TA = 25°C, f = 1.0 MHz)  
SYMBOL  
PARAMETER  
Input Capacitance  
I/O Capacitance  
MAXIMUM*  
UNITS  
pF  
TEST CONDITIONS  
VCC = 5.0V, VI = 2.0V  
VCC = 5.0V, VI/O = 2.0V  
CI  
8
8
CI/O  
pF  
*Guaranteed but not 100% tested.  
10  
Specifications GAL26V12  
SWITCHING WAVEFORMS  
INPUT or  
I/O FEEDBACK  
INPUT or  
I/O FEEDBACK  
VALID INPUT  
VALID INPUT  
t
s u  
th  
t
pd  
CLK  
COMBINATORIAL  
OUTPUT  
t
c o  
REGISTERED  
OUTPUT  
Combinatorial Output  
1/ fm a x  
(external fdbk)  
Registered Output  
INPUT or  
I/O FEEDBACK  
t
dis  
ten  
OUTPUT  
CLK  
1/  
fmax (internal fdbk )  
Input or I/O to Output Enable/Disable  
t
c f  
t
su  
REGISTERED  
FEEDBACK  
fmax with Feedback  
t
w l  
tw h  
CLK  
Clock Width  
t
h
INPUT or  
INPUT or  
I/O FEEDBACK  
DRIVING SP  
I/O FEEDBACK  
DRIVING AR  
tsu  
t
spr  
t
arw  
t
arr  
CLK  
REGISTERED  
OUTPUT  
t
c o  
REGISTERED  
OUTPUT  
tar  
CLK  
Synchronous Preset  
Asynchronous Reset  
11  
Specifications GAL26V12  
fmax DESCRIPTIONS  
C L K  
C L K  
L O G I C  
L O G I C  
A R R A Y  
R E G I S T E R  
A R R A Y  
R E G I S T E R  
t
s u  
tc o  
t
c f  
p d  
fmax with External Feedback 1/(tsu+tco)  
t
Note: fmax with external feedback is cal-  
culated from measured tsu and tco.  
fmax with Internal Feedback 1/(tsu+tcf)  
Note: tcf is a calculated value, derived by sub-  
tracting tsu from the period of fmax w/internal  
feedback (tcf = 1/fmax - tsu). The value of tcf is  
used primarily when calculating the delay from  
clocking a register to a combinatorial output  
(through registered feedback), as shown above.  
For example, the timing from clock to a combi-  
natorial output is equal to tcf + tpd.  
C L K  
L O G I C  
R E G I S T E R  
A R R A Y  
fmax With No Feedback  
Note: fmax with no feedback may be less  
than 1/twh + twl. This is to allow for a clock  
duty cycle of other than 50%.  
SWITCHING TEST CONDITIONS  
Input Pulse Levels  
GND to 3.0V  
+5V  
Input Rise and Fall Times  
Input Timing Reference Levels  
Output Timing Reference Levels  
Output Load  
2ns 10% 90%  
1.5V  
R
1
1.5V  
See Figure  
3-state levels are measured 0.5V from steady-state active  
level.  
FROM OUTPUT (O/Q)  
UNDER TEST  
TEST POINT  
Output Load Conditions (see figure)  
C L*  
R
2
Test Condition  
R1  
R2  
CL  
A
300Ω  
390Ω  
390Ω  
390Ω  
390Ω  
390Ω  
50pF  
50pF  
50pF  
5pF  
B
Active High  
Active Low  
Active High  
Active Low  
300Ω  
C
*C L INCLUDES TEST FIXTURE AND PROBE CAPACITANCE  
300Ω  
5pF  
12  
Specifications GAL26V12  
OUTPUT REGISTER PRELOAD  
ELECTRONIC SIGNATURE  
An electronic signature is provided in every GAL26V12 device.  
It contains 64 bits of reprogrammable memory that can contain  
user-defined data. Some uses include user ID codes, revision  
numbers, or inventory control. The signature data is always  
available to the user independent of the state of the security cell.  
When testing state machine designs, all possible states and state  
transitions must be verified in the design, not just those required  
in the normal machine operations. This is because certain events  
may occur during system operation that throw the logic into an  
illegal state (power-up, line voltage glitches, brown-outs, etc.). To  
test a design for proper treatment of these conditions, a way must  
be provided to break the feedback paths, and force any desired  
(i.e., illegal) state into the registers. Then the machine can be  
sequenced and the outputs tested for correct next state condi-  
tions.  
SECURITY CELL  
A security cell is provided in every GAL26V12 device to prevent  
unauthorized copying of the array patterns. Once programmed,  
this cell prevents further read access to the functional bits in the  
device. This cell can only be erased by re-programming the  
device, so the original configuration can never be examined once  
this cell is programmed. The Electronic Signature is always avail-  
able to the user, regardless of the state of this control cell.  
The GAL26V12 device includes circuitry that allows each regis-  
tered output to be synchronously set either high or low. Thus, any  
present state condition can be forced for test sequencing. If  
necessary, approved GALprogrammers capable of executing test  
vectors perform output register preload automatically.  
INPUT BUFFERS  
LATCH-UP PROTECTION  
GAL26V12 devices are designed with TTL level compatible in-  
put buffers. These buffers have a characteristically high imped-  
ance, and present a much lighter load to the driving logic than bi-  
polar TTL devices.  
GAL26V12 devices are designed with an on-board charge pump  
to negatively bias the substrate. The negative bias minimizes the  
potential for latch-up caused by negative input undershoots.  
Additionally, outputs are designed with n-channel pull-ups instead  
of the traditional p-channel pull-ups in order to eliminate latch-up  
due to output overshoots.  
DEVICE PROGRAMMING  
GAL devices are programmed using a Lattice-approved Logic  
Programmer, available from a number of manufacturers (see the  
the GAL Development Tools section). Complete programming of  
the device takes only a few seconds. Erasing of the device is  
transparent to the user, and is done automatically as part of the  
programming cycle.  
13  
Specifications GAL26V12  
POWER-UP RESET  
Circuitry within the GAL26V12 provides a reset signal to all reg-  
isters during power-up. All internal registers will have their Q out-  
puts set low after a specified time (tpr, 1µs MAX). As a result, the  
state on the registered output pins (if they are enabled) will be  
either high or low on power-up, depending on the programmed  
polarity of the output pins. This feature can greatly simplify state  
machine design by providing a known state on power-up. The  
timing diagram for power-up is shown below. Because of the  
asynchronous nature of system power-up, some conditions must  
be met to guarantee a valid power-up reset of the GAL26V12.  
First, the VCC rise must be monotonic. Second, the clock input  
must be at static TTL level as shown in the diagram during power  
up. The registers will reset within a maximum of tpr time. As in nor-  
mal system operation, avoid clocking the device until all input and  
feedback path setup times have been met. The clock must also  
meet the minimum pulse width requirements.  
4.0 V  
Vcc  
CLK  
tpr  
INTERNAL  
REGISTER  
Q - OUTPUT  
Internal Register  
Reset to Logic "0"  
ACTIVE LOW  
OUTPUT REGISTER  
Device Pin  
Reset to Logic "1"  
Device Pin  
Reset to Logic "0"  
ACTIVE HIGH  
OUTPUT REGISTER  
INPUT/OUTPUT EQUIVALENT SCHEMATICS  
O u t p u t  
Da t a  
P I N  
PIN  
F e e d b a c k  
Vcc  
V c c  
Tri-S tat e  
Cont rol  
Vcc  
Vcc  
ESD  
Protection  
Circuit  
O u t p u t  
Da t a  
P I N  
PIN  
ESD  
Protection  
Circuit  
Feedback  
(To Input Buffer)  
Output  
Input  
14  
Specifications GAL26V12  
TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS  
Normalized Tpd vs Vcc  
Normalized Tco vs Vcc  
Normalized Tsu vs Vcc  
1.2  
1.2  
1.2  
1.1  
1.1  
1
1.1  
1
1
0.9  
0.8  
0.9  
0.9  
0.8  
0.8  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
4.50  
4.75  
5.00  
5.25  
5.50  
Supply Voltage (V)  
Supply Voltage (V)  
Supply Voltage (V)  
Normalized Tsu vs Temp  
Normalized Tpd vs Temp  
Normalized Tco vs Temp  
1.4  
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
1.3  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
-55  
-25  
0
25  
50  
75  
100 125  
Temperature (deg. C)  
Temperature (deg. C)  
Temperature (deg. C)  
Delta Tpd vs # of Outputs  
Switching  
Delta Tco vs # of Outputs  
Switching  
0
-0.25  
-0.5  
0
-0.25  
-0.5  
-0.75  
-1  
-0.75  
-1  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
6
7
8
9
10 11 12  
Number of Outputs Switching  
Number of Outputs Switching  
Delta Tpd vs Output Loading  
Delta Tco vs Output Loading  
12  
10  
8
12  
10  
8
RISE  
FALL  
RISE  
FALL  
6
6
4
4
2
2
0
0
-2  
0
-2  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
Output Loading (pF)  
Output Loading (pF)  
15  
Specifications GAL26V12  
TYPICAL AC AND DC CHARACTERISTIC DIAGRAMS  
Vol vs Iol  
Voh vs Ioh  
Voh vs Ioh  
3
2.5  
2
5
4
3
2
1
0
4
3.75  
3.5  
3.25  
3
1.5  
1
0.5  
0
0.00  
20.00  
40.00  
60.00  
80.00 100.00  
0.00 10.00 20.00 30.00 40.00 50.00 60.00  
0.00  
1.00  
2.00  
3.00  
4.00  
Iol (mA)  
Ioh(mA)  
Ioh(mA)  
Normalized Icc vs Vcc  
Normalized Icc vs Temp  
Normalized Icc vs Freq.  
1.3  
1.2  
1.1  
1
1.3  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.9  
0.8  
0.7  
4.50  
4.75  
5.00  
5.25  
5.50  
-55  
-25  
0
25  
50  
75  
100 125  
0
25  
50  
75  
100  
Supply Voltage (V)  
Temperature (deg. C)  
Frequency (MHz)  
Input Clamp (Vik)  
Delta Icc vs Vin (1 input)  
10  
0
10  
20  
30  
40  
50  
60  
8
6
4
2
0
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00  
-2.00  
-1.50  
-1.00  
-0.50  
0.00  
Vin (V)  
Vik (V)  
16  

相关型号:

GAL26V12C-20LPI

EE PLD, 20ns, PAL-Type, CMOS, PDIP28, PLASTIC, DIP-28
LATTICE

GAL26V12C-7LJ

Electrically-Erasable PLD
ETC

GAL351_15

Press Fit Automotive Rectifier (LUCAS) Voltage Range 100 to 600Volts Current 35 Amps
GOOD-ARK
STMICROELECTR
STMICROELECTR
STMICROELECTR
STMICROELECTR
STMICROELECTR
STMICROELECTR
STMICROELECTR
STMICROELECTR
STMICROELECTR