ICE40HX1K-CM225 [LATTICE]

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family; iCE40â ?? ¢ HX系列超低功耗mobileFPGAâ ?? ¢家族
ICE40HX1K-CM225
型号: ICE40HX1K-CM225
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family
iCE40â ?? ¢ HX系列超低功耗mobileFPGAâ ?? ¢家族

文件: 总12页 (文件大小:861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iCE40HX-Series  
Ultra Low-Power  
mobileFPGAFamily  
March 30, 2012 (1.31)  
Data Sheet  
Figure 1: iCE40 HX-Series Family Architectural Features  
HX-Series - Tablet targeted series  
Programmable  
optimized for high performance  
Logic Block (PLB)  
200 µA at f =0 kHz  
Low cost package offerings  
80% faster than iCE65  
Tablet resolution HD video and imaging  
(Typical)  
I/O Bank 0  
Programmable Interconnect  
Proven, high-volume 40 nm, low-power  
CMOS technology  
Integrated Phase-Locked Loop (PLL)  
Clock multiplication/division for display, SerDes,  
and memory interface applications  
Up to 533 MHz PLL Output  
Reprogrammable from a variety of  
methods and sources  
Flexible programmable logic and  
programmable interconnect fabric  
NVCM  
PLL  
8K look-up tables (LUT4) and flip-flops  
Low-power logic and interconnect  
SPI  
I/O Bank 2  
Complete iCEcubedevelopment system  
Windows® and Linux® support  
Config  
Carry logic  
Four-input  
Look-Up Table  
(LUT4)  
Phase-Locked  
Loop  
VHDL and Verilog logic synthesis  
Place and route software  
Nonvolatile Configuration  
Memory (NVCM)  
Flip-flop with enable  
and reset controls  
Design and IP core libraries  
Low-cost iCEman40HX development board  
Table 1: iCE40HX Ultra Low-Power Programmable Logic Family Summary  
Part Number  
Logic Cells (LUT + Flip-Flop)  
RAM4K Memory Blocks  
HX640  
640  
HX1K  
1,280  
16  
HX4K  
3,520  
20  
HX8K  
7,680  
32  
8
RAM4K RAM bits  
32K  
1
120 Kb  
200 µA  
67  
64K  
1
245 Kb  
267 µA  
95  
80K  
2
533 Kb  
667 µA  
95  
128K  
2
1,057 Kb  
1100 µA  
206  
Phase-Locked Loops (PLLs)  
Configuration bits (maximum)  
Core Operating Power 0 KHz1  
Maximum Programmable I/O Pins  
Maximum Differential Input Pairs  
8
11  
12  
26  
Package  
225-ball BGA  
132-ball BGA  
284-ball BGA  
256-ball BGA  
Code Area mm Pitch mm Programmable I/O: Max I/O (LVDS)  
CM225  
CB132  
CB284  
CT256  
VQ100  
7x7  
0.4  
0.5  
0.5  
0.8  
0.5  
178(23)  
8x8  
95(11)  
72(9)  
95(12)  
95(12)  
12x12  
14x14  
14x14  
206(26)  
67(8)  
100-pin quad flat pack  
Note 1: At 1.2V VCC  
© 2007-2012 by Lattice Semiconductor Corporation. All rights reserved.  
www.latticesemi.com  
(1.31, 30-MAR-2012)  
1
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
Ordering Information  
Figure 2 describes the iCE40HX ordering codes for all packaged components. See the separate DiePlus data sheets  
when ordering die-based products. See the separate iCE40 Pinout Excel files for package and pinout specifications.  
Figure 2: iCE40HX Ordering Codes (packaged, non-die components)  
iCE40HX 8K - CM 225  
High Performance  
Package Leads  
Series  
Package Style  
CM= chip-scale ball grid (0.4 mm pitch)  
CB= chip-scale ball grid (0.5 mm pitch)  
CT= chip-scale ball grid (0.8 mm pitch)  
VQ = Very Thin Quad flat pack (0.5 mm pitch)  
TQ = Thin Quad flat pack (0.5 mm pitch)  
QN= quad flat no-lead (0.5 mm pitch)  
Logic Cells  
640, 1K, 4K, 8K  
iCE40HX8K-CM225  
225-ball Chip-Scale BGA Package  
(7x7 mm footprint, 0.4 mm pitch)  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
2
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
Electrical Characteristics  
All parameter limits are specified under worst-case supply voltage, junction temperature, and processing conditions.  
Absolute Maximum Ratings  
Stresses beyond those listed under Table 2 may cause permanent damage to the device. These are stress ratings only;  
functional operation of the device at these or any other conditions beyond those listed under the Recommended  
Operating Conditions is not implied. Exposure to absolute maximum conditions for extended periods of time  
adversely affects device reliability.  
Table 2: Absolute Maximum Ratings  
Symbol  
Description  
Minimum Maximum  
Units  
VCC  
VPP_2V5  
VPP_FAST  
VCCIO_0  
VCCIO_1  
VCCIO_2  
VCCIO_3  
SPI_VCC  
VIN_0  
Core supply Voltage  
0.5  
1.42  
V
V
V
V
VPP_2V5 NVCM programming and operating supply  
Optional fast NVCM programming supply  
I/O bank supply voltage (I/O Banks 0, 1, 2 and 3 plus SPI  
interface)  
0.5  
4.00  
Voltage applied to PIO pin within a specific I/O bank (I/O  
Banks 0, 1, 2 and 3 plus SPI interface)  
1.0  
3.6  
V
VIN_1  
VIN_2  
VIN_SPI  
VIN_3  
VCCPLL  
IOUT  
TJ  
TSTG  
Analog voltage supply to the Phase Locked Loop (PLL)  
DC output current per pin  
Junction temperature  
0.5  
55  
65  
1.30  
20  
125  
150  
V
mA  
°C  
°C  
Storage temperature, no bias  
Recommended Operating Conditions  
Table 3: Recommended Operating Conditions  
Minimum Nominal Maximum Units  
Symbol  
VCC  
Description  
Core supply voltage  
VPP_2V5 NVCM  
High Performance, low-power  
1.14  
1.30  
2.30  
2.30  
1.20  
1.26  
3.47  
3.47  
3.00  
V
V
V
V
VPP_2V51  
Release from Power-on Reset  
Configure from NVCM  
NVCM programming  
programming and operating  
supply  
VPP_FAST2  
SPI_VCC  
VCCIO_0  
VCCIO_1  
VCCIO_2  
VCCIO_3  
SPI_VCC  
VCCPLL3  
TA  
Optional fast NVCM programming supply  
SPI interface supply voltage  
Leave unconnected in application  
1.71  
2.70  
2.38  
3.30  
2.50  
3.47  
3.47  
2.63  
V
V
V
I/O standards, all banks  
LVCMOS33  
LVCMOS25, LVDS  
LVCMOS18, SubLVDS  
1.71  
1.43  
1.80  
1.50  
1.89  
1.58  
V
V
LVCMOS15  
Analog voltage supply to the Phase Locked Loop (PLL)  
Ambient temperature  
NVCM programming temperature  
1.14  
40  
10  
1.20  
25  
1.26  
85  
30  
V
°C  
°C  
TPROG  
Notes:  
1. VPP_2V5 must be connected to a valid voltage, when the iCE40HX device is active.  
2. VPP_FAST, used only for fast production programming, must be left floating or unconnected in application.  
3. VCCPLL must be tied to VCC when PLL is not used.  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
3
 
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
I/O Characteristics  
Table 4: PIO Pin Electrical Characteristics  
Symbol  
Description  
Conditions  
Minimum  
Nominal  
Maximum  
±10  
Units  
µA  
µA  
Il  
IOZ  
Input pin leakage current VIN = VCCIOmax to 0 V  
Three-state I/O pin (Hi-Z) VO = VCCIOmax to 0 V  
leakage current  
±10  
CPIO  
CGBIN  
PIO pin input capacitance  
GBIN global buffer pin  
6
6
pF  
pF  
input capacitance  
RPULLUP Internal PIO pull-up  
resistance during  
VCCIO = 3.3V  
VCCIO = 2.5V  
VCCIO = 1.8V  
60  
80  
120  
160  
50  
kΩ  
kΩ  
kΩ  
kΩ  
mV  
configuration  
VCCIO = 1.5V  
VHYST  
Input hysteresis  
VCCIO = 1.5V to 3.3V  
NOTE: All characteristics are characterized and may or may not be tested on each pin on each device.  
Single-ended I/O Characteristics  
Table 5: I/O Characteristics  
Nominal I/O  
Output Current at  
Voltage (mA)  
Bank Supply  
Voltage  
3.3V  
Input Voltage (V)  
Output Voltage (V)  
I/O Standard  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
IOH  
VIL  
VIH  
VOL  
0.4  
0.4  
0.4  
0.4  
VOH  
2.40  
2.00  
1.40  
1.20  
IOL  
0.80  
0.70  
2.00  
1.70  
8
8
2.5V  
1.8V  
1.5V  
6
6
4
4
35% VCCIO 65% VCCIO  
35% VCCIO 65% VCCIO  
2
2
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
4
 
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
Differential Inputs  
Figure 3: Differential Input Specifications  
VCCIO_3  
DPxxB  
Differential  
Input common mode voltage  
input voltage  
VIN_B  
50%  
VID  
VIN_A  
DPxxA  
VICM  
iC40 Differential  
Input  
GND  
Input common mode voltage:  
 ꢁꢁꢀꢄꢅꢆ  
 ꢀꢁꢂ  
  ꢀꢁ  
ꢂꢃꢄ  
Differential input voltage:  
 ꢀꢈ| ꢀꢉꢅꢊ  
|
ꢀꢉꢅꢌ  
Table 6: Recommended Operating Conditions for Differential Inputs  
VCCIO_3 (V)  
VID (mV)  
Nom  
VICM (V)  
Nom  
I/O  
Standard  
Min  
Nom  
Max  
Min  
Max  
Min  
Max  
 ꢁꢁꢀꢄꢅꢆ  
 ꢁꢁꢀꢄꢅꢆ  
 ꢁꢁꢀꢄꢅꢆ  
LVDS  
2.38  
1.71  
2.50  
2.63  
1.89  
250  
350  
150  
450  
 ꢈꢉꢆꢈ  
 ꢈꢉꢆꢈ  
 ꢁꢁꢀꢄꢅꢆ  
 ꢁꢁꢀꢄꢅꢆ  
 ꢁꢁꢀꢄꢅꢆ  
SubLVDS  
1.80  
100  
200  
 ꢈꢉꢋꢌ  
 ꢈꢉꢋꢌ  
Differential Outputs  
Figure 4: Differential Output Specifications  
VCCIO_x  
Differential  
1%  
RP  
Output common mode voltage  
output voltage  
RS  
RS  
VOUT_B  
50%  
VOD  
VOUT_A  
VOCM  
iC40 Differential  
Output Pair  
GND  
Output common mode voltage:  
Differential output voltage:  
 ꢁꢁꢀꢄꢅꢍ  
 
ꢄꢁꢂ  
  ꢀꢁꢍꢃꢄ  
 ꢄꢈ| ꢄꢎꢏꢅꢊ  
|
ꢄꢎꢏꢅꢌ  
Table 7: Recommended Operating Conditions for Differential Outputs  
Ω
VCCIO_x (V)  
VOD (mV)  
Nom  
VOCM (V)  
I/O  
Standard  
Min  
Nom  
Max  
Min  
Max  
Min  
Nom  
Max  
RS  
RP  
 ꢁꢁꢀꢄ  
 ꢁꢁꢀꢄ  
 ꢁꢁꢀꢄ  
LVDS  
2.38  
1.71  
2.50  
2.63  
1.89  
150  
140  
300  
350  
150  
400  
 ꢈꢉꢎꢌ  
 ꢈꢉꢎꢈ  
 ꢈꢉꢎꢌ  
 ꢈꢉꢎꢈ  
 ꢁꢁꢀꢄ  
 ꢁꢁꢀꢄ  
 ꢁꢁꢀꢄ  
SubLVDS  
1.80  
270  
120  
100  
200  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
5
 
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
AC Timing Guidelines  
The following examples provide some guidelines of device performance. The actual performance depends on the  
specific application and how it is physically implemented in the iCE65P FPGA using the Lattice iCEcube2 software.  
The following guidelines assume typical conditions (VCC = 1.0 V or 1.2 V as specified, temperature = 25 ˚C). Apply  
derating factors using the iCEcube2 timing analyzer to adjust to other operating regimes.  
Programmable Logic Block (PLB) Timing  
Table 8 provides timing information for the logic in a Programmable Logic Block (PLB), which includes the paths  
shown in Figure 5 and Figure 6.  
Figure 5 PLB Sequential Timing Circuit  
PAD  
PIO  
DFF  
PAD  
PIO  
D
Q
LUT4  
Logic Cell  
GBIN  
PAD  
GBUF  
Figure 6 PLB Combinational Timing Circuit  
PAD  
PIO  
PIO  
LUT4  
Logic Cell  
Table 8: Typical Programmable Logic Block (PLB) Timing  
Nominal VCC  
1.2 V  
Typ.  
Description  
units  
MHz  
ns  
Sequential Logic Paths  
Flip-flop toggle frequency. DFF flip-flop output fed back to LUT4 input with  
4-input XOR, clocked on same clock edge  
FTOGGLE  
GBIN  
input  
DFF  
GBIN  
input  
PIO  
256  
3.9  
Logic cell flip-flop (DFF) clock-to-output time, measured from the DFF CLK  
input to PIO output, including interconnect delay.  
tCKO  
clock  
input  
GBIN  
input  
output  
Global Buffer Input (GBIN) delay, though Global Buffer (GBUF) clock network  
to clock input on the logic cell DFF flip-flop.  
tGBCKLC  
DFF  
clock  
input  
GBIN  
input  
PIO  
1.5  
ns  
Minimum setup time on PIO input, through LUT4, to DFF flip-flop D-input  
before active clock edge on the GBIN input, including interconnect delay.  
tSULI  
tHDLI  
PIO  
.67  
0
ns  
ns  
input  
GBIN  
input  
Minimum hold time on PIO input, through LUT4, to DFF flip-flop D-input  
after active clock edge on the GBIN input, including interconnect delay.  
input  
Combinational Logic Paths  
Asynchronous delay from PIO input pad to adjacent PLB interconnect.  
tLUT4IN  
PIO  
input  
LUT4  
LUT4  
input  
LUT4  
1.8  
0.34  
3.7  
ns  
ns  
ns  
Logic cell LUT4 combinational logic propagation delay, regardless of logic  
complexity from input to output.  
tILO  
input output  
LUT4 PIO  
output output  
Asynchronous delay from adjacent PLB interconnect to PIO output  
pad.  
tLUT4IN  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
6
 
 
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
Programmable Input/Output (PIO) Block  
Table 9 provides timing information for the logic in a Programmable Logic Block (PLB), which includes the paths  
shown in Figure 7 and Figure 8. The timing shown is for the LVCMOS25 I/O standard in all I/O banks. The  
iCEcube2 development software reports timing adjustments for other I/O standards.  
Figure 7: Programmable I/O (PIO) Pad-to-Pad Timing Circuit  
PAD  
PAD  
PIO  
PIO  
Figure 8: Programmable I/O (PIO) Sequential Timing Circuit  
PAD  
PAD  
PIO  
PIO  
INFF  
OUTFF  
D
Q
D
Q
GBIN  
GBUF  
Table 9: Typical Programmable Input/Output (PIO) Timing (LVCMOS25)  
Nominal VCC  
1.2 V  
Description  
units  
Typ.  
Synchronous Output Paths  
OUTFF  
Delay from clock input on OUTFF output flip-flop to PIO output  
pad.  
tOCKO  
PIO  
3.1  
1.4  
ns  
clock  
input  
GBIN  
input  
output  
OUTFF  
clock  
input  
Global Buffer Input (GBIN) delay, though Global Buffer (GBUF)  
clock network to clock input on the PIO OUTFF output flip-flop.  
tGBCKIO  
ns  
Synchronous Input Paths  
Setup time on PIO input pin to INFF input flip-flop before active  
clock edge on GBIN input, including interconnect delay.  
tSUPDIN  
PIO  
GBIN  
input  
PIO  
0
ns  
ns  
input  
GBIN  
input  
Hold time on PIO input to INFF input flip-flop after active clock  
edge on the GBIN input, including interconnect delay.  
tHDPDIN  
1.6  
input  
Pad to Pad  
tPADIN  
Inter-  
Asynchronous delay from PIO input pad to adjacent  
PIO  
1.8  
3.4  
ns  
ns  
connect interconnect.  
input  
Inter-  
connect  
Asynchronous delay from adjacent interconnect to PIO output  
pad including interconnect delay.  
tPADO  
PIO  
output  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
7
 
 
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
RAM4K Block  
Table 10 provides timing information for the logic in a RAM4K block, which includes the paths shown in Figure 9.  
Figure 9: RAM4K Timing Circuit  
PAD  
PAD  
PIO  
PIO  
WDATA  
RDATA  
RAM4K  
RAM Block  
(256x16)  
GBIN  
GBIN  
GBUF  
GBUF  
WCLK  
RCLK  
Table 10: Typical RAM4K Block Timing  
Nominal VCC  
1.2 V  
Typ.  
Description  
Write Setup/Hold Time  
Minimum write data setup time on PIO inputs before active clock  
edge on GBIN input, include interconnect delay.  
tSUWD  
PIO  
GBIN  
input  
0.44  
0
ns  
ns  
input  
GBIN  
input  
Minimum write data hold time on PIO inputs after active clock edge  
on GBIN input, including interconnect delay.  
tHDWD  
PIO  
input  
Read Clock-Output-Time  
Clock-to-output delay from RCLK input pin, through RAM4K RDATA  
output flip-flop to PIO output pad, including interconnect delay.  
tCKORD  
RCLK  
clock  
input  
GBIN  
input  
PIO  
output  
4.1  
1.4  
ns  
ns  
Global Buffer Input (GBIN) delay, though Global Buffer (GBUF)  
clock network to the RCLK clock input.  
tGBCKRM  
RCLK  
clock  
input  
Write and Read Clock Characteristics  
WCLK  
RCLK  
WCLK  
RCLK  
Write clock High time  
Write clock Low time  
Write clock cycle time  
Sustained write clock frequency  
tRMWCKH  
tRMWCKL  
tRMWCYC  
FWMAX  
0.30  
0.35  
0.71  
256  
ns  
ns  
ns  
MHz  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
8
 
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
Phase-Locked Loop (PLL) Block  
Table 11 provides timing information for the Phase-Locked Loop (PLL) block shown in Figure 10.  
Figure 10: Phase-Locked Loop (PLL)  
PLL  
LATCHINPUTVALUE  
DYNAMICDELAY[3:0]  
EXTFEEDBACK  
BYPASS  
RESET  
LOCK  
REFERENCECLK  
PLLOUT  
Table 11: Phase-Locked Loop (PLL) Block Timing  
Nominal VCC 1.2 V  
Min.  
Typical  
Max.  
Symbol From  
Frequency Range  
FREF  
To  
Description  
Units  
Input clock frequency range  
10  
16  
133  
533  
MHz  
MHz  
Output clock frequency range (cannot exceed  
maximum frequency supported by global  
buffers)  
FOUT  
Duty Cycle  
PLLIJ  
TwHI  
TwLOW  
PLLOJ  
Input duty cycle  
35  
2.5  
2.5  
45  
65  
55  
%
ns  
ns  
%
Input clock high time  
Input clock low time  
Output duty cycle  
Fine Delay  
tFDTAP  
PLLTAPS  
PLLFDAM  
Jitter  
Fine delay adjustment, per tap  
Fine delay adjustment settings  
Maximum delay adjustment  
165  
2.5  
ps  
taps  
ns  
0
15  
Input clock period jitter  
PLLOUT output period jitter  
PLLIPJ  
PLLOPJ  
1% or  
100  
+/- 300  
+/- 1.1%  
output  
ps  
ps  
period or  
≥ꢐ110  
Lock/Reset Time  
tLOCK  
PLL lock time after receive stable, monotonic  
REFERENCECLK input  
Minimum reset pulse width  
50  
μs  
twRST  
20  
ns  
Notes:  
1. Output jitter performance is affected by input jitter. A clean reference clock < 100ps jitter must be used to ensure  
best jitter performance.  
2. The output jitter specification refers to the intrinsic jitter of the PLL.  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
9
 
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
Internal Configuration Oscillator Frequency  
Table 12 shows the operating frequency for the iCE40’s internal configuration oscillator.  
Table 12: Internal Oscillator Frequency at VCC = 1.2V  
Frequency (MHz)  
Oscillator  
Mode  
Symbol  
fOSCD  
Min.  
Max.  
Description  
Default oscillator frequency. Slow enough to safely operate  
with any SPI serial PROM.  
Default  
7
10  
fOSCL  
fOSCH  
Low  
Frequency  
High  
Frequency  
Off  
21  
35  
0
30  
50  
0
Supported by most SPI serial Flash PROMs  
Supported by some high-speed SPI serial Flash PROMs  
Oscillator turned off by default after configuration to save  
power.  
Configuration Timing  
Table 13 shows the maximum time to configure an iCE40HX device, by oscillator mode. The calculations use the  
slowest frequency for a given oscillator mode from Table 12 and the maximum configuration bitstream size from  
Table 1, which includes full RAM4K block initialization. The configuration bitstream selects the desired oscillator  
mode based on the performance of the configuration data source.  
Table 13: Typical SPI Master or NVCM Configuration Timing by Oscillator Mode  
Symbol  
tCONFIGL  
Description  
Time from when minimum  
Power-on Reset (POR)  
threshold is reached until  
user application starts.  
Device  
Default  
53  
Low Freq.  
High Freq.  
Units  
ms  
ms  
ms  
ms  
iCE40HX640  
iCE40HX1K  
iCE40HX4K  
iCE40HX8K  
25  
25  
110  
110  
11  
11  
50  
50  
53  
230  
230  
Table 14 provides timing for the CRESET_B and CDONE pins.  
Table 14: General Configuration Timing  
All Grades  
Symbol  
tCRESET_B  
From  
CREST_B  
To  
CREST_B  
Description  
Minimum CRESET_B Low pulse width required to restart  
configuration, from falling edge to rising edge  
Min.  
200  
Max.  
Units  
ns  
CDONE  
High  
PIO pins Number of configuration clock cycles after CDONE goes  
Clock  
cycles  
tDONE_IO  
49  
active  
High before the PIO pins are activated.  
SPI Peripheral Mode (Clock = SPI_SCK, cycles measured  
rising-edge to rising-edge)  
Depends on  
SPI_SCK frequency  
Table 15 provides various timing specifications for the SPI peripheral mode interface.  
Table 15: SPI Peripheral Mode Timing  
All Grades  
Symbol  
tCR_SCK  
From  
CRESET_B  
To  
Description  
Min.  
300  
Max.  
Units  
µs  
SPI_SCK Minimum time from a rising edge on CRESET_B until  
the first SPI write operation, first SPI_SCK. During this  
time, the iCE40HX FPGA is clearing its internal  
configuration memory  
SPI_SI  
SPI_SCK Setup time on SPI_SI before the rising SPI_SCK clock  
edge  
tSUSPISI  
12  
ns  
SPI_SCK  
SPI_SI  
Hold time on SPI_SI after the rising SPI_SCK clock edge  
tHDSPISI  
tSPISCKH  
tSPISCKL  
tSPISCKCYC  
FSPI_SCK  
12  
20  
20  
40  
1
1,000  
25  
ns  
ns  
ns  
ns  
MHz  
SPI_SCK SPI_SCK SPI_SCK clock High time  
SPI_SCK SPI_SCK SPI_SCK clock Low time  
SPI_SCK SPI_SCK SPI_SCK clock period*  
SPI_SCK SPI_SCK Sustained SPI_SCK clock frequency*  
* = Applies after sending the synchronization pattern.  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
10  
 
 
 
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
Power Consumption Characteristics  
Core Power  
Table 16 shows the power consumed on the internal VCC supply rail when the device is filled with 16-bit binary  
counters, measured with a 32.768 kHz and at 32.0 MHz  
Table 16: VCC Power Consumption for Device Filled with 16-Bit Binary Counters  
iCE40HX640 iCE40HX1K iCE40HX4K iCE40HX8K  
Symbol  
ICC0K  
ICC32K  
ICC32M  
Description  
f =0  
fꢐ≤ꢐꢆꢇ.768ꢐkHz  
f = 32.0 MHz  
VCC  
1.2V  
1.2V  
1.2V  
Units  
µA  
µA  
Typical  
200  
222  
4
Typical  
267  
297  
4
Typical  
667  
741  
12  
Typical  
1100  
1222  
13  
mA  
I/O Power  
Table 17 provides the static current by I/O bank. The typical current for I/O Banks 0, 1, 2 and the SPI bank is not  
measurable within the accuracy of the test environment. The PIOs in I/O Bank 3 use different circuitry and dissipate  
a small amount of static current.  
Table 17: I/O Bank Static Current (f = 0 MHz)  
Symbol  
ICCO_0  
ICCO_1  
ICCO_2  
ICCO_3  
Description  
Typical  
« 1  
Maximum Units  
I/O Bank 0  
I/O Bank 1  
I/O Bank 2  
I/O Bank 3  
SPI Bank  
Static current consumption per I/O bank.  
f = 0 MHz. No PIO pull-up resistors  
enabled. All inputs grounded. All  
outputs driving Low.  
uA  
uA  
uA  
uA  
uA  
« 1  
« 1  
« 1  
« 1  
ICCO_SPI  
NOTE: The typical static current for I/O Banks 0, 1, 2, and the SPI bank is less than the accuracy of the device tester.  
Power Estimator  
To estimate the power consumption for a specific application, please download and use the iCE40HX Power Estimator  
Spreadsheet our use the power estimator built into the iCEcube2 software.  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
11  
 
 
iCE40 HX-Series Ultra-Low Power mobileFPGAFamily  
Revision History  
Version  
1.31  
Date  
30-MAR-2012  
Description  
Updated Table 1  
1.3  
22-MAR-2012  
Production Release  
Updated Notes on Table 3: Recommended Operating Conditions  
Updated values in Table 4, Table 5 Table 12, Table 13 and Table 17  
Updated Figure 3 and Figure 4 to specify iCE40  
Updated company name  
Moved package specifications to iCE40 Pinout Excel files.  
Updated Table 1 maximum IOs.  
1.21  
1.2  
1.1  
5-MAR-2012  
13-FEB-2012  
15-DEC-2011  
1.01  
1.0  
31-OCT-2011  
11-JUL-2011  
Added 640, 1K and 4K to Table 13 configuration times. Updated Table 1 maximum IOs.  
Initial Release  
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at  
www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective  
holders. The specifications and information herein are subject to change without notice.  
Lattice Semiconductor Corporation  
5555 N.E. Moore Court  
Hillsboro, Oregon 97124-6421  
United States of America  
Tel: +1 503 268 8000  
Fax: +1 503 268 8347  
cumentation services by Prevailing Technology, Inc. (www.prevailing-technology.com)  
Lattice Semiconductor Corporation  
(1.31, 30-MAR-2012)  
www.latticesemi.com/  
12  

相关型号:

ICE40HX1K-CT225

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family
LATTICE

ICE40HX1K-QN225

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family
LATTICE

iCE40HX1K-TQ144

iCE40™ HX-Series Ultra Low-Power FPGA Family
LATTICE

ICE40HX1K-TQ225

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family
LATTICE

ICE40HX1K-VQ100

iCE40™ HX-Series Ultra Low-Power FPGA Family
LATTICE

ICE40HX1K-VQ225

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family
LATTICE

ICE40HX4K-BG121

iCE40 LP/HX Family
LATTICE

ICE40HX4K-BG121TR

Field Programmable Gate Array, CMOS, PBGA121, CABGA-121
LATTICE

iCE40HX4K-CB132

iCE40™ HX-Series Ultra Low-Power FPGA Family
LATTICE

ICE40HX4K-CB225

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family
LATTICE

ICE40HX4K-CM225

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family
LATTICE

ICE40HX4K-CT225

iCE40™ HX-Series Ultra Low-Power mobileFPGA™ Family
LATTICE