ICE40UP5K-UWG30ITR [LATTICE]

iCE40 UltraPlus™ Family;
ICE40UP5K-UWG30ITR
型号: ICE40UP5K-UWG30ITR
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

iCE40 UltraPlus™ Family

文件: 总53页 (文件大小:1953K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iCE40 UltraPlus™ Family  
Data Sheet  
FPGA-DS-02008 Version 1.4  
August 2017  
iCE40 UltraPlus™ Family  
Data Sheet  
Copyright Notice  
Copyright © 2017 Lattice Semiconductor Corporation. All rights reserved. The contents of these materials contain proprietary and confidential  
information (including trade secrets, copyright, and other Intellectual Property interests) of Lattice Semiconductor Corporation and/or its affiliates. All  
rights are reserved. You are permitted to use this document and any information contained therein expressly and only for bona fide non-commercial  
evaluation of products and/or services from Lattice Semiconductor Corporation or its affiliates; and only in connection with your bona fide  
consideration of purchase or license of products or services from Lattice Semiconductor Corporation or its affiliates, and only in accordance with the  
terms and conditions stipulated. Contents, (in whole or in part) may not be reproduced, downloaded, disseminated, published, or transferred in any  
form or by any means, except with the prior written permission of Lattice Semiconductor Corporation and/or its affiliates. Copyright infringement is a  
violation of federal law subject to criminal and civil penalties. You have no right to copy, modify, create derivative works of, transfer, sublicense,  
publicly display, distribute or otherwise make these materials available, in whole or in part, to any third party. You are not permitted to reverse  
engineer, disassemble, or decompile any device or object code provided herewith. Lattice Semiconductor Corporation reserves the right to revoke  
these permissions and require the destruction or return of any and all Lattice Semiconductor Corporation proprietary materials and/or data.  
Patents  
The subject matter described herein may contain one or more inventions claimed in patents or patents pending owned by Lattice Semiconductor  
Corporation and/or its affiliates.  
Trademark Acknowledgment  
Lattice Semiconductor Corporation®, the Lattice Semiconductor logo, Silicon Image®, the Silicon Image logo, Instaport®, the Instaport logo,  
InstaPrevue®, Simplay®, Simplay HD®, the Simplay HD logo, Simplay Labs™, the Simplay Labs logo, the SiBEAM Snap™, the SiBEAM Snap logo,  
UltraGig™, the UltraGig logo are trademarks or registered trademarks of Lattice Semiconductor Corporation in the United States and/or other  
countries. HDMI® and the HDMI logo with High-Definition Multimedia Interface are trademarks or registered trademarks of, and are used under  
license from, HDMI Licensing, LLC. in the United States or other countries. MHL® and the MHL logo with Mobile High-Definition Link are trademarks  
or registered trademarks of, and are used under license from, MHL, LLC. in the United States and/or other countries. WirelessHD®, the WirelessHD  
logo, WiHD® and the WiHD logo are trademarks, registered trademarks or service marks of SiBeam, Inc. in the United States or other countries.  
HDMI Licensing, LLC; MHL, LLC; Simplay Labs, LLC; and SiBeam, Inc. are wholly owned subsidiaries of Lattice Semiconductor Corporation.  
All other trademarks and registered trademarks are the property of their respective owners in the United States or other countries. The absence of a  
trademark symbol does not constitute a waiver of Lattice Semiconductor’s trademarks or other intellectual property rights with regard to a product  
name, logo or slogan.  
Export Controlled Document  
This document contains materials that are subject to the U.S. Export Administration Regulations and may also be subject to additional export control  
laws and regulations (collectively “Export Laws”) and may be used only in compliance with such Export Laws. Unless otherwise authorized by an  
officer of Lattice Semiconductor Corporation in writing, this document and the information contained herein (a) may not be used in relation to  
nuclear, biological or chemical weapons, or missiles capable of delivering these weapons, and (b) may not be re-exported or otherwise transferred to  
a third party who is known or suspected to be involved in relation to nuclear, biological or chemical weapons, or missiles capable of delivering these  
weapons, or to any sanctioned persons or entities.  
Further Information  
To request other materials, documentation, and information, contact your local Lattice Semiconductor sales office or visit the Lattice Semiconductor  
web site at www.latticesemi.com.  
Disclaimers  
These materials are provided on an “AS IS” basis. Lattice Semiconductor Corporation and its affiliates disclaim all representations and warranties  
(express, implied, statutory or otherwise), including but not limited to: (i) all implied warranties of merchantability, fitness for a particular purpose,  
and/or non-infringement of third party rights; (ii) all warranties arising out of course-of-dealing, usage, and/or trade; and (iii) all warranties that the  
information or results provided in, or that may be obtained from use of, the materials are accurate, reliable, complete, up-to-date, or produce specific  
outcomes. Lattice Semiconductor Corporation and its affiliates assume no liability or responsibility for any errors or omissions in these materials,  
makes no commitment or warranty to correct any such errors or omissions or update or keep current the information contained in these materials,  
and expressly disclaims all direct, indirect, special, incidental, consequential, reliance and punitive damages, including WITHOUT LIMITATION any loss  
of profits arising out of your access to, use or interpretation of, or actions taken or not taken based on the content of these materials. Lattice  
Semiconductor Corporation and its affiliates reserve the right, without notice, to periodically modify the information in these materials, and to add to,  
delete, and/or change any of this information.  
Products and Services  
The products and services described in these materials, and any other information, services, designs, know-how and/or products provided by Lattice  
Semiconductor Corporation and/or its affiliates are provided on “AS IS” basis, except to the extent that Lattice Semiconductor Corporation and/or its  
affiliates provides an applicable written limited warranty in its standard form license agreements, standard Terms and Conditions of Sale and Service  
or its other applicable standard form agreements, in which case such limited warranty shall apply and shall govern in lieu of all other warranties  
(express, statutory, or implied). EXCEPT FOR SUCH LIMITED WARRANTY, LATTICE SEMICONDUCTOR CORPORATION AND ITS AFFILIATES DISCLAIM ALL  
REPRESENTATIONS AND WARRANTIES (EXPRESS, IMPLIED, STATUTORY OR OTHERWISE), REGARDING THE INFORMATION, SERVICES, DESIGNS,  
KNOW-HOW AND PRODUCTS PROVIDED BY LATTICE SEMICONDUCTOR CORPORATION AND/OR ITS AFFILIATES, INCLUDING BUT NOT LIMITED TO, ALL  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND/OR NON-INFRINGEMENT OF THIRD PARTY RIGHTS. YOU  
ACKNOWLEDGE AND AGREE THAT SUCH INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS HAVE NOT BEEN DESIGNED, TESTED, OR  
MANUFACTURED FOR USE OR RESALE IN SYSTEMS WHERE THE FAILURE, MALFUNCTION, OR ANY INACCURACY OF THESE ITEMS CARRIES A RISK OF  
DEATH OR SERIOUS BODILY INJURY, INCLUDING, BUT NOT LIMITED TO, USE IN NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION,  
EMERGENCY SYSTEMS, OR OTHER SYSTEMS WITH A SIMILAR DEGREE OF POTENTIAL HAZARD. NO PERSON IS AUTHORIZED TO MAKE ANY OTHER  
WARRANTY OR REPRESENTATION CONCERNING THE PERFORMANCE OF THE INFORMATION, PRODUCTS, KNOW-HOW, DESIGNS OR SERVICES OTHER  
THAN AS PROVIDED IN THESE TERMS AND CONDITIONS.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
2
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
Contents  
Acronyms in This Document.................................................................................................................................................6  
1. General Description......................................................................................................................................................7  
1.1.  
2. Product Family..............................................................................................................................................................8  
2.1. Overview .............................................................................................................................................................8  
3. Architecture................................................................................................................................................................10  
3.1. Architecture Overview ......................................................................................................................................10  
Features ..............................................................................................................................................................7  
3.1.1. PLB Blocks .....................................................................................................................................................11  
3.1.2. Routing..........................................................................................................................................................12  
3.1.3. Clock/Control Distribution Network .............................................................................................................12  
3.1.4. sysCLOCK Phase Locked Loops (PLLs) ...........................................................................................................13  
3.1.5. sysMEM Embedded Block RAM Memory .....................................................................................................14  
3.1.6. sysMEM Single Port RAM Memory (SPRAM)................................................................................................16  
3.1.7. sysDSP...........................................................................................................................................................18  
3.1.8. sysIO Buffer Banks ........................................................................................................................................23  
3.1.9. sysIO Buffer...................................................................................................................................................26  
3.1.10.  
3.1.11.  
3.1.12.  
3.1.13.  
3.1.14.  
3.1.15.  
On-Chip Oscillator ....................................................................................................................................26  
User I2C IP .................................................................................................................................................27  
User SPI IP.................................................................................................................................................27  
RGB High Current Drive I/O Pins...............................................................................................................27  
RGB PWM IP .............................................................................................................................................27  
Non-Volatile Configuration Memory........................................................................................................28  
3.2.  
iCE40 UltraPlus Programming and Configuration .............................................................................................28  
3.2.1. Device Programming.....................................................................................................................................28  
3.2.2. Device Configuration ....................................................................................................................................28  
3.2.3. Power Saving Options...................................................................................................................................28  
4. DC and Switching Characteristics ...............................................................................................................................29  
4.1.  
4.2.  
4.3.  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
Absolute Maximum Ratings ..............................................................................................................................29  
Recommended Operating Conditions...............................................................................................................29  
Power Supply Ramp Rates ................................................................................................................................30  
Power-On Reset ................................................................................................................................................30  
Power-up Supply Sequence ..............................................................................................................................30  
External Reset ...................................................................................................................................................30  
Power-On-Reset Voltage Levels ........................................................................................................................31  
ESD Performance ..............................................................................................................................................31  
DC Electrical Characteristics..............................................................................................................................32  
4.10. Supply Current ..................................................................................................................................................32  
4.11. User I2C Specifications.......................................................................................................................................33  
4.12. I2C 50 ns Delay...................................................................................................................................................33  
4.13. I2C 50 ns Filter ...................................................................................................................................................33  
4.14. User SPI Specifications 1, 2 .................................................................................................................................33  
4.15. Internal Oscillators (HFOSC, LFOSC)..................................................................................................................34  
4.16. sysI/O Recommended Operating Conditions....................................................................................................34  
4.17. sysI/O Single-Ended DC Electrical Characteristics .............................................................................................34  
4.18. Differential Comparator Electrical Characteristics............................................................................................35  
4.19. Typical Building Block Function Performance ...................................................................................................35  
4.19.1.  
4.19.2.  
Pin-to-Pin Performance (LVCMOS25).......................................................................................................35  
Register-to-Register Performance............................................................................................................35  
4.20. sysDSP Timing ...................................................................................................................................................36  
4.21. SPRAM Timing...................................................................................................................................................36  
4.22. Derating Logic Timing........................................................................................................................................36  
4.23. Maximum sysIO Buffer Performance ................................................................................................................37  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
3
iCE40 UltraPlus™ Family  
Data Sheet  
4.24. iCE40 UltraPlus Family Timing Adders...............................................................................................................37  
4.25. iCE40 UltraPlus External Switching Characteristics...........................................................................................38  
4.26. sysCLOCK PLL Timing .........................................................................................................................................39  
4.27. SPI Master or NVCM Configuration Time..........................................................................................................39  
4.28. sysCONFIG Port Timing Specifications ..............................................................................................................40  
4.29. RGB LED Drive ...................................................................................................................................................41  
4.30. Switching Test Conditions .................................................................................................................................41  
5. Pinout Information .....................................................................................................................................................42  
5.1.  
Signal Descriptions ............................................................................................................................................42  
5.1.1. Power Supply Pins.........................................................................................................................................42  
5.1.2. Configuration Pins.........................................................................................................................................42  
5.1.3. Configuration SPI Pins...................................................................................................................................43  
5.1.4. Global Pins ....................................................................................................................................................44  
5.1.5. General I/O, LED Pins ....................................................................................................................................45  
5.2.  
5.3.  
Pin Information Summary .................................................................................................................................46  
iCE40UP Part Number Description....................................................................................................................47  
5.3.1. Tape and Reel Quantity.................................................................................................................................47  
5.4.  
Ordering Part Numbers .....................................................................................................................................47  
5.4.1. Industrial.......................................................................................................................................................47  
Supplemental Information..................................................................................................................................................48  
Technical Support ...............................................................................................................................................................49  
Revision History ..................................................................................................................................................................50  
Figures  
Figure 3.1. iCE40UP5K Device, Top View ............................................................................................................................10  
Figure 3.2. PLB Block Diagram ............................................................................................................................................11  
Figure 3.3. PLL Diagram ......................................................................................................................................................13  
Figure 3.4. sysMEM Memory Primitives .............................................................................................................................15  
Figure 3.5. SPRAM Primitive ...............................................................................................................................................17  
Figure 3.6. sysDSP Functional Block Diagram (16-bit x 16-bit Multiply-Accumulate).........................................................19  
Figure 3.7. sysDSP 8-bit x 8-bit Multiplier...........................................................................................................................22  
Figure 3.8. DSP 16-bit x 16-bit Multiplier............................................................................................................................23  
Figure 3.9. I/O Bank and Programmable I/O Cell................................................................................................................24  
Figure 3.10. iCE I/O Register Block Diagram .......................................................................................................................25  
Figure 4.1. Power Up Sequence with SPE_VCCIO1 and VPP_2V5 Not Connected Together..............................................31  
Figure 4.2. Power Up Sequence with All Supplies Connected Together to 1.8 V ...............................................................31  
Figure 4.3. Output Test Load, LVCMOS Standards..............................................................................................................41  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
4
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
Tables  
Table 2.1. iCE40 UltraPlus Family Selection Guide ...............................................................................................................8  
Table 3.1. Logic Cell Signal Descriptions .............................................................................................................................11  
Table 3.2. Global Buffer (GBUF) Connections to Programmable Logic Blocks ...................................................................12  
Table 3.3. PLL Signal Descriptions.......................................................................................................................................14  
Table 3.4. sysMEM Block Configurations............................................................................................................................15  
Table 3.5. EBR Signal Descriptions......................................................................................................................................16  
Table 3.6. SPRAM Signal Descriptions ................................................................................................................................18  
Table 3.7. Output Block Port Description ...........................................................................................................................19  
Table 3.8. PIO Signal List.....................................................................................................................................................25  
Table 3.9. Supported Input Standards................................................................................................................................26  
Table 3.10. Supported Output Standards...........................................................................................................................26  
Table 3.11. iCE40 UltraPlus Power Saving Features Description........................................................................................28  
Table 4.1. Absolute Maximum Ratings ...............................................................................................................................29  
Table 4.2. Recommended Operating Conditions................................................................................................................29  
Table 4.3. Power Supply Ramp Rates .................................................................................................................................30  
Table 4.4. Power-On-Reset Voltage Levels.........................................................................................................................31  
Table 4.5. DC Electrical Characteristics...............................................................................................................................32  
Table 4.6. Supply Current 1, 2, 3, 4, 5 .......................................................................................................................................32  
Table 4.7. User I2C Specifications........................................................................................................................................33  
Table 4.8. I2C 50 ns Delay....................................................................................................................................................33  
Table 4.9. I2C 50 ns Filter ....................................................................................................................................................33  
Table 4.10. User SPI Specifications .....................................................................................................................................33  
Table 4.11. Internal Oscillators (HFOSC, LFOSC).................................................................................................................34  
Table 4.12. sysI/O Recommended Operating Conditions...................................................................................................34  
Table 4.13. sysI/O Single-Ended DC Electrical Characteristics............................................................................................34  
Table 4.14. Differential Comparator Electrical Characteristics...........................................................................................35  
Table 4.15. Pin-to-Pin Performance (LVCMOS25) ..............................................................................................................35  
Table 4.16. Register-to-Register Performance ...................................................................................................................35  
Table 4.17. sysDSP Timing ..................................................................................................................................................36  
Table 4.18. Single Port RAM Timing ...................................................................................................................................36  
Table 4.19. Maximum sysIO Buffer Performance...............................................................................................................37  
Table 4.20. iCE40 UltraPlus Family Timing Adders .............................................................................................................37  
Table 4.21. iCE40 UltraPlus External Switching Characteristics..........................................................................................38  
Table 4.22. sysCLOCK PLL Timing........................................................................................................................................39  
Table 4.23. SPI Master or NVCM Configuration Time.........................................................................................................39  
Table 4.24. sysCONFIG Port Timing Specifications .............................................................................................................40  
Table 4.25. RGB LED............................................................................................................................................................41  
Table 4.26. Test Fixture Required Components, Non-Terminated Interfaces....................................................................41  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
5
iCE40 UltraPlus™ Family  
Data Sheet  
Acronyms in This Document  
A list of acronyms used in this document.  
Acronym  
Definition  
DFF  
D-style Flip-Flop  
DSP  
EBR  
HFOSC  
I2C  
Digital Signal Processor  
Embedded Block RAM  
High Frequency Oscillator  
Inter-Integrated Circuit  
Low Frequency Oscillator  
Look Up Table  
LFOSC  
LUT  
LVCMOS  
NVCM  
PCLK  
PFU  
Low-Voltage Complementary Metal Oxide Semiconductor  
Non Volatile Configuration Memory  
Primary Clock  
Programmable Functional Unit  
Programmable I/O Cells  
Programmable Logic Blocks  
Phase Locked Loops  
PIC  
PLB  
PLL  
SoC  
System on a Chip  
SPI  
SPR  
Serial Peripheral Interface  
Single Port RAM  
WLCSP  
Wafer Level Chip Scale Packaging  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
6
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
1.1. Features  
1. General Description  
Flexible Logic Architecture  
iCE40 UltraPlusfamily from Lattice Semiconductor is  
an ultra-low power FPGA and sensor manager  
designed for ultra-low power mobile applications, such  
as smartphones, tablets and hand-held devices. iCE40  
UltraPlus is compatible with Lattice's iCE40 Ultra family  
devices, containing all the functions iCE40 Ultra family  
has except the high current IR LED driver. In addition,  
the iCE40 UltraPlus features an additional 1 Mb SRAM,  
additional DSP blocks, with additional LUTs, all which  
can be used to support an always-on Voice Recognition  
function in the mobile devices, without the need to  
keep the higher power consuming voice codec on all  
the time.  
Two devices with 2800 to 5280 LUTs  
Offered in WLCS and QFN packages  
Ultra-low Power Devices  
Advanced 40 nm low power process  
As low as 100 µA standby current typical  
Embedded Memory  
Up to 1024 kb Single Port SRAM  
Up to 120 kb sysMEM™ Embedded Block RAM  
Two Hardened I2C Interfaces  
Two I/O pins to support I3C interface  
Two Hardened SPI Interfaces  
Two On-Chip Oscillators  
Low Frequency Oscillator – 10 kHz  
High Frequency Oscillator – 48 MHz  
The iCE40 UltraPlus family includes integrated SPI and  
I2C blocks to interface with virtually all mobile sensors  
and application processors. In addition, the iCE40  
UltraPlus family also features two I/O pins that can  
support the interface to I3C devices. There are two  
on-chip oscillators, 10 kHz and 48 MHz, the LFOSC  
(10 kHz) is ideal for low power function in always-on  
applications, while HFOSC (48 MHz) can be used for  
awaken activities.  
24 mA Current Drive RGB LED Outputs  
On-chip DSP  
Three drive outputs in each device  
User selectable sink current up to 24 mA  
Signed and unsigned 8-bit or 16-bit functions  
Functions include Multiplier, Accumulator, and  
Multiply-Accumulate (MAC)  
Flexible On-Chip Clocking  
The iCE40 UltraPlus family also features DSP functional  
block to off-load Application Processor to pre-process  
information sent from the mobile device, such as voice  
data. The RGB PWM IP, with the three 24 mA constant  
current RGB outputs on the iCE40 UltraPlus provides  
all the necessary logic to directly drive the service LED,  
without the need of external MOSFET or buffer.  
Eight low skew global signal resource, six can  
be directly driven from external pins  
One PLL with dynamic interface per device  
Flexible Device Configuration  
SRAM is configured through:  
Standard SPI Interface  
Internal Nonvolatile Configuration  
Memory (NVCM)  
The iCE40 UltraPlus family of devices are targeting for  
mobile applications to perform all the functions in  
iCE40 Ultra devices, such as Service LED, GPIO  
Expander, SDIO Level Shift, and other custom  
functions. In addition, the iCE40 UltraPlus family  
devices are also targeting for Voice Recognition  
application.  
Ultra-Small Form Factor  
As small as 2.15 mm × 2.55 mm  
Applications  
Always-On Voice Recognition Application  
Smartphones  
Tablets and Consumer Handheld Devices  
Handheld Commercial and Industrial Devices  
Multi Sensor Management Applications  
Sensor Pre-processing and Sensor Fusion  
Always-On Sensor Applications  
USB 3.1 Type C Cable Detect / Power Delivery  
Applications  
The iCE40 UltraPlus family features two device  
densities, 2800 to 5280 Look Up Tables (LUTs) of logic  
with programmable I/Os that can be used as either  
SPI/I2C interface ports or general purpose I/O’s. Two of  
the iCE40 UltraPlus I/Os can be used to interface to  
higher performance I3C. It also has up to 120 kb of  
Block RAMs, plus 1024 kb of Single Port SRAMs to work  
with user logic.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
7
iCE40 UltraPlus™ Family  
Data Sheet  
2. Product Family  
Table 2.1 lists device information and packages of the iCE40 UltraPlus family.  
Table 2.1. iCE40 UltraPlus Family Selection Guide  
Part Number  
iCE40UP3K  
iCE40UP5K  
Logic Cells (LUT + Flip-Flop)  
EBR Memory Blocks  
2800  
20  
80  
4
5280  
30  
120  
4
EBR Memory Bits (Kbits)  
SPRAM Memory Blocks  
SPRAM Memory Bits (Kbits)  
NVCM  
1024  
Yes  
1
1024  
Yes  
1
PLL  
DSP Blocks (MULT16 with 32-bit Accumulator  
Hardened I2C, SPI  
4
8
2, 2  
1
2, 2  
1
HF Oscillator (48 MHz)  
LF Oscillator (10 KHz)  
1
1
24 mA LED Sink  
3
3
PWM IP Block  
Yes  
Yes  
Packages, ball pitch, dimension  
30-ball WLCSP, 0.4 mm, 2.15 mm x 2.55 mm  
48-ball QFN, 0.5 mm, 7.0 mm x 7.0 mm  
Total User I/O Count  
21  
-
21  
39  
2.1. Overview  
The iCE40 UltraPlus family of ultra-low power FPGAs has three devices with densities ranging from 2800 to 5280 Look-  
Up Tables (LUTs) fabricated in a 40 nm Low Power CMOS process. In addition to LUT-based, low-cost programmable  
logic, these devices also feature Embedded Block RAM (EBR), Single Port RAM (SPRAM), on-chip Oscillators (LFOSC,  
HFOSC), two hardened I2C Controllers, two hardened SPI Controllers, PWM IP, three 24 mA RGB LED open-drain  
drivers, I3C interface pins, and DSP blocks. These features allow the devices to be used in low-cost, high-volume  
consumer and mobile applications.  
The iCE40 UltraPlus FPGAs are available in very small form factor packages, as small as 2.15 mm x 2.55 mm. The small  
form factor allows the device to easily fit into a lot of mobile applications, where space can be limited. Table 2.1 lists  
the LUT densities, package and I/O pin count.  
The iCE40 UltraPlus devices offer I/O features such as pull-up resistors. Pull-up features are controllable on a “per pin”  
basis. In addition, the iCE40 UltraPlus devices offer two I/Os with dynamic control on the pull-up resistors to support  
I3C interface.  
The RGB PWM IP in the iCE40 UltraPlus devices provides controls for driving the 24 mA LED Sink driver, including color  
controls, LED ON/OFF time, and breathe rate.  
The iCE40 UltraPlus devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices  
can also configure themselves from external SPI Flash, or be configured by an external master such as a CPU.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
8
FPGA-DS-02008-1.4  
 
iCE40 UltraPlus™ Family  
Data Sheet  
Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40  
UltraPlus family of devices. Popular logic synthesis tools provide synthesis library support for iCE40 UltraPlus. Lattice  
design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route  
the design in the iCE40 UltraPlus device. These tools extract the timing from the routing and back-annotate it into the  
design for timing verification.  
Lattice provides many pre-engineered IP (Intellectual Property) modules, including a number of reference designs,  
licensed free of charge, optimized for the iCE40 UltraPlus FPGA family. Lattice also can provide fully verified bitstream  
for some of the widely used target functions in mobile device applications, such as ultra-low power sensor  
management, gesture recognition, IR remote, barcode emulator functions. Users can use these functions as offered by  
Lattice, or they can use the design to create their own unique required functions. For more information regarding  
Lattice's reference designs or fully-verified bitstreams, contact your local Lattice representative.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
9
iCE40 UltraPlus™ Family  
Data Sheet  
3. Architecture  
3.1. Architecture Overview  
The iCE40 UltraPlus family architecture contains an array of Programmable Logic Blocks (PLB), two Oscillator  
Generators, two user configurable I2C controllers, two user configurable SPI controllers, blocks of sysMEM™ Embedded  
Block RAM (EBR) and Single Port RAM (SPRAM) surrounded by Programmable I/O (PIO). Figure 3.1 shows the block  
diagram of the iCE40UP5K device.  
PLB  
I2C  
I2C  
I/O Bank 0  
PLL  
HFOSC  
LFOSC  
50 ns Delay  
50 ns Delay  
50 ns Filter  
50 ns Filter  
5 PLB Rows  
256 Kb  
SPRAM  
256 Kb  
SPRAM  
256 Kb  
SPRAM  
256 Kb  
SPRAM  
config  
Carry Logic  
4-Input Look-up  
Table (LUT)  
I/O Bank 2  
SPI  
SPI  
I/O Bank 1_SPI  
Flip-flop with Enableand Reset Controls  
Figure 3.1. iCE40UP5K Device, Top View  
The Programmable Logic Blocks (PLB) and sysMEM EBR blocks, are arranged in a two-dimensional grid with rows and  
columns. Each column has either PLB or EBR blocks. The PIO cells are located at the top and bottom of the device,  
arranged in banks. The PLB contains the building blocks for logic, arithmetic, and register functions. The PIOs utilize a  
flexible I/O buffer referred to as a sysIO buffer that supports operation with a variety of interface standards. The blocks  
are connected with many vertical and horizontal routing channel resources. The place and route software tool  
automatically allocates these routing resources.  
In the iCE40 UltraPlus family, there are three sysIO banks, one on top and two at the bottom. User can connect some  
VCCIOs together, if all the I/Os are using the same voltage standard. See the Power-up Supply Sequence section. The  
sysMEM EBRs are large 4 kb, dedicated fast memory blocks. These blocks can be configured as RAM, ROM or FIFO with  
user logic using PLBs.  
In addition to the EBR, the iCE40 UltraPlus devices also feature four 256 kb SPRAM blocks that can be cascaded to  
create up to 1 Mb block. It is useful for temporary storage of large quantities of information.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
10  
FPGA-DS-02008-1.4  
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
Every device in the family has two user SPI ports, one of these (right side) SPI ports also supports programming and  
configuration of the device. The iCE40 UltraPlus also includes two user I2C ports, two oscillators, and high current RGB  
LED sink.  
3.1.1. PLB Blocks  
The core of the iCE40 UltraPlus device consists of Programmable Logic Blocks (PLB) which can be programmed to  
perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in  
Figure 3.2. Each LC contains one LUT and one register.  
Shared Block-Level Controls  
Clock  
Programmable  
Logic Block (PLB)  
Enable  
FCOUT  
1
Set/Reset  
0
Logic Cell  
Carry Logic  
DFF  
O
I0  
D
Q
EN  
I1  
I2  
I3  
SR  
LUT  
FCIN  
Four-input  
Look-Up Table  
(LUT)  
Flip-flop with  
optional enable and  
set or reset controls  
= Statically defined by configuration program  
Figure 3.2. PLB Block Diagram  
Logic Cells  
Each Logic Cell includes three primary logic elements shown in Figure 3.2.  
A four-input Look-Up Table (LUT) builds any combinational logic function, of any complexity, requiring up to four  
inputs. Similarly, the LUT element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple  
LUTs to create wider logic functions.  
A ‘D’-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions.  
Each DFF also connects to a global reset signal that is automatically asserted immediately following device  
configuration.  
Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtracters,  
comparators, binary counters and some wide, cascaded logic functions.  
Table 3.1 lists the logic cell signals.  
Table 3.1. Logic Cell Signal Descriptions  
Function  
Input  
Type  
Signal Name  
I0, I1, I2, I3  
Enable  
Description  
Data signal  
Inputs to LUT  
Input  
Control signal  
Control signal  
Control signal  
Clock enable shared by all LCs in the PLB  
Asynchronous or synchronous local set/reset shared by  
Clock one of the eight Global Buffers, or from the  
Input  
Set/Reset*  
Clock  
Input  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
11  
 
iCE40 UltraPlus™ Family  
Data Sheet  
Function  
Type  
Signal Name  
FCIN  
Description  
Input  
Output  
Output  
Inter-PLB signal  
Data signals  
Fast carry in  
O
LUT or registered output  
Fast carry out  
Inter-PFU signal  
FCOUT  
*Note: If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration.  
3.1.2. Routing  
There are many resources provided in the iCE40 UltraPlus devices to route signals individually with related control  
signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.  
The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4  
(spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient  
connections in the diagonal, horizontal and vertical directions.  
The design tool takes the output of the synthesis tool and places and routes the design.  
3.1.3. Clock/Control Distribution Network  
Each iCE40 UltraPlus device has six global inputs, two pins on the top bank and four pins on the bottom bank.  
These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are  
identified as Gxx and each drives one of the eight global buffers. The global buffers are identified as GBUF[7:0]. These  
six inputs may be used as general purpose I/O if they are not used to drive the clock nets.  
Table 3.2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally  
connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global  
buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-  
enable input. GBUF[7:6, 3:0] can connect directly to G[7:6, 3:0] pins respectively. GBUF4 and GBUF5 can connect to the  
two on-chip Oscillator Generators (GBUF4 connects to LFOSC, GBUF5 connects to HFOSC).  
Table 3.2. Global Buffer (GBUF) Connections to Programmable Logic Blocks  
Global Buffer  
GBUF0  
LUT Inputs  
Clock  
Reset  
Clock Enable  
GBUF1  
GBUF2  
GBUF3  
Yes, any 4 of 8 GBUF  
Inputs  
GBUF4  
GBUF5  
GBUF6  
GBUF7  
The maximum frequency for the global buffers are listed in Table 4.21.  
Global Hi-Z Control  
The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 UltraPlus device. This GHIZ signal  
is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance  
state.  
Global Reset Control  
The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 UltraPlus device. The global reset  
signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up  
state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the  
application.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
12  
FPGA-DS-02008-1.4  
 
iCE40 UltraPlus™ Family  
Data Sheet  
3.1.4. sysCLOCK Phase Locked Loops (PLLs)  
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 UltraPlus devices have one sysCLOCK  
PLL. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin, the  
internal Oscillator Generators from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come  
from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus  
synthesize a higher frequency clock output.  
The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The  
output divider can have a value from 1 to 64 (in increments of 2X). The PLLOUT outputs can all be used to drive the  
iCE40 UltraPlus global clock network directly or general purpose routing resources can be used.  
The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A  
block diagram of the PLL is shown in Figure 3.3.  
The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which  
will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either  
programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase  
adjustment on the output used as the feedback source and not relock until the tLOCK parameter has been satisfied.  
There is an additional feature in the iCE40 UltraPlus PLL. There are two FPGA controlled inputs, SCLK and SDI, that  
allows the user logic to serially shift in data thru SDI, clocked by SCLK clock. The data shifted in would change the  
configuration settings of the PLL. This feature allows the PLL to be time multiplexed for different functions, with  
different clock rates. After the data is shifted in, user would simply pulse the RESET input of the PLL block, and the PLL  
will re-lock with the new settings. For more details, refer to TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.  
RESET  
BYPASS  
BYPASS  
GNDPLL VCC PLL  
Phase  
Detector  
DIVQ  
DIVR  
RANGE  
Low-Pass  
Filter  
Voltage  
Controlled  
Oscillator  
(VCO)  
REFERENCECLK  
VCO  
Input  
Divider  
Divider  
SIMPLE  
SCLK  
SDI  
DIVF  
PLLOUTCORE  
Feedback  
Fine Delay  
Adjustment  
Output Port  
Divider  
Fine Delay  
Adjustment  
Feedback  
Phase  
Shifter  
PLLOUTGLOBAL  
Feedback_Path  
LOCK  
DYNAMICDELAY[7:0]  
EXTFEEDBACK  
EXTERNAL  
LATCHINPUTVALUE  
Low Powermode  
Figure 3.3. PLL Diagram  
Table 3.3 provides signal descriptions of the PLL block.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
13  
 
iCE40 UltraPlus™ Family  
Data Sheet  
Table 3.3. PLL Signal Descriptions  
Signal Name  
REFERENCECLK  
BYPASS  
Direction  
Description  
Input  
Input  
Input reference clock  
The BYPASS control selects which clock signal connects to the PLLOUT output.  
0 PLL generated signal  
1 REFERENCECLK  
EXTFEEDBACK  
Input  
Input  
External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set  
to EXTERNAL.  
DYNAMICDELAY[7:0]  
LATCHINPUTVALUE  
PLLOUTGLOBAL  
PLLOUTCORE  
Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE  
is set to DYNAMIC.  
Input  
When enabled, puts the PLL into low-power mode; PLL output is held static at the  
last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to ‘1’ to enable.  
Output  
Output  
Output from the Phase-Locked Loop (PLL). Drives a global clock network on the  
FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5.  
Output clock generated by the PLL, drives regular FPGA routing. The frequency  
generated on this output is the same as the frequency of the clock signal generated  
on the PLLOUTLGOBAL port.  
LOCK  
Output  
When High, indicates that the PLL output is phase aligned or locked to the input  
reference clock.  
RESET  
SCLK  
SDI  
Input  
Input  
Input  
Active low reset.  
Input, Serial Clock used for re-programming PLL settings.  
Input, Serial Data used for re-programming PLL settings.  
3.1.5. sysMEM Embedded Block RAM Memory  
Larger iCE40 UltraPlus device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each  
4 kbit in size. This memory can be used for a wide variety of purposes including data buffering and FIFO.  
sysMEM Memory Block  
The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources.  
Each block can be used in a variety of depths and widths as listed in Table 3.4.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
14  
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
Table 3.4. sysMEM Block Configurations  
Block RAM  
Block RAM  
WADDR Port  
Size (Bits)  
WDATA Port  
Size (Bits)  
RADDR Port  
Size (Bits)  
RDATA Port  
Size (Bits)  
MASK Port  
Size (Bits)  
Configuration  
Configuration  
and Size  
SB_RAM256x16  
SB_RAM256x16NR  
SB_RAM256x16NW  
SB_RAM256x16NRNW  
256x16 (4 k)  
8 [7:0]  
9 [8:0]  
16 [15:0]  
8 [7:0]  
4 [3:0]  
2 [1:0]  
8 [7:0]  
9 [8:0]  
16 [15:0]  
16 [15:0]  
SB_RAM512x8  
SB_RAM512x8NR  
512x8 (4 k)  
8 [7:0]  
4 [3:0]  
2 [1:0]  
No Mask Port  
No Mask Port  
No Mask Port  
SB_RAM512x8NW  
SB_RAM512x8NRNW  
SB_RAM1024x4  
SB_RAM1024x4NR  
1024x4 (4 k)  
10 [9:0]  
11 [10:0]  
10 [9:0]  
11 [10:0]  
SB_RAM1024x4NW  
SB_RAM1024x4NRNW  
SB_RAM2048x2  
SB_RAM2048x2NR  
SB_RAM2048x2NW  
2048x2 (4 k)  
SB_RAM2048x2NRNW  
Note: For iCE40 UltraPlus, the primitive name without “Nxx” uses rising-edge Read and Write clocks. “NR” uses rising-edge Write  
clock and falling-edge Read clock. “NW” uses falling-edge Write clock and rising-edge Read clock. “NRNW” uses failing-edge clocks  
on both Read and Write.  
RAM Initialization and ROM Operation  
If desired, the contents of the RAM can be pre-loaded during device configuration.  
By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block  
can also be utilized as a ROM.  
Memory Cascading  
Larger and deeper blocks of RAM can be created using multiple EBR sysMEM Blocks.  
RAM4k Block  
Figure 3.4 shows the 256x16 memory configurations and their input/output names. In all the sysMEM RAM modes, the  
input data and addresses for the ports are registered at the input of the memory array.  
Write Port  
Read Port  
WDATA[15:0]  
MASK[15:0]  
RDATA[15:0]  
RADDR[7:0]  
WADDR[7:0]  
RAM4K  
RAM Block  
(256x16)  
WE  
WCLKE  
WCLK  
RE  
RCLKE  
RCLK  
Figure 3.4. sysMEM Memory Primitives  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
15  
 
iCE40 UltraPlus™ Family  
Data Sheet  
Table 3.5 lists the EBR signals.  
Table 3.5. EBR Signal Descriptions  
Signal Name  
WDATA[15:0]  
MASK[15:0]  
Direction  
Description  
Input  
Write Data input.  
Input  
Masks write operations for individual data bit-lines.  
0 Write bit  
1 Do not write bit  
WADDR[7:0]  
WE  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Write Address input. Selects one of 256 possible RAM locations.  
Write Enable input.  
WCLKE  
WCLK  
Write Clock Enable input.  
Write Clock input. Default rising-edge, but with falling-edge option.  
Read Data output.  
RDATA[15:0]  
RADDR[7:0]  
RE  
Read Address input. Selects one of 256 possible RAM locations.  
Read Enable input.  
RCLKE  
Read Clock Enable input.  
RCLK  
Read Clock input. Default rising-edge, but with falling-edge option.  
For further information on the sysMEM EBR block, refer to TN1250, Memory Usage Guide for iCE40 Devices.  
3.1.6. sysMEM Single Port RAM Memory (SPRAM)  
The SPRAM block is implemented to be accessed only as single port. Each block of SPRAM is designed to be 16K x 16  
(256 kbits) in size. See Figure 3.5.  
SPRAM Data Width  
The SPRAM is designed with fixed 16-bit data width. However, the block contains nibble mask control on the write  
input that allows the user logic to operate the SPRAM as x4 or x8 with this control on the write side, and user logic to  
select which nibble/byte in the read side.  
SPRAM Initialization and ROM Operation  
There is no pre-load into the SPRAM during device configuration, therefore, the SPRAM is not initialized after  
configuration.  
SPRAM Cascading  
Deeper SPRAM can be created using multiple SPRAM blocks, up to four blocks (64K x 16)  
SPRAM Power Modes  
There are three power modes in the SPRAM that the users can select during normal operation. This reduces the SPRAM  
block power when it Is not needed, allow lower power consumption in an always-on application. These modes are:  
Standby Mode: SPRAM stops all activity, and SPRAM freezes in its current state. Memory contents are retained,  
memory outputs are retained, and all register contents are retained.  
Sleep Mode: SPRAM block is shut down on all peripheral circuit, except the memory core. Memory contents are  
retained, memory outputs and register contents are clear and become unknown.  
Power Off Mode: Power source to the SPRAM is disconnected. This is the lowest power state. Memory contents  
are lost. Memory outputs are unknown.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
16  
FPGA-DS-02008-1.4  
 
iCE40 UltraPlus™ Family  
Data Sheet  
DATAOUT [15:0]  
MASKWREN [3:0]  
WREN  
MASKWREN [3:0]  
WREN  
Single Port RAM Primitive  
SB_SPRAM256KA  
CHIPSELECT  
CLOCK  
STANDBY  
SLEEP  
POWEROFFN  
Figure 3.5. SPRAM Primitive  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
17  
iCE40 UltraPlus™ Family  
Data Sheet  
Table 3.6. SPRAM Signal Descriptions  
Signal Name  
ADDRESS[13:0]  
DATAIN[15:0]  
MASKWREN[3:0]  
WREN  
Direction  
Input  
Description  
Address input  
Input  
Input  
Input  
Write Data input  
Nibble WE control  
Write Enable  
CHIPSELECT  
CLOCK  
Input  
Input  
Enable SPRAM  
Clock input  
STANDY  
Input  
Standby Mode  
Sleep Mode  
SLEEP  
Input  
POWEROFF  
DATAOUT[15:0]  
Input  
Switch off power source to SPRAM  
Output Data  
Output  
For further information on sysMEM SPRAM block, refer to TN1314, iCE40 SPRAM Usage Guide.  
3.1.7. sysDSP  
The iCE40 UltraPlus family provides an efficient sysDSP architecture that is very suitable for low-cost Digital Signal  
Processing (DSP) functions for mobile applications. Typical functions used in these applications are Multiply,  
Accumulate, and Multiply-Accumulate. The block can also be used for simple Add and Subtract functions.  
iCE40 UltraPlus sysDSP Architecture Features  
The iCE40 UltraPlus sysDSP supports many functions that include the following:  
Single 16-bit x 16-bit Multiplier, or two independent 8-bit x 8-bit Multipliers  
Optional independent pipeline control on Input Register, Output Register, and Intermediate Reg faster clock  
performance  
Single 32-bit Accumulator, or two independent 16-bit Accumulators  
Single 32-bit, or two independent 16-bit Adder/Subtracter functions, registered or asynchronous  
Cascadable to create wider Accumulator blocks  
Figure 3.6 shows the block diagram of the sysDSP block. The block consists of the Multiplier section with a bypassable  
Output register, Input Register, and Intermediate register between Multiplier and AC timing to achieve the highest  
performance.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
18  
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
CO  
SIGNEXTOUT  
COCAS  
Input Registers  
Multiplier  
Accumulator  
Q[31:16]  
0
OHADS  
W
0
1
C
Q
1
P
0
0
1
C [15:0]  
CHLD  
D
HLD  
Q
±
1
D
Q
C 12  
X
O[31:16]  
C 0  
HLD  
2
3
R
16x16 Pipeline  
Registers  
R
X [15]  
[15:0]  
Hi  
0
1
C 9  
8x8=16  
C 8  
F
A
0
1
A [15:8]  
B [15:8]  
0
1
[15:0]  
OHRST  
OHHLD  
OHLDA  
2
3
[15:8]  
D
HLD  
Q
A [15:0]  
AHLD  
D
Q
HCI  
P [31:24]  
C 1  
C 11  
C 4  
R
+
+
8x8  
8x8  
R
[7:0]  
C 10  
J
16x16  
Pipeline  
Register  
A [7:0]  
0
1
[15:0]  
D
Q
B [15:8]  
[15:8]  
HLD  
P [23:16]  
C 6  
R
16xH16=32  
[15:8]  
[31:16]  
[15:0]  
0
1
L
C 22  
IHRST  
8x8 PowerSave  
LCO  
D
Q
0
1
HLD  
K
C 7  
A [15:8]  
B [7:0]  
0
1
LCOCA  
S
[15:0]  
R
[7:0]  
Q[15:0  
D
HLD  
Q
Q
[7:0]  
OLADS  
P [15:8]  
P [7:0]  
C 6  
0
1
+
8x8  
8x8  
Y
R
[15:8]  
[7:0]  
G
S
R
A [7:0]  
B [7:0]  
0
1
[15:0]  
0
1
2
3
0
1
±
D
HLD  
Q
C 19  
D
R
Z
0
1
O[15:0]  
8x8=16  
C 5  
D
HLD  
Q
B [15:0]  
BHLD  
R
Z [15]  
B
Lo  
C 2  
0
1
C 16  
R
C 15  
OLRST  
OLHLD  
OLLDA  
2
3
LCI  
C 18  
0
1
D
C 17  
D
HLD  
Q
D[15:0]  
DHLD  
C 3  
R
ASGND=C23  
BSGND=C24  
ILRST  
CLK  
0
1
ENA  
SIGNEXTIN  
CICAS CI  
Figure 3.6. sysDSP Functional Block Diagram (16-bit x 16-bit Multiply-Accumulate)  
Table 3.7. Output Block Port Description  
Primitive  
Input/  
Output  
Input  
Signal  
Width  
Function  
Default  
Port Name  
CLK  
CLK  
1
Clock Input. Applies to all clocked elements in the  
sysDSP block  
ENA  
CE  
1
Input  
Clock Enable Input. Applies to all clocked elements  
in the sysDSP block.  
0 Enabled  
0 Not enabled  
1 Enabled  
A[15:0]  
B[15:0]  
C[15:0]  
D[15:0]  
AHLD  
A[15:0]  
B[15:0]  
C[15:0]  
D[15:0]  
AHOLD  
16  
16  
16  
16  
1
Input  
Input  
Input  
Input  
Input  
Input to the A Register. Feeds the Multiplier or is a  
direct input to the Adder Accumulator  
Input to the B Register. Feeds the Multiplier or is a  
direct input to the Adder Accumulator  
Input to the C Register. It is a direct input to the  
Adder Accumulator  
Input to the D Register. It is a direct input to the  
Adder Accumulator  
16'b0  
16'b0  
16'b0  
16'b0  
A Register Hold.  
0 Update  
1 Hold  
0 Update  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
19  
 
iCE40 UltraPlus™ Family  
Data Sheet  
Table 3.7. Output Block Port Description (Continued)  
Primitive  
Port Name  
Input/  
Output  
Input  
Signal  
Width  
Function  
Default  
BHLD  
BHOLD  
CHOLD  
DHOLD  
IRSTTOP  
1
B Register Hold.  
0 Update  
1 Hold  
0 Update  
CHLD  
DHLD  
IHRST  
1
1
1
Input  
Input  
Input  
C Register Hold.  
0 Update  
1 Hold  
0 Update  
0 Update  
0 No reset  
D Register Hold.  
0 Update  
1 Hold  
Reset input to A and C input registers, and the  
pipeline registers in the upper half of the Multiplier  
Section.  
0 No reset  
1 Reset  
ILRST  
IRSTBOT  
O[31:0]  
1
Input  
Reset input to B and D input registers, and the  
pipeline registers in the lower half of the Multiplier  
Section. It also resets the Multiplier result pipeline  
register.  
0 No reset  
1 Reset  
0 No reset  
O[31:0]  
32  
Output  
Output of the sysDSP block. This output can be:  
O[31:0] 32-bit result of 16x16 Multiplier or  
MAC  
O[31:16] 16-bit result of 8x8 upper half  
Multiplier or MAC  
O[15:0] 16-bit result of 8x8 lower half  
Multiplier or MAC  
OHHLD  
OHRST  
OHOLDTOP  
ORSTTOP  
1
1
Input  
Input  
High-order (upper half) Accumulator Register Hold.  
0 Update  
1 Hold  
0 Update  
Reset input to high-order (upper half) bits of the  
Accumulator Register.  
0 No reset  
0 No reset  
1 Reset  
OHLDA  
OHADS  
OLOADTOP  
1
1
Input  
Input  
High-order (upper half) Accumulator Register  
Accumulate/Load control.  
0 Accumulate, register is loaded with  
Adder/Subtracter results  
0 –  
Accumulate  
1 Load, register is loaded with Input C or C Register  
ADDSUBTOP  
High-order (upper half) Accumulator Add or Subtract  
0 Add  
select.  
0 Add  
1 Subtract  
OLHLD  
OLRST  
OHOLDBOT  
ORSTBOT  
1
1
Input  
Input  
Low-order (lower half) Accumulator Register Hold.  
0 Update  
1 Hold  
0 Update  
Reset input to Low-order (lower half) bits of the  
Accumulator Register.  
0 No reset  
0 No reset  
1 Reset  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
20  
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
Table 3.7. Output Block Port Description (Continued)  
Primitive  
Port Name  
OLOADBOT  
Input/  
Output  
Input  
Signal  
Width  
Function  
Default  
OLLDA  
1
Low-order (lower half) Accumulator Register  
Accumulate/Load control.  
0 –  
Accumulate  
0 Accumulate, register is loaded with  
Adder/Subtracter results  
1 Load, register is loaded with Input C or C Register  
OLADS  
CICAS  
ADDSUBBOT  
ACCUMCI  
1
1
Input  
Input  
Low-order (lower half) Accumulator Add or Subtract  
select.  
0 Add  
1 Subtract  
0 Add  
Cascade Carry/Borrow input from previous sysDSP  
block  
CI  
CI  
1
1
1
1
1
Input  
Output  
Output  
Input  
Carry/Borrow input from lower logic tile  
COCAS  
CO  
ACCUMCO  
CO  
Cascade Carry/Borrow output to next sysDSP block  
Carry/Borrow output to higher logic tile  
SIGNEXTIN  
SIGNEXTOUT  
SIGNEXTIN  
SIGNEXTOUT  
Sign extension input from previous sysDSP block  
Sing extension output to next sysDSP block  
Output  
The iCE40 UltraPlus sysDSP can support the following functions:  
8-bit x 8-bit Multiplier  
16-bit x 16-bit Multiplier  
16-bit Adder/Subtracter  
32-bit Adder/Subtracter  
16-bit Accumulator  
32-bit Accumulator  
8-bit x 8-bit Multiply-Accumulate  
16-bit x 16-bit Multiply-Accumulate  
Figure 3.7 on the next page shows the path for an 8-bit x 8-bit Multiplier using the upper half of sysDSP block.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
21  
iCE40 UltraPlus™ Family  
Data Sheet  
CO  
SIGNEXTOUT  
COCAS  
Input Registers  
Multiplier  
Accumulator  
Q
Q [31 :16 ]  
OHADS  
0
1
W
C
0
1
P
0
1
2
3
0
1
C[15 :0 ]  
CHLD  
D
Q
±
D
Q
C12  
X
HLD  
O [ 31 :16  
]
C 0  
HLD  
R
16 x16 Pipeline  
Registers  
R
X [ 15 ]  
High  
[ 15 :0 ]  
0
1
C 9  
8 x8 =16  
[15:8]  
C 8  
F
A
0
1
A[ 15 :8  
B [ 15 :8  
]
]
0
1
[
15 :0 ]  
OHRST  
2
3
OHHLD  
OHLDA  
D
Q
A[15 :0 ]  
AHLD  
D
Q
HCI  
HLD  
P [ 31 : 24 ]  
C 1  
C 11  
C 4  
+
+
R
8 x8  
8 x8  
R
R
C 10  
J
[7:0]  
16 x 16  
Pipeline  
Register  
0
1
A[ 7 :0  
]
]
[15 :0  
]
D
Q
[15:8]  
B [ 15 :8  
HLD  
P [ 23 : 16 ]  
C 6  
16 x16 =32  
[15:8]  
[ 31 : 16  
]
H
0
1
L
C 22  
8 x8 PowerSave  
0
LCO  
IHRST  
D
Q
[ 15 : 0 ]  
0
1
HLD  
K
C 7  
A[ 15 :8  
B [ 7 :0  
]
]
[ 15 :  
0
]
R
LCOCAS  
Q [15:0]  
[7:0]  
1
D
Q
[7:0]  
HLD  
OLADS  
P [ 15 : 8 ]  
C 6  
0
1
+
Y
8 x8  
8 x8  
R
[ 15 :8  
[7:0]  
]
G
[ 15 : 0 ]  
S
R
A[ 7 :0  
B [ 7 :0  
]
]
0
0
1
2
3
0
1
±
P [ 7: 0 ]  
D
Q
1
C19  
Z
D
Q
0
1
O [ 15 :0 ]  
HLD  
8 x8 = 16  
C 5  
B [15 :0 ]  
BHLD  
D
Q
R
R
HLD  
Z [15 ]  
B
Low  
C 2  
0
1
C 16  
R
C 15  
OLRST  
OLHLD  
OLLDA  
2
3
LCI  
C 18  
D
0
1
C 17  
D
Q
D[15 :0 ]  
DHLD  
HLD  
C 3  
R
ASGND=C23  
BSGND=C24  
ILRST  
1
0
CLK  
ENA  
( 25 - FEB - 2012  
)
SIGNEXTIN  
CICAS CI  
Figure 3.7. sysDSP 8-bit x 8-bit Multiplier  
Figure 3.8 shows the path for an 16-bit x 16-bit Multiplier using the upper half of sysDSP block.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
22  
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
CO  
SIGNEXTOUT  
COCAS  
Input Registers  
Multiplier  
Accumulator  
Q[31:16]  
OHADS  
0
1
W
0
1
C
Q
P
0
1
2
3
0
1
C[15:0]  
CHLD  
D
HLD  
Q
±
C12  
D
HLD  
Q
X
O[31:16]  
C0  
R
16x16 Pipeline  
Registers  
R
X[15]  
[15:0]  
High  
0
1
2
3
C9  
8x8=16  
[15:8]  
C8  
F
A
0
1
A[15:8]  
B[15:8]  
0
[ 15:0]  
OHRST  
OHHLD  
OHLDA  
D
HLD  
Q
A[15:0]  
AHLD  
1
D
Q
HCI  
:24  
P[31  
]
C1  
[7:0]  
C11  
C4  
R
+
+
8x8  
8x8  
R
C10  
J
16x16  
A[  
7:0]  
0
1
[ 15:0]  
Pipeline  
Register  
D
Q
B[15:8]  
[15:8]  
:
]
HLD  
P[23 16  
C6  
R
16x16=32  
[15:8]  
[31:16]  
0
H
L
C22  
IHRST  
8x8 PowerSave  
1
LCO  
D
Q
[15:0]  
HLD  
0
1
K
C7  
A[15:8]  
B[7:0]  
0
1
]  
R
LCOCAS  
[7:0]  
Q[15:0  
D
HLD  
Q
Q
[7:0]  
OLADS  
P[15:8]  
P[7:0]  
C6  
0
1
8x8  
8x8  
+
Y
R
[15:8]  
[7:0]  
G
S
A[7:0]  
R
0
1
0
1
2
3
[1:0]  
0
1
±
C19  
D
HLD  
Q
D
R
Z
0
1
7:0]  
B[  
O[15:0]  
8x8=16  
C5  
B[15:0]  
BHLD  
D
HLD  
Q
R
Z[15]  
B
Low  
C2  
0
1
C16  
R
C15  
OLRST  
OLHLD  
OLLDA  
2
3
LCI  
C18  
0
1
D
C17  
D  
Q
D[15:0]  
DHLD  
ASGND=23  
BSGND=24  
C3  
R
ILRST  
CLK  
0
1
ENA  
(25-FEB-2012)  
SIGNEXTIN  
CICAS CI  
Figure 3.8. DSP 16-bit x 16-bit Multiplier  
3.1.8. sysIO Buffer Banks  
iCE40 UltraPlus devices have up to three I/O banks with independent VCCIO rails. The configuration SPI interface signals  
are powered by SPI_VCCIO1. Refer to the Pin Information Summary table.  
Programmable I/O (PIO)  
The programmable logic associated with an I/O is called a PIO. The individual PIOs are connected to their respective  
sysIO buffers and pads. The PIOs are placed on the top and bottom of the devices.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
23  
 
iCE40 UltraPlus™ Family  
Data Sheet  
VCCIO  
I/O Bank 0 or 2  
Voltage Supply  
0 = Hi-Z  
1 = Output  
Enabled  
Enabled 1’  
Disabled ‘0’  
Pull-up  
OE  
50 ns Delay  
50ns Delay  
50ns Filter  
50ns Filter  
Pull-up  
Enable  
OUTCLK  
OUT  
5 PLBRows  
PAD  
Latch inhibits  
switchingfor  
power saving  
OUTCLK  
iCEGATE  
HOLD  
HD  
IN  
Gxx pins optionally  
connect directly to  
an associated  
GBUF global  
buffer  
INCLK  
Figure 3.9. I/O Bank and Programmable I/O Cell  
The PIO contains three blocks: an input register block, output register block iCEGate™ and tri-state register block. To  
save power, the optional iCEGateTM latch can selectively freeze the state of individual, non-registered inputs within an  
I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with  
the necessary clock and selection logic.  
Input Register Block  
The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface  
signals before they are passed to the device core.  
Output Register Block  
The output register block can optionally register signals from the core of the device before they are passed to the sysIO  
buffers.  
Figure 3.10 shows the input/output register block for the PIOs.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
24  
FPGA-DS-02008-1.4  
 
iCE40 UltraPlus™ Family  
Data Sheet  
CLOCK_ENABLE  
PIO Pair  
OUTPUT_CLK  
INPUT_CLK  
(1,0)  
LATCH_INPUT_VALUE  
D_IN_1  
D_IN_0  
Pad  
D_OUT_1  
D_OUT_0  
(1,0)  
0
1
OUTPUT_ENABLE  
(1,0)  
LATCH_INPUT_VALUE  
D_IN_1  
D_IN_0  
Pad  
D_OUT_1  
D_OUT_0  
(1,0)  
0
1
OUTPUT_ENABLE  
= Statically defined by configuration program.  
Figure 3.10. iCE I/O Register Block Diagram  
Table 3.8. PIO Signal List  
Pin Name  
I/O Type  
Input  
Description  
OUTPUT_CLK  
CLOCK_ENABLE  
INPUT_CLK  
Output register clock  
Clock enable  
Input  
Input  
Input register clock  
Output enable  
OUTPUT_ENABLE  
D_OUT_0/1  
Input  
Input  
Data from the core  
Data to the core  
D_IN_0/1  
Output  
Input  
LATCH_INPUT_VALUE  
Latches/holds the Input Value  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
25  
iCE40 UltraPlus™ Family  
Data Sheet  
3.1.9. sysIO Buffer  
Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the  
periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of  
standards that are found in today’s systems with LVCMOS interfaces.  
Typical I/O Behavior During Power-up  
The internal power-on-reset (POR) signal is deactivated when VCC, SPI_VCCIO1 and VPP_2V5 reach the level defined in Table  
4.4. After the POR signal is deactivated, the FPGA core logic becomes active. You must ensure that all V  
banks are  
CCIO  
active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the  
application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up  
to V  
. The I/O pins maintain the pre-configuration state until VCC, SPI_VCCIO1 and VPP_2V5 reach the defined levels. The  
CCIO  
I/Os take on the software user-configured settings only after POR signal is deactivated and the device performs a  
proper download/configuration. Unused I/Os are automatically blocked and the pull-up termination is disabled.  
Supported Standards  
The iCE40 UltraPlus sysIO buffer supports both single-ended input/output standards, and used as differential  
comparators. The buffer supports the LVCMOS 1.8 V, 2.5 V, and 3.3 V standards. The buffer has individually  
configurable options for bus maintenance (weak pull-up or none).  
Table 3.9 and Table 3.10 show the I/O standards (together with their supply and reference voltages) supported by the  
iCE40 UltraPlus devices.  
Differential Comparators  
The iCE40 UltraPlus devices provide differential comparator on pairs of I/O pins. These comparators are useful in some  
mobile applications. See the Pin Information Summary section on page 46 to locate the corresponding paired I/Os with  
differential comparators.  
Table 3.9. Supported Input Standards  
VCCIO (Typical)  
I/O Standard  
3.3 V  
2.5 V  
1.8 V  
Single-Ended Interfaces  
LVCMOS33  
Yes  
Yes  
LVCMOS25  
LVCMOS18  
Yes  
Table 3.10. Supported Output Standards  
VCCIO (Typical)  
I/O Standard  
Single-Ended Interfaces  
LVCMOS33  
3.3 V  
2.5 V  
1.8 V  
LVCMOS25  
LVCMOS18  
3.1.10. On-Chip Oscillator  
The iCE40 UltraPlus devices feature two different frequency Oscillator. One is tailored for low-power operation that  
runs at low frequency (LFOSC). Both Oscillators are controlled with internally generated current.  
The LFOSC runs at nominal frequency of 10 kHz. The high frequency oscillator (HFOSC) runs at a nominal frequency of  
48 MHz, divisible to 24 MHz, 12 MHz, or 6 MHz by user option. The LFOSC can be used to perform all always-on  
functions, with the lowest power possible. The HFOSC can be enabled when the always-on functions detect a condition  
that would need to wake up the system to perform higher frequency functions.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
26  
FPGA-DS-02008-1.4  
 
 
 
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
3.1.11. User I2C IP  
The iCE40 UltraPlus devices have two I2C IP cores. Either of the two cores can be configured either as an I2C master or  
as an I2C slave. The pins for the I2C interface are not pre-assigned. User can use any General Purpose I/O pins.  
In each of the two cores, there are options to delay the either the input or the output, or both, by 50 ns nominal, using  
dedicated on-chip delay elements. This provides an easier interface with any external I2C components.  
When the IP core is configured as master, it will be able to control other devices on the I2C bus through the pre-  
assigned pin interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an  
I2C Master. The I2C cores support the following functionality:  
Master and Slave operation  
7-bit and 10-bit addressing  
Multi-master arbitration support  
Clock stretching  
Up to 400 kHz data transfer speed  
General Call support  
Optionally delaying input or output data, or both  
Optional filter on SCL input  
For further information on the User I2C, refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide.  
3.1.12. User SPI IP  
The iCE40 UltraPlus devices have two SPI IP cores. The pins for the SPI interface are not pre-assigned. User can use any  
General Purpose I/O pins. Both SPI IP cores can be configured as a SPI master or as a slave. When the SPI IP core is  
configured as a master, it controls the other SPI enabled devices connected to the SPI Bus. When SPI IP core is  
configured as a slave, the device will be able to interface to an external SPI master.  
The SPI IP core supports the following functions:  
Configurable Master and Slave modes  
Full-Duplex data transfer  
Mode fault error flag with CPU interrupt capability  
Double-buffered data register  
Serial clock with programmable polarity and phase  
LSB First or MSB First Data Transfer  
For further information on the User SPI, refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide.  
3.1.13. RGB High Current Drive I/O Pins  
The iCE40 UltraPlus family devices offer multiple high current LED drive outputs in each device in the family to allow  
the iCE40 UltraPlus product to drive LED signals directly on mobile applications.  
There are three outputs on each device that can sink up to 24 mA current. These outputs are open-drain outputs, and  
provides sinking current to an LED connecting to the positive supply. These three outputs are designed to drive the RBG  
LEDs, such as the service LED found in a lot of mobile devices. This RGB drive current is user programmable from 4 mA  
to 24 mA, in increments of 4 mA. This output functions as General Purpose I/O with open-drain when the high current  
drive is not needed.  
3.1.14. RGB PWM IP  
To provide an easier usage of the RGB high current drivers to drive RGB LED, a Pulse-Width Modulator IP can be used in  
the user design. This PWM IP provides the flexibility for user to dynamically change the modulation width of each of  
the RGB LED driver, which changes the color. Also, the user can dynamically change the settings on the ON-time  
duration, OFF-time duration, and ability to turn the LED lights on and off gradually with user set breath-on and breath-  
off time.  
For additional information on the PWM IP, refer to TN1288, iCE40 LED Driver Usage Guide.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
27  
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
3.1.15. Non-Volatile Configuration Memory  
All iCE40 UltraPlus devices provide a Non-Volatile Configuration Memory (NVCM) block which can be used to configure  
the device.  
For more information on the NVCM, refer to TN1248, iCE40 Programming and Configuration.  
3.2. iCE40 UltraPlus Programming and Configuration  
This section describes the programming and configuration of the iCE40 UltraPlus family.  
3.2.1. Device Programming  
The NVCM memory can be programmed through the SPI port. The SPI port is located in Bank 1, using SPI_V  
supply.  
power  
CCIO1  
3.2.2. Device Configuration  
There are various ways to configure the Configuration RAM (CRAM), using SPI port, including:  
From a SPI Flash (Master SPI mode)  
System microprocessor to drive a Serial Slave SPI port (SSPI mode)  
For more details on configuring the iCE40 UltraPlus, refer to TN1248, iCE40 Programming and Configuration.  
3.2.3. Power Saving Options  
The iCE40 UltraPlus devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic  
power requirements of their applications. Table 3.11 describes the function of these features.  
Table 3.11. iCE40 UltraPlus Power Saving Features Description  
Device Subsystem  
Feature Description  
PLL  
When LATCHINPUTVALUE is enabled, puts the PLL into low-power mode; PLL output held static at last  
input clock value.  
iCEGate  
To save power, the optional iCEGate latch can selectively freeze the state of individual, non-registered  
inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-  
enable control.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
28  
FPGA-DS-02008-1.4  
 
iCE40 UltraPlus™ Family  
Data Sheet  
4. DC and Switching Characteristics  
4.1. Absolute Maximum Ratings  
Table 4.1. Absolute Maximum Ratings  
Parameter  
Min  
Max  
Unit  
Supply Voltage VCC  
0.5  
1.42  
V
Output Supply Voltage VCCIO  
0.5  
0.5  
0.5  
3.60  
3.60  
1.42  
V
V
V
NVCM Supply Voltage VPP_2V5  
PLL Supply Voltage VCCPLL  
I/O Tri-state Voltage Applied  
Dedicated Input Voltage Applied  
Storage Temperature (Ambient)  
Junction Temperature (TJ)  
Notes:  
0.5  
0.5  
65  
65  
3.60  
3.60  
150  
125  
V
V
°C  
°C  
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is  
not implied.  
2. Compliance with FPGA-TN-02044, Thermal Management document is required.  
3. All voltages referenced to GND.  
4.2. Recommended Operating Conditions  
Table 4.2. Recommended Operating Conditions  
Symbol  
Parameter  
Min  
1.14  
1.714  
Max  
1.26  
3.46  
Unit  
V
1
VCC  
Core Supply Voltage  
Slave SPI Configuration  
Master SPI Configuration  
V
VPP_2V5 NVCM  
Programming and  
Operating Supply Voltage  
2.30  
2.30  
2.30  
1.71  
1.14  
0
3.46  
3.46  
3.00  
3.46  
1.26  
85  
V
V
VPP_2V5  
Configuration from NVCM  
NVCM Programming  
V
1, 2, 3  
VCCIO  
VCCPLL  
tJCOM  
I/O Driver Supply Voltage  
PLL Supply Voltage  
VCCIO_0, SPI_VCCIO1, VCCIO_2  
V
V
Junction Temperature Commercial Operation  
Junction Temperature, Industrial Operation  
Junction Temperature NVCM Programming  
°C  
°C  
°C  
tJIND  
40  
100  
tPROG  
10.00  
30.00  
Notes:  
1. Like power supplies must be tied together if they are at the same supply voltage and they meet the power up sequence  
requirement. See the Power-up Supply Sequence section. VCC and VCCPLL are recommended to be tied together to the same  
supply with an RC-based noise filter between them. Refer to TN1252, iCE40 Hardware Checklist.  
2. See recommended voltages by I/O standard in subsequent table.  
3. VCCIO pins of unused I/O banks should be connected to the VCC power supply on boards.  
4. VPP_2V5 can, optionally, be connected to a 1.8 V (+/-5%) power supply in Slave SPI Configuration modes subject to the condition  
that none of the HFOSC/LFOSC and RGB LED driver features are used. Otherwise, VPP_2V5 must be connected to a power supply  
with a minimum 2.30 V level.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
29  
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.3. Power Supply Ramp Rates  
Table 4.3. Power Supply Ramp Rates  
Symbol  
tRAMP  
Parameter  
Min  
Max  
Unit  
Power supply ramp rates for all power supplies  
0.6  
10  
V/ms  
Notes:  
1. Assumes monotonic ramp rates.  
2. Power up sequence must be followed. See the Power-up Supply Sequence section below.  
4.4. Power-On Reset  
All iCE40 UltraPlus devices have on-chip Power-On-Reset (POR) circuitry to ensure proper initialization of the device.  
Only three supply rails are monitored by the POR circuitry as follows: (1) VCC, (2) SPI_VCCIO1 and (3) VPP_2V5. All other  
supply pins have no effect on the power-on reset feature of the device. Note that all supply voltage pins must be  
connected to power supplies for normal operation (including device configuration).  
4.5. Power-up Supply Sequence  
It is recommended to bring up the power supplies in the following order. Note that there is no specified timing delay  
between the power supplies, however, there is a requirement for each supply to reach a level of 0.5 V, or higher,  
before any subsequent power supplies in the sequence are applied.  
1. VCC and VCCPLL should be the first two supplies to be applied. Note that these two supplies can be tied together  
subject to the recommendation to include a RC-based noise filter on the VCCPLL. Refer to TN1252, iCE40 Hardware  
Checklist.  
2. SPI_VCCIO1 should be the next supply, and can be applied any time after the previous supplies (VCC and VCCPLL) have  
reached as level of 0.5 V or higher.  
3. VPP_2V5 should be the next supply, and can be applied any time after previous supplies (VCC, VCCPLL and SPI_VCCIO1)  
have reached a level of 0.5 V or higher.  
4. Other Supplies (VCCIO0 and VCCIO2) do not affect device power-up functionality, and they can be applied any time  
after the initial power supplies (VCC and VCCPLL) have reached a level of 0.5 V or greater. There is no power down  
sequence required. However, when partial power supplies are powered down, it is required the above sequence to  
be followed when these supplies are re-powered up again.  
4.6. External Reset  
When all power supplies have reached their minimum operating voltage defined in Table 4.2, it is required to either  
keep CRESET_B LOW, or toggle CRESET_B from HIGH to LOW, for a duration of tCRESET_B, and release it to go HIGH, to  
start configuration download from either the internal NVCM or the external Flash memory. Figure 4.1 shows Power-Up  
sequence when SPI_VCCIO1 and VPP_2V5 are not connected together, and the CRESET_B signal triggers configuration  
download. Figure 4.2 shows when SPI_VCCIO1 and VPP_2V5 connected together. All power supplies should be powered  
up during configuration. Before and during configuration, the I/Os are held in tri-state. I/Os are released to user  
functionality once the device has finished configuration.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
30  
FPGA-DS-02008-1.4  
 
iCE40 UltraPlus™ Family  
Data Sheet  
Figure 4.1. Power Up Sequence with SPE_VCCIO1 and VPP_2V5 Not Connected Together  
Figure 4.2. Power Up Sequence with All Supplies Connected Together to 1.8 V  
4.7. Power-On-Reset Voltage Levels  
Table 4.4. Power-On-Reset Voltage Levels  
Min  
Max  
Unit  
Symbol  
Parameter  
VCC  
0.62  
0.92  
V
Power-On-Reset ramp up trip point (circuit  
SPI_VCCIO1  
VPP_2V5  
VCC  
VPORUP  
0.87  
0.90  
1.50  
1.53  
0.79  
1.50  
1.53  
V
V
V
V
V
V
monitoring VCC, SPI_VCCIO1, and  
)
PP_2V5  
Power-On-Reset ramp down trip point (circuit  
SPI_VCCIO1  
VPP_2V5  
VPORDN  
V
monitoring VCC, SPI_VCCIO1, and  
)
PP_2V5  
Note: These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages  
specified under recommended operating conditions.  
4.8. ESD Performance  
Please contact Lattice Semiconductor for additional information.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
31  
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.9. DC Electrical Characteristics  
Over recommended operating conditions.  
Table 4.5. DC Electrical Characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Condition  
1, 3, 4  
Input or I/O Leakage  
±10  
µA  
IIL, IIH  
0 V < VIN < VCCIO + 0.2 V  
VCCIO = 3.3 V, 2.5 V, 1.8 V  
VCC = Typ, VIO = 0 to VCCIO + 0.2 V  
I/O Capacitance, excluding  
LED Drivers2  
C1  
6
6
pf  
pf  
VCCIO = 3.3 V, 2.5 V, 1.8 V  
Global Input Buffer  
Capacitance2  
C2  
VCC = Typ, VIO = 0 to VCCIO + 0.2 V  
VCC = Typ, VIO = 0 to 3.5 V  
VCC = Typ, VIO = 0 to 3.5 V  
VCCIO = 1.8 V, 2.5 V, 3.3 V  
C3  
RGB Pin Capacitance2  
IRLED Pin Capacitance2  
Input Hysteresis  
15  
53  
200  
pf  
pf  
C4  
VHYST  
mV  
µA  
µA  
µA  
3  
8  
11  
31  
72  
128  
VCCIO = 1.8 V, 0 ≤ VIN ≤ 0.65 * VCCIO  
VCCIO = 2.5 V, 0 ≤ VIN ≤ 0.65 * VCCIO  
VCCIO = 3.3 V, 0 ≤ VIN ≤ 0.65 * VCCIO  
Internal PIO Pull-up Current  
IPU  
Notes:  
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is  
not measured with the output driver active. Internal pull-up resistors are disabled.  
2. TJ 25 oC, f = 1.0 MHz.  
3. Refer to VIL and VIH in Table 4.13 on page 34.  
4. Input pins are clamped to VCCIO and GND by a diode. When input is higher than VCCIO or lower than GND, the Input Leakage  
current will be higher than the IIL and IIH.  
4.10. Supply Current  
Table 4.6. Supply Current 1, 2, 3, 4, 5  
Typ  
VCC =1.2 V  
Symbol  
Parameter  
Unit  
ICCSTDBY  
IPP2V5STDBY  
ISPI_VCCIO1STDBY  
ICCIOSTDBY  
ICCPEAK  
Core Power Supply Static Current  
75  
µA  
µA  
VPP_2V5 Power Supply Static Current  
0.55  
0.5  
SPI_VCCIO1 Power Supply Static Current  
VCCIO Power Supply Static Current  
µA  
0.5  
µA  
Core Power Supply Startup Peak Current  
VPP_2V5 Power Supply Startup Peak Current  
SPI_VCCIO1 Power Supply Startup Peak Current  
VCCIO Power Supply Startup Peak Current  
12  
mA  
mA  
mA  
mA  
IPP_2V5PEAK  
ISPI_VCCIO1PEAK  
ICCIOPEAK  
2.5  
9.0  
2.0  
Notes:  
1. Assumes blank pattern with the following characteristics: all outputs are tri-stated, all inputs are configured as LVCMOS and  
held at VCCIO or GND, on-chip PLL is off. For more detail with your specific design, use the Power Calculator tool. Power specified  
with master SPI configuration mode. Other modes may be up to 25% higher.  
2. Frequency = 0 MHz.  
3. TJ = 25 °C, power supplies at nominal voltage, on devices processed in nominal process conditions.  
4. Does not include pull-up.  
5. Startup Peak Currents are measured with decoupling capacitances of 0.1 uF, 10 nF, and 1 nF to the power supply. Higher  
decoupling capacitance causes higher current.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
32  
FPGA-DS-02008-1.4  
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.11. User I2C Specifications  
Table 4.7. User I2C Specifications  
Spec (STD Mode)  
Spec (FAST Mode)  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
Min  
Typ  
Max  
400  
fSCL  
Maximum SCL clock frequency  
SCL clock HIGH Time  
4
100  
kHz  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
tHI  
0.6  
1.3  
100  
0
tLO  
SCL clock LOW Time  
4.7  
250  
0
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
Setup time (DATA)  
Hold time (DATA)  
Setup time (START condition)  
Hold time (START condition)  
Setup time (STOP condition)  
Bus free time between STOP and START  
SCL LOW to DATAOUT valid  
4.7  
4
0.6  
0.6  
0.6  
1.3  
4
4.7  
tCO,DAT  
3.4  
0.9  
4.12. I2C 50 ns Delay  
Table 4.8. I2C 50 ns Delay  
Spec  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
TDELAY  
Delay through 50 ns Delay Block  
50  
ns  
4.13. I2C 50 ns Filter  
Table 4.9. I2C 50 ns Filter  
Spec  
Typ  
50  
Symbol  
Parameter  
Unit  
Min  
Max  
TFILTER-H  
TFILTER-L  
HIGH Pulse Filter through 50 ns Filter Block  
LOW Pulse Filter through 50 ns Filter Block  
ns  
ns  
50  
4.14. User SPI Specifications 1, 2  
Table 4.10. User SPI Specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fMAX  
Maximum SCK clock frequency  
45  
MHz  
Notes:  
1. All setup and hold time parameters on external SPI interface are design-specific and, therefore, generated by the Lattice Design  
Software too. These parameters include the following:  
-
-
-
-
-
tSUmaster  
tHOLDmaster  
tSUslave  
tHOLDslave  
tSCK2OUT  
master Setup Time (master mode)  
master Hold time (master mode)  
slave Setup Time (slave mode)  
slave Hold time (slave mode)  
SCK to Out Delay (slave mode)  
2. The SCLK duty cycle needs to be specified in the Lattice Design Software as a timing constraint in order to ensure proper timing  
check on SCLK HIGH and LOW (tHI, tLO) time.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
33  
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.15. Internal Oscillators (HFOSC, LFOSC)  
Table 4.11. Internal Oscillators (HFOSC, LFOSC)  
Parameter  
Spec/Recommended  
Parameter Description  
Unit  
Symbol  
Conditions  
Commercial Temp HFOSC clock frequency (tJ = 0 °C85 °C)  
Min  
Typ  
48  
48  
10  
50  
50  
50  
Max  
-10%  
-20%  
-10%  
45  
10%  
20%  
10%  
55  
MHz  
MHz  
kHz  
%
fCLKHF  
Industrial Temp  
HFOSC clock frequency (tJ = 40 °C100 °C)  
fCLKLF  
LFOSC CLKK clock frequency  
Commercial Temp HFOSC Duty Cycle (tJ = 0 °C85 °C)  
DCHCLKHF  
Industrial Temp  
HFOSC Duty Cycle (tJ = 40 °C100 °C)  
LFOSC Duty Cycle (Clock High Period)  
Oscillator output synchronizer delay  
Oscillator output disable delay  
40  
60  
%
DCHCLKLF  
45  
55  
%
Tsync_on  
Tsync_off  
5
Cycles  
Cycles  
5
Note: Glitchless enabling and disabling OSC clock outputs.  
4.16. sysI/O Recommended Operating Conditions  
Table 4.12. sysI/O Recommended Operating Conditions  
VCCIO (V)  
Typ  
Standard  
Min  
Max  
3.46  
2.62  
1.89  
LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.8  
3.14  
2.37  
1.71  
3.3  
2.5  
1.8  
4.17. sysI/O Single-Ended DC Electrical Characteristics  
Table 4.13. sysI/O Single-Ended DC Electrical Characteristics  
VOH Min  
(V)  
VOL Max  
(V)  
VIL  
VIH  
IOL  
(mA)  
IOH Max  
(mA)  
Input/Output  
Standard  
Min (V)  
Max (V)  
Max (V)  
Min (V)  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
VCCIO 0.4  
VCCIO 0.2  
VCCIO 0.4  
VCCIO 0.2  
VCCIO 0.4  
VCCIO 0.2  
8
0.1  
6
8  
0.1  
6  
LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.8  
0.3  
0.8  
2.0  
VCCIO+0.2 V  
0.3  
0.3  
0.7  
1.7  
VCCIO+0.2 V  
VCCIO+0.2 V  
0.1  
4
0.1  
4  
0.35 VCCIO  
0.65 VCCIO  
0.1  
0.1  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
34  
FPGA-DS-02008-1.4  
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.18. Differential Comparator Electrical Characteristics  
Table 4.14. Differential Comparator Electrical Characteristics  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min  
Max  
Unit  
VREF  
Reference Voltage to compare, on VINM  
VCCIO = 2.5 V  
VCCIO = 2.5 V  
VCCIO = 2.5 V  
VCCIO = 2.5 V  
0.25  
250  
VCCIO - 0.25 V  
V
VDIFFIN_H  
VDIFFIN_L  
IIN  
Differential input HIGH (VINP - VINM  
)
250  
10  
mV  
mV  
µA  
Differential input LOW (VINP - VINM  
Input Current, VINP and VINM  
)
10  
4.19. Typical Building Block Function Performance  
4.19.1. Pin-to-Pin Performance (LVCMOS25)  
Table 4.15. Pin-to-Pin Performance (LVCMOS25)  
Function  
Basic Functions  
16-Bit Decoder  
4:1 Mux  
Timing  
Unit  
16.5  
18.0  
19.5  
ns  
ns  
ns  
16:1 Mux  
Notes:  
1. The above timing numbers are generated using the Lattice Design Software tool. Exact performance may vary with device and  
tool version. The tool uses internal parameters that have been characterized but are not tested on every device.  
2. Using a VCC of 1.14 V at Junction Temperature 85 °C.  
4.19.2. Register-to-Register Performance  
Table 4.16. Register-to-Register Performance  
Function  
Timing  
Unit  
Basic Functions  
16:1 Mux  
110  
100  
100  
40  
MHz  
MHz  
MHz  
MHz  
16-Bit Adder  
16-Bit Counter  
64-Bit Counter  
Embedded Memory Functions  
256 x 16 Pseudo-Dual Port RAM  
Notes:  
150  
MHz  
1. The above timing numbers are generated using the Lattice Design Software tool. Exact performance may vary with device and  
tool version. The tool uses internal parameters that have been characterized but are not tested on every device.  
2. Under worst case operating conditions.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
35  
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.20. sysDSP Timing  
Over recommended operating conditions.  
Table 4.17. sysDSP Timing  
Parameter  
fMAX8x8SMULT  
fMAX16x16SMULT  
Description  
Min  
50  
Max  
Unit  
MHz  
MHz  
Max frequency signed MULT8x8 bypassing pipeline register  
Max frequency signed MULT16x16 bypassing pipeline register  
50  
4.21. SPRAM Timing  
Over recommended operating conditions.  
Table 4.18. Single Port RAM Timing  
Parameter  
Description  
Min  
Max  
Unit  
fMAXSRAM  
Max frequency SPRAM (4/8/16-bit Read and Write)  
70  
MHz  
4.22. Derating Logic Timing  
Logic timing provided in the following sections of the data sheet and the Lattice design tools are worst case numbers in  
the operating range. Actual delays may be much faster. Lattice design tools can provide logic timing numbers at a  
particular temperature and voltage.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
36  
FPGA-DS-02008-1.4  
 
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.23. Maximum sysIO Buffer Performance  
Table 4.19. Maximum sysIO Buffer Performance  
I/O Standard  
Inputs  
Max Speed  
Unit  
LVCMOS33  
250  
250  
250  
MHz  
MHz  
MHz  
LVCMOS25  
LVCMOS18  
Outputs  
LVCMOS33  
250  
250  
155  
70  
MHz  
MHz  
MHz  
MHz  
LVCMOS25  
LVCMOS18  
LVCMOS12  
Note: Measured with a toggling pattern.  
4.24. iCE40 UltraPlus Family Timing Adders  
Over recommended commercial operating conditions.  
Table 4.20. iCE40 UltraPlus Family Timing Adders  
Buffer Type  
Input Adjusters  
LVCMOS33  
LVCMOS25  
LVCMOS18  
Output Adjusters  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS12  
Notes:  
Description  
Timing (Typ)  
Units  
LVCMOS, VCCIO = 3.3 V  
LVCMOS, VCCIO = 2.5 V  
LVCMOS, VCCIO = 1.8 V  
0.18  
0
ns  
ns  
ns  
0.19  
LVCMOS, VCCIO = 3.3 V  
LVCMOS, VCCIO = 2.5 V  
LVCMOS, VCCIO = 1.8 V  
LVCMOS, VCCIO = 1.2 V  
-0.12  
0
ns  
ns  
ns  
ns  
1.32  
5.38  
1. Timing adders are relative to LVCMOS25 and characterized but not tested on every device.  
2. LVCMOS timing measured with the load specified in Switching Test Condition table.  
3. Commercial timing numbers are shown.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
37  
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.25. iCE40 UltraPlus External Switching Characteristics  
Over recommended commercial operating conditions.  
Table 4.21. iCE40 UltraPlus External Switching Characteristics  
Parameter  
Clocks  
Description  
Device  
Min  
Max  
Unit  
Global Clock  
fMAX_GBUF  
tW_GBUF  
Frequency for Global Buffer Clock network  
Clock Pulse Width for Global Buffer  
Global Buffer Clock Skew Within a Device  
All Devices  
All Devices  
All Devices  
2
185  
530  
MHz  
ns  
ps  
tISKEW_GBUF  
Pin-LUT-Pin Propagation Delay  
Best case propagation delay through one  
LUT logic  
General I/O Pin Parameters (Using Global Buffer Clock without PLL)*  
tPD  
All Devices  
9.0  
ns  
tSKEW_IO  
tCO  
tSU  
Data bus skew across a bank of IOs  
Clock to Output PIO Output Register  
Clock to Data Setup PIO Input Register  
Clock to Data Hold PIO Input Register  
All Devices  
All Devices  
All Devices  
All Devices  
0.5  
5.55  
510  
10.0  
ps  
ns  
ns  
ns  
tH  
General I/O Pin Parameters (Using Global Buffer Clock with PLL)  
tCOPLL  
tSUPLL  
tHPLL  
Clock to Output PIO Output Register  
Clock to Data Setup PIO Input Register  
Clock to Data Hold PIO Input Register  
All Devices  
All Devices  
All Devices  
7.3  
1.1  
2.4  
ns  
ns  
ns  
*Note: All the data is from the worst case.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
38  
FPGA-DS-02008-1.4  
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.26. sysCLOCK PLL Timing  
Over recommended operating conditions.  
Table 4.22. sysCLOCK PLL Timing  
Parameter  
Descriptions  
Conditions  
Min  
Max  
Unit  
Input Clock Frequency (REFERENCECLK,  
EXTFEEDBACK)  
fIN  
10  
133  
MHz  
Output Clock Frequency (PLLOUT)  
PLL VCO Frequency  
16  
533  
10  
275  
1066  
133  
fOUT  
fVCO  
MHz  
MHz  
MHz  
3
fPFD  
Phase Detector Input Frequency  
AC Characteristics  
tDT  
tPH  
Output Clock Duty Cycle  
40  
60  
±12  
450  
0.05  
750  
0.10  
275  
0.05  
%
deg  
Output Phase Accuracy  
fOUT >= 100 MHz  
ps p-p  
UIPP  
ps p-p  
UIPP  
ps p-p  
UIPP  
ns  
Output Clock Period Jitter  
fOUT < 100 MHz  
fOUT >= 100 MHz  
1, 5, 6  
Output Clock Cycle-to-Cycle Jitter  
Output Clock Phase Jitter  
tOPJIT  
fOUT < 100 MHz  
fPFD >= 25 MHz  
fPFD < 25 MHz  
tW  
Output Clock Pulse Width  
PLL Lock-in Time  
At 90% or 10%  
1.33  
2, 3  
tLOCK  
50  
µs  
tUNLOCK  
PLL Unlock Time  
50  
ns  
fPFD ≥ 20 MHz  
1000  
0.02  
500  
ps p-p  
UIPP  
ns  
4
tIPJIT  
Input Clock Period Jitter  
fPFD < 20 MHz  
3
tSTABLE  
LATCHINPUTVALUE LOW to PLL Stable  
LATCHINPUTVALUE Pulse Width  
RESET Pulse Width  
3
tSTABLE_PW  
tRST  
100  
10  
10  
100  
ns  
ns  
tRSTREC  
RESET Recovery Time  
µs  
tDYNAMIC_WD  
DYNAMICDELAY Pulse Width  
VCO Cycles  
Notes:  
1. Period jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock. Cycle-to-cycle jitter is  
taken over 1000 cycles. Phase jitter is taken over 2000 cycles. All values per JESD65B.  
2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment.  
3. At minimum fPFD. As the fPFD increases the time will decrease to approximately 60% the value listed.  
4. Maximum limit to prevent PLL unlock from occurring. Does not imply the PLL will operate within the output specifications listed  
in this table.  
5. The jitter values will increase with loading of the PLD fabric and in the presence of SSO noise.  
4.27. SPI Master or NVCM Configuration Time  
Table 4.23. SPI Master or NVCM Configuration Time  
Symbol  
Parameter  
Conditions  
Max  
140  
50  
Unit  
ms  
All devices Low Frequency (Default)  
All devices Medium frequency  
All devices High frequency  
tCONFIG  
POR/CRESET_B to Device I/O Active  
ms  
26  
ms  
Notes:  
1. Assumes sysMEM Block is initialized to an all zero pattern if they are used.  
2. The NVCM download time is measured with a fast ramp rate starting from the maximum voltage of POR trip point.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
39  
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.28. sysCONFIG Port Timing Specifications  
Over recommended operating conditions.  
Table 4.24. sysCONFIG Port Timing Specifications  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
All Configuration Mode  
Minimum CRESET_B LOW pulse width  
tCRESET_B  
required to restart configuration, from  
falling edge to rising edge  
200  
49  
ns  
tDONE_IO  
Number of configuration clock cycles after  
CDONE goes HIGH before the PIO pins are  
activated  
Clock  
Cycles  
Slave SPI  
tCR_SCK  
Minimum time from a rising edge on  
CRESET_B until the first SPI WRITE  
operation, first SPI_XCK clock. During this  
time, the iCE40 UltraPlus device is clearing  
its internal configuration memory  
1200  
µs  
fMAX  
Write  
Read1  
1
15  
25  
MHz  
MHz  
ns  
CCLK clock frequency  
20  
20  
12  
12  
13  
tCCLKH  
tCCLKL  
CCLK clock pulsewidth HIGH  
CCLK clock pulsewidth LOW  
CCLK setup time  
ns  
tSTSU  
ns  
tSTH  
ns  
CCLK hold time  
tSTCO  
ns  
CCLK falling edge to valid output  
Master SPI3  
fMCLK  
MCLK clock frequency  
Low Frequency  
Medium Frequency2  
High Frequency2  
7.0  
21.0  
33.0  
1200  
6.16  
1
12.0  
33.0  
53.0  
17.0  
45.0  
71.0  
MHz  
MHz  
MHz  
µs  
tMCLK  
tSU  
CRESET_B HIGH to first MCLK edge  
CCLK setup time  
ns  
tHD  
CCLK hold time  
ns  
Notes:  
1. Supported with 1.2 V VCC and at 25 °C.  
2. Extended range fMAX Write operations support up to 53 MHz with 1.2 V VCC and at 25 °C.  
3. tSU and tHD timing must be met for all MCLK frequency choices.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
40  
FPGA-DS-02008-1.4  
 
iCE40 UltraPlus™ Family  
Data Sheet  
4.29. RGB LED Drive  
Table 4.25. RGB LED  
Symbol  
ILED_ACCURACY RGB0, RGB1, RGB2 Sink Current Accuracy to selected current @ VLEDOUT >= 0.5 V  
ILED_MATCH  
RGB0, RGB1, RGB2 Sink Current Matching among the 3 outputs @ VLEDOUT >= 0.5  
Parameter  
Min  
12  
5  
Max  
+12  
+5  
Unit  
%
%
4.30. Switching Test Conditions  
Figure 4.3 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,  
voltage, and other test conditions are listed in Table 4.26.  
VT  
R1  
Test Point  
DUT  
CL  
Figure 4.3. Output Test Load, LVCMOS Standards  
Table 4.26. Test Fixture Required Components, Non-Terminated Interfaces  
Test Condition  
R1  
CL  
Timing Reference  
LVCMOS 3.3 = 1.5 V  
LVCMOS 2.5 = VCCIO/2  
LVCMOS 1.8 = VCCIO/2  
1.5 V  
VT  
LVCMOS settings (L ≥ H, H ≥ L)  
0 pF  
LVCMOS 3.3 (Z ≥ H)  
LVCMOS 3.3 (Z ≥ L)  
Other LVCMOS (Z ≥ H)  
Other LVCMOS (Z ≥ L)  
LVCMOS (H ≥ Z)  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
1.5 V  
VCCIO/2  
188  
0 pF  
VCCIO/2  
VOH 0.15 V  
LVCMOS (L ≥ Z)  
VOL 0.15 V  
Note: Output test conditions for all other interfaces are determined by the respective standards.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
41  
 
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
5. Pinout Information  
5.1. Signal Descriptions  
5.1.1. Power Supply Pins  
Signal Name  
Function  
Power  
I/O  
Description  
VCC  
Core Power Supply  
VCCIO_0, SPI_VCCIO1, VCCIO_2  
Power  
Power for I/Os in Bank 0, 1, and 2.  
Power for NVCM programming and operations.  
Power for PLL.  
VPP_2V5  
VCCPLL  
Power  
Power  
GND  
GROUND  
GROUND  
Ground  
GND_LED  
Ground for LED drivers. Should connect to GND on board.  
5.1.2. Configuration Pins  
Signal Name  
Function  
I/O  
Description  
General I/O  
Shared  
Function  
CRESET_B  
Configuration  
I
Configuration Reset, active LOW. No internal pull-up resistor.  
Either actively driven externally or connect an 10 kΩ pull-up to  
SPI_VCCIO1  
.
IOB_xxx  
CDONE  
Configuration  
General I/O  
I/O  
I/O  
Configuration Done. Includes a weak pull-up resistor to  
SPI_VCCIO1  
.
In user mode, after configuration, this pin can be programmed  
as general I/O in user function. In 30-pin WLCSP, this pin  
connects to IOB_12a, which also is shared as global signal G4  
in user mode.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
42  
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
5.1.3. Configuration SPI Pins  
Signal Name  
Function  
I/O  
Description  
General I/O  
Shared  
Function  
IOB_34a  
SPI_SCK  
SPI_SO  
SPI_SI  
Configuration  
I/O  
This pin is shared with device configuration. During  
configuration:  
In Master SPI mode, this pin outputs the clock to external SPI  
memory.  
In Slave SPI mode, this pin inputs the clock from external  
In user mode, after configuration, this pin can be programmed as  
general I/O in user function.  
General I/O  
I/O  
IOB_32a  
IOB_33b  
IOB_35b  
Configuration  
Output  
This pin is shared with device configuration. During  
configuration:  
In Master SPI mode, this pin outputs the command data to  
external SPI memory.  
In Slave SPI mode, this pin connects to the MISO pin of the  
In user mode, after configuration, this pin can be programmed as  
general I/O in user function.  
General I/O  
I/O  
Configuration  
Input  
This pin is shared with device configuration. During  
configuration:  
In Master SPI mode, this pin receives data from external SPI  
memory.  
In Slave SPI mode, this pin connects to the MOSI pin of the  
General I/O  
I/O  
I/O  
In user mode, after configuration, this pin can be programmed as  
general I/O in user function.  
SPI_SS_B  
Configuration  
This pin is shared with device configuration. During  
configuration:  
In Master SPI mode, this pin outputs to the external SPI memory.  
General I/O  
I/O  
In user mode, after configuration, this pin can be programmed as  
general I/O in user function.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
43  
iCE40 UltraPlus™ Family  
Data Sheet  
5.1.4. Global Pins  
Signal Name  
Function  
General I/O  
Global  
I/O  
I/O  
Description  
General I/O  
Shared  
Function  
G0  
IOT_46b  
In user mode, after configuration, this pin can be  
programmed as general I/O in user function.  
Input  
I/O  
Global input used for high fanout, or clock/ reset net. The  
G0 pin drives the GBUF0 global buffer.  
IOT_45a  
IOB_25b  
IOB_12a  
IOB_11b  
IOB_3b  
G1  
G3  
G4  
G5  
G6  
General I/O  
Global  
In user mode, after configuration, this pin can be  
programmed as general I/O in user function.  
Input  
I/O  
Global input used for high fanout, or clock/ reset net. The  
G1 pin drives the GBUF1 global buffer.  
General I/O  
Global  
In user mode, after configuration, this pin can be  
programmed as general I/O in user function.  
Input  
I/O  
Global input used for high fanout, or clock/ reset net. The  
G3 pin drives the GBUF3 global buffer.  
General I/O  
Global  
In user mode, after configuration, this pin can be  
programmed as general I/O in user function.  
Input  
I/O  
Global input used for high fanout, or clock/ reset net. The  
G4 pin drives the GBUF4 global buffer.  
General I/O  
Global  
In user mode, after configuration, this pin can be  
programmed as general I/O in user function.  
Input  
I/O  
Global input used for high fanout, or clock/ reset net. The  
G5 pin drives the GBUF5 global buffer.  
General I/O  
Global  
In user mode, after configuration, this pin can be  
programmed as general I/O in user function.  
Input  
Global input used for high fanout, or clock/ reset net. The  
G6 pin drives the GBUF6 global buffer.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
44  
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
5.1.5. General I/O, LED Pins  
Signal Name  
Function  
I/O  
Description  
General I/O  
Shared Function  
RGB0  
General I/O  
Open-  
Drain I/O  
In user mode, when RGB function is not used, this pin can  
be connected to any user logic and used as open-drain I/O.  
This pin is located in Bank 0.  
LED  
Open-  
Drain  
Output  
In user mode, when using RGB function, this pin can be  
programmed as open drain 24 mA output to drive external  
LED.  
RGB1  
RGB2  
General I/O  
LED  
Open-  
Drain I/O  
In user mode, when RGB function is not used, this pin can  
be connected to any user logic and used as open-drain I/O.  
This pin is located in Bank 0.  
Open-  
Drain  
Output  
In user mode, when using RGB function, this pin can be  
programmed as open drain 24 mA output to drive external  
LED.  
General I/O  
LED  
Open-  
Drain I/O  
In user mode, when RGB function is not used, this pin can  
be connected to any user logic and used as open-drain I/O.  
This pin is located in Bank 0.  
Open-  
Drain  
Output  
In user mode, when using RGB function, this pin can be  
programmed as open drain 24 mA output to drive external  
LED.  
PIOT_xx  
PIOB_xx  
General I/O  
General I/O  
I/O  
In user mode, with user's choice, this pin can be  
programmed as I/O in user function in the top (xx = I/O  
location). These pins are located in Bank 0.  
In user mode, with user's choice, this pin can be  
programmed as I/O in user function in the bottom (xx = I/O  
location). Pins with xx <= 9 are located in Bank 2, pins with  
xx> are located in Bank 1.  
I/O  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
45  
iCE40 UltraPlus™ Family  
Data Sheet  
5.2. Pin Information Summary  
iCE40UP3K  
iCE40UP5K  
Pin Type  
UWG30  
UWG30  
SG48  
17  
14  
8
General Purpose  
I/O Per Bank  
Bank 0  
Bank 1  
Bank 2  
7
10  
4
7
10  
4
Total General Purpose I/Os  
VCC  
21  
1
21  
1
39  
2
VCCIO  
Bank 0  
1
1
1
Bank 1  
Bank 2  
1
1
1
1
1
1
VCCPLL  
1
1
1
VPP_2V5  
1
1
1
Dedicated Config Pins  
GND  
1
1
2
01  
2
2
Total Balls  
30  
30  
48  
Note:  
1. 48-pin QFN package (SG48) requires the package paddle to be connected to GND.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
46  
FPGA-DS-02008-1.4  
 
iCE40 UltraPlus™ Family  
Data Sheet  
5.3. iCE40UP Part Number Description  
iCE40UP XX-XX XX XI TR  
Device Family  
iCE40UP FPGA  
TR  
<blank> = Default Tape and Reel  
for SG48 (See quantity below)  
TR = Tape and Reel (See quantity below)  
TR50 = Tape and Reel, 50 units  
TR1K = Tape and Reel, 1,000 units  
Logic Cells  
3K = 2,800 Logic Cells  
5K = 5,280 Logic Cells  
Grade  
I = Industrial  
Package  
UWG30 = 30-Ball WLCSP (0.40 mm Ball Pitch)  
SG48 = 48-Pin QFN (0.50 mm Pin Pitch)  
All parts are shipped in tape-and-reel.  
5.3.1. Tape and Reel Quantity  
Package  
UWG30  
SG48  
TR Quantity  
5,000  
2,000  
5.4. Ordering Part Numbers  
5.4.1. Industrial  
Part Number  
LUTs  
2800  
2800  
2800  
5280  
5280  
5280  
5280  
5280  
Supply Voltage  
1.2 V  
Package  
Pins  
30  
30  
30  
48  
48  
30  
30  
30  
Temperature  
IND  
iCE40UP3K-UWG30ITR  
iCE40UP3K-UWG30ITR1K  
iCE40UP3K-UWG30ITR50  
iCE40UP5K-SG48I  
Halogen-Free WLCSP  
Halogen-Free WLCSP  
Halogen-Free WLCSP  
Halogen-Free QFN  
Halogen-Free QFN  
Halogen-Free WLCSP  
Halogen-Free WLCSP  
Halogen-Free WLCSP  
1.2 V  
IND  
1.2 V  
IND  
1.2 V  
IND  
iCE40UP5K-SG48ITR50  
iCE40UP5K-UWG30ITR  
iCE40UP5K-UWG30ITR1K  
iCE40UP5K-UWG30ITR50  
1.2 V  
IND  
1.2 V  
IND  
1.2 V  
IND  
1.2 V  
IND  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
47  
 
 
iCE40 UltraPlus™ Family  
Data Sheet  
Supplemental Information  
For Further Information  
A variety of technical documents for the iCE40 UltraPlus family are available on the Lattice web site.  
TN1248, iCE40 Programming and Configuration  
TN1274, iCE40 SPI/I2C Hardened IP Usage Guide  
TN1276, Advanced iCE40 SPI/I2C Hardened IP Usage Guide  
TN1250, Memory Usage Guide for iCE40 Devices  
TN1251, iCE40 sysCLOCK PLL Design and Usage Guide  
TN1252, iCE40 Hardware Checklist  
TN1288, iCE40 LED Driver Usage Guide  
TN1295, DSP Function Usage Guide for iCE40 Devices  
TN1296, iCE40 Oscillator Usage Guide  
TN1314, iCE40 SPRAM Usage Guide  
iCE40 UltraPlus Pinout Files  
iCE40 UltraPlus Pin Migration Files  
FPGA-TN-02044, Thermal Management  
Package Diagrams  
Lattice design tools  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
48  
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
Technical Support  
For assistance, submit a technical support case at www.latticesemi.com/techsupport.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
49  
iCE40 UltraPlus™ Family  
Data Sheet  
Revision History  
Date  
Version  
Section  
Change Summary  
August 2017  
1.4  
All  
Changed document number from DS1056 to FPGA-DS-02008.  
Removed Preliminary from document cover page and header.  
1.3  
All  
Changed document status from Advance to Preliminary.  
Updated footer.  
Architecture  
Corrected link to FPGA-TN-02021, iCE40 LED Driver Usage Guide.  
Added link to FPGA-TN-02022, iCE40 SPRAM Usage Guide.  
DC and  
Switching  
Characteristics  
Updated Typ VCC=1.2 V values for IPP_2VSPEAK and ICOOPEAK in Table 4.6.  
Supply Current.  
Added Min value for fMAXSRAM to Table 4.18. Single Port RAM Timing.  
Added LVCMOS12 information to Table 4.19. Maximum sysIO Buffer  
Performance and Table 4.20. iCE40 UltraPlus Family Timing Adders.  
Updated Table 4.21. iCE40 UltraPlus External Switching  
Characteristics. Revised Max values for tISKEW_GBUF, tSKEW_IO, tCO, tCOPLL, and  
Min values for tSUPLL, tHPLL  
.
Added Max values to Table 4.23. SPI Master or NVCM Configuration  
Time.  
Pinout  
Information  
Updated TR description in the iCE40UP Part Number Description  
section.  
Updated part number information in the Ordering Part Numbers  
section.  
Supplemental  
Information  
Corrected link to FPGA-TN-02021, iCE40 LED Driver Usage Guide.  
Added link to FPGA-TN-02022, iCE40 SPRAM Usage Guide.  
Added link to Package Diagrams.  
June 2016  
1.2  
All  
Updated template.  
Introduction  
Added QFN package in features list.  
Product  
Family  
Added packages to Table 2.1 iCE40 UltraPlus Family Selection Guide.  
Added information on RGB PWM IP in Overview.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
50  
FPGA-DS-02008-1.4  
iCE40 UltraPlus™ Family  
Data Sheet  
Date  
Version  
Section  
Change Summary  
Architecture  
Performed minor editorial changes.  
Added information on 256 kb SPRAM blocks.  
Changed headings in Table 3.2. Global Buffer (GBUF) Connections to  
Programmable Logic Blocks.  
Corrected VCCPLL format in Figure 3.3. PLL Diagram.  
Updated note in Table 3.4. sysMEM Block Configurations.  
Added reference to FPGA-TN-02022, iCE40 SPRAM Usage Guide.  
Revised sysIO Buffer Banks information.  
Corrected VCCIO format in Figure 3.9. I/O Bank and Programmable  
I/O Cell.  
Revised Typical I/O Behavior During Power-up information.  
Revised Supported Standards information.  
Revised heading in Table 3.9. Supported Input Standards.  
Revised heading and removed LVCMOS12 in Table 3.10. Supported  
Output Standards.  
Revised HFOSC information in On-Chip Oscillator section.  
Removed "An RGB PWM IP is also offered in the family." in RGB High  
Current Drive I/O Pins section.  
DC and  
Switching  
Characteristics  
Added the following figures:  
Figure 4.1. Power Up Sequence with SPE_VCCIO1 and  
VPP_2V5 Not Connected Together.  
Figure 4.2. Power Up Sequence with All Supplies Connected  
Together to 1.8 V.  
Updated note in Table 4.5. DC Electrical Characteristics.  
Added note in Table 4.6. Supply Current.  
Revised User SPI Specifications 1, 2 section.  
Removed symbols.  
Added notes.  
Revised Table 4.11. Internal Oscillators (HFOSC, LFOSC).  
Removed note in Table 4.13. sysI/O Single-Ended DC Electrical  
Characteristics.  
Changed to Lattice Design Software tool in Table 4.15. Pin-to-Pin  
Performance (LVCMOS25).  
Changed to Lattice Design Software tool and revised note in Table  
4.16. Register-to-Register Performance.  
Added sysDSP Timing section.  
Added SPRAM Timing section.  
Removed LVCMOS12 and added timing values in Table 4.19.  
Maximum IO Buffer Performance.  
Removed LVCMOS12 and added timing values in Table 4.20. iCE40  
UltraPlus Family Timing Adders.  
Revised max values in Table 4.23. SPI Master or NVCM Configuration  
Time.  
Removed TBD conditions in Table 4.24. sysCONFIG Port Timing  
Specifications. Revised tHD parameter.  
Revised Table 4.25. High Current RGB LED and IR LED Drive.  
Pinout  
Information  
General update to Signal Descriptions section.  
Updated the iCE40UP Part Number Description section. Added  
FGW49 package.  
Added OPNs.  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
FPGA-DS-02008-1.4  
51  
iCE40 UltraPlus™ Family  
Data Sheet  
Date  
Version  
Section  
Change Summary  
Supplemental Added reference to FPGA-TN-02022, iCE40 SPRAM Usage Guide.  
Information  
September 2015  
1.1  
Architecture  
Updated Architecture section. Replaced iCE5UP with iCE40UP.  
Updated Pin Information Summary section.  
Replaced iCE5UP with iCE40UP.  
Pinout  
Information  
Replaced SWG30 with UWG30.  
Ordering  
Information  
Updated iCE40UP Part Number Description section.  
Replaced iCE5UP with iCE40UP.  
Replaced SWG30 with UWG30.  
Updated Ordering Part Numbers section. Replaced the table of part  
Further  
Information  
Removed reference to Schematic Symbols.  
Initial release.  
August 2015  
1.0  
All  
© 2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are  
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
52  
FPGA-DS-02008-1.4  
7th Floor, 111 SW 5th Avenue  
Portland, OR 97204, USA  
T 503.268.8000  
www.latticesemi.com  

相关型号:

ICE40UP5K-UWG30ITR1K

iCE40 UltraPlus™ Family
LATTICE

ICE40UP5K-UWG30ITR50

iCE40 UltraPlus™ Family
LATTICE

ICE47N60W

N-Channel Enhancement Mode MOSFET
ICEMOS

ICE47N65W

N-Channel Enhancement Mode MOSFET
ICEMOS

ICE4N65D

Enhancement Mode MOSFET
ICEMOS

ICE4N70

N-Channel Enhancement Mode MOSFET
ICEMOS

ICE4N70D

Enhancement Mode MOSFET
ICEMOS

ICE4N70FP

N-Channel Enhancement Mode MOSFET
ICEMOS

ICE4N73

Enhancement Mode MOSFET
ICEMOS

ICE4N73D

Enhancement Mode MOSFET
ICEMOS

ICE4N73FP

Enhancement Mode MOSFET
ICEMOS

ICE5AR0680AG

The ICE5xRxxxxAG is the 5th generation of fixed
INFINEON