ISPLSI1024EA-200LT100 [LATTICE]

In-System Programmable High Density PLD; 在系统可编程高密度PLD
ISPLSI1024EA-200LT100
型号: ISPLSI1024EA-200LT100
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

In-System Programmable High Density PLD
在系统可编程高密度PLD

文件: 总13页 (文件大小:164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
ispLSI 1024EA  
In-System Programmable High Density PLD  
Features  
Functional Block Diagram  
• HIGH DENSITY PROGRAMMABLE LOGIC  
— 4000 PLD Gates  
— 48 I/O Pins, Two Dedicated Inputs  
— 144 Registers  
— High Speed Global Interconnect  
— Wide Input Gating for Fast Counters, State  
Machines, Address Decoders, etc.  
— Small Logic Block Size for Random Logic  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
D
D
D
D
Q
Q
Q
Q
Logic  
Array  
GLB  
• NEW FEATURES  
— 100% IEEE 1149.1 Boundary Scan Testable  
— ispJTAG™ In-System Programmable via IEEE 1149.1  
(JTAG) Test Access Port  
— User Selectable 3.3V or 5V I/O Supports Mixed-  
Voltage Systems (VCCIO Pin)  
Global Routing Pool (GRP)  
— Open-Drain Output Option  
• HIGH PERFORMANCE E2CMOS® TECHNOLOGY  
B0 B1 B2 B3 B4 B5 B6 B7  
Output Routing Pool  
CLK  
fmax = 200 MHz Maximum Operating Frequency  
tpd = 4.5 ns Propagation Delay  
0139/1024EA  
— TTL Compatible Inputs and Outputs  
— Electrically Erasable and Reprogrammable  
— Non-Volatile  
Description  
— 100% Tested at Time of Manufacture  
— Unused Product Term Shutdown Saves Power  
The ispLSI 1024EA is a High Density Programmable  
Logic Device containing 144 Registers, 48 Universal I/O  
pins, two Dedicated Input pins, four Dedicated Clock  
Input pins and a Global Routing Pool (GRP). The GRP  
provides complete interconnectivity between all of these  
elements. The ispLSI 1024EA features 5V in-system  
diagnosticcapabilitiesviaIEEE1149.1TestAccessPort.  
The ispLSI 1024EA device offers non-volatile  
reprogrammability of the logic, as well as the intercon-  
nectstoprovidetrulyreconfigurablesystems.Afunctional  
superset of the ispLSI 1024 architecture, the ispLSI  
1024EA device adds user selectable 3.3V or 5V I/O and  
open-drain output options.  
• IN-SYSTEM PROGRAMMABLE  
— Increased Manufacturing Yields, Reduced Time-to-  
Market and Improved Product Quality  
— Reprogram Soldered Devices for Faster Prototyping  
• OFFERS THE EASE OF USE AND FAST SYSTEM  
SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY  
OF FIELD PROGRAMMABLE GATE ARRAYS  
— Complete Programmable Device Can Combine Glue  
Logic and Structured Designs  
— Enhanced Pin Locking Capability  
— Four Dedicated Clock Input Pins  
— Synchronous and Asynchronous Clocks  
— Programmable Output Slew Rate Control to  
Minimize Switching Noise  
The basic unit of logic on the ispLSI 1024EA device is the  
Generic Logic Block (GLB). The GLBs are labeled A0,  
A1D7 (Figure 1). There are a total of 24 GLBs in the  
ispLSI 1024EA device. Each GLB has 18 inputs, a  
programmable AND/OR/Exclusive OR array, and four  
outputs which can be configured to be either combinato-  
rial or registered. Inputs to the GLB come from the GRP  
and dedicated inputs. All of the GLB outputs are brought  
back into the GRP so that they can be connected to the  
inputs of any other GLB on the device.  
— Flexible Pin Placement  
— Optimized Global Routing Pool Provides Global  
Interconnectivity  
• ispDesignEXPERT™ – LOGIC COMPILER AND COM-  
PLETE ISP DEVICE DESIGN SYSTEMS FROM HDL  
SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING  
— Superior Quality of Results  
— Tightly Integrated with Leading CAE Vendor Tools  
— Productivity Enhancing Timing Analyzer, Explore  
Tools, Timing Simulator and ispANALYZER™  
— PC and UNIX Platforms  
Copyright©2000LatticeSemiconductorCorp.Allbrandorproductnamesaretrademarksorregisteredtrademarksoftheirrespectiveholders. Thespecificationsandinformationhereinaresubject  
to change without notice.  
LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A.  
Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com  
June 2000  
1024ea_01  
1
Specifications ispLSI 1024EA  
Functional Block Diagram  
Figure 1. ispLSI 1024EA Functional Block Diagram  
RESET  
VCCIO  
Generic  
Logic Blocks  
(GLBs)  
GOE 1/IN 5  
GOE 0/IN 4  
I/O 47  
C7  
I/O 46  
I/O 0  
I/O 45  
A0  
I/O 1  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
I/O 44  
I/O 2  
I/O 3  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
I/O 43  
I/O 42  
I/O 41  
I/O 40  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
Global  
Routing  
Pool  
I/O 39  
I/O 38  
I/O 37  
I/O 36  
I/O 8  
I/O 9  
(GRP)  
I/O 10  
I/O 11  
I/O 35  
I/O 34  
I/O 33  
I/O 32  
I/O 12  
I/O 13  
I/O 14  
I/O 15  
CLK 0  
CLK 1  
CLK 2  
IOCLK 0  
IOCLK 1  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
Clock  
Distribution  
Network  
TDI  
Megablock  
Output Routing Pool (ORP)  
Input Bus  
TDO  
TMS  
TCK  
0139B/1024EA  
The device also has 48 I/O cells, each of which is directly Clocks in the ispLSI 1024EA device are selected using  
connected to an I/O pin. Each I/O cell can be individually theClockDistributionNetwork.Fourdedicatedclockpins  
programmed to be a combinatorial input, registered in- (Y0, Y1, Y2 and Y3) are brought into the distribution  
put, latched input, output or bi-directional network, and five clock outputs (CLK 0, CLK 1, CLK 2,  
I/O pin with 3-state control. The signal levels are TTL IOCLK 0 and IOCLK 1) are provided to route clocks to the  
compatible voltages and the output drivers can source 4 GLBs and I/O cells. The Clock Distribution Network can  
mA or sink 8 mA. Each output can be programmed also be driven from a special clock GLB (C0 on the ispLSI  
independently for fast or slow output slew rate to mini- 1024EA device). The logic of this GLB allows the user to  
mize overall output switching noise. By connecting the create an internal clock from a combination of internal  
VCCIO pin to a common 5V or 3.3V power supply, I/O signals within the device.  
output levels can be matched to 5V or 3.3V-compatible  
voltages.  
Programmable Open-Drain Outputs  
In addition to the standard output configuration, the  
outputs of the ispLSI 1024EA are individually program-  
mable, either as a standard totem-pole output or an  
open-drain output. The totem-pole output drives the  
specified Voh and Vol levels, whereas the open-drain  
output drives only the specified Vol. The Voh level on the  
open-drain output depends on the external loading and  
pull-up. This output configuration is controlled by a pro-  
grammable fuse. The default configuration when the  
device is in bulk erased state is totem-pole configuration.  
The open-drain/totem-pole option is selectable through  
the ispDesignEXPERT software tools.  
Eight GLBs, 16 I/O cells, dedicated inputs (if available)  
and one ORP are connected together to make a  
Megablock (Figure 1). The outputs of the eight GLBs are  
connected to a set of 16 universal I/O cells by the ORP.  
Each ispLSI 1024EA device contains three Megablocks.  
The GRP has, as its inputs, the outputs from all of the  
GLBsandallof theinputsfromthebi-directionalI/O cells.  
All of these signals are made available to the inputs of the  
GLBs. Delays through the GRP have been equalized to  
minimize timing skew.  
2
Specifications ispLSI 1024EA  
Boundary Scan  
Figure 2. Boundary Scan Waveforms and Timing Specifications  
TMS  
TDI  
T
T
bth  
btsu  
T
T
T
btcp  
btch  
btcl  
TCK  
TDO  
T
T
T
btoz  
btvo  
btco  
Valid Data  
Valid Data  
T
btcpsu  
T
btcph  
Data to be  
captured  
Data Captured  
T
T
T
btuoz  
btuov  
btuco  
Data to be  
driven out  
Valid Data  
Valid Data  
Symbol  
Parameter  
Min  
100  
50  
50  
20  
25  
50  
Max Units  
t
TCK [BSCAN test] clock pulse width  
TCK [BSCAN test] pulse width high  
TCK [BSCAN test] pulse width low  
TCK [BSCAN test] setup time  
ns  
ns  
btcp  
t
t
btch  
ns  
btcl  
t
t
t
t
t
t
t
t
t
t
t
ns  
btsu  
bth  
TCK [BSCAN test] hold time  
ns  
TCK [BSCAN test] rise and fall time  
mV/ns  
ns  
rf  
TAP controller falling edge of clock to valid output  
25  
25  
25  
btco  
btoz  
btvo  
btcpsu  
btcph  
btuco  
btuoz  
btuov  
TAP controller falling edge of clock to data output disable  
TAP controller falling edge of clock to data output enable  
BSCAN test Capture register setup time  
ns  
ns  
40  
25  
ns  
BSCAN test Capture register hold time  
ns  
BSCAN test Update reg, falling edge of clock to valid output  
BSCAN test Update reg, falling edge of clock to output disable  
BSCAN test Update reg, falling edge of clock to output enable  
50  
50  
50  
ns  
ns  
ns  
3
Specifications ispLSI 1024EA  
1
Absolute Maximum Ratings  
Supply Voltage V .................................. -0.5 to +7.0V  
cc  
Input Voltage Applied........................ -2.5 to V +1.0V  
CC  
Off-State Output Voltage Applied ..... -2.5 to V +1.0V  
CC  
Storage Temperature................................ -65 to 150°C  
Case Temp. with Power Applied .............. -55 to 125°C  
Max. Junction Temp. (T ) with Power Applied ... 150°C  
J
1. Stresses above those listed under the Absolute Maximum Ratingsmay cause permanent damage to the device. Functional  
operation of the device at these or at any other conditions above those indicated in the operational sections of this specification  
is not implied (while programming, follow the programming specifications).  
DC Recommended Operating Conditions  
SYMBOL  
PARAMETER  
Commercial  
MIN.  
4.75  
4.75  
3.0  
MAX.  
5.25  
5.25  
3.6  
UNITS  
VCC  
Supply Voltage  
V
V
V
V
V
T = 0°C to + 70°C  
A
5V  
Supply Voltage: Output Drivers  
VCCIO  
3.3V  
Input Low Voltage  
Input High Voltage  
0
0.8  
VIL  
VIH  
2.0  
V +1  
cc  
Table 2-0005/1024EA  
Capacitance (TA=25oC, f=1.0 MHz)  
SYMBOL  
PARAMETER  
TYPICAL  
UNITS  
TEST CONDITIONS  
VCC = 5.0V, VPIN = 2.0V  
Dedicated Input, I/O, Y1, Y2, Y3, Clock Capacitance  
(Commercial/Industrial)  
8
pf  
C1  
10  
pf  
VCC= 5.0V, VPIN = 2.0V  
Y0 Clock Capacitance  
C2  
Table 2-0006/1024EA  
Erase/Reprogram Specifications  
PARAMETER  
MINIMUM  
MAXIMUM  
UNITS  
Erase/Reprogram Cycles  
10000  
Cycles  
Table 2-0008/1024EA  
4
Specifications ispLSI 1024EA  
Switching Test Conditions  
Figure 3. Test Load  
Input Pulse Levels  
GND to 3.0V  
1.5ns  
Input Rise and Fall Time 10% to 90%  
Input Timing Reference Levels  
Output Timing Reference Levels  
Output Load  
+ 5V  
1.5V  
1.5V  
R
1
2
See Figure 3  
Table 2-0003/1024EA  
Device  
Output  
Test  
Point  
3-state levels are measured 0.5V from  
steady-state active level.  
R
C *  
L
Output Load Conditions (see Figure 3)  
TEST CONDITION  
R1  
470Ω  
R2  
CL  
*C includes Test Fixture and Probe Capacitance.  
L
A
B
390Ω  
390Ω  
390Ω  
35pF  
35pF  
35pF  
0213a  
Active High  
Active Low  
470Ω  
Active High to Z  
at VOH-0.5V  
390Ω  
5pF  
C
Active Low to Z  
at VOL+0.5V  
470Ω  
390Ω  
5pF  
Table 2-0004/1024EA  
DC Electrical Characteristics  
Over Recommended Operating Conditions  
SYMBOL  
PARAMETER  
Output Low Voltage  
CONDITION  
MIN.  
TYP.3 MAX. UNITS  
IOL = 8 mA  
0.4  
V
V
VOL  
I
I
OH = -2 mA, VCCIO = 3.0V  
OH = -4 mA, VCCIO = 4.75V  
2.4  
Output High Voltage  
VOH  
2.4  
V
Input or I/O Low Leakage Current  
Input or I/O High Leakage Current  
0V VIN VIL (Max.)  
-10  
µA  
I
I
IL  
IH  
(VCCIO - 0.2)V VIN VCCIO  
10  
10  
µA  
µA  
V
CCIO VIN 5.25V  
-200  
-240  
I
I
IL-PU  
OS1  
0V VIN VIL  
µA  
I/O Active Pull-Up Current  
Output Short Circuit Current  
VCCIO = 5.0V or 3.3V, VOUT = 0.5V  
VIL = 0.0V, VIH = 3.0V  
mA  
mA  
152  
CC2, 4, 5  
Operating Power Supply Current  
I
f
TOGGLE = 1 MHz  
Table 2-0007/1024EA  
1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test  
problems by tester ground degradation. Characterized but not 100% tested.  
2. Measured using eight 16-bit counters.  
3. Typical values are at VCC = 5V and TA = 25°C.  
4. Unused inputs held at 0.0V.  
5. Maximum ICC varies widely with specific device configuration and operating frequency. Refer to the  
Power Consumption section of this data sheet and the Thermal Management section of the Lattice Semiconductor  
Data Book CD-ROM to estimate maximum ICC  
.
5
Specifications ispLSI 1024EA  
External Timing Parameters  
Over Recommended Operating Conditions  
TEST 4  
-200  
-125  
-100  
DESCRIPTION1  
UNITS  
2
PARAMETER  
#
COND.  
MIN. MAX.  
MIN. MAX. MIN. MAX.  
A
A
1
Data Propagation Delay, 4PT Bypass, ORP Bypass  
Data Propagation Delay, Worst Case Path  
Clock Frequency with Internal Feedback 3  
4.5  
6.0  
ns  
ns  
7.5  
10.0  
10.0  
12.5  
t
pd1  
2
3
4
5
6
7
8
9
t
f
f
f
t
t
pd2  
A
200  
143  
250  
3.0  
MHz  
MHz  
MHz  
ns  
125  
100  
167  
4.5  
100  
77  
max (Int.)  
max (Ext.)  
max (Tog.)  
su1  
1
A
Clock Frequency with External Feedback  
(
)
tsu2 + tco1  
1
Clock Frequency, Max. Toggle  
(
)
125  
6.0  
twh + twl  
GLB Reg. Setup Time before Clock,4 PT Bypass  
GLB Reg. Clock to Output Delay, ORP Bypass  
GLB Reg. Hold Time after Clock, 4 PT Bypass  
GLB Reg. Setup Time before Clock  
3.5  
ns  
4.5  
6.0  
co1  
A
0.0  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.0  
5.5  
0.0  
7.0  
t
t
t
t
t
t
t
t
t
t
t
t
t
h1  
su2  
10 GLB Reg. Clock to Output Delay  
11 GLB Reg. Hold Time after Clock  
12 Ext. Reset Pin to Output Delay  
13 Ext. Reset Pulse Duration  
4.0  
5.5  
7.0  
co2  
0.0  
0.0  
0.0  
h2  
5.5  
10.0  
13.5  
r1  
B
3.5  
5.0  
6.5  
rw1  
14 Input to Output Enable  
7.0  
7.0  
4.5  
4.5  
12.0  
12.0  
7.0  
7.0  
15.0  
15.0  
9.0  
9.0  
ptoeen  
ptoedis  
goeen  
goedis  
wh  
C
15 Input to Output Disable  
B
16 Global OE Output Enable  
C
17 Global OE Output Disable  
18 External Synchronous Clock Pulse Duration, High  
19 External Synchronous Clock Pulse Duration, Low  
2.0  
2.0  
3.0  
3.0  
3.0  
4.0  
4.0  
3.5  
wl  
20 I/O Reg. Setup Time before Ext. Sync Clock (Y2, Y3) 3.0  
21 I/O Reg. Hold Time after Ext. Sync. Clock (Y2, Y3) 0.0  
su3  
ns  
0.0  
0.0  
th3  
Table 2-0030A/1024EA  
v.2.5  
1. Unless noted otherwise, all parameters use a GRP load of four GLBs, 20 PTXOR path, ORP and Y0 clock.  
2. Refer to Timing Model in this data sheet for further details.  
3. Standard 16-bit counter using GRP feedback.  
4. Reference Switching Test Conditions section.  
6
Specifications ispLSI 1024EA  
1
Internal Timing Parameters  
-200  
-125  
-100  
2
PARAM.  
#
DESCRIPTION  
UNITS  
MIN. MAX. MIN. MAX. MIN. MAX.  
Inputs  
tiobp  
tiolat  
tiosu  
tioh  
tioco  
tior  
tdin  
22 I/O Register Bypass  
23 I/O Latch Delay  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.3  
4.0  
0.4  
4.0  
0.3  
4.0  
24 I/O Register Setup Time before Clock  
25 I/O Register Hold Time after Clock  
26 I/O Register Clock to Out Delay  
27 I/O Register Reset to Out Delay  
28 Dedicated Input Delay  
3.0  
0.0  
3.0  
0.0  
3.4  
0.0  
4.6  
4.6  
1.9  
5.0  
5.0  
2.2  
4.0  
4.0  
1.1  
GRP  
tgrp1  
tgrp4  
tgrp8  
tgrp16  
tgrp24  
GLB  
t4ptbpc  
t4ptbpr  
t1ptxor  
t20ptxor  
txoradj  
tgbp  
tgsu  
tgh  
tgco  
tgro  
tptre  
tptoe  
tptck  
29 GRP Delay, 1 GLB Load  
30 GRP Delay, 4 GLB Loads  
31 GRP Delay, 8 GLB Loads  
32 GRP Delay, 16 GLB Loads  
33 GRP Delay, 24 GLB Loads  
ns  
ns  
ns  
ns  
ns  
1.7  
1.9  
2.1  
2.5  
2.9  
2.1  
2.3  
2.5  
2.9  
3.3  
1.3  
1.5  
1.7  
2.1  
2.5  
34 4 ProductTerm Bypass Path Delay (Combinatorial)  
35 4 Product Term Bypass Path Delay (Registered)  
36 1 ProductTerm/XOR Path Delay  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.4  
3.1  
3.6  
3.6  
3.6  
1.2  
1.4  
4.0  
4.9  
3.8  
4.3  
4.3  
4.3  
2.1  
1.7  
1.8  
1.9  
1.9  
1.9  
0.6  
37 20 Product Term/XOR Path Delay  
38 XOR Adjacent Path Delay 3  
39 GLB Register Bypass Delay  
40 GLB Register Setup Time before Clock  
41 GLB Register Hold Time after Clock  
42 GLB Register Clock to Output Delay  
43 GLB Register Reset to Output Delay  
44 GLB Product Term Reset to Register Delay  
45 GLB Product Term Output Enable to I/O Cell Delay  
46 GLB Product Term Clock Delay  
0.2  
1.0  
0.3  
3.5  
1.4  
4.9  
3.8  
5.7  
1.7  
5.0  
4.5  
7.2  
4.7  
0.3  
1.4  
3.8  
2.5  
2.1  
2.5  
0.0  
1.5  
2.8  
3.9 3.5  
47 GLB Feedback Delay  
tgfb  
0.3  
ORP  
torp  
torpbp  
48 ORP Delay  
ns  
ns  
0.8  
0.1  
1.3  
0.2  
1.4  
0.4  
49 ORP Bypass Delay  
Table 2-0036A/1024EA  
v.2.5  
1. Internal Timing Parameters are not tested and are for reference only.  
2. Refer to Timing Model in this data sheet for further details.  
3. The XOR adjacent path can only be used by hard macros.  
7
Specifications ispLSI 1024EA  
1
Internal Timing Parameters  
-125  
MIN. MAX. MIN. MAX.  
-100  
-200  
PARAM.  
#
DESCRIPTION  
UNITS  
MIN. MAX.  
Outputs  
tob  
tsl  
toen  
todis  
50 Output Buffer Delay  
0.9  
5.0  
3.1  
3.1  
1.4  
1.7  
5.0  
4.0  
4.0  
3.0  
2.0  
5.0  
5.1  
5.1  
3.9  
ns  
ns  
ns  
ns  
ns  
51 Output Buffer Delay, Slew Limited Adder  
52 I/O Cell OE to Output Enabled  
53 I/O Cell OE to Output Disabled  
54 Global OE  
tgoe  
Clocks  
55 Clock Delay, Y0 to Global GLB Clock Line (Ref. clk)  
56 Clock Delay, Y1 or Y2 to Global GLB Clock Line  
57 Clock Delay, Clock GLB to Global GLB Clock Line  
58 Clock Delay, Y2 or Y3 to I/O Cell Global Clock Line  
59 Clock Delay, Clock GLB to I/O Cell Global Clock Line  
0.9  
0.9  
0.8  
0.0  
0.8  
0.9  
0.9  
1.8  
0.0  
1.1 1.1  
0.9 0.9  
0.8 1.8  
0.0 0.0  
1.9 1.9  
1.5 1.5  
0.8 1.8  
0.0 0.0  
0.8 2.8  
ns  
ns  
ns  
ns  
ns  
tgy0  
tgy1/2  
tgcp  
tioy2/3  
tiocp  
2.8 0.8 2.8  
Global Reset  
60 Global Reset to GLB and I/O Registers  
0.0  
2.1  
5.1  
ns  
tgr  
Table 2-0037A/1024EA  
v.2.5  
1. Internal Timing Parameters are not tested and are for reference only.  
8
Specifications ispLSI 1024EA  
ispLSI 1024EA Timing Model  
I/O Cell  
GRP  
GLB  
Feedback  
#34 Comb 4 PT Bypass  
ORP  
I/O Cell  
#47  
Ded. In  
#28  
I/O Reg Bypass  
#22  
GRP4  
#30  
Reg 4 PT Bypass  
#35  
GLB Reg Bypass  
#39  
ORP Bypass  
#49  
#50, 51  
I/O Pin  
(Input)  
I/O Pin  
(Output)  
Input  
Register  
20 PT  
XOR Delays  
GLB Reg  
Delay  
ORP  
Delay  
GRP Loading  
Delay  
Q
D
#52, 53  
RST  
D
Q
#48  
#36 - 38  
#60  
#29, 31 - 33  
#60  
#23 - 27  
RST  
Reset  
#40 - 43  
Clock  
Control  
PTs  
RE  
OE  
CK  
Distribution  
0491/1032EA  
Y1,2,3  
#56 - 59  
#44 - 46  
#55  
#54  
Y0  
GOE 0,1  
Derivations of tsu, th and t  
co from the Product Term Clock1  
tsu  
= Logic + Reg su - Clock (min)  
= ( iobp + grp4 + 20ptxor) + (tgsu) - (tiobp + tgrp4 + tptck(min))  
t
t
t
= (#22 + #30 + #37) + (#40) - (#22 + #30 + #46)  
0.6 = (0.3 + 1.5 + 1.9) + (0.2) - (0.3 + 1.5 + 1.5)  
th  
= Clock (max) + Reg h - Logic  
= (tiobp + tgrp4 + tptck(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor)  
= (#22 + #30 + #46) + (#41) - (#22 + #30 + #37)  
1.6 = (0.3 + 1.5 + 2.5) + (1.0) - (0.3 + 1.5 + 1.9)  
tco  
= Clock (max) + Reg co + Output  
= (tiobp + tgrp4 + tptck(max)) + (tgco) + (torp + tob)  
= (#22 + #30 + #46) + (#42) + (#48 + #50)  
= (0.3 + 1.5 + 2.5) + (1.4) + (0.8 + 0.9)  
7.4  
1
Derivations of tsu, th and tco from the Clock GLB  
t
t
t
su  
= Logic + Reg (setup) - Clock (min)  
= ( iobp + grp4 + 20ptxor) + ( gsu) - (tgy0(min) + tgco + tgcp(min))  
= (#22 + #30 + #37) + (#40) - (#55 + #42 + #57)  
t
t
t
t
= (0.3 + 1.5 + 1.9) + (0.2) - (0.9 + 1.4 + 0.8)  
0.8  
1.4  
7.2  
h
= Clock (max) + Reg (hold) - Logic  
= (tgy0(max) + tgco + tgcp(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor)  
= (#55 + #42 + #57) + (#41) - (#22 + #30 + #37)  
= (0.9 + 1.4 + 1.8) + (1.0) - (0.3 + 1.5 + 1.9)  
co  
= Clock (max) + Reg (clock-to-out) + Output  
= (tgy0(max) + tgco + tgcp(max)) + (tgco) + (torp + tob)  
= (#55 + #42 + #57) + (#42) + (#48 + #50)  
= (0.9 + 1.4 + 1.8) + (1.4) + (0.8 + 0.9)  
1. Calculations are based upon timing specifications for the ispLSI 1024EA-200.  
Table 2-0042a/1024EA  
v.2.5  
9
Specifications ispLSI 1024EA  
Maximum GRP Delay vs GLB Loads  
4
ispLSI 1024EA-100  
ispLSI 1024EA-125  
ispLSI 1024EA-200  
3
2
1
1
4
8
16  
24  
GLB Load  
GRP/GLB/1024EA  
Power Consumption  
Power consumption in the ispLSI 1024EA device de- used. Figure 4 shows the relationship between power  
pends on two primary factors: the speed at which the and operating speed.  
device is operating, and the number of product terms  
Figure 4. Typical Device Power Consumption vs fmax  
260  
ispLSI 1024EA  
240  
220  
200  
180  
160  
140  
120  
100  
0
50  
100  
150  
200  
250  
fmax (MHz)  
Notes: Configuration of eight 16-bit counters  
Typical current at 5V, 25°C  
Icc can be estimated for the ispLSI 1024EA using the following equation:  
Icc = 17mA + (# of PTs * .726) + (# of nets * Max Freq * .0043)  
Where:  
# of PTs = Number of Product Terms used in design  
# of nets = Number of Signals used in device  
Max freq = Highest Clock Frequency to the device (in MHz)  
The Icc estimate is based on typical conditions (Vcc = 5.0V, room temperature) and an assumption of four GLB  
loads on average exists. These values are for estimates only. Since the value of Icc is sensitive to operating  
conditions and the program in the device, the actual Icc should be verified.  
0127/1024EA  
10  
Specifications ispLSI 1024EA  
Pin Description  
TQFP PIN  
NUMBERS  
NAME  
DESCRIPTION  
Input/Output Pins - These are the general purpose I/O pins used by the logic array.  
I/O 0 - I/O 3  
I/O 4 - I/O 7  
I/O 8 - I/O 11  
19, 20, 21, 22,  
23, 28, 29, 30,  
31, 32, 33, 34,  
I/O 12 - I/O 15 42, 43, 44, 45,  
I/O 16 - I/O 19 46, 47, 48, 53,  
I/O 20 - I/O 23 54, 55, 56, 57,  
I/O 24 - I/O 27 69, 70, 71, 72,  
I/O 28 - I/O 31 73, 78, 79, 80,  
I/O 32 - I/O 35 81, 82, 83, 84,  
I/O 36 - I/O 39 92, 93, 94, 95,  
I/O 40 - I/O 43 96, 97, 98, 3,  
I/O 44 - I/O 47 4,  
5,  
6,  
7
GOE 0/IN 41  
This is a dual function pin. It can be used either as Global Output Enable for all I/O cells or it can be  
used as a dedicated input pin.  
91  
GOE 1/IN 51  
This is a dual function pin. It can be used either as Global Output Enable for all I/O cells or it can be  
used as a dedicated input pin.  
8
Input - Functions as an input pin to load programming data into the device and also used as one of  
the two control pins for the ispJTAG state machine.  
TDI  
18  
68  
Input - Controls the operation of the ISP state machine.  
TMS  
Output - Functions as an output pin to read serial shift register data.  
Input - Functions as a clock pin for the Serial Shift Register.  
TDO  
TCK  
35  
58  
Active Low (0) Reset pin which resets all of the GLB and I/O registers in the device.  
RESET  
17  
9
Dedicated Clock input. This clock input is connected to one of the clock inputs of all of the GLBs on  
the device.  
Y0  
Dedicated Clock input. This clock input is brought into the clock distribution network, and can  
optionally be routed to any GLB on the device.  
Y1  
Y2  
Y3  
67  
60  
59  
Dedicated Clock input. This clock input is brought into the clock distribution network, and can  
optionally be routed to any GLB and/or any I/O cell on the device.  
Dedicated Clock input. This clock input is brought into the clock distribution network, and can  
optionally be routed to any I/O cell on the device.  
GND  
VCC  
14, 15, 36, 37, Ground (GND)  
61, 62, 89, 90  
10, 11, 40, 41, Vcc  
65, 66, 85, 86  
16  
VCCIO  
Supply voltage for output drivers, 5V or 3.3V.  
No Connect  
2
NC  
1,  
2,  
12, 13,  
24, 25, 26, 27,  
38, 39, 49, 50,  
51, 52, 63, 64,  
74, 75, 76, 77,  
87, 88, 99, 100  
Table 2-0002A/1024EA  
1. Pins have dual function capability which is software selectable.  
2. NC pins are not to be connected to any active signals, Vcc or GND.  
11  
Specifications ispLSI 1024EA  
Pin Configurations  
ispLSI 1024EA 100-Pin TQFP Pinout Diagram  
2NC  
2NC  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC2  
NC2  
I/O 43  
I/O 44  
I/O 45  
I/O 46  
I/O 47  
1GOE 1/IN 5  
Y0  
I/O 28  
I/O 27  
I/O 26  
I/O 25  
I/O 24  
TMS  
Y1  
9
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VCC  
VCC  
NC2  
VCC  
2NC  
ispLSI 1024EA  
2NC  
NC2  
GND  
GND  
VCCIO  
RESET  
TDI  
GND  
GND  
Y2  
Top View  
Y3  
TCK  
I/O 23  
I/O 22  
I/O 21  
I/O 20  
I/O 19  
NC2  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
2NC  
2NC  
NC2  
1. Pins have dual function capability which is software selectable.  
2. NC pins are not to be connected to any active signal, VCC or GND.  
100-TQFP/1024EA  
12  
Specifications ispLSI 1024EA  
Part Number Description  
ispLSI  
1024EA - XXX  
X
XXXX X  
Device Family  
Grade  
Blank = Commercial  
Package  
T100 = 100-Pin TQFP  
Device Number  
Power  
L = Low  
Speed  
200 = 200 MHz  
125 = 125 MHz  
100 = 100 MHz  
f
f
f
max  
max  
max  
0212/1024EA  
ispLSI 1024EA Ordering Information  
COMMERCIAL  
FAMILY  
ispLSI  
fmax (MHz)  
200  
tpd (ns)  
4.5  
ORDERING NUMBER  
PACKAGE  
100-Pin TQFP  
100-Pin TQFP  
100-Pin TQFP  
ispLSI 1024EA-200LT100  
ispLSI 1024EA-125LT100  
ispLSI 1024EA-100LT100  
125  
7.5  
100  
10  
Table 2-0041A/1024EA  
13  

相关型号:

ISPLSI1032

In-System Programmable High Density PLD
LATTICE

ISPLSI1032-50LJ

Electrically-Erasable Complex PLD
ETC

ISPLSI1032-60

In-System Programmable High Density PLD
LATTICE

ISPLSI1032-60LG

In-System Programmable High Density PLD
LATTICE

ISPLSI1032-60LG/833

In-System Programmable High Density PLD
LATTICE

ISPLSI1032-60LG/883

High-Density Programmable Logic
LATTICE

ISPLSI1032-60LGI

In-System Programmable High Density PLD
LATTICE

ISPLSI1032-60LJ

High-Density Programmable Logic
LATTICE

ISPLSI1032-60LJ/833

In-System Programmable High Density PLD
LATTICE

ISPLSI1032-60LJI

High-Density Programmable Logic
LATTICE

ISPLSI1032-60LJNI

EE PLD, 25ns, 128-Cell, CMOS, PQCC84
LATTICE

ISPLSI1032-60LT

High-Density Programmable Logic
LATTICE