LFXP10C-4FN388C [LATTICE]

LatticeXP Family Data Sheet; 的LatticeXP系列数据手册
LFXP10C-4FN388C
型号: LFXP10C-4FN388C
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

LatticeXP Family Data Sheet
的LatticeXP系列数据手册

文件: 总130页 (文件大小:788K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LatticeXP Family Data Sheet  
DS1001 Version 05.1, November 2007  
LatticeXP Family Data Sheet  
Introduction  
July 2007  
Data Sheet DS1001  
Flexible I/O Buffer  
• Programmable sysIO™ buffer supports wide  
range of interfaces:  
Features  
Non-volatile, Infinitely Reconfigurable  
• Instant-on – powers up in microseconds  
• No external configuration memory  
LVCMOS 3.3/2.5/1.8/1.5/1.2  
LVTTL  
– SSTL 18 Class I  
SSTL 3/2 Class I, II  
– HSTL15 Class I, III  
HSTL 18 Class I, II, III  
PCI  
• Excellent design security, no bit stream to  
intercept  
• Reconfigure SRAM based logic in milliseconds  
• SRAM and non-volatile memory programmable  
through system configuration and JTAG ports  
Sleep Mode  
LVDS, Bus-LVDS, LVPECL, RSDS  
• Allows up to 1000x static current reduction  
Dedicated DDR Memory Support  
TransFR™ Reconfiguration (TFR)  
• Implements interface up to DDR333 (166MHz)  
• In-field logic update while system operates  
sysCLOCK™ PLLs  
Extensive Density and Package Options  
• 3.1K to 19.7K LUT4s  
• Up to 4 analog PLLs per device  
• Clock multiply, divide and phase shifting  
• 62 to 340 I/Os  
• Density migration supported  
System Level Support  
• IEEE Standard 1149.1 Boundary Scan, plus  
ispTRACY™ internal logic analyzer capability  
• Onboard oscillator for configuration  
• Devices operate with 3.3V, 2.5V, 1.8V or 1.2V  
power supply  
Embedded and Distributed Memory  
• 54 Kbits to 396 Kbits sysMEM™ Embedded  
Block RAM  
• Up to 79 Kbits distributed RAM  
• Flexible memory resources:  
Distributed and block memory  
Table 1-1. LatticeXP Family Selection Guide  
Device  
PFU/PFF Rows  
LFXP3  
16  
LFXP6  
24  
LFXP10  
32  
LFXP15  
40  
LFXP20  
44  
PFU/PFF Columns  
PFU/PFF (Total)  
LUTs (K)  
24  
30  
38  
48  
56  
384  
3
720  
6
1216  
10  
1932  
15  
2464  
20  
Distributed RAM (KBits)  
EBR SRAM (KBits)  
EBR SRAM Blocks  
12  
23  
39  
61  
79  
54  
72  
216  
24  
324  
36  
396  
44  
6
8
V
Voltage  
1.2/1.8/2.5/3.3V 1.2/1.8/2.5/3.3V 1.2/1.8/2.5/3.3V 1.2/1.8/2.5/3.3V 1.2/1.8/2.5/3.3V  
CC  
PLLs  
2
2
4
4
4
Max. I/O  
136  
188  
244  
300  
340  
Packages and I/O Combinations:  
100-pin TQFP (14 x 14 mm)  
144-pin TQFP (20 x 20 mm)  
208-pin PQFP (28 x 28 mm)  
256-ball fpBGA (17 x 17 mm)  
388-ball fpBGA (23 x 23 mm)  
484-ball fpBGA (23 x 23 mm)  
62  
100  
136  
100  
142  
188  
188  
244  
188  
268  
300  
188  
268  
340  
© 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
1-1  
DS1001 Introduction_01.5a July 6, 2007 3:01 p.m.  
Introduction  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Introduction  
The LatticeXP family of FPGA devices combine logic gates, embedded memory and high performance I/Os in a  
single architecture that is both non-volatile and infinitely reconfigurable to support cost-effective system designs.  
The re-programmable non-volatile technology used in the LatticeXP family is the next generation ispXP™ technol-  
ogy. With this technology, expensive external configuration memories are not required and designs are secured  
from unauthorized read-back. In addition, instant-on capability allows for easy interfacing in many applications.  
The ispLEVER® design tool from Lattice allows large complex designs to be efficiently implemented using the Lat-  
ticeXP family of FPGA devices. Synthesis library support for LatticeXP is available for popular logic synthesis tools.  
The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to place  
and route the design in the LatticeXP device. The ispLEVER tool extracts the timing from the routing and back-  
annotates it into the design for timing verification.  
Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE™ modules for the LatticeXP family.  
By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design,  
increasing their productivity.  
1-2  
LatticeXP Family Data Sheet  
Architecture  
July 2007  
Data Sheet DS1001  
Architecture Overview  
The LatticeXP architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Inter-  
spersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR) as shown in Figure 2-  
1.  
On the left and right sides of the PFU array, there are Non-volatile Memory Blocks. In configuration mode this non-  
volatile memory is programmed via the IEEE 1149.1 TAP port or the sysCONFIG™ peripheral port. On power up,  
the configuration data is transferred from the Non-volatile Memory Blocks to the configuration SRAM. With this  
technology, expensive external configuration memories are not required and designs are secured from unautho-  
rized read-back. This transfer of data from non-volatile memory to configuration SRAM via wide busses happens in  
microseconds, providing an “instant-on” capability that allows easy interfacing in many applications.  
There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit  
without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register func-  
tions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks  
are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are  
arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the out-  
side rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every  
three rows of PFF blocks there is a row of PFU blocks.  
Each PIC block encompasses two PIOs (PIO pairs) with their respective sysIO interfaces. PIO pairs on the left and  
right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast  
memory blocks. They can be configured as RAM or ROM.  
The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in  
Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and  
route software tool automatically allocates these routing resources.  
At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These  
PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the  
clocks. The LatticeXP architecture provides up to four PLLs per device.  
Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG  
port which allows for serial or parallel device configuration. The LatticeXP devices are available for operation from  
3.3V, 2.5V, 1.8V and 1.2V power supplies, providing easy integration into the overall system.  
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
2-1  
DS1001 Architecture_02.0 July 6, 2007 3:03 p.m.  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-1. LatticeXP Top Level Block Diagram  
Programmable I/O Cell  
(PIC) includes sysIO  
Interface  
sysMEM Embedded  
Block RAM (EBR)  
Non-volatile Memory  
JTAG Port  
sysCONFIG Programming  
Port (includes dedicated  
and dual use pins)  
PFF (PFU without  
RAM)  
sysCLOCK PLL  
Programmable  
Functional Unit (PFU)  
PFU and PFF Blocks  
The core of the LatticeXP devices consists of PFU and PFF blocks. The PFUs can be programmed to perform  
Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform  
Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term  
PFU to refer to both PFU and PFF blocks.  
Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-2. All the interconnec-  
tions to and from PFU blocks are from routing.There are 53 inputs and 25 outputs associated with each PFU block.  
Figure 2-2. PFU Diagram  
From  
Routing  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
LUT4 &  
CARRY  
Slice 3  
Slice 0  
Slice 1  
Slice 2  
D
D
D
D
FF/  
D
D
FF/  
D
D
FF/  
FF/  
FF/  
FF/  
FF/  
FF/  
Latch  
Latch  
Latch  
Latch  
Latch  
Latch  
Latch  
Latch  
To  
Routing  
2-2  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Slice  
Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and  
some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and  
LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock  
select, chip-select and wider RAM/ROM functions. Figure 2-3 shows an overview of the internal logic of the slice.  
The registers in the slice can be configured for positive/negative and edge/level clocks.  
There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU).  
There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated  
with each slice.  
Figure 2-3. Slice Diagram  
To / From  
Different slice / PFU Fast Carry In (FCI)  
Slice  
OFX1  
F1  
A1  
B1  
C1  
D1  
CO  
F
LUT4 &  
CARRY  
D
SUM  
FF/  
Latch  
Q1  
CI  
To  
From  
Routing  
Routing  
M1  
M0  
OFX0  
F0  
LUT  
Expansion  
Mux  
CO  
A0  
B0  
C0  
LUT4 &  
CARRY  
F
D0  
OFX0  
SUM  
D
FF/  
Latch  
Q0  
CI  
Control Signals  
selected and  
inverted per  
CE  
CLK  
LSR  
slice in routing  
Note: Some interslice signals  
are not shown.  
To / From  
Different slice / PFU Fast Carry Out (FCO)  
2-3  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Table 2-1. Slice Signal Descriptions  
Function  
Input  
Type  
Signal Names  
Description  
Data signal  
A0, B0, C0, D0 Inputs to LUT4  
A1, B1, C1, D1 Inputs to LUT4  
Input  
Data signal  
Input  
Multi-purpose  
Multi-purpose  
Control signal  
Control signal  
Control signal  
Inter-PFU signal  
Data signals  
Data signals  
Data signals  
Data signals  
Inter-PFU signal  
M0  
M1  
Multipurpose Input  
Multipurpose Input  
Clock Enable  
Input  
Input  
CE  
Input  
LSR  
Local Set/Reset  
System Clock  
Fast Carry In1  
Input  
CLK  
Input  
FCIN  
F0, F1  
Q0, Q1  
OFX0  
OFX1  
FCO  
Output  
Output  
Output  
Output  
Output  
LUT4 output register bypass signals  
Register Outputs  
Output of a LUT5 MUX  
Output of a LUT6, LUT7, LUT82 MUX depending on the slice  
For the right most PFU the fast carry chain output1  
1. See Figure 2-2 for connection details.  
2. Requires two PFUs.  
Modes of Operation  
Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of  
all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.  
Table 2-2. Slice Modes  
Logic  
Ripple  
RAM  
SP 16x2  
N/A  
ROM  
PFU Slice  
PFF Slice  
LUT 4x2 or LUT 5x1  
LUT 4x2 or LUT 5x1  
2-bit Arithmetic Unit  
2-bit Arithmetic Unit  
ROM 16x1 x 2  
ROM 16x1 x 2  
Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4  
can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this  
lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup  
tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.  
Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the fol-  
lowing functions can be implemented by each Slice:  
• Addition 2-bit  
• Subtraction 2-bit  
• Add/Subtract 2-bit using dynamic control  
• Up counter 2-bit  
• Down counter 2-bit  
• Ripple mode multiplier building block  
• Comparator functions of A and B inputs  
- A greater-than-or-equal-to B  
- A not-equal-to B  
- A less-than-or-equal-to B  
Two additional signals: Carry Generate and Carry Propagate are generated per Slice in this mode, allowing fast  
arithmetic functions to be constructed by concatenating Slices.  
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory.  
Through the combination of LUTs and Slices, a variety of different memories can be constructed.  
2-4  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-  
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3  
shows the number of Slices required to implement different distributed RAM primitives. Figure 2-4 shows the dis-  
tributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions  
as the read-write port. The other companion Slice supports the read-only port. For more information on RAM mode  
in LatticeXP devices, please see details of additional technical documentation at the end of this data sheet.  
Table 2-3. Number of Slices Required for Implementing Distributed RAM  
SPR16x2  
DPR16x2  
Number of Slices  
1
2
Note: SPR = Single Port RAM, DPR = Dual Port RAM  
Figure 2-4. Distributed Memory Primitives  
SPR16x2  
DPR16x2  
AD0  
AD1  
AD2  
AD3  
RAD0  
RAD1  
RAD2  
RAD3  
WAD0  
WAD1  
WAD2  
WAD3  
DO0  
DO1  
DI0  
DI1  
WRE  
DI0  
DI1  
WCK  
WRE  
RDO0  
RDO1  
WDO0  
WDO1  
CK  
ROM16x1  
AD0  
AD1  
AD2  
AD3  
DO0  
ROM Mode:The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is  
accomplished through the programming interface during configuration.  
PFU Modes of Operation  
Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the  
functionality possible at the PFU level.  
2-5  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Table 2-4. PFU Modes of Operation  
Logic  
Ripple  
RAM1  
ROM  
LUT 4x8 or  
MUX 2x1 x 8  
SPR16x2 x 4  
DPR16x2 x 2  
2-bit Add x 4  
ROM16x1 x 8  
LUT 5x4 or  
MUX 4x1 x 4  
SPR16x4 x 2  
DPR16x4 x 1  
2-bit Sub x 4  
2-bit Counter x 4  
2-bit Comp x 4  
ROM16x2 x 4  
ROM16x4 x 2  
ROM16x8 x 1  
LUT 6x 2 or  
MUX 8x1 x 2  
SPR16x8 x 1  
LUT 7x1 or  
MUX 16x1 x 1  
1. These modes are not available in PFF blocks  
Routing  
There are many resources provided in the LatticeXP devices to route signals individually or as buses with related  
control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) seg-  
ments.  
The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU).  
The x1 and x2 connections provide fast and efficient connections in horizontal, vertical and diagonal directions.The  
x2 and x6 resources are buffered allowing both short and long connections routing between PFUs.  
The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the  
place and route tool is completely automatic, although an interactive routing editor is available to optimize the  
design.  
Clock Distribution Network  
The clock inputs are selected from external I/O, the sysCLOCK™ PLLs or routing. These clock inputs are fed  
through the chip via a clock distribution system.  
Primary Clock Sources  
LatticeXP devices derive clocks from three primary sources: PLL outputs, dedicated clock inputs and routing. Lat-  
ticeXP devices have two to four sysCLOCK PLLs, located on the left and right sides of the device. There are four  
dedicated clock inputs, one on each side of the device. Figure 2-5 shows the 20 primary clock sources.  
2-6  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-5. Primary Clock Sources  
From Routing  
Clock Input  
From Routing  
PLL Input  
PLL Input  
PLL  
PLL  
20 Primary Clock Sources  
To Quadrant Clock Selection  
Clock Input  
Clock Input  
PLL  
PLL  
PLL Input  
PLL Input  
From Routing  
Clock Input  
From Routing  
Note: Smaller devices have two PLLs.  
Secondary Clock Sources  
LatticeXP devices have four secondary clock resources per quadrant. The secondary clock branches are tapped at  
every PFU. These secondary clock networks can also be used for controls and high fanout data. These secondary  
clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-6.  
2-7  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-6. Secondary Clock Sources  
Clock  
Input  
From  
Routing  
From  
Routing  
From  
Routing  
From  
Routing  
From Routing  
From Routing  
From Routing  
From Routing  
20 Secondary Clock Sources  
To Quadrant Clock Selection  
Clock Input  
Clock Input  
From Routing  
From Routing  
From Routing  
From Routing  
From  
Routing  
From  
Routing  
From  
Routing  
From  
Routing  
Clock  
Input  
Clock Routing  
The clock routing structure in LatticeXP devices consists of four Primary Clock lines and a Secondary Clock net-  
work per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-7 shows this  
clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in Figure 2-  
8. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in Figure 2-  
9.  
Figure 2-7. Per Quadrant Primary Clock Selection  
1
20 Primary Clock Sources: 12 PLLs + 4 PIOs + 4 Routing  
DCS2  
DCS2  
4 Primary Clocks (CLK0, CLK1, CLK2, CLK3) per Quadrant  
1. Smaller devices have fewer PLL related lines.  
2. Dynamic clock select.  
2-8  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-8. Per Quadrant Secondary Clock Selection  
20 Secondary Clock Feedlines : 4 Clock Input Pads + 16 Routing Signals  
4 Secondary Clocks per Quadrant  
Figure 2-9. Slice Clock Selection  
Primary Clock  
Secondary Clock  
Routing  
Clock to Each Slice  
GND  
sysCLOCK Phase Locked Loops (PLLs)  
The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback sig-  
nals to the feedback divider: from CLKOP (PLL internal), from clock net (CLKOP or CLKOS) or from a user clock  
(PIN or logic).There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-10  
shows the sysCLOCK PLL diagram.  
The setup and hold times of the device can be improved by programming a delay in the feedback or input path of  
the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either pro-  
grammed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after  
adjustment and not relock until the t  
parameter has been satisfied. Additionally, the phase and duty cycle block  
LOCK  
allows the user to adjust the phase and duty cycle of the CLKOS output.  
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated  
with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider  
is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal.The post  
scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the fre-  
quency range. The secondary divider is used to derive lower frequency outputs.  
2-9  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-10. PLL Diagram  
Dynamic Delay Adjustment  
LOCK  
RST  
Input Clock  
Divider  
(CLKI)  
Post Scalar  
Divider  
(CLKOP)  
Phase/Duty  
Select  
Voltage  
Controlled  
Oscillator  
CLKOS  
Delay  
Adjust  
CLKI  
(from routing or  
external pin)  
CLKOP  
Secondary  
Clock  
CLKOK  
Divider  
Feedback  
Divider  
(CLKFB)  
CLKFB  
from CLKOP  
(PLL internal),  
from clock net  
(CLKOP) or  
from a user  
(CLKOK)  
clock (PIN or logic)  
Figure 2-11 shows the available macros for the PLL. Table 2-11 provides signal description of the PLL Block.  
Figure 2-11. PLL Primitive  
CLKOP  
RST  
CLKI  
CLKI  
CLKOP  
LOCK  
CLKOS  
CLKOK  
LOCK  
EPLLB  
CLKFB  
CLKFB  
DDA MODE  
DDAIZR  
EHXPLLB  
DDAOZR  
DDAILAG  
DDAOLAG  
DDAODEL[2:0]  
DDAIDEL[2:0]  
Table 2-5. PLL Signal Descriptions  
Signal  
I/O  
Description  
CLKI  
I
I
Clock input from external pin or routing  
PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock  
(PIN or logic)  
CLKFB  
RST  
I
“1” to reset input clock divider  
CLKOS  
O
O
O
O
I
PLL output clock to clock tree (phase shifted/duty cycle changed)  
PLL output clock to clock tree (No phase shift)  
PLL output to clock tree through secondary clock divider  
“1” indicates PLL LOCK to CLKI  
CLKOP  
CLKOK  
LOCK  
DDAMODE  
DDAIZR  
Dynamic Delay Enable. “1” Pin control (dynamic), “0”: Fuse Control (static)  
Dynamic Delay Zero. “1”: delay = 0, “0”: delay = on  
Dynamic Delay Lag/Lead. “1”: Lag, “0”: Lead  
Dynamic Delay Input  
I
DDAILAG  
DDAIDEL[2:0]  
DDAOZR  
DDAOLAG  
DDAODEL[2:0]  
I
I
O
O
O
Dynamic Delay Zero Output  
Dynamic Delay Lag/Lead Output  
Dynamic Delay Output  
2-10  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
For more information on the PLL, please see details of additional technical documentation at the end of this data  
sheet.  
Dynamic Clock Select (DCS)  
The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and  
outputs a clock signal without any glitches or runt pulses. This is achieved irrespective of where the select signal is  
toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-12 illustrates  
the DCS Block Macro.  
Figure 2-12. DCS Block Primitive  
CLK0  
DCS  
CLK1  
SEL  
DCSOUT  
Figure 2-13 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to  
other modes. For more information on the DCS, please see details of additional technical documentation at the end  
of this data sheet.  
Figure 2-13. DCS Waveforms  
CLK0  
CLK1  
SEL  
DCSOUT  
sysMEM Memory  
The LatticeXP family of devices contain a number of sysMEM Embedded Block RAM (EBR).The EBR consists of a  
9-Kbit RAM, with dedicated input and output registers.  
sysMEM Memory Block  
The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in  
a variety of depths and widths as shown in Table 2-6.  
2-11  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Table 2-6. sysMEM Block Configurations  
Memory Mode  
Configurations  
8,192 x 1  
4,096 x 2  
2,048 x 4  
1,024 x 9  
512 x 18  
256 x 36  
Single Port  
8,192 x 1  
4,096 x 2  
2,048 x 4  
1,024 x 9  
512 x 18  
True Dual Port  
Pseudo Dual Port  
8,192 x 1  
4,096 x 2  
2,048 x 4  
1,024 x 9  
512 x 18  
256 x 36  
Bus Size Matching  
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB  
word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for  
each port varies, this mapping scheme applies to each port.  
RAM Initialization and ROM Operation  
If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block  
during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a  
ROM.  
Memory Cascading  
Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools  
cascade memory transparently, based on specific design inputs.  
Single, Dual and Pseudo-Dual Port Modes  
Figure 2-14 shows the four basic memory configurations and their input/output names. In all the sysMEM RAM  
modes the input data and address for the ports are registered at the input of the memory array. The output data of  
the memory is optionally registered at the output.  
2-12  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-14. sysMEM Memory Primitives  
ADA[12:0]  
DIA[17:0]  
CLKA  
CEA  
RSTA  
WEA  
CSA[2:0]  
DOA[17:0]  
ADB[12:0]  
DIB[17:0]  
CEB  
CLKB  
RSTB  
WEB  
CSB[2:0]  
DOB[17:0]  
AD[12:0]  
DI[35:0]  
CLK  
DO[35:0]  
CE  
EBR  
EBR  
RST  
WE  
CS[2:0]  
True Dual Port RAM  
Single Port RAM  
ADW[12:0]  
DI[35:0]  
CLKW  
CEW  
ADR[12:0]  
DO[35:0]  
AD[12:0]  
CLK  
DO[35:0]  
CE  
EBR  
EBR  
WE  
RST  
CS[2:0]  
CER  
RST  
CS[2:0]  
CLKR  
ROM  
Pseudo-Dual Port RAM  
The EBR memory supports three forms of write behavior for single port or dual port operation:  
1. Normal – data on the output appears only during read cycle. During a write cycle, the data (at the current  
address) does not appear on the output. This mode is supported for all data widths.  
2. Write Through - a copy of the input data appears at the output of the same port during a write cycle. This  
mode is supported for all data widths.  
3. Read-Before-Write – when new data is being written, the old content of the address appears at the output.  
This mode is supported for x9, x18 and x36 data widths.  
Memory Core Reset  
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-  
nously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respec-  
tively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both  
ports are as shown in Figure 2-15.  
2-13  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-15. Memory Core Reset  
SET  
Q
Memory Core  
Port A[17:0]  
Port B[17:0]  
LCLR  
Output Data  
Latches  
SET  
D
Q
LCLR  
RSTA  
RSTB  
GSRN  
Programmable Disable  
For further information on sysMEM EBR block, see the details of additional technical documentation at the end of  
this data sheet.  
EBR Asynchronous Reset  
EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the  
reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-16. The GSR input to the  
EBR is always asynchronous.  
Figure 2-16. EBR Asynchronous Reset (Including GSR) Timing Diagram  
Reset  
Clock  
Clock  
Enable  
If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after  
the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f  
(EBR clock). The reset  
MAX  
release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.  
If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during  
device Wake Up must occur before the release of the device I/Os becoming active.  
These instructions apply to all EBR RAM and ROM implementations.  
Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.  
Programmable I/O Cells (PICs)  
Each PIC contains two PIOs connected to their respective sysIO Buffers which are then connected to the PADs as  
shown in Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysIO  
buffer, and receives input from the buffer.  
2-14  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-17. PIC Diagram  
PIO A  
TD  
D0  
TD  
OPOS1  
ONEG1  
D1  
DDRCLK  
IOLT0  
DO  
Tristate  
Register Block  
(2 Flip Flops)  
PADA  
"T"  
D0  
D1  
OPOS0  
ONEG0  
DDRCLK  
IOLD0  
Output  
Register Block  
(2 Flip Flops)  
sysIO  
Buffer  
INCK  
INDD  
INCK  
INDD  
INFF  
INFF  
IPOS0  
IPOS1  
IPOS0  
IPOS1  
DI  
Control  
Muxes  
Input  
Register Block  
(5 Flip Flops)  
CLKO  
CEO  
LSR  
CLK  
CE  
LSR  
GSR  
CLKI  
CEI  
GSRN  
DQS  
DDRCLKPOL  
PADB “C”  
PIO B  
In the LatticeXP family, seven PIOs or four (3.5) PICs are grouped together to provide two LVDS differential pairs,  
one PIC pair and one single I/O, as shown in Figure 2-18.  
Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”). The PAD Labels “T” and  
“C” distinguish the two PIOs. Only the PIO pairs on the left and right edges of the device can be configured as  
LVDS transmit/receive pairs.  
One of every 14 PIOs (a group of 8 PICs) contains a delay element to facilitate the generation of DQS signals as  
shown in Figure 2-19. The DQS signal feeds the DQS bus which spans the set of 13 PIOs (8 PICs). The DQS sig-  
nal from the bus is used to strobe the DDR data from the memory into input register blocks. This interface is  
designed for memories that support one DQS strobe per eight bits of data.  
The exact DQS pins are shown in a dual function in the Logic Signal Connections table in this data sheet. Addi-  
tional detail is provided in the Signal Descriptions table in this data sheet.  
2-15  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-18. Group of Seven PIOs  
PADA “T”  
LVDS Pair  
PADB “C”  
PIO A  
PIO B  
PIO A  
PIO B  
PIO A  
PADA “T”  
One PIO Pair  
PADB “C”  
Four PICs  
PADA “T”  
LVDS Pair  
PIO B  
PIO A  
PADB “C”  
PADA “T”  
Figure 2-19. DQS Routing  
PADA “T”  
LVDS Pair  
PADB “C”  
PIO A  
PIO B  
PADA “T”  
PADB “C”  
PIO A  
PIO B  
PADA “T”  
LVDS Pair  
PADB “C”  
PIO A  
PIO B  
PADA “T”  
PIO A  
PADB “C”  
PIO B  
PIO A  
PIO B  
sysIO  
Buffer  
Assigned DQS Pin  
PADA “T”  
LVDS Pair  
DQS  
Delay  
PADB “C”  
PADA “T”  
PADB “C”  
PIO A  
PIO B  
PADA “T”  
LVDS Pair  
PADB “C”  
PIO A  
PIO B  
PIO  
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic  
block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along  
with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data sig-  
nals are also included in these blocks.  
Input Register Block  
The input register block contains delay elements and registers that can be used to condition signals before they are  
passed to the device core. Figure 2-20 shows the diagram of the input register block.  
Input signals are fed from the sysIO buffer to the input register block (as signal DI). If desired the input signal can  
bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and  
2-16  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first  
passes through an optional delay block. This delay, if selected, ensures no positive input-register hold-time require-  
ment when using a global clock.  
The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the  
registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used  
to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2.  
These two data streams are synchronized with the system clock before entering the core. Further discussion on  
this topic is in the DDR Memory section of this data sheet.  
Figure 2-21 shows the input register waveforms for DDR operation and Figure 2-22 shows the design tool primi-  
tives. The SDR/SYNC registers have reset and clock enable available.  
The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures ade-  
quate timing when data is transferred from the DQS to the system clock domain. For further discussion of this topic,  
see the DDR memory section of this data sheet.  
Figure 2-20. Input Register Diagram  
DI  
(From sysIO  
Buffer)  
INCK  
INDD  
Delay Block  
Fixed Delay  
SDR & Sync  
Registers  
DDR Registers  
D0  
D2  
To Routing  
Q
D
Q
D
D
IPOS0  
IPOS1  
D-Type  
/LATCH  
D-Type  
D1  
Q
D
Q
Q
D
D-Type  
/LATCH  
D-Type  
D-Type  
DQS Delayed  
(From DQS  
Bus)  
CLK0  
(From Routing)  
DDRCLKPOL  
(From DDR Polarity  
Control Bus)  
2-17  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-21. Input Register DDR Waveforms  
DI  
F
A
B
C
D
E
(In DDR Mode)  
DQS  
DQS  
Delayed  
B
A
D
C
D0  
D2  
Figure 2-22. INDDRXB Primitive  
D
ECLK  
QA  
QB  
LSR  
SCLK  
IDDRXB  
CE  
DDRCLKPOL  
Output Register Block  
The output register block provides the ability to register signals from the core of the device before they are passed  
to the sysIO buffers. The block contains a register for SDR operation that is combined with an additional latch for  
DDR operation. Figure 2-23 shows the diagram of the Output Register Block.  
In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a D-  
type or as a latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is  
latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).  
Figure 2-24 shows the design tool DDR primitives. The SDR output register has reset and clock enable available.  
The additional register for DDR operation does not have reset or clock enable available.  
2-18  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-23. Output Register Block  
OUTDDN  
Q
D
D-Type  
/LATCH  
ONEG0  
0
DO  
0
1
1
From  
Routing  
To sysIO  
Buffer  
OPOS0  
Q
D
LATCH  
LE*  
CLK1  
Programmed  
Control  
*Latch is transparent when input is low.  
Figure 2-24. ODDRXB Primitive  
DA  
DB  
ODDRXB  
Q
CLK  
LSR  
Tristate Register Block  
The tristate register block provides the ability to register tri-state control signals from the core of the device before  
they are passed to the sysIO buffers. The block contains a register for SDR operation and an additional latch for  
DDR operation. Figure 2-25 shows the diagram of the Tristate Register Block.  
In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a D-  
type or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is  
latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).  
2-19  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-25. Tristate Register Block  
TD  
OUTDDN  
Q
D
D-Type  
/LATCH  
ONEG1  
0
TO  
0
1
From  
1
Routing  
To sysIO  
Buffer  
OPOS1  
Q
D
LATCH  
LE*  
CLK1  
Programmed  
Control  
*Latch is transparent when input is low.  
Control Logic Block  
The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is  
selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from  
the programmable DQS pin. The clock can optionally be inverted.  
The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate  
signal is passed through this block.  
DDR Memory Support  
Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input  
(for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeXP  
devices provide this capability. In addition to these registers, the LatticeXP devices contain two elements to simplify  
the design of input structures for read operations: the DQS delay block and polarity control logic.  
DLL Calibrated DQS Delay Block  
Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at  
the input register. For most interfaces a PLL is used for this adjustment, however in DDR memories the clock  
(referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the  
required clock alignment for DDR memory interfaces.  
The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS rout-  
ing resource.The DQS signal also feeds the polarity control logic which controls the polarity of the clock to the sync  
registers in the input register blocks. Figures 2-26 and 2-27 show how the polarity control logic are routed to the  
PIOs.  
The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration  
(6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of  
the device as shown in Figure 2-27. The DLL loop is compensated for temperature, voltage and process variations  
by the system clock and feedback loop.  
2-20  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-26. DQS Local Bus  
Delay  
Control  
Bus  
PIO  
DDR  
Datain  
PAD  
sysIO  
Buffer  
Input  
Register Block  
( 5 Flip Flops)  
Polarity  
Control  
Bus  
To Sync.  
Reg.  
DI  
GSR  
CLKI  
CEI  
DQS  
Bus  
To DDR  
Reg.  
DQS  
DQS  
PIO  
DQS  
Strobe  
PAD  
sysIO  
Buffer  
Polarity Control  
Logic  
DI  
DQS  
DQSDEL  
Calibration Bus  
from DLL  
Figure 2-27. DLL Calibration Bus and DQS/DQS Transition Distribution  
Delay Control Bus  
Polarity Control Signal Bus  
DQS Signal Bus  
DLL  
DLL  
2-21  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Polarity Control Logic  
In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the  
internal system Clock (during the READ cycle) is unknown.  
The LatticeXP family contains dedicated circuits to transfer data between these domains. To prevent setup and  
hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is  
used. This changes the edge on which the data is registered in the synchronizing registers in the input register  
block. This requires evaluation at the start of the each READ cycle for the correct clock polarity.  
Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device  
drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to  
control the polarity of the clock to the synchronizing registers.  
sysIO Buffer  
Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the  
periphery of the device in eight groups referred to as Banks. The sysIO buffers allow users to implement the wide  
variety of standards that are found in today’s systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.  
sysIO Buffer Banks  
LatticeXP devices have eight sysIO buffer banks; each is capable of supporting multiple I/O standards. Each sysIO  
bank has its own I/O supply voltage (V  
), and two voltage references V  
and V  
resources allowing each  
CCIO  
REF1  
REF2  
bank to be completely independent from each other. Figure 2-28 shows the eight banks and their associated sup-  
plies.  
In the LatticeXP devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCI-X) are  
powered using V  
independent of V  
. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as a fixed threshold input  
CCIO  
In addition to the bank V  
supplies, the LatticeXP devices have a V core logic power sup-  
CCIO.  
CCIO  
CC  
ply, and a V  
supply that power all differential and referenced buffers.  
CCAUX  
Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the refer-  
enced input buffers. In the LatticeXP devices, a dedicated pin in a bank can be configured to be a reference voltage  
supply pin. Each I/O is individually configurable based on the bank’s supply and reference voltages.  
2-22  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-28. LatticeXP Banks  
1
1
N
1
N
1
Bank 0  
Bank 1  
VCCIO7  
VCCIO2  
VREF1(2)  
VREF2(2)  
GND  
VREF1(7)  
VREF2(7)  
GND  
M
1
M
1
VCCIO6  
VCCIO3  
VREF1(6)  
VREF2(6)  
VREF1(3)  
VREF2(3)  
GND  
GND  
M
N
M
Bank 5  
Bank 4  
1
N
1
Note: N and M are the maximum number of I/Os per bank.  
LatticeXP devices contain two types of sysIO buffer pairs.  
1. Top and Bottom sysIO Buffer Pair (Single-Ended Outputs Only)  
The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and  
two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also be  
configured as a differential input.  
The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive  
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of  
the differential input buffer.  
Only the I/Os on the top and bottom banks have PCI clamps. Note that the PCI clamp is enabled after V  
CC,  
V
and V  
are at valid operating levels and the device has been configured.  
CCAUX  
CCIO  
2. Left and Right sysIO Buffer Pair (Differential and Single-Ended Outputs)  
The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two  
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The refer-  
enced input buffer can also be configured as a differential input. In these banks the two pads in the pair are  
described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O,  
and the comp (complementary) pad is associated with the negative side of the differential I/O.  
Select I/Os in the left and right banks have LVDS differential output drivers. Refer to the Logic Signal Connec-  
tions tables for more information.  
2-23  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Typical I/O Behavior During Power-up  
The internal power-on-reset (POR) signal is deactivated when V and V  
have reached satisfactory levels.  
CC  
CCAUX  
After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to ensure  
that all other V banks are active with valid input logic levels to properly control the output logic states of all the  
CCIO  
I/O banks that are critical to the application. The default configuration of the I/O pins in a blank device is tri-state  
with a weak pull-up to VCCIO. The I/O pins will not take on the user configuration until VCC, VCCAUX and VCCIO  
have reached satisfactory levels at which time the I/Os will take on the user-configured settings.  
The V and V  
supply the power to the FPGA core fabric, whereas the V  
supplies power to the I/O buff-  
CC  
CCAUX  
CCIO  
ers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended  
that the I/O buffers be powered-up prior to the FPGA core fabric. V supplies should be powered up before or  
CCIO  
together with the V and V  
supplies.  
CC  
CCAUX  
Supported Standards  
The LatticeXP sysIO buffer supports both single-ended and differential standards. Single-ended standards can be  
further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2, 1.5,  
1.8, 2.5 and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for  
drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain. Other sin-  
gle-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS, BLVDS,  
LVPECL, differential SSTL and differential HSTL. Tables 2-7 and 2-8 show the I/O standards (together with their  
supply and reference voltages) supported by the LatticeXP devices. For further information on utilizing the sysIO  
buffer to support a variety of standards please see the details of additional technical documentation at the end of  
this data sheet.  
Table 2-7. Supported Input Standards  
Input Standard  
Single Ended Interfaces  
LVTTL  
LVCMOS332  
LVCMOS252  
V
(Nom.)  
V
1 (Nom.)  
CCIO  
REF  
LVCMOS18  
1.8  
1.5  
LVCMOS15  
LVCMOS122  
PCI  
3.3  
HSTL18 Class I, II  
HSTL18 Class III  
HSTL15 Class I  
0.9  
1.08  
0.75  
0.9  
HSTL15 Class III  
SSTL3 Class I, II  
SSTL2 Class I, II  
SSTL18 Class I  
1.5  
1.25  
0.9  
Differential Interfaces  
Differential SSTL18 Class I  
Differential SSTL2 Class I, II  
Differential SSTL3 Class I, II  
Differential HSTL15 Class I, III  
Differential HSTL18 Class I, II, III  
LVDS, LVPECL  
BLVDS  
1. When not specified V  
can be set anywhere in the valid operating range.  
CCIO  
2. JTAG inputs do not have a fixed threshold option and always follow V  
CCJ.  
2-24  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Table 2-8. Supported Output Standards  
Output Standard  
Single-ended Interfaces  
LVTTL  
Drive  
V
(Nom.)  
CCIO  
4mA, 8mA, 12mA, 16mA, 20mA  
3.3  
LVCMOS33  
4mA, 8mA, 12mA 16mA, 20mA  
3.3  
2.5  
1.8  
1.5  
1.2  
LVCMOS25  
4mA, 8mA, 12mA 16mA, 20mA  
LVCMOS18  
4mA, 8mA, 12mA 16mA  
LVCMOS15  
4mA, 8mA  
LVCMOS12  
2mA, 6mA  
LVCMOS33, Open Drain  
LVCMOS25, Open Drain  
LVCMOS18, Open Drain  
LVCMOS15, Open Drain  
LVCMOS12, Open Drain  
PCI33  
4mA, 8mA, 12mA 16mA, 20mA  
4mA, 8mA, 12mA 16mA, 20mA  
4mA, 8mA, 12mA 16mA  
4mA, 8mA  
2mA. 6mA  
N/A  
3.3  
1.8  
1.5  
3.3  
2.5  
1.8  
HSTL18 Class I, II, III  
HSTL15 Class I, III  
SSTL3 Class I, II  
N/A  
N/A  
N/A  
SSTL2 Class I, II  
N/A  
SSTL18 Class I  
N/A  
Differential Interfaces  
Differential SSTL3, Class I, II  
Differential SSTL2, Class I, II  
Differential SSTL18, Class I  
Differential HSTL18, Class I, II, III  
Differential HSTL15, Class I, III  
LVDS  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
3.3  
2.5  
1.8  
1.8  
1.5  
2.5  
2.5  
3.3  
BLVDS1  
LVPECL1  
1. Emulated with external resistors.  
Hot Socketing  
The LatticeXP devices have been carefully designed to ensure predictable behavior during power-up and power-  
down. Power supplies can be sequenced in any order. During power up and power-down sequences, the I/Os  
remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage  
into I/O pins is controlled to within specified limits, which allows easy integration with the rest of the system.  
These capabilities make the LatticeXP ideal for many multiple power supply and hot-swap applications.  
Sleep Mode  
The LatticeXP “C” devices (V = 1.8/2.5/3.3V) have a sleep mode that allows standby current to be reduced by up  
CC  
to three orders of magnitude during periods of system inactivity. Entry and exit to Sleep Mode is controlled by the  
SLEEPN pin.  
During Sleep Mode, the FPGA logic is non-operational, registers and EBR contents are not maintained and I/Os  
are tri-stated. Do not enter Sleep Mode during device programming or configuration operation. In Sleep Mode,  
power supplies can be maintained in their normal operating range, eliminating the need for external switching of  
power supplies. Table 2-9 compares the characteristics of Normal, Off and Sleep Modes.  
2-25  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Table 2-9. Characteristics of Normal, Off and Sleep Modes  
Characteristic  
SLEEPN Pin  
Normal  
High  
Off  
Sleep  
Low  
Static Icc  
Typical <100mA  
<10µA  
0
Typical <100uA  
<10µA  
I/O Leakage  
<1mA  
Off  
Power Supplies VCC/VCCIO/VCCAUX  
Logic Operation  
Normal Range  
User Defined  
User Defined  
Operational  
Maintained  
Normal Range  
Non Operational  
Tri-state  
Non operational  
Tri-state  
I/O Operation  
JTAG and Programming circuitry  
EBR Contents and Registers  
Non-operational  
Non-maintained  
Non-operational  
Non-maintained  
SLEEPN Pin Characteristics  
The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the  
device.This pin also has a weak pull-up typically in the order of 10µA along with a Schmidt trigger and glitch filter to  
prevent false triggering. An external pull-up to V is recommended when Sleep Mode is not used to ensure the  
CC  
device stays in normal operation mode. Typically the device enters Sleep Mode several hundred ns after SLEEPN  
is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC  
specifications portion of this data sheet show a detailed timing diagram.  
Configuration and Testing  
The following section describes the configuration and testing features of the LatticeXP family of devices.  
IEEE 1149.1-Compliant Boundary Scan Testability  
All LatticeXP devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access  
port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan  
path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in  
and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port  
consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage V  
operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards.  
and can  
CCJ  
For more details on boundary scan test, please see information regarding additional technical documentation at  
the end of this data sheet.  
Device Configuration  
All LatticeXP devices contain two possible ports that can be used for device configuration and programming. The  
test access port (TAP), which supports serial configuration, and the sysCONFIG port that supports both byte-wide  
and serial configuration.  
The non-volatile memory in the LatticeXP can be configured in three different modes:  
• In sysCONFIG mode via the sysCONFIG port. Note this can also be done in background mode.  
• In 1532 mode via the 1149.1 port.  
• In background mode via the 1149.1 port. This allows the device to be operated while reprogramming takes  
place.  
The SRAM configuration memory can be configured in three different ways:  
• At power-up via the on-chip non-volatile memory.  
• In 1532 mode via the 1149.1 port SRAM direct configuration.  
• In sysCONFIG mode via the sysCONFIG port SRAM direct configuration.  
2-26  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 2-29 provides a pictorial representation of the different programming ports and modes available in the Lat-  
ticeXP devices.  
On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial  
mode can be activated any time after power-up by sending the appropriate command through the TAP port.  
Leave Alone I/O  
When using 1532 mode for non-volatile memory programming, users may specify I/Os as high, low, tristated or  
held at current value. This provides excellent flexibility for implementing systems where reprogramming occurs on-  
the-fly.  
TransFR (Transparent Field Reconfiguration)  
TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting  
system operation using a single ispVM command. See Lattice technical note #TN1087, Minimizing System Inter-  
ruption During Configuration Using TransFR Technology, for details.  
Security  
The LatticeXP devices contain security bits that, when set, prevent the readback of the SRAM configuration and  
non-volatile memory spaces. Once set, the only way to clear security bits is to erase the memory space.  
For more information on device configuration, please see details of additional technical documentation at the end  
of this data sheet.  
Figure 2-29. ispXP Block Diagram  
ISP 1149.1 TAP Port  
sysCONFIG Peripherial Port  
Port  
sysCONFIG  
BACKGND  
1532  
Mode  
Configure in milliseconds  
Program in seconds  
Power-up  
Refresh  
SRAM  
Memory Space  
Memory Space  
Download in microseconds  
Memory Space  
Internal Logic Analyzer Capability (ispTRACY)  
All LatticeXP devices support an internal logic analyzer diagnostic feature. The diagnostic features provide capabil-  
ities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace mem-  
ory. This feature is enabled by Lattice’s ispTRACY. The ispTRACY utility is added into the user design at compile  
time.  
For more information on ispTRACY, please see information regarding additional technical documentation at the  
end of this data sheet.  
Oscillator  
Every LatticeXP device has an internal CMOS oscillator which is used to derive a master serial clock for configura-  
tion. The oscillator and the master serial clock run continuously in the configuration mode. The default value of the  
2-27  
Architecture  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
master serial clock is 2.5MHz. Table 2-10 lists all the available Master Serial Clock frequencies. When a different  
Master Serial Clock is selected during the design process, the following sequence takes place:  
1. User selects a different Master Serial Clock frequency for configuration.  
2. During configuration the device starts with the default (2.5MHz) Master Serial Clock frequency.  
3. The clock configuration settings are contained in the early configuration bit stream.  
4. The Master Serial Clock frequency changes to the selected frequency once the clock configuration bits are  
received.  
For further information on the use of this oscillator for configuration, please see details of additional technical docu-  
mentation at the end of this data sheet.  
Table 2-10. Selectable Master Serial Clock (CCLK) Frequencies During Configuration  
CCLK (MHz)  
CCLK (MHz)  
CCLK (MHz)  
2.51  
13  
15  
20  
26  
30  
34  
41  
45  
51  
55  
60  
130  
4.3  
5.4  
6.9  
8.1  
9.2  
10.0  
1. Default  
Density Shifting  
The LatticeXP family has been designed to ensure that different density devices in the same package have the  
same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from  
lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design tar-  
geted for a high-density device to a lower density device. However, the exact details of the final resource utilization  
will impact the likely success in each case.  
2-28  
LatticeXP Family Data Sheet  
DC and Switching Characteristics  
Data Sheet DS1001  
November 2007  
Absolute Maximum Ratings1, 2, 3, 4  
XPE (1.2V)  
XPC (1.8V/2.5V/3.3V)  
Supply Voltage V . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V . . . . . . . . . . . . . . . -0.5 to 3.75V  
CC  
Supply Voltage V  
Supply Voltage V  
Supply Voltage V  
. . . . . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V . . . . . . . . . . . . . . . -0.5 to 3.75V  
CCP  
. . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V  
CCAUX  
. . . . . . . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V  
CCJ  
Output Supply Voltage V  
. . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V  
CCIO  
I/O Tristate Voltage Applied5 . . . . . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 3.75V  
Dedicated Input Voltage Applied 5 . . . . . . . . . . . . . -0.5 to 3.75V . . . . . . . . . . . . . . . -0.5 to 4.25V  
Storage Temperature (Ambient) . . . . . . . . . . . . . . -65 to 150°C . . . . . . . . . . . . . . . -65 to 150°C  
Junction Temp. (Tj) . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C . . . . . . . . . . . . . . . . . . . +125°C  
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the  
device at these or any other conditions outside of those indicated in the operational sections of this specification is not implied.  
2. Compliance with the Lattice Thermal Management document is required.  
3. All voltages referenced to GND.  
4. All chip grounds are connected together to a common package GND plane.  
5. Overshoot and undershoot of -2V to (V  
+ 2) volts is permitted for a duration of <20ns.  
IHMAX  
Recommended Operating Conditions3  
Symbol  
Parameter  
Min.  
1.14  
1.71  
1.14  
1.71  
3.135  
1.14  
1.14  
0
Max.  
1.26  
3.465  
1.26  
3.465  
3.465  
3.465  
3.465  
85  
Units  
V
Core Supply Voltage for 1.2V Devices  
V
V
CC  
Core Supply Voltage for 1.8V/2.5V/3.3V Devices  
Supply Voltage for PLL for 1.2V Devices  
Supply Voltage for PLL for 1.8V/2.5V/3.3V Devices  
Auxiliary Supply Voltage  
V
V
CCP  
V
4
V
V
V
V
CCAUX  
1, 2  
I/O Driver Supply Voltage  
V
CCIO  
1
Supply Voltage for IEEE 1149.1 Test Access Port  
Junction Temperature, Commercial Operation  
Junction Temperature, Industrial Operation  
Junction Temperature, Flash Programming, Commercial  
Junction Temperature, Flash Programming, Industrial  
V
CCJ  
t
t
t
t
C
JCOM  
JIND  
-40  
100  
C
0
85  
C
JFLASHCOM  
JFLASHIND  
0
85  
C
1. If V  
or V  
is set to 3.3V, they must be connected to the same power supply as V  
For the XPE devices (1.2V V ), if V  
or  
CCIO  
CCIO  
CCJ  
CCAUX.  
CC  
V
is set to 1.2V, they must be connected to the same power supply as V  
.
CCJ  
CC  
2. See recommended voltages by I/O standard in subsequent table.  
3. The system designer must ensure that the FPGA design stays within the specified junction temperature and package thermal capabilities  
of the device based on the expected operating frequency, activity factor and environment conditions of the system.  
4. V  
ramp rate must not exceed 30mV/µs during power up when transitioning between 0V and 3.3V.  
CCAUX  
© 2006 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
3-1  
DS1001 DC and Switching_02.7  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Hot Socketing Specifications1, 2, 3, 4, 5, 6  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
I
Input or I/O Leakage Current  
0 V V (MAX.)  
+/-1000  
µA  
DK  
IN  
IH  
1. Insensitive to sequence of V  
V
and V  
. However, assumes monotonic rise/fall rates for V  
V
and V  
CC, CCAUX  
CCIO  
CC, CCAUX CCIO.  
2. 0 V V (MAX) or 0 V  
V  
(MAX).  
CC  
CC  
CCAUX  
CCAUX  
3. 0 V  
V  
(MAX) for top and bottom I/O banks.  
CCIO  
CCIO  
4. 0.2 V  
V  
(MAX) for left and right I/O banks.  
CCIO  
CCIO  
5. I is additive to I  
I
or I  
.
DK  
PU, PW  
BH  
6. LVCMOS and LVTTL only.  
3-2  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
DC Electrical Characteristics  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
- 0.2V)  
CCIO  
Min.  
Typ.  
Max.  
10  
Units  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
0 V (V  
IN  
1, 2, 4  
I
I
Input or I/O Leakage  
IL, IH  
(V  
- 0.2V) < V 3.6V  
40  
CCIO  
IN  
CCIO  
I
I
I
I
I
I
I/O Active Pull-up Current  
0 V 0.7 V  
-30  
30  
-150  
150  
PU  
IN  
I/O Active Pull-down Current  
Bus Hold Low sustaining current  
Bus Hold High sustaining current  
V
V
V
(MAX) V V (MAX)  
IN IH  
PD  
IL  
= V (MAX)  
30  
BHLS  
BHHS  
BHLO  
BHHO  
IN  
IN  
IL  
= 0.7V  
-30  
CCIO  
Bus Hold Low Overdrive current 0 V V (MAX)  
150  
-150  
IN  
IH  
Bus Hold High Overdrive current 0 V V (MAX)  
IN  
IH  
V
Bus Hold trip Points  
I/O Capacitance3  
0 V V (MAX)  
V
(MAX)  
V
(MIN)  
BHT  
IN  
IH  
IL  
IH  
V
V
= 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,  
CCIO  
CC  
C1  
C2  
8
8
pf  
pf  
= 1.2V, V = 0 to V (MAX)  
IO  
IH  
V
V
= 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,  
Dedicated Input Capacitance3  
CCIO  
CC  
= 1.2V, V = 0 to V (MAX)  
IO  
IH  
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured  
with the output driver active. Bus maintenance circuits are disabled.  
2. Not applicable to SLEEPN/TOE pin.  
3. T 25°C, f = 1.0MHz  
A
4. When V is higher than V  
, a transient current typically of 30ns in duration or less with a peak current of 6mA can be expected on the  
CCIO  
IH  
high-to-low transition.  
Supply Current (Sleep Mode)1, 2, 3  
Symbol  
Parameter  
Device  
LFXP3C  
Typ.4  
12  
14  
16  
18  
20  
1
Max  
65  
Units  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
LFXP6C  
75  
I
I
I
Core Power Supply  
LFXP10C  
LFXP15C  
LFXP20C  
All LFXP ‘C’ Devices  
LFXP3C  
85  
CC  
95  
105  
5
PLL Power Supply (per PLL)  
Auxiliary Power Supply  
CCP  
2
90  
LFXP6C  
2
100  
110  
120  
130  
20  
LFXP10C  
LFXP15C  
LFXP20C  
LFXP3C  
2
CCAUX  
3
4
2
LFXP6C  
2
22  
I
I
Bank Power Supply5  
VCCJ Power Supply  
LFXP10C  
LFXP15C  
LFXP20C  
All LFXP ‘C’ Devices  
2
24  
CCIO  
3
27  
4
30  
1
5
CCJ  
1. Assumes all inputs are configured as LVCMOS and held at the VCCIO or GND.  
2. Frequency 0MHz.  
3. User pattern: blank.  
4. T =25°C, power supplies at nominal voltage.  
A
5. Per bank.  
3-3  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Supply Current (Standby)1, 2, 3, 4  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Device  
LFXP3E  
LFXP6E  
LFXP10E  
LFXP15E  
LFXP20E  
LFXP3C  
LFXP6C  
LFXP10C  
LFXP15C  
LFXP20C  
Typ.5  
15  
20  
35  
45  
55  
35  
40  
70  
80  
90  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
Core Power Supply  
CC  
PLL Power Supply  
(per PLL)  
I
I
All  
8
mA  
CCP  
LFXP3E/C  
LFXP6E/C  
LFXP10E/C  
LFXP15E/C  
LFXP20E/C  
All  
22  
22  
30  
30  
30  
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Auxiliary Power Supply  
CCAUX  
V
= 3.3V  
CCAUX  
I
I
Bank Power Supply6  
Power Supply  
CCIO  
V
All  
1
CCJ  
CCJ  
1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.  
2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND.  
3. Frequency 0MHz.  
4. User pattern: blank.  
5. T =25°C, power supplies at nominal voltage.  
A
6. Per bank.  
3-4  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Initialization Supply Current1, 2, 3, 4, 5, 6  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Device  
LFXP3E  
Typ.7  
40  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
LFXP6E  
50  
LFXP10E  
LFXP15E  
LFXP20E  
LFXP3C  
110  
140  
250  
60  
I
Core Power Supply  
CC  
LFXP6C  
70  
LFXP10C  
LFXP15C  
LFXP20C  
LFXP3E /C  
LFXP6E /C  
LFXP10E /C  
LFXP15E /C  
LFXP20E /C  
All  
150  
180  
290  
50  
60  
Auxiliary Power Supply  
I
I
90  
CCAUX  
V
= 3.3V  
CCAUX  
110  
130  
2
V
Power Supply  
CCJ  
CCJ  
1. Until DONE signal is active.  
2. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.  
3. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V  
4. Frequency 0MHz.  
or GND.  
CCIO  
5. Typical user pattern.  
6. Assume normal bypass capacitor/decoupling capacitor across the supply.  
7. T =25°C, power supplies at nominal voltage.  
A
3-5  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Programming and Erase Flash Supply Current1, 2, 3, 4, 5  
Symbol  
Parameter  
Device  
LFXP3E  
Typ.6  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
30  
LFXP6E  
40  
LFXP10E  
LFXP15E  
LFXP20E  
LFXP3C  
50  
60  
70  
I
Core Power Supply  
CC  
50  
LFXP6C  
60  
LFXP10C  
LFXP15C  
LFXP20C  
LFXP3E /C  
LFXP6E /C  
LFXP10E /C  
LFXP15E /C  
LFXP20E /C  
All  
90  
100  
110  
50  
60  
Auxiliary Power Supply  
I
I
90  
CCAUX  
V
= 3.3V  
CCAUX  
110  
130  
2
V
Power Supply7  
CCJ  
CCJ  
1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.  
2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V  
3. Blank user pattern; typical Flash pattern.  
or GND.  
CCIO  
4. Bypass or decoupling capacitor across the supply.  
5. JTAG programming is at 1MHz.  
6. T =25°C, power supplies at nominal voltage.  
A
7. When programming via JTAG.  
3-6  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
sysIO Recommended Operating Conditions  
V
V
(V)  
REF  
CCIO  
Standard  
LVCMOS 3.3  
Min.  
3.135  
2.375  
1.71  
Typ.  
3.3  
2.5  
1.8  
1.5  
1.2  
3.3  
3.3  
1.8  
2.5  
3.3  
1.5  
1.5  
1.8  
1.8  
2.5  
3.3  
2.5  
Max.  
3.465  
2.625  
1.89  
Min.  
Typ.  
Max.  
LVCMOS 2.5  
LVCMOS 1.8  
LVCMOS 1.5  
LVCMOS 1.2  
LVTTL  
1.425  
1.14  
1.575  
1.26  
3.135  
3.135  
1.71  
3.465  
3.465  
1.89  
PCI33  
SSTL18 Class I  
SSTL2 Class I, II  
SSTL3 Class I, II  
HSTL15 Class I  
HSTL15 Class III  
HSTL 18 Class I, II  
HSTL 18 Class III  
LVDS  
0.833  
1.15  
1.3  
0.68  
0.9  
1.25  
1.5  
0.75  
0.9  
0.9  
1.08  
0.969  
1.35  
1.7  
0.9  
2.375  
3.135  
1.425  
1.425  
1.71  
2.625  
3.465  
1.575  
1.575  
1.89  
1.71  
1.89  
2.375  
3.135  
2.375  
2.625  
3.465  
2.625  
LVPECL1  
BLVDS1  
1. Inputs on chip. Outputs are implemented with the addition of external resistors.  
3-7  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
sysIO Single-Ended DC Electrical Characteristics  
V
V
IH  
IL  
Input/Output  
Standard  
V
Max.  
V
Min.  
I
I
OH  
(mA)  
OL  
OH  
OL  
Min. (V) Max. (V)  
Min. (V)  
Max. (V)  
(V)  
(V)  
(mA)  
20, 16, 12,  
8, 4  
-20, -16, -12,  
-8, -4  
0.4  
0.2  
0.4  
0.2  
0.4  
V
V
V
V
V
- 0.4  
- 0.2  
- 0.4  
- 0.2  
- 0.4  
- 0.2  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
LVCMOS 3.3  
LVTTL  
-0.3  
-0.3  
-0.3  
0.8  
0.8  
0.7  
2.0  
2.0  
1.7  
3.6  
0.1  
-0.1  
20, 16, 12,  
8, 4  
-20, -16, -12,  
-8, -4  
3.6  
3.6  
0.1  
-0.1  
20, 16, 12,  
8, 4  
-20, -16, -12,  
-8, -4  
LVCMOS 2.5  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
0.4  
0.2  
V
V
V
V
V
V
V
V
V
0.1  
-0.1  
-16, -12, -8, -4  
-0.1  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
- 0.4 16, 12, 8, 4  
LVCMOS 1.8  
LVCMOS 1.5  
-0.3  
-0.3  
-0.3  
-0.3  
0.35V  
0.65V  
3.6  
3.6  
3.6  
3.6  
CCIO  
CCIO  
- 0.2  
- 0.4  
- 0.2  
- 0.4  
- 0.2  
- 0.4  
- 0.2  
0.1  
8, 4  
0.1  
6, 2  
0.1  
6, 2  
0.1  
1.5  
8
-8, -4  
-0.1  
0.35V  
0.65V  
CCIO  
CCIO  
-6, -2  
-0.1  
LVCMOS 1.2  
(“C” Version)  
0.42  
0.78  
-6, -2  
-0.1  
LVCMOS 1.2  
(“E” Version)  
0.35V  
0.65V  
CC  
CC  
PCI  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
0.3V  
0.5V  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.1V  
0.9V  
-0.5  
CCIO  
CCIO  
CCIO  
CCIO  
SSTL3 class I  
SSTL3 class II  
SSTL2 class I  
SSTL2 class II  
SSTL18 class I  
HSTL15 class I  
HSTL15 class III  
HSTL18 class I  
HSTL18 class II  
HSTL18 class III  
V
- 0.2  
V
+ 0.2  
0.7  
V
- 1.1  
- 0.9  
- 0.62  
- 0.43  
- 0.4  
- 0.4  
- 0.4  
- 0.4  
- 0.4  
- 0.4  
-8  
REF  
REF  
REF  
REF  
CCIO  
CCIO  
V
- 0.2  
- 0.18  
- 0.18  
V
+ 0.2  
+ 0.18  
+ 0.18  
+ 0.125  
0.5  
0.54  
0.35  
0.4  
V
16  
-16  
V
V
V
V
V
V
7.6  
15.2  
6.7  
8
-7.6  
REF  
REF  
REF  
REF  
REF  
CCIO  
CCIO  
-15.2  
-6.7  
V
- 0.125 V  
V
REF  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
CCIO  
V
V
V
V
V
- 0.1  
- 0.1  
- 0.1  
- 0.1  
- 0.1  
V
V
V
V
V
+ 0.1  
+ 0.1  
+ 0.1  
+ 0.1  
+ 0.1  
0.4  
V
-8  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
0.4  
V
V
V
V
24  
-8  
0.4  
9.6  
16  
-9.6  
0.4  
-16  
0.4  
24  
-8  
1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as  
shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between bank GND connections or  
between the last GND in a bank and the end of a bank.  
3-8  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
sysIO Differential Electrical Characteristics  
LVDS  
Over Recommended Operating Conditions  
Parameter  
Symbol  
Parameter Description  
Input Voltage  
Test Conditions  
Min.  
0
Typ.  
Max.  
2.4  
Units  
V
V
V
V
INP, INM  
Differential Input Threshold  
Input Common Mode Voltage  
Input current  
+/-100  
mV  
V
THD  
100mV V  
V
V
V
/2  
/2  
/2  
1.2  
1.2  
1.2  
1.8  
THD  
THD  
THD  
THD  
THD  
V
200mV V  
350mV V  
1.9  
V
CM  
2.0  
V
THD  
I
Power on or power off  
R = 100 ohms  
+/-10  
1.60  
µA  
V
IN  
V
V
V
Output high voltage for V or V  
1.38  
1.03  
350  
OH  
OL  
OD  
OP  
OM  
T
Output low voltage for V or V  
R = 100 ohms  
0.9V  
250  
V
OP  
OM  
T
Output voltage differential  
(V - V ), R = 100 ohms  
450  
mV  
OP  
OM  
T
Change in V between high and  
low  
OD  
ΔV  
50  
mV  
OD  
V
Output voltage offset  
(V - V )/2, R = 100 ohms  
1.125  
1.25  
1.375  
50  
V
OS  
OP  
OM  
T
ΔV  
Change in V between H and L  
mV  
OS  
OS  
V
= 0V Driver outputs  
OD  
I
Output short circuit current  
6
mA  
OSD  
shorted  
3-9  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Differential HSTL and SSTL  
Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allow-  
able single-ended output classes (class I and class II) are supported in this mode.  
LVDS25E  
The top and bottom side of LatticeXP devices support LVDS outputs via emulated complementary LVCMOS out-  
puts in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one possi-  
ble solution for point-to-point signals.  
Figure 3-1. LVDS25E Output Termination Example  
Bourns  
CAT16-LV4F12  
VCCIO = 2.5V ( 5ꢀ)  
RS=165 ohms  
( 1ꢀ)  
+
-
RD = 140 ohms  
( 1ꢀ)  
RD = 100 ohms  
( 1ꢀ)  
VCCIO = 2.5V ( 5ꢀ)  
RS=165 ohms  
( 1ꢀ)  
Transmission line, Zo = 100 ohm differential  
ON-chip  
OFF-chip  
OFF-chip ON-chip  
Table 3-1. LVDS25E DC Conditions  
Over Recommended Operating Conditions  
Parameter  
Description  
Output high voltage  
Output low voltage  
Typical  
1.43  
1.07  
0.35  
1.25  
100  
Units  
V
V
V
V
V
V
OH  
OL  
Output differential voltage  
Output common mode voltage  
Back impedance  
V
OD  
V
CM  
Z
Ω
BACK  
I
DC output current  
3.66  
mA  
DC  
BLVDS  
The LatticeXP devices support BLVDS standard. This standard is emulated using complementary LVCMOS out-  
puts in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when multi-  
drop and bi-directional multi-point differential signaling is required.The scheme shown in Figure 3-2 is one possible  
solution for bi-directional multi-point differential signals.  
3-10  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 3-2. BLVDS Multi-point Output Example  
Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential  
2.5V  
2.5V  
2.5V  
80  
45-90 ohms  
45-90 ohms  
80  
2.5V  
80  
80  
80  
80  
80  
. . .  
+
-
+
-
-
-
2.5V  
2.5V  
2.5V  
2.5V  
Table 3-2. BLVDS DC Conditions1  
Over Recommended Operating Conditions  
Typical  
Symbol  
Description  
Output impedance  
Zo = 45 Zo = 90  
Units  
ohms  
ohms  
ohms  
V
Z
100  
45  
100  
90  
OUT  
R
R
Left end termination  
Right end termination  
Output high voltage  
TLEFT  
TRIGHT  
OH  
45  
90  
V
V
V
V
1.375  
1.125  
0.25  
1.25  
11.2  
1.48  
1.02  
0.46  
1.25  
10.2  
Output low voltage  
V
OL  
Output differential voltage  
Output common mode voltage  
DC output current  
V
OD  
V
CM  
I
mA  
DC  
1. For input buffer, see LVDS table.  
3-11  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LVPECL  
The LatticeXP devices support differential LVPECL standard. This standard is emulated using complementary  
LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard is  
supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for point-  
to-point signals.  
Figure 3-3. Differential LVPECL  
3.3V  
RS = 100 ohms  
+
= 187 ohms  
= 100 ohms  
RT  
RP  
3.3V  
-
= 100 ohms  
RS  
Transmission line, Zo = 100 ohm differential  
Off-chip  
Table 3-3. LVPECL DC Conditions1  
Over Recommended Operating Conditions  
Symbol  
Description  
Output impedance  
Typical  
100  
Units  
ohms  
ohms  
ohms  
ohms  
V
Z
OUT  
R
R
R
Driver parallel resistor  
Driver series resistor  
Receiver termination  
Output high voltage  
Output low voltage  
187  
P
S
T
100  
100  
V
V
V
V
2.03  
1.27  
0.76  
1.65  
85.7  
12.7  
OH  
V
OL  
Output differential voltage  
Output common mode voltage  
Back impedance  
V
OD  
V
CM  
Z
ohms  
mA  
BACK  
I
DC output current  
DC  
1. For input buffer, see LVDS table.  
For further information on LVPECL, BLVDS and other differential interfaces please see details of additional techni-  
cal documentation at the end of the data sheet.  
RSDS  
The LatticeXP devices support differential RSDS standard. This standard is emulated using complementary LVC-  
MOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is sup-  
ported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS  
standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in  
Figure 3-4 are industry standard values for 1% resistors.  
3-12  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 3-4. RSDS (Reduced Swing Differential Standard)  
VCCIO = 2.5V  
RS  
Zo = 100  
+
VCCIO = 2.5V  
RP  
RT  
-
RS  
On-chip  
Off-chip  
Emulated  
RSDS Buffer  
Table 3-4. RSDS DC Conditions  
Parameter  
Description  
Output impedance  
Typical  
20  
Units  
ohms  
ohms  
ohms  
ohms  
V
Z
OUT  
R
R
R
Driver series resistor  
Driver parallel resistor  
Receiver termination  
Output high voltage  
Output low voltage  
300  
S
121  
P
100  
T
V
V
V
V
1.35  
1.15  
0.20  
1.25  
101.5  
3.66  
OH  
OL  
OD  
CM  
BACK  
V
Output differential voltage  
V
Output common mode voltage  
Back impedance  
V
Z
ohms  
mA  
I
DC output current  
DC  
3-13  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Typical Building Block Function Performance1  
Pin-to-Pin Performance (LVCMOS25 12 mA Drive)  
Function  
-5 Timing  
Units  
Basic Functions  
16-bit decoder  
32-bit decoder  
64-bit decoder  
4:1 MUX  
6.1  
7.3  
8.2  
4.9  
5.3  
5.7  
6.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8:1 MUX  
16:1 MUX  
32:1 MUX  
Register to Register Performance  
Function  
Basic Functions  
16-bit decoder  
-5 Timing  
Units  
351  
248  
237  
590  
523  
434  
355  
343  
292  
130  
388  
295  
200  
164  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
32-bit decoder  
64-bit decoder  
4:1 MUX  
8:1 MUX  
16:1 MUX  
32:1 MUX  
8-bit adder  
16-bit adder  
64-bit adder  
16-bit counter  
32-bit counter  
64-bit counter  
64-bit accumulator  
Embedded Memory Functions  
Single Port RAM 256x36 bits  
True-Dual Port RAM 512x18 bits  
Distributed Memory Functions  
16x2 SP RAM  
254  
254  
MHz  
MHz  
434  
332  
235  
322  
291  
MHz  
MHz  
MHz  
MHz  
MHz  
64x2 SP RAM  
128x4 SP RAM  
32x2 PDP RAM  
64x4 PDP RAM  
1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version.The tool  
uses internal parameters that have been characterized but are not tested on every device.  
Timing v.F0.11  
3-14  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Derating Logic Timing  
Logic timing provided in the following sections of this data sheet and in the ispLEVER design tools are worst case  
numbers in the operating range. Actual delays at nominal temperature and voltage for best-case process can be  
much better than the values given in the tables. The ispLEVER design tool from Lattice can provide logic timing  
numbers at a particular temperature and voltage.  
3-15  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LatticeXP External Switching Characteristics  
Over Recommended Operating Conditions  
-5  
-4  
-3  
Parameter  
Description  
Device  
Min. Max. Min. Max. Min. Max. Units  
General I/O Pin Parameters (Using Primary Clock without PLL)1  
LFXP3  
LFXP6  
5.12  
5.30  
5.52  
5.72  
5.97  
6.12  
6.34  
6.60  
6.84  
7.14  
7.43  
7.69  
8.00  
8.29  
8.65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
Clock to Output - PIO Output Register  
Clock to Data Setup - PIO Input Register  
Clock to Data Hold - PIO Input Register  
LFXP10  
LFXP15  
LFXP20  
LFXP3  
LFXP6  
LFXP10  
LFXP15  
LFXP20  
LFXP3  
LFXP6  
LFXP10  
LFXP15  
LFXP20  
LFXP3  
LFXP6  
LFXP10  
LFXP15  
LFXP20  
LFXP3  
LFXP6  
LFXP10  
LFXP15  
LFXP20  
All  
CO  
-0.40  
-0.33  
-0.61  
-0.71  
-0.95  
2.10  
2.28  
3.02  
2.70  
2.95  
2.38  
2.92  
2.72  
2.99  
4.47  
-0.70  
-0.47  
-0.60  
-1.05  
-0.80  
-0.28  
-0.32  
-0.71  
-0.77  
-1.14  
2.50  
2.72  
3.51  
3.22  
3.52  
2.49  
3.18  
2.75  
3.13  
4.56  
-0.80  
-0.38  
-0.47  
-0.98  
-0.58  
-0.16  
-0.30  
-0.81  
-0.87  
-1.35  
2.98  
3.24  
3.71  
3.85  
4.21  
2.66  
3.42  
2.84  
3.18  
4.80  
-0.92  
-0.31  
-0.32  
-1.01  
-0.31  
SU  
H
Clock to Data Setup - PIO Input Register  
with Input Data Delay  
SU_DEL  
Clock to Data Hold - PIO Input Register with  
Input Data Delay  
t
f
H_DEL  
Clock Frequency of I/O and PFU Register  
400  
360  
320 MHz  
MAX_IO  
DDR I/O Pin Parameters2  
t
t
t
t
f
Data Valid After DQS (DDR Read)  
Data Hold After DQS (DDR Read)  
Data Valid Before DQS  
All  
All  
All  
All  
All  
0.19  
0.19  
0.19  
UI  
UI  
UI  
UI  
DVADQ  
DVEDQ  
DQVBS  
DQVAS  
MAX_DDR  
0.67  
0.20  
0.20  
95  
0.67  
0.20  
0.20  
95  
0.67  
0.20  
0.20  
95  
Data Valid After DQS  
DDR Clock Frequency  
166  
133  
100 MHz  
Primary and Secondary Clocks  
f
t
Frequency for Primary Clock Tree  
Clock Pulse Width for Primary Clock  
All  
1.19  
450  
1.19  
412  
1.19  
375 MHz  
MAX_PRI  
W_PRI  
All  
ns  
ps  
ps  
LFXP3/6/10/15  
LFXP20  
250  
300  
300  
350  
350  
400  
t
Primary Clock Skew within an I/O Bank  
SKEW_PRI  
1. General timing numbers based on LVCMOS 2.5, 12mA.  
2. DDR timing numbers based on SSTL I/O.  
Timing v.F0.11  
3-16  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 3-5. DDR Timings  
DQ and DQS Read Timings  
DQS  
DQ  
tDVADQ  
tDVEDQ  
DQ and DQS Write Timings  
DQS  
DQ  
tDQVBS  
tDQVAS  
3-17  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LatticeXP Internal Timing Parameters1  
Over Recommended Operating Conditions  
-5  
-4  
-3  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Units  
PFU/PFF Logic Mode Timing  
t
t
t
t
t
t
t
t
t
t
LUT4 Delay (A to D Inputs to F Output)  
LUT6 Delay (A to D Inputs to OFX Output)  
Set/Reset to Output of PFU  
0.28  
0.44  
0.90  
0.34  
0.53  
1.08  
0.40  
0.63  
1.29  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LUT4_PFU  
LUT6_PFU  
LSR_PFU  
SUM_PFU  
HM_PFU  
Clock to Mux (M0,M1) Input Setup Time  
Clock to Mux (M0,M1) Input Hold Time  
Clock to D Input Setup Time  
0.13  
-0.04  
0.13  
-0.03  
0.15  
-0.03  
0.16  
-0.02  
0.19  
-0.03  
0.19  
-0.02  
SUD_PFU  
HD_PFU  
Clock to D Input Hold Time  
Clock to Q Delay, D-type Register Configuration  
Clock to Q Delay Latch Configuration  
D to Q Throughput Delay when Latch is Enabled  
0.40  
0.53  
0.55  
0.48  
0.64  
0.66  
0.58  
0.76  
0.79  
CK2Q_PFU  
LE2Q_PFU  
LD2Q_PFU  
PFU Dual Port Memory Mode Timing  
t
t
t
t
t
t
t
Clock to Output  
0.40  
0.48  
0.58  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CORAM_PFU  
SUDATA_PFU  
HDATA_PFU  
Data Setup Time  
-0.18  
0.28  
-0.46  
0.71  
-0.22  
0.33  
-0.14  
0.34  
-0.37  
0.85  
-0.17  
0.40  
-0.11  
0.40  
-0.30  
1.02  
-0.14  
0.48  
Data Hold Time  
Address Setup Time  
Address Hold Time  
SUADDR_PFU  
HADDR_PFU  
SUWREN_PFU  
HWREN_PFU  
Write/Read Enable Setup Time  
Write/Read Enable Hold Time  
PIC Timing  
PIO Input/Output Buffer Timing  
t
t
Input Buffer Delay  
Output Buffer Delay  
0.62  
2.12  
0.72  
2.54  
0.85  
3.05  
ns  
ns  
IN_PIO  
OUT_PIO  
IOLOGIC Input/Output Timing  
t
t
t
t
t
t
t
Input Register Setup Time (Data Before Clock)  
Input Register Hold Time (Data After Clock)  
Output Register Clock to Output Delay  
Input Register Clock Enable Setup Time  
Input Register Clock Enable Hold Time  
Set/Reset Setup Time  
1.35  
0.05  
1.83  
0.05  
2.37  
0.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SUI_PIO  
HI_PIO  
0.36  
0.44  
0.52  
COO_PIO  
SUCE_PIO  
HCE_PIO  
SULSR_PIO  
HLSR_PIO  
-0.09  
0.13  
0.19  
-0.14  
-0.07  
0.16  
0.23  
-0.11  
-0.06  
0.19  
0.28  
-0.09  
Set/Reset Hold Time  
EBR Timing  
t
t
t
t
t
t
t
t
t
t
Clock to Output from Address or Data  
Clock to Output from EBR Output Register  
Setup Data to EBR Memory  
4.01  
0.81  
4.81  
0.97  
5.78  
1.17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CO_EBR  
COO_EBR  
-0.26  
0.41  
-0.26  
0.41  
-0.17  
0.26  
-0.21  
0.49  
-0.21  
0.49  
-0.13  
0.31  
0.23  
-0.10  
-0.17  
0.59  
-0.17  
0.59  
-0.11  
0.37  
0.28  
-0.08  
SUDATA_EBR  
HDATA_EBR  
SUADDR_EBR  
HADDR_EBR  
SUWREN_EBR  
HWREN_EBR  
SUCE_EBR  
HCE_EBR  
Hold Data to EBR Memory  
Setup Address to EBR Memory  
Hold Address to EBR Memory  
Setup Write/Read Enable to EBR Memory  
Hold Write/Read Enable to EBR Memory  
Clock Enable Setup Time to EBR Output Register 0.19  
Clock Enable Hold Time to EBR Output Register  
-0.13  
3-18  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LatticeXP Internal Timing Parameters1 (Continued)  
Over Recommended Operating Conditions  
-5  
-4  
-3  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Units  
Reset To Output Delay Time from EBR Output  
Register  
t
1.61  
1.94  
2.32  
ns  
RSTO_EBR  
PLL Parameters  
t
t
Reset Recovery to Rising Clock  
Reset Signal Setup Time  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
ns  
ns  
RSTREC  
RSTSU  
1. Internal parameters are characterized but not tested on every device.  
Timing v.F0.11  
3-19  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Timing Diagrams  
PFU Timing Diagrams  
Figure 3-6. Slice Single/Dual Port Write Cycle Timing  
CK  
WRE  
AD  
AD[3:0]  
D
DI[1:0]  
DO[1:0]  
Old Data  
D
Figure 3-7. Slice Single /Dual Port Read Cycle Timing  
WRE  
AD  
AD[3:0]  
DO[1:0]  
Old Data  
D
3-20  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
EBR Memory Timing Diagrams  
Figure 3-8. Read Mode (Normal)  
CLKA  
CSA  
WEA  
ADA  
DIA  
A0  
A1  
D1  
A0  
A1  
A0  
tSU tH  
D0  
tACCESS  
tACCESS  
D0  
D0  
D1  
DOA  
Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.  
Figure 3-9. Read Mode with Input and Output Registers  
CLKA  
CSA  
WEA  
ADA  
A1  
A0  
A1  
D1  
A0  
A0  
t
t
H
SU  
DIA  
D0  
D1  
DOA  
D0  
Mem(n) data from previous read  
D0  
DOA  
t
t
ACCESS  
ACCESS  
DOA  
(Registered)  
D1  
D0  
Mem(n) data from previous read  
output is only updated during a read cycle  
3-21  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Figure 3-10. Read Before Write (SP Read/Write on Port A, Input Registers Only)  
CLKA  
CSA  
WEA  
ADA  
A0  
A1  
D1  
A0  
A1  
A0  
t
t
H
SU  
D2  
D3  
D1  
D0  
DIA  
t
t
t
t
t
ACCESS  
ACCESS  
ACCESS  
ACCESS  
ACCESS  
old A0 Data  
old A1 Data  
D0  
D1  
DOA  
D2  
Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.  
Figure 3-11. Write Through (SP Read/Write On Port A, Input Registers Only)  
CLKA  
CSA  
WEA  
Three consecutive writes to A0  
ADA  
A0  
A1  
D1  
A0  
t
t
H
SU  
D2  
D3  
D2  
D4  
D0  
DIA  
t
t
t
t
ACCESS  
ACCESS  
ACCESS  
ACCESS  
Data from Prev Read  
or Write  
D0  
D1  
D3  
DOA  
D4  
Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive of the clock.  
3-22  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LatticeXP Family Timing Adders1  
Over Recommended Operating Conditions  
Buffer Type  
Input Adjusters  
LVDS25E  
Description  
-5  
-4  
-3  
Units  
LVDS 2.5 Emulated  
LVDS  
0.5  
0.4  
0.5  
0.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.6  
0.6  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.2  
0.2  
0.0  
0.1  
0.1  
0.1  
0.2  
0.5  
0.4  
0.5  
0.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.6  
0.6  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.2  
0.2  
0.0  
0.1  
0.1  
0.1  
0.2  
0.5  
0.4  
0.5  
0.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.6  
0.6  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.2  
0.2  
0.0  
0.1  
0.1  
0.1  
0.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVDS25  
BLVDS25  
BLVDS  
LVPECL33  
HSTL18_I  
LVPECL  
HSTL_18 class I  
HSTL_18 class II  
HSTL_18 class III  
Differential HSTL 18 class I  
Differential HSTL 18 class II  
Differential HSTL 18 class III  
HSTL_15 class I  
HSTL_15 class III  
Differential HSTL 15 class I  
Differential HSTL 15 class III  
SSTL_3 class I  
HSTL18_II  
HSTL18_III  
HSTL18D_I  
HSTL18D_II  
HSTL18D_III  
HSTL15_I  
HSTL15_III  
HSTL15D_I  
HSTL15D_III  
SSTL33_I  
SSTL33_II  
SSTL33D_I  
SSTL33D_II  
SSTL25_I  
SSTL_3 class II  
Differential SSTL_3 class I  
Differential SSTL_3 class II  
SSTL_2 class I  
SSTL25_II  
SSTL25D_I  
SSTL25D_II  
SSTL18_I  
SSTL_2 class II  
Differential SSTL_2 class I  
Differential SSTL_2 class II  
SSTL_18 class I  
Differential SSTL_18 class I  
LVTTL  
SSTL18D_I  
LVTTL33  
LVCMOS33  
LVCMOS25  
LVCMOS18  
LVCMOS15  
LVCMOS12  
PCI33  
LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.8  
LVCMOS 1.5  
LVCMOS 1.2  
PCI  
Output Adjusters  
LVDS25E  
LVDS 2.5 Emulated  
LVDS 2.5  
0.3  
0.3  
0.3  
0.1  
0.1  
0.1  
0.2  
0.1  
-0.1  
0.2  
0.3  
0.3  
0.3  
0.1  
0.1  
0.1  
0.2  
0.1  
-0.1  
0.2  
0.3  
0.3  
0.3  
0.1  
0.1  
0.1  
0.2  
0.1  
-0.1  
0.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LVDS25  
BLVDS25  
BLVDS 2.5  
LVPECL33  
HSTL18_I  
LVPECL 3.3  
HSTL_18 class I  
HSTL18_II  
HSTL18_III  
HSTL18D_I  
HSTL18D_II  
HSTL18D_III  
HSTL_18 class II  
HSTL_18 class III  
Differential HSTL 18 class I  
Differential HSTL 18 class II  
Differential HSTL 18 class III  
3-23  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LatticeXP Family Timing Adders1 (Continued)  
Over Recommended Operating Conditions  
Buffer Type  
HSTL15_I  
Description  
HSTL_15 class I  
-5  
0.2  
-4  
0.2  
-3  
0.2  
0.2  
0.2  
0.2  
0.1  
0.3  
0.1  
0.3  
-0.1  
0.3  
-0.1  
0.3  
0.1  
0.1  
0.8  
0.5  
0.3  
0.4  
0.3  
0.8  
0.8  
0.5  
0.3  
0.4  
0.3  
0.7  
0.7  
0.4  
0.0  
0.2  
0.4  
0.6  
0.6  
0.4  
0.2  
0.2  
0.6  
0.6  
0.2  
0.4  
0.4  
0.3  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HSTL15_III  
HSTL15D_I  
HSTL15D_III  
SSTL33_I  
HSTL_15 class III  
0.2  
0.2  
0.2  
0.1  
0.3  
0.1  
0.3  
-0.1  
0.3  
-0.1  
0.3  
0.1  
0.1  
0.8  
0.5  
0.3  
0.4  
0.3  
0.8  
0.8  
0.5  
0.3  
0.4  
0.3  
0.7  
0.7  
0.4  
0.0  
0.2  
0.4  
0.6  
0.6  
0.4  
0.2  
0.2  
0.6  
0.6  
0.2  
0.4  
0.4  
0.3  
0.2  
0.2  
0.2  
0.1  
0.3  
0.1  
0.3  
-0.1  
0.3  
-0.1  
0.3  
0.1  
0.1  
0.8  
0.5  
0.3  
0.4  
0.3  
0.8  
0.8  
0.5  
0.3  
0.4  
0.3  
0.7  
0.7  
0.4  
0.0  
0.2  
0.4  
0.6  
0.6  
0.4  
0.2  
0.2  
0.6  
0.6  
0.2  
0.4  
0.4  
0.3  
Differential HSTL 15 class I  
Differential HSTL 15 class III  
SSTL_3 class I  
SSTL33_II  
SSTL_3 class II  
SSTL33D_I  
SSTL33D_II  
SSTL25_I  
Differential SSTL_3 class I  
Differential SSTL_3 class II  
SSTL_2 class I  
SSTL25_II  
SSTL_2 class II  
SSTL25D_I  
SSTL25D_II  
SSTL18_I  
Differential SSTL_2 class I  
Differential SSTL_2 class II  
SSTL_1.8 class I  
SSTL18D_I  
LVTTL33_4mA  
LVTTL33_8mA  
LVTTL33_12mA  
LVTTL33_16mA  
LVTTL33_20mA  
Differential SSTL_1.8 class I  
LVTTL 4mA drive  
LVTTL 8mA drive  
LVTTL 12mA drive  
LVTTL 16mA drive  
LVTTL 20mA drive  
LVCMOS33_2mA LVCMOS 3.3 2mA drive  
LVCMOS33_4mA LVCMOS 3.3 4mA drive  
LVCMOS33_8mA LVCMOS 3.3 8mA drive  
LVCMOS33_12mA LVCMOS 3.3 12mA drive  
LVCMOS33_16mA LVCMOS 3.3 16mA drive  
LVCMOS33_20mA LVCMOS 3.3 20mA drive  
LVCMOS25_2mA LVCMOS 2.5 2mA drive  
LVCMOS25_4mA LVCMOS 2.5 4mA drive  
LVCMOS25_8mA LVCMOS 2.5 8mA drive  
LVCMOS25_12mA LVCMOS 2.5 12mA drive  
LVCMOS25_16mA LVCMOS 2.5 16mA drive  
LVCMOS25_20mA LVCMOS 2.5 20mA drive  
LVCMOS18_2mA LVCMOS 1.8 2mA drive  
LVCMOS18_4mA LVCMOS 1.8 4mA drive  
LVCMOS18_8mA LVCMOS 1.8 8mA drive  
LVCMOS18_12mA LVCMOS 1.8 12mA drive  
LVCMOS18_16mA LVCMOS 1.8 16mA drive  
LVCMOS15_2mA LVCMOS 1.5 2mA drive  
LVCMOS15_4mA LVCMOS 1.5 4mA drive  
LVCMOS15_8mA LVCMOS 1.5 8mA drive  
LVCMOS12_2mA LVCMOS 1.2 2mA drive  
LVCMOS12_6mA LVCMOS 1.2 6mA drive  
PCI33  
PCI33  
1. General timing numbers based on LVCMOS 2.5, 12mA.  
Timing v.F0.11  
3-24  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
sysCLOCK PLL Timing  
Over Recommended Operating Conditions  
Parameter  
Descriptions  
Conditions  
Min.  
25  
Typ.  
Max.  
375  
375  
187.5  
750  
Units  
MHz  
MHz  
MHz  
MHz  
MHz  
f
f
f
f
f
Input Clock Frequency (CLKI, CLKFB)  
Output Clock Frequency (CLKOP, CLKOS)  
K-Divider Output Frequency (CLKOK)  
PLL VCO Frequency  
IN  
25  
OUT  
OUT2  
VCO  
PFD  
0.195  
375  
25  
Phase Detector Input Frequency  
AC Characteristics  
t
t
Output Clock Duty Cycle  
Default duty cycle elected3  
45  
50  
250  
55  
0.05  
+/- 125  
0.02  
+/- 200  
%
UI  
DT  
PH  
4
Output Phase Accuracy  
f
f
100MHz  
ps  
OUT  
1
t
Output Clock Period Jitter  
OPJIT  
< 100MHz  
UIPP  
ps  
OUT  
t
t
t
t
t
t
t
t
t
Input Clock to Output Clock Skew  
Output Clock Pulse Width  
PLL Lock-in Time  
Divider ratio = integer  
At 90% or 10%3  
SK  
1
ns  
W
2
150  
us  
LOCK  
PA  
Programmable Delay Unit  
Input Clock Period Jitter  
External Feedback Delay  
Input Clock High Time  
Input Clock Low Time  
RST Pulse Width  
100  
400  
ps  
+/- 200  
10  
ps  
IPJIT  
ns  
FBKDLY  
HI  
90% to 90%  
10% to 10%  
0.5  
0.5  
10  
ns  
ns  
LO  
ns  
RST  
1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock.  
2. Output clock is valid after t for PLL reset and dynamic delay adjustment.  
LOCK  
3. Using LVDS output buffers.  
4. As compared to CLKOP output.  
Timing v.F0.11  
LatticeXP “C” Sleep Mode Timing  
Parameter  
Descriptions  
SLEEPN Low to I/O Tristate  
Min.  
Typ.  
Max.  
Units  
t
20  
1.4  
1.7  
1.1  
1.4  
1.7  
32  
2.1  
2.4  
1.8  
2.1  
2.4  
ns  
ms  
ms  
ms  
ms  
ms  
ns  
PWRDN  
LFXP3  
LFXP6  
t
SLEEPN High to Power Up  
LFXP10  
LFXP15  
LFXP20  
PWRUP  
t
t
SLEEPN Pulse Width to Initiate Sleep Mode  
SLEEPN Pulse Rejection  
400  
WSLEEPN  
120  
ns  
WAWAKE  
Sleep Mode  
I/O  
tPWRUP  
tPWRDN  
SLEEPN  
3-25  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LatticeXP sysCONFIG Port Timing Specifications  
Over Recommended Operating Conditions  
Parameter  
Description  
Min.  
Max.  
Units  
sysCONFIG Byte Data Flow  
t
t
t
t
t
t
t
t
t
Byte D[0:7] Setup Time to CCLK  
7
3
12  
12  
12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SUCBDI  
HCBDI  
CODO  
SUCS  
HCS  
Byte D[0:7] Hold Time to CCLK  
Clock to Dout in Flowthrough Mode  
CS[0:1] Setup Time to CCLK  
CS[0:1] Hold Time to CCLK  
7
2
Write Signal Setup Time to CCLK  
Write Signal Hold Time to CCLK  
CCLK to BUSY Delay Time  
7
SUWD  
HWD  
2
DCB  
Clock to Out for Read Data  
CORD  
sysCONFIG Byte Slave Clocking  
t
t
t
Byte Slave Clock Minimum High Pulse  
Byte Slave Clock Minimum Low Pulse  
Byte Slave Clock Cycle Time  
6
8
ns  
ns  
ns  
BSCH  
BSCL  
15  
BSCYC  
sysCONFIG Serial (Bit) Data Flow  
t
t
t
DI (Data In) Setup Time to CCLK  
DI (Data In) Hold Time to CCLK  
Clock to Dout in Flowthrough Mode  
7
2
12  
ns  
ns  
ns  
SUSCDI  
HSCDI  
CODO  
sysCONFIG Serial Slave Clocking  
t
t
Serial Slave Clock Minimum High Pulse  
Serial Slave Clock Minimum Low Pulse  
6
6
ns  
ns  
SSCH  
SSCL  
sysCONFIG POR, Initialization and Wake Up  
t
t
t
t
t
t
t
t
t
t
Minimum Vcc to INIT High  
Time from t to Valid Master Clock  
50  
2
ms  
us  
ICFG  
VMC  
ICFG  
Program Pin Pulse Rejection  
7
ns  
PRGMRJ  
2
PROGRAMN Low Time to Start Configuration  
INIT Low Time  
25  
1
ns  
PRGM  
ms  
ns  
DINIT  
Delay Time from PROGRAMN Low to INIT Low  
Delay Time from PROGRAMN Low to DONE Low  
User I/O Disable from PROGRAMN Low  
User I/O Enabled Time from CCLK Edge During Wake-up Sequence  
Additional Wake Master Clock Signals after Done Pin High  
37  
37  
25  
25  
DPPINIT  
DINITD  
IODISS  
IOENSS  
MWC  
ns  
ns  
ns  
120  
cycles  
Configuration Master Clock (CCLK)  
Selected Selected  
Frequency1  
Value -  
Value +  
MHz  
30%  
30%  
Duty Cycle  
40  
60  
%
1. See Table 2-10 for available CCLK frequencies.  
2. The threshold level for PROGRAMN, as well as for CFG[1] and CFG[0], is determined by V , such that the threshold = V /2.  
CC  
CC  
Timing v.F0.11  
3-26  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Flash Download Time  
Symbol  
Parameter  
LFXP3  
LFXP6  
Min.  
Typ.  
1.1  
1.4  
0.9  
1.1  
1.3  
Max.  
1.7  
2.0  
1.5  
1.7  
1.9  
Units  
ms  
ms  
PROGRAMN Low-to-  
t
High. Transition to Done LFXP10  
ms  
REFRESH  
High.  
LFXP15  
ms  
LFXP20  
ms  
JTAG Port Timing Specifications  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Min.  
40  
20  
20  
10  
8
Max.  
Units  
MHz  
ns  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
25  
10  
10  
10  
25  
25  
25  
MAX  
TCK [BSCAN] clock pulse width  
BTCP  
TCK [BSCAN] clock pulse width high  
ns  
BTCPH  
BTCPL  
BTS  
TCK [BSCAN] clock pulse width low  
ns  
TCK [BSCAN] setup time  
ns  
TCK [BSCAN] hold time  
ns  
BTH  
TCK [BSCAN] rise/fall time  
50  
8
ns  
BTRF  
TAP controller falling edge of clock to valid output  
TAP controller falling edge of clock to valid disable  
TAP controller falling edge of clock to valid enable  
BSCAN test capture register setup time  
ns  
BTCO  
ns  
BTCODIS  
BTCOEN  
BTCRS  
BTCRH  
BUTCO  
BTUODIS  
BTUPOEN  
ns  
ns  
BSCAN test capture register hold time  
25  
ns  
BSCAN test update register, falling edge of clock to valid output  
BSCAN test update register, falling edge of clock to valid disable  
BSCAN test update register, falling edge of clock to valid enable  
ns  
ns  
ns  
Timing v.F0.11  
Figure 3-12. JTAG Port Timing Waveforms  
TMS  
TDI  
t
t
BTH  
BTS  
t
t
BTCP  
t
BTCPL  
BTCPH  
TCK  
t
t
BTCODIS  
t
BTCO  
BTCOEN  
TDO  
Valid Data  
Valid Data  
t
BTCRH  
t
BTCRS  
Data to be  
captured  
from I/O  
Data Captured  
t
t
t
BTUPOEN  
BUTCO  
BTUODIS  
Data to be  
driven out  
to I/O  
Valid Data  
Valid Data  
3-27  
DC and Switching Characteristics  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Switching Test Conditions  
Figure 3-13 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,  
voltage, and other test conditions are shown in Figure 3-5.  
Figure 3-13. Output Test Load, LVTTL and LVCMOS Standards  
VT  
R1  
DUT  
Test Point  
CL  
Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces  
Test Condition  
R
C
Timing Ref.  
V
T
1
L
LVCMOS 3.3 = 1.5V  
LVCMOS 2.5 = V  
LVCMOS 1.8 = V  
LVCMOS 1.5 = V  
LVCMOS 1.2 = V  
/2  
/2  
/2  
/2  
CCIO  
CCIO  
CCIO  
CCIO  
LVTTL and other LVCMOS settings (L -> H, H -> L)  
0pF  
LVCMOS 2.5 I/O (Z -> H)  
LVCMOS 2.5 I/O (Z -> L)  
LVCMOS 2.5 I/O (H -> Z)  
LVCMOS 2.5 I/O (L -> Z)  
V
V
/2  
/2  
V
OL  
CCIO  
CCIO  
V
OH  
188  
0pF  
V
- 0.15  
+ 0.15  
V
OL  
OH  
V
V
OH  
OL  
Note: Output test conditions for all other interfaces are determined by the respective standards.  
3-28  
LatticeXP Family Data Sheet  
Pinout Information  
Data Sheet DS1001  
November 2007  
Signal Descriptions  
Signal Name  
I/O  
Descriptions  
General Purpose  
[Edge] indicates the edge of the device on which the pad is located. Valid  
edge designations are L (Left), B (Bottom), R (Right), T (Top).  
[Row/Column Number] indicates the PFU row or the column of the device on  
which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify  
Row Number. When Edge is L (Left) or R (Right), only need to specify Col-  
umn Number.  
[A/B] indicates the PIO within the PIC to which the pad is connected.  
P[Edge] [Row/Column Number*]_[A/B]  
I/O  
Some of these user programmable pins are shared with special function  
pins. These pin when not used as special purpose pins can be programmed  
as I/Os for user logic.  
During configuration, the user-programmable I/Os are tri-stated with an inter-  
nal pull-up resistor enabled. If any pin is not used (or not bonded to a pack-  
age pin), it is also tri-stated with an internal pull-up resistor enabled after  
configuration.  
Global RESET signal. (Active low). Any I/O pin can be configured to be  
GSRN.  
GSRN  
I
NC  
No connect.  
GND  
GND - Ground. Dedicated Pins.  
VCC - The power supply pins for core logic. Dedicated Pins.  
V
CC  
V
- The Auxiliary power supply pin. It powers all the differential and ref-  
CCAUX  
V
CCAUX  
erenced input buffers. Dedicated Pins.  
V
V
Voltage supply pins for ULM0PLL (and LLM1PLL1).  
Voltage supply pins for URM0PLL (and LRM1PLL1).  
Ground pins for ULM0PLL (and LLM1PLL1).  
Ground pins for URM0PLL (and LRM1PLL1).  
CCP0  
CCP1  
GNDP0  
GNDP1  
V
V
- The power supply pins for I/O bank x. Dedicated Pins.  
CCIOx  
CCIO  
Reference supply pins for I/O bank x. Pre-determined pins in each bank are  
assigned as V inputs. When not used, they may be used as I/O pins.  
V
V
REF1(x), REF2(x)  
REF  
PLL and Clock Functions (Used as user programmable I/O pins when not in use for PLL or clock pins)  
Reference clock (PLL) input Pads: ULM, LLM, URM, LRM, num = row from  
center, T = true and C = complement, index A, B, C...at each side.  
[LOC][num]_PLL[T, C]_IN_A  
[LOC][num]_PLL[T, C]_FB_A  
PCLK[T, C]_[n:0]_[3:0]  
[LOC]DQS[num]  
Optional feedback (PLL) input Pads: ULM, LLM, URM, LRM, num = row from  
center, T = true and C = complement, index A, B, C...at each side.  
Primary Clock Pads, T = true and C = complement, n per side, indexed by  
bank and 0,1, 2, 3 within bank.  
DQS input Pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = Ball  
function number. Any pad can be configured to be DQS output.  
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
4-1  
DS1001 Pinouts_02.5  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Signal Descriptions (Cont.)  
Signal Name  
I/O  
Descriptions  
Test and Programming (Dedicated pins. Pull-up is enabled on input pins during configuration.)  
TMS  
TCK  
I
I
Test Mode Select input, used to control the 1149.1 state machine.  
Test Clock input pin, used to clock the 1149.1 state machine.  
Test Data in pin, used to load data into device using 1149.1 state machine.  
After power-up, this TAP port can be activated for configuration by sending  
appropriate command. (Note: once a configuration port is selected it is  
locked. Another configuration port cannot be selected until the power-up  
sequence).  
TDI  
I
TDO  
O
Output pin -Test Data out pin used to shift data out of device using 1149.1.  
V
V
- The power supply pin for JTAG Test Access Port.  
CCJ  
CCJ  
Configuration Pads (used during sysCONFIG)  
Mode pins used to specify configuration modes values latched on rising edge  
of INITN. During configuration, a pull-up is enabled.  
CFG[1:0]  
I
Open Drain pin - Indicates the FPGA is ready to be configured. During con-  
I/O figuration, a pull-up is enabled. If CFG1 and CFG0 are high (SDM) then this  
pin is pulled low.  
INITN  
Initiates configuration sequence when asserted low. This pin always has an  
active pull-up.  
PROGRAMN  
DONE  
I
Open Drain pin - Indicates that the configuration sequence is complete, and  
the startup sequence is in progress.  
I/O  
CCLK  
BUSY  
I/O Configuration Clock for configuring an FPGA in sysCONFIG mode.  
I/O Generally not used. After configuration it is a user-programmable I/O pin.  
sysCONFIG chip select (Active low). During configuration, a pull-up is  
enabled. After configuration it is user a programmable I/O pin.  
CSN  
I
sysCONFIG chip select (Active Low). During configuration, a pull-up is  
enabled. After configuration it is user programmable I/O pin  
CS1N  
I
Write Data on Parallel port (Active low). After configuration it is a user pro-  
grammable I/O pin  
WRITEN  
D[7:0]  
I
sysCONFIG Port Data I/O. After configuration these are user programmable  
I/O pins.  
I/O  
Output for serial configuration data (rising edge of CCLK) when using  
sysCONFIG port. After configuration, it is a user-programmable I/O pin.  
DOUT, CSON  
O
Input for serial configuration data (clocked with CCLK) when using sysCON-  
FIG port. During configuration, a pull-up is enabled. After configuration it is a  
user-programmable I/O pin.  
DI  
I
I
I
Sleep Mode pin - Active low sleep pin. When this pin is held high, the device  
operates normally. When driven low, the device moves into Sleep Mode after  
a specified time.This pin has a weak internal pull-up, but when not used an  
SLEEPN2  
TOE3  
external pull-up to V is recommended.  
CC  
Test Output Enable tri-states all I/O pins when driven low. This pin has a  
weak internal pull-up, but when not used an external pull-up to V is recom-  
CC  
mended.  
1. Applies to LFXP10, LFXP15 and LFXP20 only.  
2. Applies to LFXP “C” devices only.  
3. Applies to LFXP “E” devices only.  
4-2  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin  
PICs Associated  
with DQS Strobe  
DDR Strobe (DQS)  
and Data (DQ) Pins  
PIO within PIC  
Polarity  
True  
A
B
A
B
A
B
A
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
DQ  
P[Edge] [n-4]  
Complement  
True  
P[Edge] [n-3]  
P[Edge] [n-2]  
P[Edge] [n-1]  
P[Edge] [n]  
Complement  
True  
Complement  
True  
B
A
B
A
B
A
B
Complement  
True  
DQ  
[Edge]DQSn  
DQ  
P[Edge] [n+1]  
P[Edge] [n+2]  
P[Edge] [n+3]  
Complement  
True  
DQ  
Complement  
True  
DQ  
DQ  
Complement  
DQ  
Notes:  
1. “n” is a row/column PIC number.  
2. The DDR interface is designed for memories that support one DQS strobe per eight bits of data. In some packages, all the potential DDR  
data (DQ) pins may not be available.  
3. The definition of the PIC numbering is provided in the Signal Names column of the Signal Descriptions table in this data sheet.  
4-3  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Pin Information Summary1  
XP3  
XP6  
Pin Type  
Single Ended User I/O  
Differential Pair User I/O2  
100 TQFP 144 TQFP 208 PQFP 144 TQFP 208 PQFP 256 fpBGA  
62  
19  
11  
14  
5
100  
35  
11  
14  
5
136  
56  
11  
14  
5
100  
35  
11  
14  
5
142  
58  
11  
14  
5
188  
80  
Dedicated  
11  
Configuration  
Muxed  
14  
TAP  
5
Dedicated (total without supplies)  
6
6
6
6
6
6
V
V
V
2
4
8
4
8
8
CC  
2
2
2
2
2
4
2
CCAUX  
CCPLL  
2
2
2
2
2
Bank0  
Bank1  
Bank2  
Bank3  
Bank4  
Bank5  
Bank6  
Bank7  
1
1
2
1
2
2
1
1
2
1
2
2
1
1
2
1
2
2
1
1
2
1
2
2
V
CCIO  
1
2
2
2
2
2
1
1
2
1
2
2
1
1
2
1
2
2
1
1
2
1
2
2
GND  
GND  
NC  
10  
2
13  
2
24  
2
13  
2
24  
2
24  
2
PLL  
0
0
6
0
0
0
Bank0  
Bank1  
Bank2  
Bank3  
Bank4  
Bank5  
Bank6  
Bank7  
8/2  
9/0  
8/3  
6/2  
5/2  
12/4  
4/2  
10/4  
1
12/3  
12/2  
12/5  
13/5  
14/6  
12/4  
13/5  
12/5  
1
20/8  
18/6  
14/6  
14/6  
21/9  
21/9  
14/6  
14/6  
1
12/3  
12/2  
12/5  
13/5  
14/6  
12/4  
13/5  
12/5  
1
20/8  
18/6  
17/7  
14/6  
21/9  
21/9  
17/7  
14/6  
1
26/11  
26/11  
21/9  
21/9  
26/11  
26/11  
21/9  
21/9  
1
SingleEnded/Differential  
I/O per Bank2  
V
CCJ  
1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not  
bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.  
2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table  
for more information.  
4-4  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Pin Information Summary1 (Cont.)  
XP10  
XP15  
XP20  
Pin Type  
256 fpBGA 388 fpBGA 256 fpBGA 388 fpBGA 484 fpBGA 256 fpBGA 388 fpBGA 484 fpBGA  
Single Ended User I/O  
Differential Pair User I/O2  
188  
76  
11  
14  
5
244  
104  
11  
188  
76  
11  
14  
5
268  
112  
11  
300  
128  
11  
188  
76  
11  
14  
5
268  
112  
11  
340  
144  
11  
Dedicated  
Configuration  
Muxed  
14  
14  
14  
14  
14  
TAP  
5
5
5
5
5
Dedicated  
(total without supplies)  
6
6
6
6
6
6
6
6
V
V
V
8
14  
8
14  
28  
12  
8
14  
28  
CC  
4
2
4
4
2
4
4
2
4
12  
CCAUX  
CCPLL  
2
5
2
2
2
2
Bank0  
Bank1  
Bank2  
Bank3  
Bank4  
Bank5  
Bank6  
Bank7  
2
2
5
4
2
5
4
2
5
2
5
4
4
2
5
4
4
4
2
4
2
4
2
2
4
2
4
4
2
4
4
V
CCIO  
2
5
2
5
4
2
5
4
2
5
2
5
4
2
5
4
2
4
2
4
4
2
4
4
2
4
2
4
4
2
4
4
GND  
GND  
NC  
24  
50  
24  
50  
56  
24  
50  
56  
2
2
2
2
2
2
2
2
PLL  
0
24  
0
0
40  
0
0
0
Bank0  
Bank1  
Bank2  
Bank3  
Bank4  
Bank5  
Bank6  
Bank7  
26/11  
26/11  
21/8  
21/8  
26/11  
26/11  
21/8  
21/8  
1
33/14  
33/14  
28/12  
28/12  
33/14  
33/14  
28/12  
28/12  
1
26/11  
26/11  
21/8  
21/8  
26/11  
26/11  
21/8  
21/8  
1
39/16  
39/16  
28/12  
28/12  
39/16  
39/16  
28/12  
28/12  
1
40/17  
40/17  
35/15  
35/15  
40/17  
40/17  
35/15  
35/15  
1
26/11  
26/11  
21/8  
21/8  
26/11  
26/11  
21/8  
21/8  
1
39/16  
39/16  
28/12  
28/12  
39/16  
39/16  
28/12  
28/12  
1
47/20  
47/20  
38/16  
38/16  
47/20  
47/20  
38/16  
38/16  
1
Single Ended/  
Differential I/O  
per Bank2  
V
CCJ  
1. During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded  
to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.  
2. The differential I/O per bank includes both dedicated LVDS and emulated LVDS pin pairs. Please see the Logic Signal Connections table for  
more information.  
4-5  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Power Supply and NC Connections  
Signals  
100 TQFP  
28, 77  
144 TQFP  
208 PQFP  
256 fpBGA  
388 fpBGA  
484 fpBGA  
V
14, 39, 73, 112  
19, 35, 53, 80, 107, D4, D13, E5, E12, H9, J8, J15, K8,  
F10, F13, G9, G10,  
CC  
151, 158, 182  
M5, M12, N4, N13 K15, L8, L15, M8, G13, G14, H8,  
M15, N8, N15, P8, H15, J7, J16, K6,  
P15, R9  
K7, K16, K17, N6,  
N7, N16, N17, P7,  
P16, R8, R15, T9,  
T10, T13, T14,  
U10, U13  
V
V
94  
82  
133  
119  
189, 199  
167, 177  
F7, F8  
G8, G9, G10, G11, F11, G11, H10,  
CCIO0  
CCIO1  
H8  
H11  
F9, F10  
G12, G13, G14,  
G15, H15  
F12, G12, H12,  
H13  
V
V
65  
58  
98  
88  
140, 149  
115, 125  
G11, H11  
J11, K11  
H16, J16, K16, L16 K15, L15, L16, L17  
CCIO2  
CCIO3  
M16, N16, P16,  
R16  
M15, M16, M17,  
N15  
V
V
47  
38  
61, 68  
49  
87, 97  
64, 74  
L9, L10  
L7, L8  
R15, T12, T13,  
T14, T15  
R12, R13, T12,  
U12  
CCIO4  
CCIO5  
R8, T8, T9, T10,  
T11  
R10, R11, T11,  
U11  
V
V
V
V
V
V
22  
21  
28, 41  
13, 23  
154  
J6, K6  
G6, H6  
D16  
M7, N7, P7, R7  
M6, M7, M8, N8  
CCIO6  
CCIO7  
CCJ  
7
8
H7, J7, K7, L7  
K8, L6, L7, L8  
73  
108  
19  
E20  
M2  
E20  
L5  
17  
25  
H4  
CCP0  
CCP1  
CCAUX  
60  
91  
128  
J12  
M21  
L18  
25, 71  
36, 106  
50, 152  
E4, E13, M4, M13 G7, G16, T7, T16 G7, G8, G15, G16,  
H7, H16, R7, R16,  
T7, T8, T15, T16  
GND1  
10, 18, 21, 33, 43, 3, 11, 20, 28, 44,  
44, 52, 59, 68, 84, 54, 56, 64, 75, 85, 49, 59, 69, 79, 82, G7, G8, G9, G10, H12, H13, H14, J9, B1, B22, H9, H14,  
5, 7, 16, 26, 38, 47, A1, A16, F6, F11, A1, A22, H10, H11, A1, A2, A21, A22,  
90, 99  
90, 101, 121, 127, 92, 106, 109, 118, H5, H7, H8, H9,  
J10, J11, J12, J13, J8, J9, J10, J11,  
J14, K9, K10, K11, J12, J13, J14, J15,  
K12, K13, K14, L9, K9, K10, K11, K12,  
136  
121, 127, 130, 135, H10, J7, J8, J9,  
143, 163, 172, 181, J10, J13, K7, K8,  
184, 194, 207  
K9, K10, L6, L11, L10, L11, L12, L13, K13, K14, L9, L10,  
T1, T16  
L14, M9, M10,  
M11, M12, M13,  
L11, L12, L13, L14,  
M9, M10, M11,  
M14, N1, N9, N10, M12, M13, M14,  
N11, N12, N13, M20, N2, N9, N10,  
N14, N22, P9, P10, N11, N12, N13,  
P11, P12, P13,  
P14, R10, R11,  
R12, R13, R14,  
AB1, AB22  
N14, P8, P9, P10,  
P11, P12, P13,  
P14, P15, R9, R14,  
AA1, AA22, AB1,  
AB2, AB21, AB22  
NC2  
XP3: 27, 33, 34,  
129, 133, 134  
XP10: C2, C15,  
XP15:B21, C4, C5,  
C16, C17, D4, D5, C6, C18, C19, C20,  
D6, D7, D16, D17, C21, D6, D18, E4,  
E4, E19, W3, W4, E6, E18, F6, L1,  
W7, W17, W18,  
W19, W20, Y3,  
Y15, Y16, AA1,  
AA2  
L19, L20, M1, M2,  
M19, M21, N1,  
N21, N22, P1, P2,  
U5, U6, U17, U18,  
V5, V6, V17, V18,  
W17, W18, W19,  
Y3, Y4, Y5  
1. All grounds must be electrically connected at the board level.  
2. NC pins should not be connected to any active signals, V or GND.  
CC  
4-6  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 Logic Signal Connections: 100 TQFP  
Pin Number  
Pin Function  
Bank  
0
0
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
Differential  
Dual Function  
1
CFG1  
-
-
-
2
DONE  
PROGRAMN  
CCLK  
-
3
-
-
4
-
-
5
PL3A  
T
C
-
LUM0_PLLT_FB_A  
6
PL3B  
LUM0_PLLC_FB_A  
7
VCCIO7  
PL5A  
-
8
-
VREF1_7  
9
PL6B  
-
VREF2_7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
GNDIO7  
PL7A  
-
-
T3  
C3  
T
C
T3  
C3  
-
DQS  
PL7B  
-
PL8A  
LUM0_PLLT_IN_A  
PL8B  
LUM0_PLLC_IN_A  
PL9A  
-
PL9B  
-
VCCP0  
GNDP0  
PL12A  
PL12B  
GNDIO6  
VCCIO6  
PL18A  
PL18B  
VCCAUX  
SLEEPN1/TOE2  
INITN  
-
-
-
-
6
6
6
6
6
6
-
T
C
-
PCLKT6_0  
PCLKC6_0  
-
-
-
T3  
C3  
-
-
-
-
-
-
-
5
-
-
-
VCC  
-
-
PB2B  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
VREF1_5  
PB5B  
-
VREF2_5  
PB8A  
T
C
-
-
PB8B  
-
GNDIO5  
PB9A  
-
-
-
PB10B  
PB11A  
PB11B  
VCCIO5  
PB12A  
PB12B  
PB13A  
PB13B  
GND  
-
-
T
C
-
DQS  
-
-
-
-
-
-
-
T
C
T
C
-
4-7  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 Logic Signal Connections: 100 TQFP (Cont.)  
Pin Number  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
Pin Function  
GNDIO4  
PB15A  
PB15B  
VCCIO4  
PB19A  
PB19B  
PB24A  
PR18B  
GNDIO3  
PR18A  
PR15B  
PR14A  
PR13B  
PR13A  
VCCIO3  
GNDP1  
VCCP1  
PR9B  
Bank  
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
-
Differential  
Dual Function  
-
T
C
-
-
PCLKT4_0  
PCLKC4_0  
-
T
C
-
DQS  
VREF1_4  
VREF2_4  
C3  
-
-
-
T3  
-
-
VREF1_3  
-
VREF2_3  
C
T
-
-
-
-
-
-
-
-
-
2
2
2
2
2
2
2
2
2
2
-
C
T
C
T
-
PCLKC2_0  
PR9A  
PCLKT2_0  
PR8B  
RUM0_PLLC_IN_A  
PR8A  
RUM0_PLLT_IN_A  
VCCIO2  
PR6B  
-
-
VREF1_2  
PR5A  
-
VREF2_2  
GNDIO2  
PR3B  
-
-
C
T
-
RUM0_PLLC_FB_A  
PR3A  
RUM0_PLLT_FB_A  
VCCAUX  
TDO  
-
-
-
-
VCCJ  
-
-
-
TDI  
-
-
-
TMS  
-
-
-
TCK  
-
-
-
VCC  
-
-
-
PT24A  
PT23A  
PT22B  
PT21A  
VCCIO1  
PT20B  
GNDIO1  
PT17A  
PT16A  
PT15B  
1
1
1
1
1
1
1
1
1
1
-
-
-
D0  
D1  
D2  
-
-
-
-
-
D3  
-
-
-
D4  
D5  
D6  
-
-
4-8  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 Logic Signal Connections: 100 TQFP (Cont.)  
Pin Number  
Pin Function  
PT14B  
PT13B  
GNDIO0  
PT13A  
PT12B  
PT12A  
VCCIO0  
PT9A  
Bank  
Differential  
Dual Function  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
1
0
0
0
0
0
0
0
0
0
0
-
-
C
-
D7  
BUSY  
-
T
C
T
-
CS1N  
PCLKC0_0  
PCLKT0_0  
-
-
DOUT  
PT8A  
-
WRITEN  
PT6A  
-
DI  
PT5A  
-
CSN  
GND  
-
-
-
CFG0  
0
-
1. Applies to LFXP “C” only.  
2. Applies to LFXP “E” only.  
3. Supports dedicated LVDS outputs.  
4-9  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP  
LFXP3  
LFXP6  
Pin  
Number Pin Function  
Bank Differential  
Dual Function  
Pin Function  
PROGRAMN  
CCLK  
Bank Differential  
Dual Function  
1
PROGRAMN  
CCLK  
7
7
-
-
-
-
7
7
-
-
-
-
2
-
-
3
GND  
-
-
GND  
-
-
4
PL2A  
7
7
7
7
7
7
7
7
7
7
-
T3  
C3  
T
C
-
-
PL2A  
7
7
7
7
7
7
7
7
7
7
-
T3  
C3  
T
C
-
-
5
PL2B  
-
PL2B  
-
6
PL3A  
LUM0_PLLT_FB_A  
PL3A  
LUM0_PLLT_FB_A  
7
PL3B  
LUM0_PLLC_FB_A  
PL3B  
LUM0_PLLC_FB_A  
8
VCCIO7  
PL5A  
-
VCCIO7  
PL5A  
-
9
-
VREF1_7  
-
VREF1_7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
PL6B  
-
VREF2_7  
PL6B  
-
VREF2_7  
GNDIO7  
PL7A  
-
-
GNDIO7  
PL7A  
-
-
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
PL7B  
-
PL7B  
-
VCC  
-
VCC  
-
PL8A  
7
7
7
7
-
T
C
T3  
C3  
-
LUM0_PLLT_IN_A  
PL8A  
7
7
7
7
-
T
C
T3  
C3  
-
LUM0_PLLT_IN_A  
PL8B  
LUM0_PLLC_IN_A  
PL8B  
LUM0_PLLC_IN_A  
PL9A  
-
PL9A  
-
PL9B  
-
PL9B  
-
VCCP0  
GNDP0  
VCCIO6  
PL11A  
PL11B  
PL12A  
PL12B  
PL13A  
PL13B  
GNDIO6  
PL14A  
PL15B  
PL16A  
PL16B  
PL17A  
PL18A  
PL18B  
VCCAUX  
SLEEPN1/TOE2  
INITN  
-
VCCP0  
GNDP0  
VCCIO6  
PL16A  
PL16B  
PL17A  
PL17B  
PL18A  
PL18B  
GNDIO6  
PL22A  
PL23B  
PL24A  
PL24B  
PL25A  
PL26A  
PL26B  
VCCAUX  
SLEEPN1/TOE2  
INITN  
-
-
-
-
-
-
-
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
-
-
-
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
-
-
-
T3  
C3  
T
C
T3  
C3  
-
-
T3  
C3  
T
C
T3  
C3  
-
-
-
-
PCLKT6_0  
PCLKT6_0  
PCLKC6_0  
PCLKC6_0  
-
-
-
-
-
-
-
VREF1_6  
-
VREF1_6  
-
VREF2_6  
-
VREF2_6  
T3  
C3  
-
T3  
C3  
-
DQS  
T3  
C3  
-
T3  
C3  
-
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
5
-
-
-
VCC  
-
-
VCC  
-
-
PB2B  
5
5
5
5
5
5
5
-
VREF1_5  
PB5B  
5
5
5
5
5
5
5
-
VREF1_5  
PB5B  
VREF2_5  
PB8B  
-
VREF2_5  
-
PB7A  
T
C
-
-
-
-
-
-
PB10A  
PB10B  
GNDIO5  
PB12A  
PB13B  
T
C
-
-
-
-
-
-
PB7B  
GNDIO5  
PB9A  
-
-
PB10B  
-
-
4-10  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)  
LFXP3  
LFXP6  
Pin  
Number Pin Function  
Bank Differential  
Dual Function  
Pin Function  
PB14A  
PB14B  
VCCIO5  
PB15A  
PB15B  
PB16A  
PB16B  
GND  
Bank Differential  
Dual Function  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
PB11A  
PB11B  
VCCIO5  
PB12A  
PB12B  
PB13A  
PB13B  
GND  
5
5
5
5
5
5
5
-
T
C
-
DQS  
5
5
5
5
5
5
5
-
T
C
-
DQS  
-
-
-
-
T
C
T
C
-
-
T
C
T
C
-
-
-
-
-
-
-
-
-
-
PB14A  
GNDIO4  
PB14B  
PB15A  
PB15B  
PB16A  
VCCIO4  
PB16B  
PB19A  
GNDIO4  
PB19B  
PB20A  
PB20B  
VCCIO4  
PB22A  
PB24A  
PB24B  
PB25A  
VCC  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
-
T
-
-
PB17A  
GNDIO4  
PB17B  
PB18A  
PB18B  
PB19A  
VCCIO4  
PB19B  
PB22A  
GNDIO4  
PB22B  
PB23A  
PB23B  
VCCIO4  
PB25A  
PB27A  
PB27B  
PB28A  
VCC  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
-
T
-
-
-
-
C
T
C
T
-
-
C
T
C
T
-
-
PCLKT4_0  
PCLKT4_0  
PCLKC4_0  
PCLKC4_0  
-
-
-
-
C
T
-
-
C
T
-
-
DQS  
DQS  
-
-
C
T
C
-
VREF1_4  
C
T
C
-
VREF1_4  
-
-
-
-
-
-
-
-
-
-
T
C
-
VREF2_4  
T
C
-
VREF2_4  
-
-
-
-
-
C3  
-
-
C3  
-
PR18B  
GNDIO3  
PR18A  
PR17B  
PR17A  
PR16B  
PR16A  
PR15B  
PR14A  
PR13B  
PR13A  
GND  
3
3
3
3
3
3
3
3
3
3
3
-
-
PR26B  
GNDIO3  
PR26A  
PR25B  
PR25A  
PR24B  
PR24A  
PR23B  
PR22A  
PR21B  
PR21A  
GND  
3
3
3
3
3
3
3
3
3
3
3
-
-
-
-
-
-
T3  
C
T
C3  
T3  
-
-
T3  
C
T
C3  
T3  
-
-
-
-
-
-
-
-
DQS  
DQS  
VREF1_3  
VREF1_3  
-
VREF2_3  
-
VREF2_3  
C
T
-
-
C3  
T3  
-
-
-
-
-
-
PR12A  
PR11B  
VCCIO3  
PR11A  
GNDP1  
VCCP1  
PR9B  
3
3
3
3
-
-
PR20A  
PR19B  
VCCIO3  
PR19A  
GNDP1  
VCCP1  
PR12B  
3
3
3
3
-
-
C3  
-
-
C
-
-
-
-
-
-
T
-
-
T3  
-
-
-
-
-
-
-
-
-
-
2
C
PCLKC2_0  
2
C
PCLKC2_0  
4-11  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)  
LFXP3  
LFXP6  
Pin  
Number Pin Function  
Bank Differential  
Dual Function  
Pin Function  
PR12A  
PR8B  
Bank Differential  
Dual Function  
93  
PR9A  
PR8B  
2
2
2
2
2
2
2
2
2
2
2
2
2
-
T
C
T
C3  
T3  
-
PCLKT2_0  
2
2
2
2
2
2
2
2
2
2
2
2
2
-
T
C
T
C3  
T3  
-
PCLKT2_0  
94  
RUM0_PLLC_IN_A  
RUM0_PLLC_IN_A  
95  
PR8A  
RUM0_PLLT_IN_A  
PR8A  
RUM0_PLLT_IN_A  
96  
PR7B  
-
PR7B  
-
97  
PR7A  
DQS  
PR7A  
DQS  
98  
VCCIO2  
PR6B  
-
VCCIO2  
PR6B  
-
99  
-
VREF1_2  
-
VREF1_2  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
PR5A  
-
VREF2_2  
PR5A  
-
VREF2_2  
GNDIO2  
PR3B  
-
-
GNDIO2  
PR3B  
-
-
C
T
C3  
T3  
-
RUM0_PLLC_FB_A  
C
T
C3  
T3  
-
RUM0_PLLC_FB_A  
PR3A  
RUM0_PLLT_FB_A  
PR3A  
RUM0_PLLT_FB_A  
PR2B  
-
PR2B  
-
PR2A  
-
PR2A  
-
VCCAUX  
TDO  
-
VCCAUX  
TDO  
-
-
-
-
-
-
-
VCCJ  
-
-
-
VCCJ  
-
-
-
TDI  
-
-
-
TDI  
-
-
-
TMS  
-
-
-
TMS  
-
-
-
TCK  
-
-
-
TCK  
-
-
-
VCC  
-
-
-
VCC  
-
-
-
PT25A  
PT24A  
PT23A  
PT22B  
PT22A  
PT21A  
VCCIO1  
PT20B  
GNDIO1  
PT17A  
PT16A  
PT15B  
PT15A  
PT14B  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
VREF1_1  
PT28A  
PT27A  
PT26A  
PT25B  
PT25A  
PT24A  
VCCIO1  
PT23B  
GNDIO1  
PT20A  
PT19A  
PT18B  
PT18A  
PT17B  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
VREF1_1  
-
-
-
-
-
D0  
-
D0  
C
T
-
D1  
C
T
-
D1  
VREF2_1  
VREF2_1  
D2  
D2  
-
-
-
-
D3  
-
D3  
-
-
-
-
-
D4  
-
D4  
-
D5  
-
D5  
-
C
T
-
D6  
C
T
-
D6  
-
-
D7  
D7  
-
-
BUSY  
CS1N  
PCLKC0_0  
PCLKT0_0  
-
-
-
BUSY  
CS1N  
PCLKC0_0  
PCLKT0_0  
-
PT13B  
PT13A  
PT12B  
PT12A  
PT11B  
VCCIO0  
PT11A  
PT9A  
0
0
0
0
0
0
0
0
0
0
0
C
T
C
T
C
-
PT16B  
PT16A  
PT15B  
PT15A  
PT14B  
VCCIO0  
PT14A  
PT12A  
GNDIO0  
PT11A  
PT10A  
0
0
0
0
0
0
0
0
0
0
0
C
T
C
T
C
-
-
-
T
-
DQS  
T
-
DQS  
DOUT  
-
DOUT  
-
GNDIO0  
PT8A  
-
-
-
WRITEN  
VREF1_0  
-
WRITEN  
VREF1_0  
PT7A  
-
-
4-12  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 & LFXP6 Logic Signal Connections: 144 TQFP (Cont.)  
LFXP3  
LFXP6  
Pin  
Number Pin Function  
Bank Differential  
Dual Function  
Pin Function  
PT9A  
Bank Differential  
Dual Function  
139  
140  
141  
142  
143  
144  
PT6A  
PT5A  
PT3B  
CFG0  
CFG1  
DONE  
0
0
0
0
0
0
-
DI  
0
0
0
0
0
0
-
-
-
-
-
-
DI  
-
CSN  
PT8A  
CSN  
-
-
-
-
VREF2_0  
PT6B  
VREF2_0  
-
-
-
CFG0  
-
-
-
CFG1  
DONE  
1. Applies to LFXP “C” only.  
2. Applies to LFXP “E” only.  
3. Supports dedicated LVDS outputs.  
4-13  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP  
LFXP3  
LFXP6  
Pin  
Number Pin Function  
Bank Differential  
Dual Function  
Pin Function  
CFG1  
Bank Differential  
Dual Function  
1
CFG1  
DONE  
PROGRAMN  
CCLK  
GND  
0
0
7
7
-
-
-
-
0
0
7
7
-
-
-
-
2
-
DONE  
PROGRAMN  
CCLK  
-
3
-
-
-
-
4
-
-
-
-
5
-
-
GND  
-
-
6
PL2A  
7
7
7
7
7
7
7
7
7
7
7
7
7
-
T3  
-
PL2A  
7
7
7
7
7
7
7
7
7
7
7
7
7
-
T3  
-
7
GNDIO7  
PL2B  
-
-
GNDIO7  
PL2B  
-
-
8
C3  
T
C
T3  
C3  
-
-
C3  
T
C
T3  
C3  
-
-
9
PL3A  
LUM0_PLLT_FB_A  
PL3A  
LUM0_PLLT_FB_A  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
PL3B  
LUM0_PLLC_FB_A  
PL3B  
LUM0_PLLC_FB_A  
PL4A  
-
PL4A  
-
PL4B  
-
PL4B  
-
VCCIO7  
PL5A  
-
VCCIO7  
PL5A  
-
-
VREF1_7  
-
VREF1_7  
PL6B  
-
VREF2_7  
PL6B  
-
VREF2_7  
GNDIO7  
PL7A  
-
-
GNDIO7  
PL7A  
-
-
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
PL7B  
-
PL7B  
-
VCC  
-
VCC  
-
PL8A  
7
7
7
7
7
-
T
C
T3  
-
LUM0_PLLT_IN_A  
PL8A  
7
7
7
7
7
-
T
C
T3  
-
LUM0_PLLT_IN_A  
PL8B  
LUM0_PLLC_IN_A  
PL8B  
LUM0_PLLC_IN_A  
PL9A  
-
PL9A  
-
VCCIO7  
PL9B  
-
VCCIO7  
PL9B  
-
C3  
-
C3  
-
VCCP0  
GNDP0  
NC  
-
-
VCCP0  
GNDP0  
PL15B  
VCCIO6  
PL16A  
PL16B  
PL17A  
PL17B  
PL18A  
PL18B  
VCC  
-
-
-
-
-
-
-
-
-
-
-
6
6
6
6
6
6
6
6
-
-
-
VCCIO6  
PL11A  
PL11B  
PL12A  
PL12B  
NC  
6
6
6
6
6
-
-
-
-
-
T3  
C3  
T
C
-
-
T3  
C3  
T
C
T3  
C3  
-
T3  
C3  
-
-
-
-
PCLKT6_0  
PCLKT6_0  
PCLKC6_0  
PCLKC6_0  
-
-
NC  
-
-
-
-
VCC  
-
-
-
-
PL13A  
PL13B  
GNDIO6  
PL14A  
PL15B  
VCCIO6  
PL16A  
PL16B  
PL17A  
PL17B  
PL18A  
6
6
6
6
6
6
6
6
6
6
6
T3  
C3  
-
-
PL21A  
PL21B  
GNDIO6  
PL22A  
PL23B  
VCCIO6  
PL24A  
PL24B  
PL25A  
PL25B  
PL26A  
6
6
6
6
6
6
6
6
6
6
6
-
-
-
-
-
-
VREF1_6  
-
VREF1_6  
-
VREF2_6  
-
VREF2_6  
-
-
-
-
T3  
C3  
T
C
T3  
DQS  
T3  
C3  
T
C
T3  
DQS  
-
-
-
-
-
-
-
-
4-14  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)  
LFXP3  
LFXP6  
Pin  
Number Pin Function  
Bank Differential  
Dual Function  
Pin Function  
GNDIO6  
PL26B  
GND  
Bank Differential  
Dual Function  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
GNDIO6  
PL18B  
GND  
6
6
-
-
C3  
-
-
6
6
-
-
C3  
-
-
-
-
-
-
VCCAUX  
SLEEPN1/TOE2  
INITN  
-
-
-
VCCAUX  
SLEEPN1/TOE2  
INITN  
-
-
-
-
-
-
-
-
-
5
-
-
-
5
-
-
-
VCC  
-
-
VCC  
-
-
PB2B  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
VREF1_5  
PB5B  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
VREF1_5  
PB3A  
T
C
T
C
-
-
PB6A  
T
C
T
C
-
DQS  
PB3B  
-
PB6B  
-
PB4A  
-
PB7A  
-
PB4B  
-
PB7B  
-
GNDIO5  
PB5A  
-
GNDIO5  
PB8A  
-
T
C
T
C
-
-
T
C
T
C
-
-
PB5B  
VREF2_5  
PB8B  
VREF2_5  
PB6A  
-
PB9A  
-
PB6B  
-
PB9B  
-
VCCIO5  
PB7A  
-
VCCIO5  
PB10A  
PB10B  
PB11A  
PB11B  
GNDIO5  
PB12A  
PB13B  
PB14A  
PB14B  
VCCIO5  
PB15A  
PB15B  
PB16A  
PB16B  
GND  
-
T
C
T
C
-
-
T
C
T
C
-
-
PB7B  
-
-
PB8A  
-
-
PB8B  
-
-
GNDIO5  
PB9A  
-
-
-
-
-
-
PB10B  
PB11A  
PB11B  
VCCIO5  
PB12A  
PB12B  
PB13A  
PB13B  
GND  
-
-
-
-
T
C
-
DQS  
T
C
-
DQS  
-
-
-
-
T
C
T
C
-
-
T
C
T
C
-
-
-
-
-
-
-
-
-
-
VCC  
-
-
-
VCC  
-
-
-
PB14A  
GNDIO4  
PB14B  
PB15A  
PB15B  
PB16A  
VCCIO4  
PB16B  
PB17A  
PB18B  
PB19A  
GNDIO4  
4
4
4
4
4
4
4
4
4
4
4
4
T
-
-
PB17A  
GNDIO4  
PB17B  
PB18A  
PB18B  
PB19A  
VCCIO4  
PB19B  
PB20A  
PB21B  
PB22A  
GNDIO4  
4
4
4
4
4
4
4
4
4
4
4
4
T
-
-
-
-
C
T
C
T
-
-
C
T
C
T
-
-
PCLKT4_0  
PCLKT4_0  
PCLKC4_0  
PCLKC4_0  
-
-
-
-
C
-
-
C
-
-
-
-
-
-
DQS  
-
-
-
DQS  
-
T
-
T
-
4-15  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)  
LFXP3  
LFXP6  
Pin  
Number Pin Function  
Bank Differential  
Dual Function  
Pin Function  
PB22B  
PB23A  
PB23B  
PB24A  
VCCIO4  
PB24B  
PB25A  
PB25B  
PB26A  
PB26B  
PB27A  
PB30A  
PB30B  
GND  
Bank Differential  
Dual Function  
93  
PB19B  
PB20A  
PB20B  
PB21A  
VCCIO4  
PB21B  
PB22A  
PB22B  
PB23A  
PB23B  
PB24A  
PB24B  
PB25A  
GND  
4
4
4
4
4
4
4
4
4
4
4
4
4
-
C
T
C
T
-
VREF1_4  
4
4
4
4
4
4
4
4
4
4
4
4
4
-
C
T
C
T
-
VREF1_4  
94  
-
-
95  
-
-
96  
-
-
97  
-
-
98  
C
T
C
T
C
T
C
-
-
C
T
C
T
C
-
-
99  
-
-
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
-
-
-
-
-
-
VREF2_4  
VREF2_4  
-
T
C
-
DQS  
-
-
-
-
-
VCC  
-
-
C3  
-
VCC  
-
-
C3  
-
PR18B  
GNDIO3  
PR18A  
PR17B  
PR17A  
PR16B  
PR16A  
VCCIO3  
PR15B  
PR14A  
GNDIO3  
PR13B  
PR13A  
GND  
3
3
3
3
3
3
3
3
3
3
3
3
3
-
-
PR26B  
GNDIO3  
PR26A  
PR25B  
PR25A  
PR24B  
PR24A  
VCCIO3  
PR23B  
PR22A  
GNDIO3  
PR21B  
PR21A  
GND  
3
3
3
3
3
3
3
3
3
3
3
3
3
-
-
-
-
-
-
T3  
C
T
C3  
T3  
-
-
T3  
C
T
C3  
T3  
-
-
-
-
-
-
-
-
DQS  
DQS  
-
-
-
VREF1_3  
-
VREF1_3  
-
VREF2_3  
-
VREF2_3  
-
-
-
-
C
T
-
-
C3  
T3  
-
-
-
-
-
-
PR12B  
PR12A  
PR11B  
VCCIO3  
PR11A  
GNDP1  
VCCP1  
NC  
3
3
3
3
3
-
C
T
C
-
-
PR20B  
PR20A  
PR19B  
VCCIO3  
PR19A  
GNDP1  
VCCP1  
PR13A  
GND  
3
3
3
3
3
-
C
T
C3  
-
-
-
-
-
-
-
-
T
-
-
T3  
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
GND  
-
-
-
-
-
PR9B  
2
2
-
C
T
-
PCLKC2_0  
PR12B  
PR12A  
PR11B  
PR11A  
GNDIO2  
PR8B  
2
2
2
2
2
2
2
2
C
T
C3  
T3  
-
PCLKC2_0  
PR9A  
PCLKT2_0  
PCLKT2_0  
NC  
-
-
NC  
-
-
-
-
GNDIO2  
PR8B  
2
2
2
2
-
-
-
C
T
C3  
RUM0_PLLC_IN_A  
RUM0_PLLT_IN_A  
-
C
T
C3  
RUM0_PLLC_IN_A  
RUM0_PLLT_IN_A  
-
PR8A  
PR8A  
PR7B  
PR7B  
4-16  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)  
LFXP3  
LFXP6  
Pin  
Number Pin Function  
Bank Differential  
Dual Function  
Pin Function  
PR7A  
Bank Differential  
Dual Function  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
PR7A  
VCCIO2  
PR6B  
2
2
2
2
2
2
2
2
2
2
2
2
-
T3  
DQS  
2
2
2
2
2
2
2
2
2
2
2
2
-
T3  
DQS  
-
-
VCCIO2  
PR6B  
-
-
-
VREF1_2  
-
VREF1_2  
PR5A  
-
VREF2_2  
PR5A  
-
VREF2_2  
GNDIO2  
PR4B  
-
-
GNDIO2  
PR4B  
-
-
C3  
T3  
C
T
C3  
-
-
C3  
T3  
C
T
C3  
-
-
PR4A  
-
PR4A  
-
PR3B  
RUM0_PLLC_FB_A  
PR3B  
RUM0_PLLC_FB_A  
PR3A  
RUM0_PLLT_FB_A  
PR3A  
RUM0_PLLT_FB_A  
PR2B  
-
PR2B  
-
VCCIO2  
PR2A  
-
VCCIO2  
PR2A  
-
T3  
-
T3  
-
VCC  
-
-
VCC  
-
-
VCCAUX  
TDO  
-
-
-
VCCAUX  
TDO  
-
-
-
-
-
-
-
-
-
VCCJ  
-
-
-
VCCJ  
-
-
-
TDI  
-
-
-
TDI  
-
-
-
TMS  
-
-
-
TMS  
-
-
-
TCK  
-
-
-
TCK  
-
-
-
VCC  
-
-
-
VCC  
-
-
-
PT25A  
PT24B  
PT24A  
PT23A  
GNDIO1  
PT22B  
PT22A  
PT21A  
VCCIO1  
PT20B  
PT20A  
PT19B  
PT19A  
GNDIO1  
PT18B  
PT17A  
PT16B  
PT16A  
VCCIO1  
PT15B  
PT15A  
PT14B  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
VREF1_1  
PT28A  
PT27B  
PT27A  
PT26A  
GNDIO1  
PT25B  
PT25A  
PT24A  
VCCIO1  
PT23B  
PT23A  
PT22B  
PT22A  
GNDIO1  
PT21B  
PT20A  
PT19B  
PT19A  
VCCIO1  
PT18B  
PT18A  
PT17B  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
VREF1_1  
C
T
-
-
C
T
-
-
-
-
D0  
D0  
-
-
-
-
C
T
-
D1  
C
T
-
D1  
VREF2_1  
VREF2_1  
D2  
D2  
-
-
-
-
C
T
C
T
-
D3  
C
T
C
T
-
D3  
-
-
-
-
DQS  
DQS  
-
-
-
-
-
-
-
D4  
-
D4  
C
T
-
-
C
T
-
-
D5  
D5  
-
-
C
T
-
D6  
C
T
-
D6  
-
-
D7  
D7  
-
-
-
-
VCC  
-
-
-
BUSY  
-
VCC  
-
-
-
BUSY  
-
PT13B  
GNDIO0  
0
0
C
-
PT16B  
GNDIO0  
0
0
C
-
4-17  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP3 & LFXP6 Logic Signal Connections: 208 PQFP (Cont.)  
LFXP3  
LFXP6  
Pin  
Number Pin Function  
Bank Differential  
Dual Function  
Pin Function  
PT16A  
PT15B  
PT15A  
PT14B  
VCCIO0  
PT14A  
PT13B  
PT12A  
PT11B  
GNDIO0  
PT11A  
PT10B  
PT10A  
PT9B  
Bank Differential  
Dual Function  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
PT13A  
PT12B  
PT12A  
PT11B  
VCCIO0  
PT11A  
PT10B  
PT9A  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
T
C
T
C
-
CS1N  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
T
C
T
C
-
CS1N  
PCLKC0_0  
PCLKC0_0  
PCLKT0_0  
PCLKT0_0  
-
-
-
-
T
-
DQS  
T
-
DQS  
-
-
-
DOUT  
-
DOUT  
PT8B  
C
-
-
C
-
-
GNDIO0  
PT8A  
-
-
T
C
T
C
-
WRITEN  
T
C
T
C
-
WRITEN  
PT7B  
-
-
PT7A  
VREF1_0  
VREF1_0  
PT6B  
-
-
VCCIO0  
PT6A  
-
VCCIO0  
PT9A  
-
T
C
T
C
T
-
DI  
T
C
T
C
T
-
DI  
PT5B  
-
PT8B  
-
PT5A  
CSN  
PT8A  
CSN  
PT4B  
-
PT7B  
-
PT4A  
-
PT7A  
-
PT3B  
VREF2_0  
PT6B  
VREF2_0  
PT2B  
-
-
-
-
PT5B  
-
-
-
-
GND  
-
GND  
-
CFG0  
0
-
CFG0  
0
-
1. Applies to LFXP “C” only.  
2. Applies to LFXP “E” only.  
3. Supports dedicated LVDS outputs.  
4-18  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA  
LFXP6  
LFXP10  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
C2  
C1  
-
PROGRAMN  
CCLK  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
PROGRAMN  
CCLK  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
-
-
GNDIO7  
PL3A  
-
-
GNDIO7  
PL3A  
-
-
D2  
D3  
D1  
E2  
-
T
LUM0_PLLT_FB_A  
T
C
-
LUM0_PLLT_FB_A  
PL3B  
C
T3  
-
LUM0_PLLC_FB_A  
PL3B  
LUM0_PLLC_FB_A  
PL2A  
-
PL5A  
-
PL5A  
VREF1_7  
PL6B  
-
VREF1_7  
GNDIO7  
PL7A  
-
-
GNDIO7  
PL7A  
-
-
E1  
F1  
E3  
F4  
F3  
F2  
-
T3  
C3  
T
DQS  
T3  
C3  
T
C
T3  
C3  
-
DQS  
PL7B  
-
PL7B  
-
PL12A  
PL12B  
PL4A  
-
PL8A  
-
C
T3  
C3  
-
-
PL8B  
-
-
PL9A  
-
PL4B  
-
PL9B  
-
GNDIO7  
PL2B  
-
GNDIO7  
PL11B  
PL12A  
PL12B  
PL13A  
PL13B  
PL14A  
PL15B  
GNDIO7  
PL16A  
PL16B  
PL18A  
PL18B  
VCCP0  
GNDP0  
PL20A  
PL20B  
GNDIO6  
PL22A  
PL23B  
PL24A  
PL24B  
PL25A  
PL25B  
PL26A  
GNDIO6  
PL26B  
PL28A  
-
G1  
G3  
G2  
H1  
H2  
G4  
G5  
-
C3  
-
-
-
PL8A  
T
LUM0_PLLT_IN_A  
T
C
T3  
C3  
-
LUM0_PLLT_IN_A  
PL8B  
C
T3  
C3  
-
LUM0_PLLC_IN_A  
LUM0_PLLC_IN_A  
PL9A  
-
-
PL9B  
-
-
PL6B  
VREF2_7  
VREF2_7  
PL14A  
GNDIO7  
PL11A  
PL11B  
PL13A  
PL13B  
VCCP0  
GNDP0  
PL17A  
PL17B  
GNDIO6  
PL15B  
PL22A  
PL16A  
PL16B  
PL18A  
PL18B  
PL19A  
GNDIO6  
PL19B  
PL21A  
-
-
-
-
-
-
-
-
J1  
J2  
H3  
J3  
H4  
H5  
K1  
K2  
-
T3  
C3  
T3  
C3  
-
-
T3  
C3  
T3  
C3  
-
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
6
6
6
6
6
6
6
6
6
6
6
6
T
PCLKT6_0  
6
6
6
6
6
6
6
6
6
6
6
6
6
T
C
-
PCLKT6_0  
C
-
PCLKC6_0  
PCLKC6_0  
-
-
J4  
J5  
L1  
L2  
M1  
M2  
K3  
-
-
-
-
-
-
VREF1_6  
-
VREF1_6  
T3  
C3  
T3  
C3  
T3  
-
-
-
-
-
-
-
-
-
T3  
C3  
T
C
T3  
-
DQS  
-
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
-
-
-
-
L3  
L4  
C3  
T3  
C3  
-
4-19  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP6  
LFXP10  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
K4  
K5  
-
PL20A  
PL20B  
GNDIO6  
PL23B  
PL21B  
PL24A  
PL24B  
PL25A  
PL25B  
PL26A  
GNDIO6  
PL26B  
SLEEPN1/TOE2  
INITN  
6
6
6
6
6
6
6
6
6
6
6
6
-
T
C
-
-
PL29A  
PL29B  
GNDIO6  
PL31A  
PL32B  
PL33A  
PL33B  
PL34A  
PL34B  
PL35A  
GNDIO6  
PL35B  
SLEEPN1/TOE2  
INITN  
6
6
6
6
6
6
6
6
6
6
6
6
-
T
C
-
-
-
-
-
-
N1  
N2  
P1  
P2  
L5  
M6  
M3  
-
-
VREF2_6  
-
VREF2_6  
C3  
T3  
C3  
T
C
T3  
-
-
-
-
DQS  
T3  
C3  
T
C
T3  
-
DQS  
-
-
-
LLM0_PLLT_FB_A  
-
LLM0_PLLC_FB_A  
-
-
-
-
N3  
P4  
P3  
-
C3  
-
C3  
-
-
-
-
-
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
GNDIO5  
PB2A  
-
-
GNDIO5  
PB6A  
-
-
R4  
N5  
-
T
C
-
-
T
C
-
-
PB2B  
-
PB6B  
-
GNDIO5  
PB5B  
-
GNDIO5  
PB7A  
-
P5  
R1  
N6  
M7  
R2  
T2  
R3  
T3  
-
-
VREF1_5  
T
C
-
VREF1_5  
PB3B  
C
-
-
PB7B  
-
PB4A  
-
PB8A  
-
PB3A  
T
T
C
T
C
-
-
PB9B  
-
-
PB6A  
DQS  
PB10A  
PB10B  
PB11A  
PB11B  
GNDIO5  
PB12A  
PB12B  
PB13A  
PB13B  
PB14A  
PB14B  
PB15A  
PB15B  
GNDIO5  
PB16A  
PB17B  
PB18A  
PB18B  
PB19A  
PB19B  
T
C
T
C
-
DQS  
PB6B  
-
-
PB7A  
-
-
PB7B  
-
-
GNDIO5  
PB8A  
-
-
T4  
R5  
N7  
M8  
T5  
P6  
T6  
R6  
-
T
C
T
C
T
C
T
C
-
-
T
C
T
C
T
C
T
C
-
-
PB8B  
VREF2_5  
VREF2_5  
PB9A  
-
-
PB9B  
-
-
PB10A  
PB10B  
PB11A  
PB11B  
GNDIO5  
PB12A  
PB13B  
PB14A  
PB14B  
PB15A  
PB15B  
-
-
-
-
-
-
-
-
-
-
P7  
N8  
R7  
T7  
P8  
T8  
-
-
-
-
-
-
-
-
T
C
T
C
DQS  
T
C
T
C
DQS  
-
-
-
-
-
-
4-20  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP6  
LFXP10  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
R8  
T9  
PB16A  
PB16B  
PB17A  
GNDIO4  
PB17B  
PB18A  
PB18B  
PB19A  
PB19B  
PB20A  
PB21B  
PB22A  
GNDIO4  
PB22B  
PB23A  
PB23B  
PB24A  
PB24B  
PB25A  
PB25B  
PB26A  
GNDIO4  
PB26B  
PB27A  
PB27B  
PB28A  
PB29B  
PB30A  
PB30B  
PB31A  
GNDIO4  
PB31B  
GNDIO3  
PR26B  
PR26A  
PR24B  
PR24A  
PR15B  
PR23B  
GNDIO3  
PR25B  
PR25A  
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
T
C
T
-
-
PB20A  
PB20B  
PB21A  
GNDIO4  
PB21B  
PB22A  
PB22B  
PB23A  
PB23B  
PB24A  
PB25B  
PB26A  
GNDIO4  
PB26B  
PB27A  
PB27B  
PB28A  
PB28B  
PB29A  
PB29B  
PB30A  
GNDIO4  
PB30B  
PB31A  
PB31B  
PB32A  
PB33B  
PB34A  
PB34B  
PB35A  
GNDIO4  
PB35B  
GNDIO3  
PR34B  
PR34A  
PR33B  
PR33A  
PR32B  
PR31A  
GNDIO3  
PR29B  
PR29A  
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
T
C
T
-
-
-
-
R9  
-
-
-
-
-
P9  
C
T
C
T
C
-
-
C
T
C
T
C
-
-
T10  
T11  
R10  
P10  
N9  
PCLKT4_0  
PCLKT4_0  
PCLKC4_0  
PCLKC4_0  
-
-
-
-
-
-
M9  
-
-
-
-
R12  
-
T
-
DQS  
T
-
DQS  
-
-
T12  
P13  
R13  
M11  
N11  
N10  
M10  
T13  
-
C
T
C
T
C
T
C
T
-
VREF1_4  
C
T
C
T
C
T
C
T
-
VREF1_4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P14  
R11  
P12  
T14  
R14  
P11  
N12  
T15  
-
C
T
C
-
-
C
T
C
-
-
VREF2_4  
VREF2_4  
-
-
-
-
-
-
-
-
T
C
T
-
DQS  
T
C
T
-
DQS  
-
-
-
-
-
-
R15  
-
C
-
-
C
-
-
-
-
P15  
N15  
P16  
R16  
M15  
N14  
-
C3  
T3  
C3  
T3  
-
-
C
T
C3  
T3  
-
RLM0_PLLC_FB_A  
-
RLM0_PLLT_FB_A  
-
-
DQS  
DQS  
-
-
-
VREF1_3  
-
VREF1_3  
-
-
-
-
-
-
-
-
M14  
L13  
C
T
C
T
4-21  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP6  
LFXP10  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
L15  
L14  
-
PR21B  
PR21A  
GNDIO3  
PR17B  
PR20B  
PR20A  
PR19B  
PR19A  
PR17A  
PR22A  
GNDIO3  
PR18B  
PR18A  
PR16B  
PR16A  
GNDP1  
VCCP1  
GNDIO2  
PR12B  
PR12A  
PR13B  
PR13A  
PR2B  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
C3  
T3  
-
-
PR28B  
PR28A  
GNDIO3  
PR26A  
PR25B  
PR25A  
PR24B  
PR24A  
PR23B  
PR22A  
GNDIO3  
PR21B  
PR21A  
PR19B  
PR19A  
GNDP1  
VCCP1  
GNDIO2  
PR17B  
PR17A  
PR16B  
PR16A  
PR15B  
PR14A  
GNDIO2  
PR13B  
PR13A  
PR12B  
PR12A  
PR11B  
GNDIO2  
PR8B  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
C3  
T3  
-
-
-
-
-
-
L12  
M16  
N16  
K14  
K15  
K12  
K13  
-
C
C
T
C3  
T3  
T
-
-
-
-
C
T
C3  
T3  
-
RLM0_PLLC_IN_A  
-
RLM0_PLLT_IN_A  
-
-
-
DQS  
-
-
-
VREF2_3  
-
VREF2_3  
-
-
-
-
L16  
K16  
J15  
J14  
J13  
J12  
-
C3  
T3  
C3  
T3  
-
-
C3  
T3  
C3  
T3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
-
J16  
H16  
H13  
H12  
H15  
H14  
-
C
T
C3  
T3  
C3  
-
PCLKC2_0  
C
T
C3  
T3  
-
PCLKC2_0  
PCLKT2_0  
PCLKT2_0  
-
-
-
DQS  
-
-
PR6B  
VREF1_2  
-
VREF1_2  
GNDIO2  
PR11B  
PR11A  
PR8B  
-
-
-
-
G15  
G14  
G16  
F16  
G13  
-
C3  
T3  
C
T
-
C3  
T3  
C
T
-
-
-
-
RUM0_PLLC_IN_A  
RUM0_PLLC_IN_A  
PR8A  
RUM0_PLLT_IN_A  
RUM0_PLLT_IN_A  
PR2A  
T3  
-
-
GNDIO2  
PR9B  
-
-
-
-
G12  
F13  
B16  
C16  
F15  
E15  
-
C3  
T3  
C3  
T3  
-
-
C
T
C3  
T3  
-
-
PR9A  
-
PR8A  
-
PR7B  
-
PR7B  
-
PR7A  
DQS  
PR7A  
DQS  
PR14A  
PR5A  
-
PR6B  
-
-
VREF2_2  
PR5A  
-
VREF2_2  
GNDIO2  
PR4B  
-
-
GNDIO2  
PR4B  
-
-
F14  
E14  
D15  
C15  
C3  
T3  
C
T
-
C3  
T3  
C
T
-
PR4A  
-
PR4A  
-
PR3B  
RUM0_PLLC_FB_A  
RUM0_PLLT_FB_A  
PR3B  
RUM0_PLLC_FB_A  
RUM0_PLLT_FB_A  
PR3A  
PR3A  
4-22  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP6  
LFXP10  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
E16  
D16  
D14  
C14  
B14  
-
TDO  
VCCJ  
-
-
-
-
TDO  
VCCJ  
-
-
-
-
-
-
-
-
TDI  
-
-
-
TDI  
-
-
-
TMS  
-
-
-
TMS  
-
-
-
TCK  
-
-
-
TCK  
-
-
-
GNDIO1  
PT31B  
PT31A  
GNDIO1  
PT28A  
PT30A  
PT29B  
PT30B  
PT27B  
PT27A  
PT26B  
PT26A  
GNDIO1  
PT25B  
PT25A  
PT24B  
PT24A  
PT23B  
PT23A  
PT22B  
PT22A  
GNDIO1  
PT21B  
PT20A  
PT19B  
PT19A  
PT18B  
PT18A  
PT17B  
PT17A  
PT16B  
GNDIO0  
PT16A  
PT15B  
PT15A  
PT14B  
PT14A  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
-
-
GNDIO1  
PT35B  
PT35A  
GNDIO1  
PT34B  
PT34A  
PT33B  
PT32A  
PT31B  
PT31A  
PT30B  
PT30A  
GNDIO1  
PT29B  
PT29A  
PT28B  
PT28A  
PT27B  
PT27A  
PT26B  
PT26A  
GNDIO1  
PT25B  
PT24A  
PT23B  
PT23A  
PT22B  
PT22A  
PT21B  
PT21A  
PT20B  
GNDIO0  
PT20A  
PT19B  
PT19A  
PT18B  
PT18A  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
-
-
A15  
B15  
-
C
T
-
-
C
T
-
-
-
-
-
-
D12  
C11  
A14  
B13  
F12  
E11  
A13  
C13  
-
-
VREF1_1  
C
T
-
VREF1_1  
T
-
DQS  
DQS  
-
-
C
C
T
C
T
-
-
-
-
-
C
T
C
T
-
-
-
-
-
-
D0  
D0  
-
-
C10  
E10  
A12  
B12  
C12  
A11  
B11  
D11  
-
C
T
C
T
C
T
C
T
-
D1  
C
T
C
T
C
T
C
T
-
D1  
VREF2_1  
VREF2_1  
-
-
D2  
D2  
D3  
D3  
-
-
-
-
DQS  
DQS  
-
-
B9  
-
-
-
-
D9  
-
D4  
-
D4  
A10  
B10  
D10  
A9  
C
T
C
T
C
T
C
-
-
C
T
C
T
C
T
C
-
-
D5  
D5  
D6  
D6  
-
-
C9  
D7  
D7  
C8  
-
BUSY  
-
-
BUSY  
-
E9  
-
B8  
T
C
T
C
T
CS1N  
PCLKC0_0  
PCLKT0_0  
-
T
C
T
C
T
CS1N  
PCLKC0_0  
PCLKT0_0  
-
A8  
A7  
B7  
C7  
DQS  
DQS  
4-23  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP6  
LFXP10  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
E8  
D8  
A6  
-
PT13B  
PT12A  
PT11B  
GNDIO0  
PT11A  
PT10B  
PT10A  
PT9B  
PT9A  
PT8B  
PT8A  
PT7B  
GNDIO0  
PT7A  
PT6B  
PT6A  
PT5B  
PT4A  
PT3B  
PT3A  
PT2B  
GNDIO0  
PT2A  
CFG0  
CFG1  
DONE  
GND  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
PT17B  
PT16A  
PT15B  
GNDIO0  
PT15A  
PT14B  
PT14A  
PT13B  
PT13A  
PT12B  
PT12A  
PT11B  
GNDIO0  
PT11A  
PT10B  
PT10A  
PT9B  
PT8A  
PT7B  
PT7A  
PT6B  
GNDIO0  
PT6A  
CFG0  
CFG1  
DONE  
GND  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
-
DOUT  
DOUT  
C
-
-
C
-
-
-
-
C6  
E7  
D7  
A5  
B5  
A4  
B6  
E6  
-
T
C
T
C
T
C
T
C
-
WRITEN  
T
C
T
C
T
C
T
C
-
WRITEN  
-
-
VREF1_0  
VREF1_0  
-
-
DI  
DI  
-
-
CSN  
CSN  
-
-
-
-
D6  
D5  
A3  
B3  
B2  
A2  
B1  
F5  
-
T
C
T
-
-
T
C
T
-
-
VREF2_0  
VREF2_0  
DQS  
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C
T
C
-
C
T
C
-
C5  
C4  
B4  
C3  
A1  
A16  
F11  
F6  
G10  
G7  
G8  
G9  
H10  
H7  
H8  
H9  
J10  
J7  
T
-
T
-
-
-
-
-
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
J8  
GND  
-
-
GND  
-
-
J9  
GND  
-
-
GND  
-
-
4-24  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP6 & LFXP10 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP6  
LFXP10  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
K10  
K7  
GND  
GND  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GND  
GND  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K8  
GND  
-
GND  
-
K9  
GND  
-
GND  
-
L11  
L6  
GND  
-
GND  
-
GND  
-
GND  
-
T1  
GND  
-
GND  
-
T16  
D13  
D4  
GND  
-
GND  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
E12  
E5  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
M12  
M5  
N13  
N4  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
E13  
E4  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCIO0  
VCCIO0  
VCCIO1  
VCCIO1  
VCCIO2  
VCCIO2  
VCCIO3  
VCCIO3  
VCCIO4  
VCCIO4  
VCCIO5  
VCCIO5  
VCCIO6  
VCCIO6  
VCCIO7  
VCCIO7  
-
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCIO0  
VCCIO0  
VCCIO1  
VCCIO1  
VCCIO2  
VCCIO2  
VCCIO3  
VCCIO3  
VCCIO4  
VCCIO4  
VCCIO5  
VCCIO5  
VCCIO6  
VCCIO6  
VCCIO7  
VCCIO7  
-
-
-
M13  
M4  
F7  
-
-
-
-
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
F8  
F10  
F9  
G11  
H11  
J11  
K11  
L10  
L9  
L7  
L8  
J6  
K6  
G6  
H6  
1. Applies to LFXP “C” only.  
2. Applies to LFXP “E” only.  
3. Supports dedicated LVDS outputs.  
4-25  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
C2  
C1  
-
PROGRAMN  
CCLK  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
PROGRAMN  
CCLK  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
-
-
GNDIO7  
GNDIO7  
PL7A  
-
-
GNDIO7  
GNDIO7  
PL7A  
-
-
-
-
-
-
-
D2  
D3  
D1  
E2  
E1  
F1  
-
T
C
-
LUM0_PLLT_FB_A  
T
C
-
LUM0_PLLT_FB_A  
PL7B  
LUM0_PLLC_FB_A  
PL7B  
LUM0_PLLC_FB_A  
PL9A  
-
PL9A  
-
PL10B  
PL11A  
PL11B  
GNDIO7  
PL12A  
PL12B  
PL13A  
PL13B  
PL15B  
GNDIO7  
PL16A  
PL16B  
PL17A  
PL17B  
PL18A  
PL19B  
PL20A  
GNDIO7  
PL20B  
PL22A  
PL22B  
VCCP0  
GNDP0  
PL24A  
GNDIO6  
PL24B  
PL26A  
PL27B  
PL28A  
PL28B  
GNDIO6  
PL29A  
PL29B  
PL30A  
PL30B  
-
VREF1_7  
PL10B  
PL11A  
PL11B  
GNDIO7  
PL12A  
PL12B  
PL13A  
PL13B  
PL15B  
GNDIO7  
PL16A  
PL16B  
PL17A  
PL17B  
PL18A  
PL19B  
PL20A  
GNDIO7  
PL20B  
PL22A  
PL22B  
VCCP0  
GNDP0  
PL28A  
GNDIO6  
PL28B  
PL30A  
PL31B  
PL32A  
PL32B  
GNDIO6  
PL33A  
PL33B  
PL34A  
PL34B  
-
VREF1_7  
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
-
-
-
-
E3  
F4  
F3  
F2  
G1  
-
T
C
T3  
C3  
-
-
T
C
T3  
C3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G3  
G2  
H1  
H2  
G4  
G5  
J1  
-
T
C
T3  
C3  
-
LUM0_PLLT_IN_A  
T
C
T3  
C3  
-
LUM0_PLLT_IN_A  
LUM0_PLLC_IN_A  
LUM0_PLLC_IN_A  
-
-
-
-
VREF2_7  
VREF2_7  
-
T3  
-
-
T3  
-
DQS  
DQS  
-
-
-
-
J2  
H3  
J3  
H4  
H5  
K1  
-
C3  
T3  
C3  
-
-
C3  
T3  
C3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
6
6
6
6
6
6
6
6
6
6
6
T
-
PCLKT6_0  
6
6
6
6
6
6
6
6
6
6
6
6
T
-
PCLKT6_0  
-
-
K2  
J4  
J5  
L1  
L2  
-
C
-
PCLKC6_0  
C
-
PCLKC6_0  
-
-
-
VREF1_6  
-
VREF1_6  
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
-
-
-
-
M1  
M2  
K3  
L3  
T
C
T3  
C3  
LLM0_PLLT_IN_A  
T
C
T3  
C3  
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
LLM0_PLLC_IN_A  
-
-
-
-
4-26  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
L4  
-
PL32A  
GNDIO6  
PL33A  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
-
-
-
-
PL36A  
GNDIO6  
PL37A  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
-
-
-
-
-
-
K4  
K5  
N1  
N2  
P1  
P2  
-
T
C
-
-
T
C
-
-
PL33B  
-
PL37B  
-
PL35A  
VREF2_6  
PL39A  
VREF2_6  
PL36B  
-
-
PL40B  
-
-
PL37A  
T3  
C3  
-
DQS  
PL41A  
T3  
C3  
-
DQS  
PL37B  
-
PL41B  
-
GNDIO6  
PL38A  
-
GNDIO6  
PL42A  
-
L5  
M6  
M3  
N3  
-
T
C
T3  
C3  
-
LLM0_PLLT_FB_A  
T
C
T3  
C3  
-
LLM0_PLLT_FB_A  
PL38B  
LLM0_PLLC_FB_A  
PL42B  
LLM0_PLLC_FB_A  
PL39A  
-
PL43A  
-
PL39B  
-
PL43B  
-
GNDIO6  
SLEEPN1/TOE2  
INITN  
-
GNDIO6  
SLEEPN1/TOE2  
INITN  
-
P4  
P3  
-
-
-
-
-
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
GNDIO5  
GNDIO5  
GNDIO5  
PB11A  
PB11B  
PB12A  
GNDIO5  
PB12B  
PB13A  
PB14B  
PB15A  
PB15B  
PB16A  
PB16B  
PB17A  
PB17B  
PB18A  
GNDIO5  
PB18B  
PB19A  
PB19B  
PB20A  
PB20B  
PB21A  
PB22B  
PB23A  
-
-
GNDIO5  
GNDIO5  
GNDIO5  
PB15A  
PB15B  
PB16A  
GNDIO5  
PB16B  
PB17A  
PB18B  
PB19A  
PB19B  
PB20A  
PB20B  
PB21A  
PB21B  
PB22A  
GNDIO5  
PB22B  
PB23A  
PB23B  
PB24A  
PB24B  
PB25A  
PB26B  
PB27A  
-
-
-
-
-
-
-
-
-
-
-
-
R4  
N5  
P5  
-
T
C
T
-
-
T
C
T
-
-
-
-
VREF1_5  
VREF1_5  
-
-
R1  
N6  
M7  
R2  
T2  
R3  
T3  
T4  
R5  
N7  
-
C
-
-
C
-
-
-
-
-
-
-
-
T
C
T
C
T
C
T
-
DQS  
T
C
T
C
T
C
T
-
DQS  
-
-
-
-
-
-
-
-
VREF2_5  
VREF2_5  
-
-
-
-
M8  
T5  
P6  
T6  
R6  
P7  
N8  
R7  
C
T
C
T
C
-
-
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T
DQS  
T
DQS  
4-27  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
T7  
-
PB23B  
GNDIO5  
PB24A  
PB24B  
PB25A  
PB25B  
PB26A  
PB26B  
PB27A  
PB27B  
GNDIO4  
PB28A  
PB28B  
PB29A  
PB30B  
PB31A  
PB31B  
PB32A  
PB32B  
PB33A  
GNDIO4  
PB33B  
PB34A  
PB34B  
PB35A  
PB35B  
PB36A  
PB36B  
PB37A  
PB38B  
GNDIO4  
PB39A  
PB39B  
PB40A  
PB40B  
GNDIO4  
GNDIO4  
GNDIO4  
GNDIO3  
GNDIO3  
PR38B  
PR38A  
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
C
-
-
PB27B  
GNDIO5  
PB28A  
PB28B  
PB29A  
PB29B  
PB30A  
PB30B  
PB31A  
PB31B  
GNDIO4  
PB32A  
PB32B  
PB33A  
PB34B  
PB35A  
PB35B  
PB36A  
PB36B  
PB37A  
GNDIO4  
PB37B  
PB38A  
PB38B  
PB39A  
PB39B  
PB40A  
PB40B  
PB41A  
PB42B  
GNDIO4  
PB43A  
PB43B  
PB44A  
PB44B  
GNDIO4  
GNDIO4  
GNDIO4  
GNDIO3  
GNDIO3  
PR42B  
PR42A  
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
C
-
-
-
-
P8  
T
C
T
C
T
C
T
C
-
-
T
C
T
C
T
C
T
C
-
-
T8  
-
-
R8  
T9  
-
-
-
-
R9  
P9  
-
-
-
-
T10  
T11  
-
PCLKT4_0  
PCLKT4_0  
PCLKC4_0  
PCLKC4_0  
-
-
R10  
P10  
N9  
M9  
R12  
T12  
P13  
R13  
M11  
-
T
C
-
-
T
C
-
-
-
-
-
-
-
-
-
-
T
C
T
C
T
-
DQS  
T
C
T
C
T
-
DQS  
VREF1_4  
VREF1_4  
-
-
-
-
-
-
-
-
N11  
N10  
M10  
T13  
P14  
R11  
P12  
T14  
R14  
-
C
T
C
T
C
T
C
-
-
C
T
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
VREF2_4  
VREF2_4  
-
-
-
-
-
-
-
-
-
-
-
-
P11  
N12  
T15  
R15  
-
T
C
T
C
-
DQS  
T
C
T
C
-
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P15  
N15  
C
T
RLM0_PLLC_FB_A  
RLM0_PLLT_FB_A  
C
T
RLM0_PLLC_FB_A  
RLM0_PLLT_FB_A  
4-28  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
P16  
R16  
M15  
N14  
-
PR37B  
PR37A  
PR36B  
PR35A  
GNDIO3  
PR33B  
PR33A  
PR32B  
PR32A  
PR30A  
PR29B  
PR29A  
GNDIO3  
PR28B  
PR28A  
PR27B  
PR26A  
PR25B  
PR25A  
GNDIO3  
PR23B  
PR23A  
GNDP1  
VCCP1  
GNDIO2  
PR21B  
PR21A  
PR20B  
PR20A  
PR19B  
PR18A  
GNDIO2  
PR17B  
PR17A  
PR16B  
PR16A  
PR15B  
GNDIO2  
PR12B  
PR12A  
PR11B  
PR11A  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
C3  
T3  
-
-
PR41B  
PR41A  
PR40B  
PR39A  
GNDIO3  
PR37B  
PR37A  
PR36B  
PR36A  
PR34A  
PR33B  
PR33A  
GNDIO3  
PR32B  
PR32A  
PR31B  
PR30A  
PR29B  
PR29A  
GNDIO3  
PR27B  
PR27A  
GNDP1  
VCCP1  
GNDIO2  
PR21B  
PR21A  
PR20B  
PR20A  
PR19B  
PR18A  
GNDIO2  
PR17B  
PR17A  
PR16B  
PR16A  
PR15B  
GNDIO2  
PR12B  
PR12A  
PR11B  
PR11A  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
C3  
T3  
-
-
DQS  
DQS  
-
-
-
VREF1_3  
-
VREF1_3  
-
-
-
-
M14  
L13  
L15  
L14  
L12  
M16  
N16  
-
C
T
C3  
T3  
-
-
C
T
C3  
T3  
-
-
-
-
-
-
-
-
-
-
C
T
-
C3  
T3  
-
RLM0_PLLC_IN_A  
C
T
-
C3  
T3  
-
RLM0_PLLC_IN_A  
RLM0_PLLT_IN_A  
RLM0_PLLT_IN_A  
-
-
K14  
K15  
K12  
K13  
L16  
K16  
-
-
-
DQS  
DQS  
-
-
-
VREF2_3  
-
VREF2_3  
C3  
T3  
-
C3  
T3  
-
-
C3  
T3  
-
C3  
T3  
-
-
-
-
-
-
J15  
J14  
J13  
J12  
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
-
J16  
H16  
H13  
H12  
H15  
H14  
-
C
T
C3  
T3  
-
PCLKC2_0  
C
T
C3  
T3  
-
PCLKC2_0  
PCLKT2_0  
PCLKT2_0  
-
-
DQS  
DQS  
-
-
-
VREF1_2  
-
VREF1_2  
-
-
-
-
G15  
G14  
G16  
F16  
G13  
-
C3  
T3  
C
T
-
-
C3  
T3  
C
T
-
-
-
-
RUM0_PLLC_IN_A  
RUM0_PLLC_IN_A  
RUM0_PLLT_IN_A  
RUM0_PLLT_IN_A  
-
-
-
-
-
-
G12  
F13  
B16  
C16  
C
T
C3  
T3  
-
C
T
C3  
T3  
-
-
-
-
-
DQS  
DQS  
4-29  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
-
GNDIO2  
PR10B  
PR9A  
2
2
2
2
2
2
2
2
-
-
-
-
GNDIO2  
PR10B  
PR9A  
2
2
2
2
2
2
2
2
-
-
-
-
F15  
E15  
F14  
E14  
D15  
C15  
-
-
-
-
VREF2_2  
-
VREF2_2  
PR8B  
C3  
T3  
C
T
-
-
PR8B  
C3  
T3  
C
T
-
-
PR8A  
-
PR8A  
-
PR7B  
RUM0_PLLC_FB_A  
PR7B  
RUM0_PLLC_FB_A  
PR7A  
RUM0_PLLT_FB_A  
PR7A  
RUM0_PLLT_FB_A  
GNDIO2  
TDO  
-
GNDIO2  
TDO  
-
E16  
D16  
D14  
C14  
B14  
-
-
-
-
-
VCCJ  
-
-
-
VCCJ  
-
-
-
TDI  
-
-
-
TDI  
-
-
-
TMS  
-
-
-
TMS  
-
-
-
TCK  
-
-
-
TCK  
-
-
-
GNDIO1  
GNDIO1  
GNDIO1  
PT40B  
PT40A  
PT39B  
GNDIO1  
PT39A  
PT38B  
PT37A  
PT36B  
PT36A  
PT35B  
PT35A  
PT34B  
PT34A  
PT33B  
PT33A  
GNDIO1  
PT32B  
PT32A  
PT31B  
PT31A  
PT30B  
PT29A  
PT28B  
PT28A  
GNDIO1  
PT27B  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
GNDIO1  
GNDIO1  
GNDIO1  
PT44B  
PT44A  
PT43B  
GNDIO1  
PT43A  
PT42B  
PT41A  
PT40B  
PT40A  
PT39B  
PT39A  
PT38B  
PT38A  
PT37B  
PT37A  
GNDIO1  
PT36B  
PT36A  
PT35B  
PT35A  
PT34B  
PT33A  
PT32B  
PT32A  
GNDIO1  
PT31B  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-
-
-
-
-
-
-
-
A15  
B15  
D12  
-
C
T
C
-
-
C
T
C
-
-
-
-
VREF1_1  
VREF1_1  
-
-
C11  
A14  
B13  
F12  
E11  
A13  
C13  
C10  
E10  
A12  
B12  
-
T
-
DQS  
T
-
DQS  
-
-
-
-
-
-
C
T
C
T
C
T
C
T
-
-
C
T
C
T
C
T
C
T
-
-
-
-
-
-
D0  
D0  
D1  
D1  
VREF2_1  
VREF2_1  
-
D2  
-
-
D2  
-
C12  
A11  
B11  
D11  
B9  
C
T
C
T
-
D3  
-
C
T
C
T
-
D3  
-
-
-
DQS  
-
DQS  
-
D9  
-
D4  
-
-
D4  
-
A10  
B10  
-
C
T
-
C
T
-
D5  
-
D5  
-
D10  
C
D6  
C
D6  
4-30  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
A9  
C9  
C8  
E9  
-
PT27A  
PT26B  
PT26A  
PT25B  
GNDIO0  
PT25A  
PT24B  
PT24A  
PT23B  
PT23A  
PT22B  
PT21A  
PT20B  
GNDIO0  
PT20A  
PT19B  
PT19A  
PT18B  
PT18A  
PT17B  
PT17A  
PT16B  
PT16A  
PT15B  
PT15A  
PT14B  
PT13A  
GNDIO0  
PT12B  
PT12A  
PT11B  
PT11A  
GNDIO0  
GNDIO0  
GNDIO0  
CFG0  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
T
C
T
C
-
-
PT31A  
PT30B  
PT30A  
PT29B  
GNDIO0  
PT29A  
PT28B  
PT28A  
PT27B  
PT27A  
PT26B  
PT25A  
PT24B  
GNDIO0  
PT24A  
PT23B  
PT23A  
PT22B  
PT22A  
PT21B  
PT21A  
PT20B  
PT20A  
PT19B  
PT19A  
PT18B  
PT17A  
GNDIO0  
PT16B  
PT16A  
PT15B  
PT15A  
GNDIO0  
GNDIO0  
GNDIO0  
CFG0  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
T
C
T
C
-
-
D7  
D7  
-
-
BUSY  
BUSY  
-
-
B8  
A8  
A7  
B7  
C7  
E8  
D8  
A6  
-
T
C
T
C
T
-
CS1N  
T
C
T
C
T
-
CS1N  
PCLKC0_0  
PCLKC0_0  
PCLKT0_0  
PCLKT0_0  
-
-
DQS  
DQS  
-
-
-
DOUT  
-
DOUT  
C
-
-
C
-
-
-
-
C6  
E7  
D7  
A5  
B5  
A4  
B6  
E6  
D6  
D5  
A3  
B3  
B2  
-
T
C
T
C
T
C
T
C
T
C
T
-
WRITEN  
T
C
T
C
T
C
T
C
T
C
T
-
WRITEN  
-
-
VREF1_0  
VREF1_0  
-
-
DI  
DI  
-
-
CSN  
CSN  
-
-
-
-
VREF2_0  
VREF2_0  
DQS  
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A2  
B1  
F5  
C5  
-
C
T
C
T
-
C
T
C
T
-
-
-
-
-
-
-
C4  
B4  
C3  
A1  
A16  
F11  
F6  
-
-
CFG1  
-
CFG1  
-
DONE  
GND  
-
DONE  
GND  
-
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
GND  
-
-
4-31  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
G10  
G7  
G8  
G9  
H10  
H7  
GND  
GND  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GND  
GND  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
GND  
-
H8  
GND  
-
GND  
-
H9  
GND  
-
GND  
-
J10  
J7  
GND  
-
GND  
-
GND  
-
GND  
-
J8  
GND  
-
GND  
-
J9  
GND  
-
GND  
-
K10  
K7  
GND  
-
GND  
-
GND  
-
GND  
-
K8  
GND  
-
GND  
-
K9  
GND  
-
GND  
-
L11  
L6  
GND  
-
GND  
-
GND  
-
GND  
-
T1  
GND  
-
GND  
-
T16  
D13  
D4  
GND  
-
GND  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
E12  
E5  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
M12  
M5  
N13  
N4  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
E13  
E4  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCIO0  
VCCIO0  
VCCIO1  
VCCIO1  
VCCIO2  
VCCIO2  
VCCIO3  
VCCIO3  
VCCIO4  
VCCIO4  
-
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCIO0  
VCCIO0  
VCCIO1  
VCCIO1  
VCCIO2  
VCCIO2  
VCCIO3  
VCCIO3  
VCCIO4  
VCCIO4  
-
-
-
M13  
M4  
F7  
-
-
-
-
0
0
1
1
2
2
3
3
4
4
0
0
1
1
2
2
3
3
4
4
F8  
F10  
F9  
G11  
H11  
J11  
K11  
L10  
L9  
4-32  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 256 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
L7  
L8  
J6  
VCCIO5  
VCCIO5  
VCCIO6  
VCCIO6  
VCCIO7  
VCCIO7  
5
5
6
6
7
7
-
-
-
-
-
-
-
-
-
-
-
-
VCCIO5  
VCCIO5  
VCCIO6  
VCCIO6  
VCCIO7  
VCCIO7  
5
5
6
6
7
7
-
-
-
-
-
-
-
-
-
-
-
-
K6  
G6  
H6  
1. Applies to LFXP “C” only.  
2. Applies to LFXP “E” only.  
3. Supports dedicated LVDS outputs.  
4-33  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA  
LFXP10  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Ball  
Function  
Ball  
Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
F4  
G4  
-
PROGRAMN  
CCLK  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
PROGRAMN  
CCLK  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
PROGRAMN  
CCLK  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
-
-
-
GNDIO7  
PL2A  
-
-
GNDIO7  
PL6A  
-
-
GNDIO7  
PL6A  
-
-
D2  
D1  
-
T3  
C3  
-
-
T3  
C3  
-
-
T3  
C3  
-
-
PL2B  
-
PL6B  
-
PL6B  
-
GNDIO7  
PL3A  
-
GNDIO7  
PL7A  
-
GNDIO7  
PL7A  
-
E2  
E3  
F3  
F2  
H4  
H3  
G3  
G2  
-
T
LUM0_PLLT_FB_A  
T
LUM0_PLLT_FB_A  
T
LUM0_PLLT_FB_A  
PL3B  
C
T3  
C3  
-
LUM0_PLLC_FB_A  
PL7B  
C
T3  
C3  
-
LUM0_PLLC_FB_A  
PL7B  
C
T3  
C3  
-
LUM0_PLLC_FB_A  
PL4A  
-
PL8A  
-
PL8A  
-
PL4B  
-
PL8B  
-
PL8B  
-
PL5A  
-
PL9A  
-
PL9A  
-
PL6B  
-
VREF1_7  
PL10B  
PL11A  
PL11B  
GNDIO7  
PL12A  
PL12B  
PL13A  
PL13B  
PL15A  
PL15B  
GNDIO7  
PL16A  
PL16B  
PL17A  
PL17B  
PL18A  
PL19B  
PL20A  
GNDIO7  
PL20B  
PL21A  
PL21B  
PL22A  
PL22B  
VCCP0  
GNDP0  
PL23A  
PL23B  
PL24A  
GNDIO6  
PL24B  
PL25A  
PL25B  
PL26A  
PL27B  
PL28A  
PL28B  
GNDIO6  
-
VREF1_7  
PL10B  
PL11A  
PL11B  
GNDIO7  
PL12A  
PL12B  
PL13A  
PL13B  
PL15A  
PL15B  
GNDIO7  
PL16A  
PL16B  
PL17A  
PL17B  
PL18A  
PL19B  
PL20A  
GNDIO7  
PL20B  
PL21A  
PL21B  
PL22A  
PL22B  
VCCP0  
GNDP0  
PL27A  
PL27B  
PL28A  
GNDIO6  
PL28B  
PL29A  
PL29B  
PL30A  
PL31B  
PL32A  
PL32B  
GNDIO6  
-
VREF1_7  
PL7A  
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
PL7B  
-
-
-
GNDIO7  
PL8A  
-
-
-
F1  
E1  
J4  
K4  
G1  
H2  
-
T
-
T
-
T
-
PL8B  
C
T3  
C3  
T3  
C3  
-
-
C
T3  
C3  
T3  
C3  
-
-
C
T3  
C3  
T3  
C3  
-
-
PL9A  
-
-
-
PL9B  
-
-
-
PL11A  
PL11B  
GNDIO7  
PL12A  
PL12B  
PL13A  
PL13B  
PL14A  
PL15B  
PL16A  
GNDIO7  
PL16B  
PL17A  
PL17B  
PL18A  
PL18B  
VCCP0  
GNDP0  
PL19A  
PL19B  
PL20A  
GNDIO6  
PL20B  
PL21A  
PL21B  
PL22A  
PL23B  
PL24A  
PL24B  
GNDIO6  
-
-
-
-
-
-
-
-
-
J2  
H1  
J1  
K2  
K3  
J3  
K1  
-
T
LUM0_PLLT_IN_A  
T
LUM0_PLLT_IN_A  
T
LUM0_PLLT_IN_A  
C
T3  
C3  
-
LUM0_PLLC_IN_A  
C
T3  
C3  
-
LUM0_PLLC_IN_A  
C
T3  
C3  
-
LUM0_PLLC_IN_A  
-
-
-
-
-
-
VREF2_7  
VREF2_7  
VREF2_7  
-
T3  
-
-
T3  
-
-
T3  
-
DQS  
DQS  
DQS  
-
-
-
-
-
-
L2  
L3  
L4  
L1  
M1  
M2  
N1  
M3  
M4  
P1  
-
C3  
T
-
C3  
T
-
C3  
T
-
-
-
-
C
T3  
C3  
-
-
C
T3  
C3  
-
-
C
T3  
C3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
6
6
6
6
6
6
6
6
6
6
6
T3  
C3  
T
-
6
6
6
6
6
6
6
6
6
6
6
6
T3  
C3  
T
-
6
6
6
6
6
6
6
6
6
6
6
6
T3  
C3  
T
-
-
-
-
PCLKT6_0  
PCLKT6_0  
PCLKT6_0  
-
-
-
-
-
-
N2  
R1  
P2  
N3  
N4  
T1  
R2  
-
C
T3  
C3  
-
PCLKC6_0  
C
T3  
C3  
-
PCLKC6_0  
C
T3  
C3  
-
PCLKC6_0  
-
-
-
-
-
-
-
-
-
-
VREF1_6  
-
VREF1_6  
-
VREF1_6  
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
-
-
-
-
-
-
4-34  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)  
LFXP10  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Ball  
Function  
Ball  
Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
U1  
T2  
V1  
U2  
W1  
V2  
-
PL25A  
PL25B  
PL26A  
PL26B  
PL28A  
PL28B  
GNDIO6  
PL29A  
PL29B  
PL30A  
PL30B  
PL31A  
PL32B  
PL33A  
PL33B  
GNDIO6  
PL34A  
PL34B  
PL35A  
PL35B  
GNDIO6  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
T
C
T3  
C3  
T3  
C3  
-
LLM0_PLLT_IN_A  
PL29A  
PL29B  
PL30A  
PL30B  
PL32A  
PL32B  
GNDIO6  
PL33A  
PL33B  
PL34A  
PL34B  
PL35A  
PL36B  
PL37A  
PL37B  
GNDIO6  
PL38A  
PL38B  
PL39A  
PL39B  
GNDIO6  
6
6
6
6
6
6
-
T
C
T3  
C3  
T3  
C3  
-
LLM0_PLLT_IN_A  
PL33A  
PL33B  
PL34A  
PL34B  
PL36A  
PL36B  
GNDIO6  
PL37A  
PL37B  
PL38A  
PL38B  
PL39A  
PL40B  
PL41A  
PL41B  
GNDIO6  
PL42A  
PL42B  
PL43A  
PL43B  
GNDIO6  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
T
C
T3  
C3  
T3  
C3  
-
LLM0_PLLT_IN_A  
LLM0_PLLC_IN_A  
LLM0_PLLC_IN_A  
LLM0_PLLC_IN_A  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P3  
P4  
Y1  
W2  
R3  
R4  
T3  
T4  
-
T
-
6
6
6
6
6
6
6
6
6
6
6
6
6
6
T
-
T
-
C
T3  
C3  
-
-
C
T3  
C3  
-
-
C
T3  
C3  
-
-
-
-
-
-
-
-
VREF2_6  
VREF2_6  
VREF2_6  
-
-
-
-
-
-
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
-
-
-
-
-
-
V4  
V3  
U4  
U3  
-
T
LLM0_PLLT_FB_A  
T
LLM0_PLLT_FB_A  
T
LLM0_PLLT_FB_A  
C
T3  
C3  
-
LLM0_PLLC_FB_A  
C
T3  
C3  
-
LLM0_PLLC_FB_A  
C
T3  
C3  
-
LLM0_PLLC_FB_A  
-
-
-
-
-
-
-
-
-
SLEEPN1/  
SLEEPN1/  
SLEEPN1/  
TOE2  
TOE2  
TOE2  
W5  
-
-
-
-
-
-
-
-
-
Y2  
-
INITN  
GNDIO5  
GNDIO5  
-
5
5
5
-
-
-
-
INITN  
GNDIO5  
GNDIO5  
PB3B  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
-
INITN  
GNDIO5  
GNDIO5  
PB7B  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
-
-
-
-
-
-
-
-
-
-
-
Y3  
-
-
-
-
-
-
W3  
W4  
AA2  
AA1  
W6  
W7  
Y4  
-
-
-
-
PB4A  
T
C
-
-
PB8A  
T
C
-
-
-
-
-
-
PB4B  
-
PB8B  
-
-
-
-
-
PB5A  
-
PB9A  
-
-
-
-
-
PB6B  
-
-
PB10B  
PB11A  
PB11B  
PB12A  
GNDIO5  
PB12B  
PB13A  
PB13B  
PB14A  
PB14B  
PB15A  
PB15B  
PB16A  
GNDIO5  
PB16B  
PB17A  
PB18B  
PB19A  
PB19B  
PB20A  
-
-
PB2A  
-
5
-
-
-
PB7A  
T
C
T
-
DQS  
T
C
T
-
DQS  
-
-
PB7B  
-
-
PB3A  
GNDIO5  
PB3B  
PB4A  
PB4B  
PB5A  
PB5B  
PB6A  
PB6B  
PB7A  
GNDIO5  
PB7B  
PB8A  
PB9B  
PB10A  
PB10B  
PB11A  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
T
-
-
PB8A  
-
-
-
-
GNDIO5  
PB8B  
-
-
Y5  
C
T
C
T
C
T
C
T
-
-
C
T
C
T
C
T
C
T
-
-
C
T
C
T
C
T
C
T
-
-
AB2  
AA3  
AB3  
AA4  
W8  
W9  
AB4  
-
-
PB9A  
-
-
-
PB9B  
-
-
-
PB10A  
PB10B  
PB11A  
PB11B  
PB12A  
GNDIO5  
PB12B  
PB13A  
PB14B  
PB15A  
PB15B  
PB16A  
-
-
-
-
-
-
-
-
-
-
-
VREF1_5  
VREF1_5  
VREF1_5  
-
-
-
AA5  
AB5  
Y6  
C
-
-
C
-
-
C
-
-
-
-
-
-
-
-
-
-
-
AA6  
AB6  
Y9  
T
C
T
DQS  
T
C
T
DQS  
T
C
T
DQS  
-
-
-
-
-
-
4-35  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)  
LFXP10  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Ball  
Function  
Ball  
Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Y10  
AA7  
AB7  
Y7  
PB11B  
PB12A  
PB12B  
PB13A  
GNDIO5  
PB13B  
PB14A  
PB14B  
PB15A  
PB15B  
PB16A  
PB17B  
PB18A  
PB18B  
GNDIO5  
PB19A  
PB19B  
PB20A  
PB20B  
PB21A  
PB21B  
PB22A  
PB22B  
GNDIO4  
PB23A  
PB23B  
PB24A  
PB25B  
PB26A  
PB26B  
PB27A  
PB27B  
PB28A  
GNDIO4  
PB28B  
PB29A  
PB29B  
PB30A  
PB30B  
PB31A  
PB31B  
PB32A  
PB33B  
GNDIO4  
PB34A  
PB34B  
PB35A  
PB35B  
PB36A  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
C
T
C
T
-
-
PB16B  
PB17A  
PB17B  
PB18A  
GNDIO5  
PB18B  
PB19A  
PB19B  
PB20A  
PB20B  
PB21A  
PB22B  
PB23A  
PB23B  
GNDIO5  
PB24A  
PB24B  
PB25A  
PB25B  
PB26A  
PB26B  
PB27A  
PB27B  
GNDIO4  
PB28A  
PB28B  
PB29A  
PB30B  
PB31A  
PB31B  
PB32A  
PB32B  
PB33A  
GNDIO4  
PB33B  
PB34A  
PB34B  
PB35A  
PB35B  
PB36A  
PB36B  
PB37A  
PB38B  
GNDIO4  
PB39A  
PB39B  
PB40A  
PB40B  
PB41A  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
C
T
C
T
-
-
PB20B  
PB21A  
PB21B  
PB22A  
GNDIO5  
PB22B  
PB23A  
PB23B  
PB24A  
PB24B  
PB25A  
PB26B  
PB27A  
PB27B  
GNDIO5  
PB28A  
PB28B  
PB29A  
PB29B  
PB30A  
PB30B  
PB31A  
PB31B  
GNDIO4  
PB32A  
PB32B  
PB33A  
PB34B  
PB35A  
PB35B  
PB36A  
PB36B  
PB37A  
GNDIO4  
PB37B  
PB38A  
PB38B  
PB39A  
PB39B  
PB40A  
PB40B  
PB41A  
PB42B  
GNDIO4  
PB43A  
PB43B  
PB44A  
PB44B  
PB45A  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
C
T
C
T
-
-
-
-
-
VREF2_5  
VREF2_5  
VREF2_5  
-
-
-
-
-
-
-
AA8  
AB8  
Y8  
C
T
C
T
C
-
-
C
T
C
T
C
-
-
C
T
C
T
C
-
-
-
-
-
-
-
-
AB9  
AA9  
W10  
W11  
AB10  
AA10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T
C
-
DQS  
T
C
-
DQS  
T
C
-
DQS  
-
-
-
-
-
-
AA11  
AB11  
Y11  
Y12  
AB12  
AA12  
AB13  
AA13  
-
T
C
T
C
T
C
T
C
-
-
T
C
T
C
T
C
T
C
-
-
T
C
T
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PCLKT4_0  
PCLKT4_0  
PCLKT4_0  
PCLKC4_0  
PCLKC4_0  
PCLKC4_0  
-
-
-
AA14  
AB14  
W12  
W13  
AA15  
AB15  
AA16  
AB16  
Y17  
-
T
C
-
-
T
C
-
-
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T
C
T
C
T
-
DQS  
T
C
T
C
T
-
DQS  
T
C
T
C
T
-
DQS  
VREF1_4  
VREF1_4  
VREF1_4  
-
-
-
-
-
-
-
-
-
-
-
-
AA17  
Y13  
Y14  
AB17  
Y18  
AA18  
AB18  
Y19  
AB19  
-
C
T
C
T
C
T
C
-
-
C
T
C
T
C
T
C
-
-
C
T
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VREF2_4  
VREF2_4  
VREF2_4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AA19  
Y20  
W14  
W15  
AB20  
T
C
T
C
T
DQS  
T
C
T
C
T
DQS  
T
C
T
C
T
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
4-36  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)  
LFXP10  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Ball  
Function  
Ball  
Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
AA20  
AB21  
AA21  
AA22  
Y21  
-
PB36B  
PB37A  
PB37B  
PB38A  
PB38B  
GNDIO4  
PB39A  
-
4
4
4
4
4
4
4
-
C
T
C
T
C
-
-
PB41B  
PB42A  
PB42B  
PB43A  
PB43B  
GNDIO4  
PB44A  
PB44B  
PB45A  
PB46B  
PB47A  
PB47B  
PB48A  
GNDIO4  
GNDIO4  
GNDIO3  
PR39B  
PR39A  
GNDIO3  
PR38B  
PR38A  
PR37B  
PR37A  
PR36B  
PR35A  
PR34B  
PR34A  
GNDIO3  
PR33B  
PR33A  
PR32B  
PR32A  
PR30B  
PR30A  
PR29B  
PR29A  
GNDIO3  
PR28B  
PR28A  
PR27B  
PR26A  
PR25B  
PR25A  
PR24B  
PR24A  
GNDIO3  
PR23B  
PR23A  
GNDP1  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
C
T
C
T
C
-
-
PB45B  
PB46A  
PB46B  
PB47A  
PB47B  
GNDIO4  
PB48A  
PB48B  
PB49A  
PB50B  
PB51A  
PB51B  
PB52A  
GNDIO4  
GNDIO4  
GNDIO3  
PR43B  
PR43A  
GNDIO3  
PR42B  
PR42A  
PR41B  
PR41A  
PR40B  
PR39A  
PR38B  
PR38A  
GNDIO3  
PR37B  
PR37A  
PR36B  
PR36A  
PR34B  
PR34A  
PR33B  
PR33A  
GNDIO3  
PR32B  
PR32A  
PR31B  
PR30A  
PR29B  
PR29A  
PR28B  
PR28A  
GNDIO3  
PR27B  
PR27A  
GNDP1  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
W16  
W17  
Y15  
Y16  
W19  
W18  
W20  
-
-
-
T
C
-
-
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T
C
-
DQS  
T
C
-
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
GNDIO4  
GNDIO4  
GNDIO3  
PR35B  
PR35A  
GNDIO3  
PR34B  
PR34A  
PR33B  
PR33A  
PR32B  
PR31A  
PR30B  
PR30A  
GNDIO3  
PR29B  
PR29A  
PR28B  
PR28A  
PR26B  
PR26A  
PR25B  
PR25A  
GNDIO3  
PR24B  
PR24A  
PR23B  
PR22A  
PR21B  
PR21A  
PR20B  
PR20A  
GNDIO3  
PR19B  
PR19A  
GNDP1  
4
4
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T20  
T19  
-
C3  
T3  
-
-
C3  
T3  
-
-
C3  
T3  
-
-
-
-
-
-
-
-
U19  
U20  
V19  
V20  
R19  
R20  
W21  
Y22  
-
C
T
C3  
T3  
-
RLM0_PLLC_FB_A  
C
T
C3  
T3  
-
RLM0_PLLC_FB_A  
C
T
C3  
T3  
-
RLM0_PLLC_FB_A  
RLM0_PLLT_FB_A  
RLM0_PLLT_FB_A  
RLM0_PLLT_FB_A  
-
-
-
DQS  
DQS  
DQS  
-
-
-
-
VREF1_3  
-
VREF1_3  
-
VREF1_3  
C3  
T3  
-
-
C3  
T3  
-
-
C3  
T3  
-
-
-
-
-
-
-
-
P19  
P20  
V21  
W22  
U21  
V22  
T21  
U22  
-
C
T
C3  
T3  
C3  
T3  
C
T
-
-
C
T
C3  
T3  
C3  
T3  
C
T
-
-
C
T
C3  
T3  
C3  
T3  
C
T
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RLM0_PLLC_IN_A  
RLM0_PLLC_IN_A  
RLM0_PLLC_IN_A  
RLM0_PLLT_IN_A  
RLM0_PLLT_IN_A  
RLM0_PLLT_IN_A  
-
-
-
R21  
T22  
N19  
N20  
R22  
P22  
P21  
N21  
-
C3  
T3  
-
-
C3  
T3  
-
-
C3  
T3  
-
-
DQS  
DQS  
DQS  
-
-
-
-
VREF2_3  
-
VREF2_3  
-
VREF2_3  
C3  
T3  
C
T
-
C3  
T3  
-
-
-
-
-
-
-
-
-
C3  
T3  
C
T
-
C3  
T3  
-
-
-
-
-
-
-
-
-
C3  
T3  
C
T
-
C3  
T3  
-
-
-
-
-
-
-
-
-
M20  
M19  
N22  
4-37  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)  
LFXP10  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Ball  
Function  
Ball  
Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
M21  
-
VCCP1  
GNDIO2  
PR18B  
PR18A  
PR17B  
PR17A  
PR16B  
PR16A  
PR15B  
PR14A  
GNDIO2  
PR13B  
PR13A  
PR12B  
PR12A  
PR11B  
PR11A  
GNDIO2  
PR9B  
PR9A  
PR8B  
PR8A  
PR7B  
PR7A  
GNDIO2  
PR6B  
PR5A  
PR4B  
PR4A  
PR3B  
PR3A  
PR2B  
PR2A  
GNDIO2  
TDO  
-
-
-
VCCP1  
GNDIO2  
PR22B  
PR22A  
PR21B  
PR21A  
PR20B  
PR20A  
PR19B  
PR18A  
GNDIO2  
PR17B  
PR17A  
PR16B  
PR16A  
PR15B  
PR15A  
GNDIO2  
PR13B  
PR13A  
PR12B  
PR12A  
PR11B  
PR11A  
GNDIO2  
PR10B  
PR9A  
-
-
-
VCCP1  
GNDIO2  
PR22B  
PR22A  
PR21B  
PR21A  
PR20B  
PR20A  
PR19B  
PR18A  
GNDIO2  
PR17B  
PR17A  
PR16B  
PR16A  
PR15B  
PR15A  
GNDIO2  
PR13B  
PR13A  
PR12B  
PR12A  
PR11B  
PR11A  
GNDIO2  
PR10B  
PR9A  
-
-
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
-
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
-
-
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
-
-
M22  
L22  
K22  
K21  
L19  
K20  
L20  
L21  
-
C3  
T3  
C
T
C3  
T3  
-
-
C3  
T3  
C
T
C3  
T3  
-
-
C3  
T3  
C
T
C3  
T3  
-
-
-
-
-
PCLKC2_0  
PCLKC2_0  
PCLKC2_0  
PCLKT2_0  
PCLKT2_0  
PCLKT2_0  
-
-
-
DQS  
DQS  
DQS  
-
-
-
-
VREF1_2  
-
VREF1_2  
-
VREF1_2  
-
-
-
-
-
-
J22  
J21  
H22  
H21  
K19  
J19  
-
C3  
T3  
C
T
C3  
T3  
-
C3  
T3  
C
T
C3  
T3  
-
-
C3  
T3  
C
T
C3  
T3  
-
C3  
T3  
C
T
C3  
T3  
-
-
C3  
T3  
C
T
C3  
T3  
-
C3  
T3  
C
T
C3  
T3  
-
-
-
-
-
RUM0_PLLC_IN_A  
RUM0_PLLC_IN_A  
RUM0_PLLC_IN_A  
RUM0_PLLT_IN_A  
RUM0_PLLT_IN_A  
RUM0_PLLT_IN_A  
-
-
-
-
-
-
-
-
-
J20  
H20  
H19  
G19  
G22  
G21  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DQS  
DQS  
DQS  
-
-
-
F20  
G20  
F22  
F21  
E22  
E21  
D22  
D21  
-
-
-
-
-
-
-
-
VREF2_2  
-
VREF2_2  
-
VREF2_2  
C3  
T3  
C
T
C3  
T3  
-
-
PR8B  
C3  
T3  
C
T
C3  
T3  
-
-
PR8B  
C3  
T3  
C
T
C3  
T3  
-
-
-
PR8A  
-
PR8A  
-
RUM0_PLLC_FB_A  
PR7B  
RUM0_PLLC_FB_A  
PR7B  
RUM0_PLLC_FB_A  
RUM0_PLLT_FB_A  
PR7A  
RUM0_PLLT_FB_A  
PR7A  
RUM0_PLLT_FB_A  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PR6B  
-
PR6B  
-
PR6A  
-
PR6A  
-
GNDIO2  
TDO  
-
GNDIO2  
TDO  
-
F19  
E20  
D20  
D19  
D18  
-
-
-
-
-
-
VCCJ  
TDI  
-
-
-
-
-
VCCJ  
-
-
-
-
-
-
VCCJ  
-
-
-
-
-
-
-
TDI  
-
-
TDI  
-
-
TMS  
-
TMS  
-
-
TMS  
-
-
TCK  
-
TCK  
-
-
TCK  
-
-
GNDIO1  
-
1
-
GNDIO1  
PT48A  
PT47B  
PT47A  
PT46B  
PT45A  
PT44B  
PT44A  
PT43B  
GNDIO1  
1
1
1
1
1
1
1
1
1
1
-
-
GNDIO1  
PT52A  
PT51B  
PT51A  
PT50B  
PT49A  
PT48B  
PT48A  
PT47B  
GNDIO1  
1
1
1
1
1
1
1
1
1
1
-
-
E19  
D17  
D16  
C16  
C15  
C17  
C18  
C19  
-
-
-
-
-
-
-
-
-
-
C
T
-
-
C
T
-
-
-
-
-
DQS  
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C
T
C
-
C
T
C
-
PT39A  
PT38B  
GNDIO1  
1
1
1
-
C
-
4-38  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)  
LFXP10  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Ball  
Function  
Ball  
Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
C20  
C21  
C22  
B22  
A21  
D15  
D14  
B21  
-
PT38A  
PT37B  
PT37A  
PT36B  
PT36A  
PT35B  
PT35A  
PT34B  
GNDIO1  
PT34A  
PT33B  
PT32A  
PT31B  
PT31A  
PT30B  
PT30A  
PT29B  
PT29A  
PT28B  
PT28A  
GNDIO1  
PT27B  
PT27A  
PT26B  
PT26A  
PT25B  
PT24A  
PT23B  
PT23A  
GNDIO1  
PT22B  
PT22A  
PT21B  
PT21A  
PT20B  
GNDIO0  
PT20A  
PT19B  
PT19A  
PT18B  
PT18A  
PT17B  
PT16A  
PT15B  
GNDIO0  
PT15A  
PT14B  
PT14A  
PT13B  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T
C
T
C
T
C
T
C
-
-
PT43A  
PT42B  
PT42A  
PT41B  
PT41A  
PT40B  
PT40A  
PT39B  
GNDIO1  
PT39A  
PT38B  
PT37A  
PT36B  
PT36A  
PT35B  
PT35A  
PT34B  
PT34A  
PT33B  
PT33A  
GNDIO1  
PT32B  
PT32A  
PT31B  
PT31A  
PT30B  
PT29A  
PT28B  
PT28A  
GNDIO1  
PT27B  
PT27A  
PT26B  
PT26A  
PT25B  
GNDIO0  
PT25A  
PT24B  
PT24A  
PT23B  
PT23A  
PT22B  
PT21A  
PT20B  
GNDIO0  
PT20A  
PT19B  
PT19A  
PT18B  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T
C
T
C
T
C
T
C
-
-
PT47A  
PT46B  
PT46A  
PT45B  
PT45A  
PT44B  
PT44A  
PT43B  
GNDIO1  
PT43A  
PT42B  
PT41A  
PT40B  
PT40A  
PT39B  
PT39A  
PT38B  
PT38A  
PT37B  
PT37A  
GNDIO1  
PT36B  
PT36A  
PT35B  
PT35A  
PT34B  
PT33A  
PT32B  
PT32A  
GNDIO1  
PT31B  
PT31A  
PT30B  
PT30A  
PT29B  
GNDIO0  
PT29A  
PT28B  
PT28A  
PT27B  
PT27A  
PT26B  
PT25A  
PT24B  
GNDIO0  
PT24A  
PT23B  
PT23A  
PT22B  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
T
C
T
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VREF1_1  
VREF1_1  
VREF1_1  
-
-
-
A20  
B20  
A19  
B19  
A18  
C14  
C13  
B18  
A17  
B17  
A16  
-
T
-
DQS  
T
-
DQS  
T
-
DQS  
-
-
-
-
-
-
-
-
-
C
T
C
T
C
T
C
T
-
-
C
T
C
T
C
T
C
T
-
-
C
T
C
T
C
T
C
T
-
-
-
-
-
-
-
-
D0  
D0  
D0  
D1  
D1  
D1  
VREF2_1  
VREF2_1  
VREF2_1  
-
-
-
D2  
D2  
D2  
-
-
-
B16  
A15  
B15  
A14  
D13  
D12  
B14  
A13  
-
C
T
C
T
-
D3  
C
T
C
T
-
D3  
C
T
C
T
-
D3  
-
-
-
-
-
-
DQS  
DQS  
DQS  
-
-
-
-
D4  
-
D4  
-
D4  
C
T
-
-
C
T
-
-
C
T
-
-
D5  
D5  
D5  
-
-
-
B13  
A12  
B12  
C12  
C11  
-
C
T
C
T
C
-
D6  
C
T
C
T
C
-
D6  
C
T
C
T
C
-
D6  
-
-
-
D7  
D7  
D7  
-
-
-
BUSY  
BUSY  
BUSY  
-
-
-
B11  
A11  
A10  
B10  
B9  
T
C
T
C
T
-
CS1N  
T
C
T
C
T
-
CS1N  
T
C
T
C
T
-
CS1N  
PCLKC0_0  
PCLKC0_0  
PCLKC0_0  
PCLKT0_0  
PCLKT0_0  
PCLKT0_0  
-
-
-
DQS  
DQS  
DQS  
D11  
D10  
A9  
-
-
-
-
DOUT  
-
DOUT  
-
DOUT  
C
-
-
C
-
-
C
-
-
-
-
-
-
C8  
T
C
T
C
WRITEN  
T
C
T
C
WRITEN  
T
C
T
C
WRITEN  
B8  
-
-
-
A8  
VREF1_0  
-
VREF1_0  
-
VREF1_0  
-
C7  
4-39  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)  
LFXP10  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Ball  
Function  
Ball  
Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
A7  
B7  
PT13A  
PT12B  
PT12A  
PT11B  
PT11A  
PT10B  
PT10A  
PT9B  
PT8A  
GNDIO0  
PT7B  
PT7A  
PT6B  
PT6A  
PT5B  
PT5A  
PT4B  
PT4A  
PT3B  
PT3A  
GNDIO0  
-
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
T
C
T
C
T
C
T
-
DI  
PT18A  
PT17B  
PT17A  
PT16B  
PT16A  
PT15B  
PT15A  
PT14B  
PT13A  
GNDIO0  
PT12B  
PT12A  
PT11B  
PT11A  
PT10B  
PT10A  
PT9B  
PT9A  
PT8B  
PT8A  
GNDIO0  
PT7B  
PT7A  
PT6B  
PT5A  
PT4B  
PT4A  
PT3B  
GNDIO0  
GNDIO0  
CFG0  
CFG1  
DONE  
GND  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
T
C
T
C
T
C
T
-
DI  
PT22A  
PT21B  
PT21A  
PT20B  
PT20A  
PT19B  
PT19A  
PT18B  
PT17A  
GNDIO0  
PT16B  
PT16A  
PT15B  
PT15A  
PT14B  
PT14A  
PT13B  
PT13A  
PT12B  
PT12A  
GNDIO0  
PT11B  
PT11A  
PT10B  
PT9A  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
T
C
T
C
T
C
T
-
DI  
-
-
-
C6  
C10  
C9  
A6  
CSN  
CSN  
CSN  
-
-
-
-
-
-
VREF2_0  
VREF2_0  
VREF2_0  
B6  
DQS  
DQS  
DQS  
A5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B5  
-
-
-
-
-
-
-
-
-
-
-
C5  
A4  
C
T
C
T
C
T
C
T
C
T
-
C
T
C
T
C
T
C
T
C
T
-
-
C
T
C
T
C
T
C
T
C
T
-
-
-
-
D9  
D8  
B4  
-
-
-
-
-
-
A2  
-
-
A3  
-
-
B3  
-
-
C4  
C3  
-
-
-
-
-
-
-
C2  
D3  
D7  
D6  
E4  
-
C
T
-
-
C
T
-
-
PT2A  
-
0
-
-
DQS  
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C
T
-
PT8B  
C
T
-
D4  
D5  
-
-
-
-
PT8A  
-
-
-
PT7B  
GNDIO0  
GNDIO0  
CFG0  
CFG1  
DONE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
0
0
0
0
0
-
-
-
GNDIO0  
GNDIO0  
CFG0  
CFG1  
DONE  
GND  
-
-
-
-
-
C1  
B2  
-
-
-
-
-
-
B1  
-
-
-
A1  
-
-
-
A22  
AB1  
AB22  
H10  
H11  
H12  
H13  
H14  
J10  
J11  
J12  
J13  
J14  
J9  
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
-
-
GND  
-
-
GND  
-
-
K10  
-
-
GND  
-
-
GND  
-
-
4-40  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)  
LFXP10  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Ball  
Function  
Ball  
Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
K11  
K12  
K13  
K14  
K9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCAUX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCAUX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCCAUX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L10  
L11  
L12  
L13  
L14  
L9  
M10  
M11  
M12  
M13  
M14  
M9  
N10  
N11  
N12  
N13  
N14  
N9  
P10  
P11  
P12  
P13  
P14  
P9  
R10  
R11  
R12  
R13  
R14  
H9  
J15  
J8  
K15  
K8  
L15  
L8  
M15  
M8  
N15  
N8  
P15  
P8  
R9  
G16  
4-41  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP10, LFXP15 & LFXP20 Logic Signal Connections: 388 fpBGA (Cont.)  
LFXP10  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Ball  
Function  
Ball  
Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
Bank Diff.  
Dual Function  
G7  
T16  
T7  
VCCAUX  
VCCAUX  
VCCAUX  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO7  
VCCIO7  
VCCIO7  
VCCIO7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VCCAUX  
VCCAUX  
VCCAUX  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO7  
VCCIO7  
VCCIO7  
VCCIO7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VCCAUX  
VCCAUX  
VCCAUX  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO1  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO7  
VCCIO7  
VCCIO7  
VCCIO7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G10  
G11  
G8  
0
0
0
0
0
1
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
4
5
5
5
5
5
6
6
6
6
7
7
7
7
0
0
0
0
0
1
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
4
5
5
5
5
5
6
6
6
6
7
7
7
7
0
0
0
0
0
1
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
4
5
5
5
5
5
6
6
6
6
7
7
7
7
G9  
H8  
G12  
G13  
G14  
G15  
H15  
H16  
J16  
K16  
L16  
M16  
N16  
P16  
R16  
R15  
T12  
T13  
T14  
T15  
R8  
T10  
T11  
T8  
T9  
M7  
N7  
P7  
R7  
H7  
J7  
K7  
L7  
1. Applies to LFXP “C” only.  
2. Applies to LFXP “E” only.  
3. Supports dedicated LVDS outputs.  
4-42  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
F5  
E3  
C1  
-
PROGRAMN  
CCLK  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
PROGRAMN  
CCLK  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
-
PL2B  
-
-
PL2B  
-
-
GNDIO7  
PL3A  
-
-
GNDIO7  
PL3A  
-
-
G5  
G6  
F4  
F3  
G4  
G3  
D1  
D2  
-
T3  
C3  
T
-
T3  
C3  
T
-
PL3B  
-
PL3B  
-
PL4A  
-
PL4A  
-
PL4B  
C
T3  
C3  
T3  
C3  
-
-
PL4B  
C
T3  
C3  
T3  
C3  
-
-
PL5A  
-
PL5A  
-
PL5B  
-
PL5B  
-
PL6A  
-
PL6A  
-
PL6B  
-
PL6B  
-
GNDIO7  
PL7A  
-
GNDIO7  
PL7A  
-
E1  
E2  
H5  
H6  
H4  
H3  
F1  
F2  
-
T
LUM0_PLLT_FB_A  
T
LUM0_PLLT_FB_A  
PL7B  
C
T3  
C3  
-
LUM0_PLLC_FB_A  
PL7B  
C
T3  
C3  
-
LUM0_PLLC_FB_A  
PL8A  
-
PL8A  
-
PL8B  
-
PL8B  
-
PL9A  
-
PL9A  
-
PL10B  
PL11A  
PL11B  
GNDIO7  
PL12A  
PL12B  
PL13A  
PL13B  
PL15A  
PL15B  
GNDIO7  
PL16A  
PL16B  
PL17A  
PL17B  
PL18A  
PL19B  
PL20A  
GNDIO7  
PL20B  
PL21A  
PL21B  
PL22A  
PL22B  
-
VREF1_7  
PL10B  
PL11A  
PL11B  
GNDIO7  
PL12A  
PL12B  
PL13A  
PL13B  
PL15A  
PL15B  
GNDIO7  
PL16A  
PL16B  
PL17A  
PL17B  
PL18A  
PL19B  
PL20A  
GNDIO7  
PL20B  
PL21A  
PL21B  
PL22A  
PL22B  
-
VREF1_7  
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
-
-
-
-
J5  
J6  
G1  
G2  
J4  
J3  
-
T
-
T
-
C
T3  
C3  
T3  
C3  
-
-
C
T3  
C3  
T3  
C3  
-
-
-
-
-
-
-
-
-
-
-
-
H1  
H2  
J1  
J2  
K3  
K2  
K4  
-
T
LUM0_PLLT_IN_A  
T
LUM0_PLLT_IN_A  
C
T3  
C3  
-
LUM0_PLLC_IN_A  
C
T3  
C3  
-
LUM0_PLLC_IN_A  
-
-
-
-
VREF2_7  
VREF2_7  
-
T3  
-
-
T3  
-
DQS  
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K5  
K1  
L2  
L4  
L3  
C3  
T
C3  
T
C
T3  
C3  
C
T3  
C3  
4-43  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
L1  
M1  
M2  
L5  
N2  
N1  
P2  
P1  
M4  
M3  
R2  
-
-
-
-
-
-
PL23A  
PL23B  
PL24A  
VCCP0  
GNDP0  
PL25B  
PL26A  
PL26B  
PL27A  
PL27B  
PL28A  
GNDIO6  
PL28B  
PL29A  
PL29B  
PL30A  
PL31B  
PL32A  
PL32B  
GNDIO6  
PL33A  
PL33B  
PL34A  
PL34B  
PL36A  
PL36B  
GNDIO6  
PL37A  
PL37B  
PL38A  
PL38B  
PL39A  
PL40B  
PL41A  
PL41B  
GNDIO6  
PL42A  
PL42B  
PL43A  
PL43B  
PL44A  
PL44B  
7
7
7
-
T3  
C3  
-
-
-
-
-
-
-
-
-
-
-
VCCP0  
GNDP0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
-
-
-
-
-
-
T3  
C3  
T3  
C3  
T
-
-
-
-
-
-
PL23A  
PL23B  
PL24A  
GNDIO6  
PL24B  
PL25A  
PL25B  
PL26A  
PL27B  
PL28A  
PL28B  
GNDIO6  
PL29A  
PL29B  
PL30A  
PL30B  
PL32A  
PL32B  
GNDIO6  
PL33A  
PL33B  
PL34A  
PL34B  
PL35A  
PL36B  
PL37A  
PL37B  
GNDIO6  
PL38A  
PL38B  
PL39A  
PL39B  
PL40A  
PL40B  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
T3  
C3  
T
-
-
-
-
PCLKT6_0  
PCLKT6_0  
-
-
-
-
R1  
N3  
N4  
M5  
N5  
T2  
T1  
-
C
T3  
C3  
-
PCLKC6_0  
C
T3  
C3  
-
PCLKC6_0  
-
-
-
-
-
-
-
VREF1_6  
-
VREF1_6  
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
-
-
-
-
U2  
U1  
P3  
P4  
P6  
P5  
-
T
LLM0_PLLT_IN_A  
T
LLM0_PLLT_IN_A  
C
T3  
C3  
T3  
C3  
-
LLM0_PLLC_IN_A  
C
T3  
C3  
T3  
C3  
-
LLM0_PLLC_IN_A  
-
-
-
-
-
-
-
-
-
-
V2  
V1  
W2  
W1  
R3  
R4  
R6  
R5  
-
T
-
T
-
C
T3  
C3  
-
-
C
T3  
C3  
-
-
-
-
-
-
VREF2_6  
VREF2_6  
-
-
-
-
T3  
C3  
-
DQS  
T3  
C3  
-
DQS  
-
-
-
-
Y2  
Y1  
T3  
T4  
W3  
V3  
T
LLM0_PLLT_FB_A  
T
LLM0_PLLT_FB_A  
C
T3  
C3  
T3  
C3  
LLM0_PLLC_FB_A  
C
T3  
C3  
T3  
C3  
LLM0_PLLC_FB_A  
-
-
-
-
-
-
-
-
4-44  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
T6  
T5  
-
PL41A  
PL41B  
GNDIO6  
PL42A  
PL42B  
PL43A  
6
6
6
6
6
6
T
C
-
T3  
C3  
-
-
-
-
-
-
-
PL45A  
PL45B  
GNDIO6  
PL46A  
PL46B  
PL47A  
6
6
6
6
6
6
T
C
-
T3  
C3  
-
-
-
-
-
-
-
U3  
U4  
V4  
SLEEPN1/  
SLEEPN1/  
W4  
-
-
-
-
-
-
TOE2  
TOE2  
W5  
Y3  
-
INITN  
-
5
-
-
-
-
INITN  
PB3B  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
-
-
-
GNDIO5  
-
5
-
-
-
GNDIO5  
PB4A  
-
-
U5  
V5  
Y4  
Y5  
V6  
-
-
-
T
C
T
C
T
-
-
-
-
-
-
PB4B  
-
-
-
-
-
PB5A  
-
-
-
-
-
PB5B  
-
-
-
-
-
PB6A  
-
GNDIO5  
-
5
-
-
-
GNDIO5  
PB6B  
-
U6  
W6  
Y6  
AA2  
AA3  
V7  
U7  
Y7  
W7  
AA4  
-
-
-
C
T
C
T
C
-
-
PB3A  
PB3B  
PB4A  
PB4B  
PB5A  
PB6B  
PB7A  
PB7B  
PB8A  
GNDIO5  
PB8B  
PB9A  
PB9B  
PB10A  
PB10B  
PB11A  
PB11B  
PB12A  
GNDIO5  
PB12B  
PB13A  
PB14B  
PB15A  
PB15B  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
T
C
T
C
-
-
PB7A  
-
-
PB7B  
-
-
PB8A  
-
-
PB8B  
-
-
PB9A  
-
-
-
PB10B  
PB11A  
PB11B  
PB12A  
GNDIO5  
PB12B  
PB13A  
PB13B  
PB14A  
PB14B  
PB15A  
PB15B  
PB16A  
GNDIO5  
PB16B  
PB17A  
PB18B  
PB19A  
PB19B  
-
-
T
C
T
-
DQS  
T
C
T
-
DQS  
-
-
-
-
-
-
AA5  
AB3  
AB4  
AA6  
AA7  
U8  
V8  
Y8  
-
C
T
C
T
C
T
C
T
-
-
C
T
C
T
C
T
C
T
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VREF1_5  
VREF1_5  
-
-
W8  
V9  
U9  
Y9  
W9  
C
-
-
C
-
-
-
-
-
-
DQS  
-
-
-
DQS  
-
T
C
T
C
4-45  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
AB5  
AB6  
AA8  
AA9  
W10  
-
PB16A  
PB16B  
PB17A  
PB17B  
PB18A  
GNDIO5  
PB18B  
PB19A  
PB19B  
PB20A  
PB20B  
PB21A  
PB22B  
PB23A  
PB23B  
GNDIO5  
PB24A  
PB24B  
PB25A  
PB25B  
PB26A  
PB26B  
PB27A  
PB27B  
GNDIO4  
PB28A  
PB28B  
PB29A  
PB30B  
PB31A  
PB31B  
PB32A  
PB32B  
PB33A  
GNDIO4  
PB33B  
PB34A  
PB34B  
PB35A  
PB35B  
PB36A  
PB36B  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
T
C
T
C
T
-
-
PB20A  
PB20B  
PB21A  
PB21B  
PB22A  
GNDIO5  
PB22B  
PB23A  
PB23B  
PB24A  
PB24B  
PB25A  
PB26B  
PB27A  
PB27B  
GNDIO5  
PB28A  
PB28B  
PB29A  
PB29B  
PB30A  
PB30B  
PB31A  
PB31B  
GNDIO4  
PB32A  
PB32B  
PB33A  
PB34B  
PB35A  
PB35B  
PB36A  
PB36B  
PB37A  
GNDIO4  
PB37B  
PB38A  
PB38B  
PB39A  
PB39B  
PB40A  
PB40B  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
T
C
T
C
T
-
-
-
-
-
-
VREF2_5  
VREF2_5  
-
-
-
-
V10  
AB7  
AB8  
AB9  
AB10  
Y10  
AA10  
W11  
V11  
-
C
T
C
T
C
-
-
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
T
C
-
DQS  
T
C
-
DQS  
-
-
-
-
Y11  
AA11  
AB11  
AB12  
Y12  
AA12  
W12  
V12  
-
T
C
T
C
T
C
T
C
-
-
T
C
T
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
PCLKT4_0  
PCLKT4_0  
PCLKC4_0  
PCLKC4_0  
-
-
AB13  
AB14  
AA13  
Y13  
AB15  
AB16  
V13  
W13  
AA14  
-
T
C
-
-
T
C
-
-
-
-
-
-
-
-
-
-
T
C
T
C
T
-
DQS  
T
C
T
C
T
-
DQS  
VREF1_4  
VREF1_4  
-
-
-
-
-
-
-
-
AA15  
AB17  
AB18  
W14  
Y14  
U14  
V14  
C
T
C
T
C
T
C
-
C
T
C
T
C
T
C
-
-
-
-
-
-
-
-
-
VREF2_4  
-
VREF2_4  
-
4-46  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
AB19  
AB20  
-
PB37A  
PB38B  
GNDIO4  
PB39A  
PB39B  
PB40A  
PB40B  
PB41A  
PB41B  
PB42A  
PB42B  
PB43A  
PB43B  
GNDIO4  
PB44A  
PB44B  
PB45A  
PB46B  
PB47A  
PB47B  
PB48A  
PB48B  
GNDIO4  
-
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
-
-
-
-
PB41A  
PB42B  
GNDIO4  
PB43A  
PB43B  
PB44A  
PB44B  
PB45A  
PB45B  
PB46A  
PB46B  
PB47A  
PB47B  
GNDIO4  
PB48A  
PB48B  
PB49A  
PB50B  
PB51A  
PB51B  
PB52A  
PB52B  
GNDIO4  
PB53A  
PB53B  
PB54A  
PB54B  
PB55A  
PB55B  
GNDIO4  
PB56A  
GNDIO3  
PR47A  
PR46B  
PR46A  
PR45B  
PR45A  
PR44B  
PR44A  
PR43B  
PR43A  
GNDIO3  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
-
-
-
-
-
-
-
-
-
V15  
U15  
Y15  
W15  
AA16  
AA17  
AA18  
AA19  
Y16  
W16  
-
T
C
T
C
T
C
T
C
T
C
-
DQS  
T
C
T
C
T
C
T
C
T
C
-
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
AA20  
AA21  
Y17  
Y18  
Y19  
Y20  
V16  
U16  
-
T
C
-
-
T
C
-
-
-
-
-
-
-
-
-
-
T
C
T
C
-
DQS  
T
C
T
C
-
DQS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
U18  
V18  
W19  
W18  
U17  
V17  
-
-
T
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GNDIO4  
-
4
-
-
W17  
-
-
-
GNDIO3  
PR43A  
PR42B  
PR42A  
PR41B  
PR41A  
PR40B  
PR40A  
PR39B  
PR39A  
GNDIO3  
3
3
3
3
3
3
3
3
3
3
3
-
-
V19  
U20  
U19  
V20  
W20  
T17  
T18  
T19  
T20  
-
-
-
C3  
T3  
C
T
C3  
T3  
C3  
T3  
-
C3  
T3  
C
T
C3  
T3  
C3  
T3  
-
4-47  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
R18  
R17  
Y22  
Y21  
W22  
W21  
P17  
P18  
-
PR38B  
PR38A  
PR37B  
PR37A  
PR36B  
PR35A  
PR34B  
PR34A  
GNDIO3  
PR33B  
PR33A  
PR32B  
PR32A  
PR30B  
PR30A  
PR29B  
PR29A  
GNDIO3  
PR28B  
PR28A  
PR27B  
PR26A  
PR25B  
PR25A  
PR24B  
PR24A  
GNDIO3  
PR23B  
PR23A  
-
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
C
T
C3  
T3  
-
RLM0_PLLC_FB_A  
PR42B  
PR42A  
PR41B  
PR41A  
PR40B  
PR39A  
PR38B  
PR38A  
GNDIO3  
PR37B  
PR37A  
PR36B  
PR36A  
PR34B  
PR34A  
PR33B  
PR33A  
GNDIO3  
PR32B  
PR32A  
PR31B  
PR30A  
PR29B  
PR29A  
PR28B  
PR28A  
GNDIO3  
PR27B  
PR27A  
PR26B  
PR26A  
PR25B  
GNDP1  
VCCP1  
PR24A  
PR23B  
PR23A  
GNDIO2  
PR22B  
PR22A  
PR21B  
PR21A  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
-
C
RLM0_PLLC_FB_A  
RLM0_PLLT_FB_A  
T
RLM0_PLLT_FB_A  
-
C3  
T3  
-
-
DQS  
DQS  
-
-
-
VREF1_3  
-
VREF1_3  
C3  
T3  
-
-
C3  
T3  
-
-
-
-
-
-
R19  
R20  
V22  
V21  
U22  
U21  
P19  
P20  
-
C
T
C3  
T3  
C3  
T3  
C
T
-
-
C
T
-
-
-
-
C3  
T3  
C3  
T3  
C
T
-
-
-
-
-
-
-
RLM0_PLLC_IN_A  
RLM0_PLLC_IN_A  
RLM0_PLLT_IN_A  
RLM0_PLLT_IN_A  
-
-
-
T22  
T21  
R22  
R21  
N19  
N20  
N18  
M18  
-
C3  
T3  
-
-
C3  
T3  
-
-
DQS  
DQS  
-
-
-
VREF2_3  
-
VREF2_3  
C3  
T3  
C
T
-
C3  
T3  
-
-
C3  
T3  
C
T
-
-
-
-
-
-
-
-
-
-
P22  
P21  
N22  
N21  
M19  
M20  
L18  
M21  
M22  
L22  
-
-
C3  
T3  
C3  
T3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GNDP1  
VCCP1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
2
2
2
2
2
2
2
-
-
PR22B  
PR22A  
GNDIO2  
-
2
2
2
-
C3  
T3  
-
-
C3  
T3  
-
C3  
T3  
C
T
-
-
-
-
-
L19  
L20  
L21  
K22  
-
-
-
-
-
-
-
-
PR21B  
PR21A  
2
2
C
T
PCLKC2_0  
PCLKT2_0  
PCLKC2_0  
PCLKT2_0  
4-48  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
J21  
J22  
K18  
K19  
-
PR20B  
PR20A  
PR19B  
PR18A  
GNDIO2  
PR17B  
PR17A  
PR16B  
PR16A  
PR15B  
PR15A  
GNDIO2  
PR13B  
PR13A  
PR12B  
PR12A  
PR11B  
PR11A  
GNDIO2  
PR10B  
PR9A  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
C3  
T3  
-
-
PR20B  
PR20A  
PR19B  
PR18A  
GNDIO2  
PR17B  
PR17A  
PR16B  
PR16A  
PR15B  
PR15A  
GNDIO2  
PR13B  
PR13A  
PR12B  
PR12A  
PR11B  
PR11A  
GNDIO2  
PR10B  
PR9A  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
C3  
T3  
-
-
DQS  
DQS  
-
-
-
VREF1_2  
-
VREF1_2  
-
-
-
-
K21  
K20  
H21  
H22  
J20  
J19  
-
C3  
T3  
C
T
C3  
T3  
-
C3  
T3  
C
T
C3  
T3  
-
-
C3  
T3  
C
T
C3  
T3  
-
C3  
T3  
C
T
C3  
T3  
-
-
-
-
RUM0_PLLC_IN_A  
RUM0_PLLC_IN_A  
RUM0_PLLT_IN_A  
RUM0_PLLT_IN_A  
-
-
-
-
-
-
J17  
J18  
G21  
G22  
F21  
F22  
-
-
-
-
-
-
-
-
-
-
-
DQS  
DQS  
-
-
H20  
H19  
H17  
H18  
E21  
E22  
D21  
D22  
G20  
G19  
G17  
G18  
-
-
-
-
-
-
VREF2_2  
-
VREF2_2  
PR8B  
C3  
T3  
C
T
C3  
T3  
C3  
T3  
C
T
-
PR8B  
C3  
T3  
C
T
C3  
T3  
C3  
T3  
C
T
-
PR8A  
-
PR8A  
-
PR7B  
RUM0_PLLC_FB_A  
PR7B  
RUM0_PLLC_FB_A  
PR7A  
RUM0_PLLT_FB_A  
PR7A  
RUM0_PLLT_FB_A  
PR6B  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PR6B  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PR6A  
PR6A  
PR5B  
PR5B  
PR5A  
PR5A  
PR4B  
PR4B  
PR4A  
PR4A  
GNDIO2  
PR3B  
-
GNDIO2  
PR3B  
-
F18  
F19  
C22  
F20  
E20  
D19  
E19  
D20  
C20  
-
C3  
T3  
-
C3  
T3  
-
PR3A  
PR3A  
PR2B  
PR2B  
TDO  
-
TDO  
-
VCCJ  
-
-
VCCJ  
-
-
TDI  
-
-
TDI  
-
-
TMS  
-
-
TMS  
-
-
TCK  
-
-
TCK  
-
-
-
-
-
PT56A  
GNDIO1  
1
1
-
GNDIO1  
1
-
-
4-49  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
D18  
E18  
C19  
C18  
C21  
-
-
-
-
-
-
PT55B  
PT55A  
PT54B  
PT54A  
PT53B  
GNDIO1  
PT53A  
PT52B  
PT52A  
PT51B  
PT51A  
PT50B  
PT49A  
PT48B  
PT48A  
PT47B  
GNDIO1  
PT47A  
PT46B  
PT46A  
PT45B  
PT45A  
PT44B  
PT44A  
PT43B  
GNDIO1  
PT43A  
PT42B  
PT41A  
PT40B  
PT40A  
PT39B  
PT39A  
PT38B  
PT38A  
PT37B  
PT37A  
GNDIO1  
PT36B  
PT36A  
PT35B  
PT35A  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GNDIO1  
-
1
-
-
-
-
B21  
E17  
E16  
C17  
D17  
F17  
F16  
C16  
D16  
A20  
-
-
-
T
C
T
C
T
-
-
PT48B  
PT48A  
PT47B  
PT47A  
PT46B  
PT45A  
PT44B  
PT44A  
PT43B  
GNDIO1  
PT43A  
PT42B  
PT42A  
PT41B  
PT41A  
PT40B  
PT40A  
PT39B  
GNDIO1  
PT39A  
PT38B  
PT37A  
PT36B  
PT36A  
PT35B  
PT35A  
PT34B  
PT34A  
PT33B  
PT33A  
GNDIO1  
PT32B  
PT32A  
PT31B  
PT31A  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
T
C
T
-
-
-
-
-
-
-
DQS  
DQS  
-
-
-
-
-
-
C
T
C
-
-
C
T
C
-
-
-
-
-
-
-
-
B20  
A19  
B19  
C15  
D15  
A18  
B18  
F15  
-
T
C
T
C
T
C
T
C
-
-
T
C
T
C
T
C
T
C
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VREF1_1  
VREF1_1  
-
-
E15  
A17  
B17  
E14  
F14  
D14  
C14  
A16  
B16  
A15  
B15  
-
T
-
DQS  
T
-
DQS  
-
-
-
-
-
-
C
T
C
T
C
T
C
T
-
-
C
T
C
T
C
T
C
T
-
-
-
-
-
-
D0  
D0  
D1  
D1  
VREF2_1  
VREF2_1  
-
D2  
-
-
D2  
-
E13  
D13  
C13  
B13  
C
T
C
T
D3  
-
C
T
C
T
D3  
-
-
-
DQS  
DQS  
4-50  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
A14  
B14  
C12  
B12  
-
PT30B  
PT29A  
PT28B  
PT28A  
GNDIO1  
PT27B  
PT27A  
PT26B  
PT26A  
PT25B  
GNDIO0  
PT25A  
PT24B  
PT24A  
PT23B  
PT23A  
PT22B  
PT21A  
PT20B  
GNDIO0  
PT20A  
PT19B  
PT19A  
PT18B  
PT18A  
PT17B  
PT17A  
PT16B  
PT16A  
PT15B  
PT15A  
PT14B  
PT13A  
GNDIO0  
PT12B  
PT12A  
PT11B  
PT11A  
PT10B  
PT10A  
PT9B  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
PT34B  
PT33A  
PT32B  
PT32A  
GNDIO1  
PT31B  
PT31A  
PT30B  
PT30A  
PT29B  
GNDIO0  
PT29A  
PT28B  
PT28A  
PT27B  
PT27A  
PT26B  
PT25A  
PT24B  
GNDIO0  
PT24A  
PT23B  
PT23A  
PT22B  
PT22A  
PT21B  
PT21A  
PT20B  
PT20A  
PT19B  
PT19A  
PT18B  
PT17A  
GNDIO0  
PT16B  
PT16A  
PT15B  
PT15A  
PT14B  
PT14A  
PT13B  
PT13A  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
-
-
D4  
-
D4  
C
T
-
-
C
T
-
-
D5  
D5  
-
-
D12  
E12  
A13  
A12  
A11  
-
C
T
C
T
C
-
D6  
C
T
C
T
C
-
D6  
-
-
D7  
D7  
-
-
BUSY  
BUSY  
-
-
A10  
D11  
E11  
B11  
C11  
B9  
T
C
T
C
T
-
CS1N  
T
C
T
C
T
-
CS1N  
PCLKC0_0  
PCLKC0_0  
PCLKT0_0  
PCLKT0_0  
-
-
DQS  
DQS  
-
-
A9  
-
DOUT  
-
DOUT  
B8  
C
-
-
C
-
-
-
-
-
A8  
T
C
T
C
T
C
T
C
T
C
T
-
WRITEN  
T
C
T
C
T
C
T
C
T
C
T
-
WRITEN  
E10  
D10  
C10  
B10  
B7  
-
-
VREF1_0  
VREF1_0  
-
-
DI  
DI  
-
-
A7  
CSN  
CSN  
C9  
D9  
B6  
-
-
-
-
VREF2_0  
VREF2_0  
A6  
DQS  
DQS  
F9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
E9  
-
-
-
-
-
B5  
C
T
C
T
C
T
C
T
C
T
C
T
C
T
C
T
A5  
C8  
D8  
B4  
A4  
F8  
E8  
PT9A  
4-51  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
B3  
A3  
PT8B  
PT8A  
GNDIO0  
PT7B  
PT7A  
PT6B  
PT5A  
PT4B  
PT4A  
PT3B  
PT3A  
GNDIO0  
-
0
0
0
0
0
0
0
0
0
0
0
0
-
C
T
-
-
PT12B  
PT12A  
GNDIO0  
PT11B  
PT11A  
PT10B  
PT9A  
PT8B  
PT8A  
PT7B  
PT7A  
GNDIO0  
PT6B  
PT6A  
PT5B  
PT5A  
PT4B  
PT4A  
GNDIO0  
PT3B  
CFG0  
CFG1  
DONE  
GND  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
C
T
-
-
-
-
-
-
-
D7  
C
T
-
-
C
T
-
-
C7  
DQS  
DQS  
B2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C2  
-
-
C3  
C
T
C
T
-
C
T
C
T
-
D3  
F7  
E7  
-
C6  
-
C
T
C
T
C
T
-
D6  
-
-
-
C5  
-
-
-
C4  
-
-
-
F6  
-
-
-
E6  
-
-
-
-
GNDIO0  
-
0
-
-
E4  
-
-
E5  
CFG0  
CFG1  
DONE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
0
0
0
-
-
-
D4  
-
-
D5  
-
-
A1  
-
-
A2  
-
-
GND  
-
-
A21  
A22  
AA1  
AA22  
AB1  
AB2  
AB21  
AB22  
B1  
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
B22  
H14  
H9  
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
J10  
J11  
J12  
J13  
J14  
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
-
-
GND  
-
-
4-52  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
J15  
J8  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J9  
K10  
K11  
K12  
K13  
K14  
K9  
L10  
L11  
L12  
L13  
L14  
L9  
M10  
M11  
M12  
M13  
M14  
M9  
N10  
N11  
N12  
N13  
N14  
N9  
P10  
P11  
P12  
P13  
P14  
P15  
P8  
P9  
R14  
R9  
F10  
F13  
G10  
G13  
G14  
4-53  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
G9  
H15  
H8  
VCC  
VCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VCC  
VCC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VCC  
-
VCC  
-
J16  
J7  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
K16  
K17  
K6  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
K7  
VCC  
-
VCC  
-
N16  
N17  
N6  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
N7  
VCC  
-
VCC  
-
P16  
P7  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
R15  
R8  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
T10  
T13  
T14  
T9  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCC  
-
U10  
U13  
G15  
G16  
G7  
VCC  
-
VCC  
-
VCC  
-
VCC  
-
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO1  
VCCIO1  
VCCIO1  
-
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCAUX  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO0  
VCCIO1  
VCCIO1  
VCCIO1  
-
-
-
-
-
G8  
-
-
H16  
H7  
-
-
-
-
R16  
R7  
-
-
-
-
T15  
T16  
T7  
-
-
-
-
-
-
T8  
-
-
F11  
G11  
H10  
H11  
F12  
G12  
H12  
0
0
0
0
1
1
1
0
0
0
0
1
1
1
4-54  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
LFXP15 & LFXP20 Logic Signal Connections: 484 fpBGA (Cont.)  
LFXP15  
LFXP20  
Ball  
Number  
Ball  
Function  
Dual  
Function  
Ball  
Function  
Dual  
Function  
Bank Differential  
Bank Differential  
H13  
K15  
L15  
L16  
L17  
M15  
M16  
M17  
N15  
R12  
R13  
T12  
U12  
R10  
R11  
T11  
U11  
M6  
VCCIO1  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO7  
VCCIO7  
VCCIO7  
VCCIO7  
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VCCIO1  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO2  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO3  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO4  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO5  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO6  
VCCIO7  
VCCIO7  
VCCIO7  
VCCIO7  
1
2
2
2
2
3
3
3
3
4
4
4
4
5
5
5
5
6
6
6
6
7
7
7
7
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M7  
M8  
N8  
K8  
L6  
L7  
L8  
1. Applies to LFXP “C” only.  
2. Applies to LFXP “E” only.  
3. Supports dedicated LVDS outputs.  
4-55  
Pinout Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Thermal Management  
Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal  
characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets.  
Designers must complete a thermal analysis of their specific design to ensure that the device and package do not  
exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package  
specific thermal values.  
For Further Information  
For further information regarding Thermal Management, refer to the following located on the Lattice website at  
www.latticesemi.com.  
• Thermal Management document  
Technical Note TN1052 - Power Estimation and Management for LatticeECP/EC and LatticeXP Devices  
• Power Calculator tool included with Lattice’s ispLEVER design tool, or as a standalone download from  
www.latticesemi.com/software  
4-56  
LatticeXP Family Data Sheet  
Ordering Information  
Data Sheet DS1001  
December 2005  
Part Number Description  
LFXP XX X – X XXXXXX X  
Device Family  
Grade  
LatticeXP FPGA  
C = Commercial  
I = Industrial  
Logic Capacity  
3K LUTs = 3  
Package  
T100 = 100-pin TQFP  
T144 = 144-pin TQFP  
Q208 = 208-pin PQFP  
F256 = 256-ball fpBGA  
F388 = 388-ball fpBGA  
F484 = 484-ball fpBGA  
6K LUTs = 6  
10K LUTs = 10  
15K LUTs = 15  
20K LUTs = 20  
Supply Voltage  
C = 1.8V/2.5V/3.3V  
E = 1.2V  
TN100 = 100-pin Lead-free TQFP  
TN144 = 144-pin Lead-free TQFP  
QN208 = 208-pin Lead-free PQFP  
FN256 = 256-ball Lead-free fpBGA  
FN388 = 388-ball Lead-free fpBGA  
FN484 = 484-ball Lead-free fpBGA  
Note: Parts dual marked per table below.  
Speed  
3 = Slowest  
4
5 = Fastest  
Ordering Information (Contact Factory for Specific Device Availability)  
Note: LatticeXP devices are dual marked. For example, the commercial speed grade LFXP10E-4F256C is also  
marked with industrial grade -3I (LFXP10E-3F256I). The commercial grade is one speed grade faster than the  
associated dual mark industrial grade. The slowest commercial speed grade does not have industrial markings.  
The markings appear as follows:  
LFXP10E-  
4F256C-3I  
Datecode  
© 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
5-1  
DS1001 Ordering Information_03.0  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Conventional Packaging  
Commercial  
Part Number  
LFXP3C-3Q208C  
LFXP3C-4Q208C  
LFXP3C-5Q208C  
LFXP3C-3T144C  
LFXP3C-4T144C  
LFXP3C-5T144C  
LFXP3C-3T100C  
LFXP3C-4T100C  
LFXP3C-5T100C  
I/Os  
Voltage  
Grade  
-3  
Package  
PQFP  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Pins  
208  
208  
208  
144  
144  
144  
100  
100  
100  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
136  
136  
136  
100  
100  
100  
62  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-5  
-3  
-4  
-5  
-3  
62  
-4  
62  
-5  
Part Number  
LFXP6C-3F256C  
LFXP6C-4F256C  
LFXP6C-5F256C  
LFXP6C-3Q208C  
LFXP6C-4Q208C  
LFXP6C-5Q208C  
LFXP6C-3T144C  
LFXP6C-4T144C  
LFXP6C-5T144C  
I/Os  
188  
188  
188  
142  
142  
142  
100  
100  
100  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
PQFP  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
Pins  
256  
256  
256  
208  
208  
208  
144  
144  
144  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Part Number  
LFXP10C-3F388C  
LFXP10C-4F388C  
LFXP10C-5F388C  
LFXP10C-3F256C  
LFXP10C-4F256C  
LFXP10C-5F256C  
I/Os  
244  
244  
244  
188  
188  
188  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
9.7K  
9.7K  
9.7K  
9.7K  
9.7K  
9.7K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-5  
-3  
-4  
-5  
5-2  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Commercial (Cont.)  
Part Number  
LFXP15C-3F484C  
LFXP15C-4F484C  
LFXP15C-5F484C  
LFXP15C-3F388C  
LFXP15C-4F388C  
LFXP15C-5F388C  
LFXP15C-3F256C  
LFXP15C-4F256C  
LFXP15C-5F256C  
I/Os  
300  
300  
300  
268  
268  
268  
188  
188  
188  
Voltage  
Grade  
-3  
Package  
Pins  
484  
484  
484  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Part Number  
LFXP20C-3F484C  
LFXP20C-4F484C  
LFXP20C-5F484C  
LFXP20C-3F388C  
LFXP20C-4F388C  
LFXP20C-5F388C  
LFXP20C-3F256C  
LFXP20C-4F256C  
LFXP20C-5F256C  
I/Os  
340  
340  
340  
268  
268  
268  
188  
188  
188  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
484  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Part Number  
LFXP3E-3Q208C  
LFXP3E-4Q208C  
LFXP3E-5Q208C  
LFXP3E-3T144C  
LFXP3E-4T144C  
LFXP3E-5T144C  
LFXP3E-3T100C  
LFXP3E-4T100C  
LFXP3E-5T100C  
I/Os  
136  
136  
136  
100  
100  
100  
62  
Voltage  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
Grade  
-3  
Package  
PQFP  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Pins  
208  
208  
208  
144  
144  
144  
100  
100  
100  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
-4  
-5  
-3  
-4  
-5  
-3  
62  
-4  
62  
-5  
5-3  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Commercial (Cont.)  
Part Number  
LFXP6E-3F256C  
LFXP6E-4F256C  
LFXP6E-5F256C  
LFXP6E-3Q208C  
LFXP6E-4Q208C  
LFXP6E-5Q208C  
LFXP6E-3T144C  
LFXP6E-4T144C  
LFXP6E-5T144C  
I/Os  
188  
188  
188  
142  
142  
142  
100  
100  
100  
Voltage  
Grade  
-3  
Package  
Pins  
256  
256  
256  
208  
208  
208  
144  
144  
144  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
fpBGA  
fpBGA  
fpBGA  
PQFP  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Part Number  
LFXP10E-3F388C  
LFXP10E-4F388C  
LFXP10E-5F388C  
LFXP10E-3F256C  
LFXP10E-4F256C  
LFXP10E-5F256C  
I/Os  
244  
244  
244  
188  
188  
188  
Voltage  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
9.7K  
9.7K  
9.7K  
9.7K  
9.7K  
9.7K  
1.2V  
-4  
1.2V  
-5  
1.2V  
-3  
1.2V  
-4  
1.2V  
-5  
Part Number  
LFXP15E-3F484C  
LFXP15E-4F484C  
LFXP15E-5F484C  
LFXP15E-3F388C  
LFXP15E-4F388C  
LFXP15E-5F388C  
LFXP15E-3F256C  
LFXP15E-4F256C  
LFXP15E-5F256C  
I/Os  
300  
300  
300  
268  
268  
268  
188  
188  
188  
Voltage  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
484  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
5-4  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Commercial (Cont.)  
Part Number  
LFXP20E-3F484C  
LFXP20E-4F484C  
LFXP20E-5F484C  
LFXP20E-3F388C  
LFXP20E-4F388C  
LFXP20E-5F388C  
LFXP20E-3F256C  
LFXP20E-4F256C  
LFXP20E-5F256C  
I/Os  
340  
340  
340  
268  
268  
268  
188  
188  
188  
Voltage  
Grade  
-3  
Package  
Pins  
484  
484  
484  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Industrial  
Part Number  
LFXP3C-3Q208I  
LFXP3C-4Q208I  
LFXP3C-3T144I  
LFXP3C-4T144I  
LFXP3C-3T100I  
LFXP3C-4T100I  
I/Os  
136  
136  
100  
100  
62  
Voltage  
Grade  
-3  
Package  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Pins  
208  
208  
144  
144  
100  
100  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-3  
-4  
-3  
62  
-4  
Part Number  
LFXP6C-3F256I  
LFXP6C-4F256I  
LFXP6C-3Q208I  
LFXP6C-4Q208I  
LFXP6C-3T144I  
LFXP6C-4T144I  
I/Os  
188  
188  
142  
142  
100  
100  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
PQFP  
PQFP  
TQFP  
Pins  
256  
256  
208  
208  
144  
144  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-3  
-4  
-3  
-4  
TQFP  
Part Number  
LFXP10C-3F388I  
LFXP10C-4F388I  
LFXP10C-3F256I  
LFXP10C-4F256I  
I/Os  
244  
244  
188  
188  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
388  
388  
256  
256  
Temp.  
IND  
LUTs  
9.7K  
9.7K  
9.7K  
9.7K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
IND  
-3  
IND  
-4  
IND  
5-5  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Industrial (Cont.)  
Part Number  
LFXP15C-3F484I  
LFXP15C-4F484I  
LFXP15C-3F388I  
LFXP15C-4F388I  
LFXP15C-3F256I  
LFXP15C-4F256I  
I/Os  
300  
300  
268  
268  
188  
188  
Voltage  
Grade  
-3  
Package  
Pins  
484  
484  
388  
388  
256  
256  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
-4  
-3  
-4  
-3  
-4  
Part Number  
LFXP20C-3F484I  
LFXP20C-4F484I  
LFXP20C-3F388I  
LFXP20C-4F388I  
LFXP20C-3F256I  
LFXP20C-4F256I  
I/Os  
340  
340  
268  
268  
188  
188  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
388  
388  
256  
256  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-3  
-4  
-3  
-4  
Part Number  
LFXP3E-3Q208I  
LFXP3E-4Q208I  
LFXP3E-3T144I  
LFXP3E-4T144I  
LFXP3E-3T100I  
LFXP3E-4T100I  
I/Os  
136  
136  
100  
100  
62  
Voltage  
1.2V  
Grade  
-3  
Package  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Pins  
208  
208  
144  
144  
100  
100  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
1.2V  
-3  
62  
1.2V  
-4  
Part Number  
LFXP6E-3F256I  
LFXP6E-4F256I  
LFXP6E-3Q208I  
LFXP6E-4Q208I  
LFXP6E-3T144I  
LFXP6E-4T144I  
I/Os  
188  
188  
142  
142  
100  
100  
Voltage  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
PQFP  
PQFP  
TQFP  
Pins  
256  
256  
208  
208  
144  
144  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
TQFP  
Part Number  
LFXP10E-3F388I  
LFXP10E-4F388I  
LFXP10E-3F256I  
LFXP10E-4F256I  
I/Os  
244  
244  
188  
188  
Voltage  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
388  
388  
256  
256  
Temp.  
IND  
LUTs  
9.7K  
9.7K  
9.7K  
9.7K  
1.2V  
-4  
IND  
1.2V  
-3  
IND  
1.2V  
-4  
IND  
5-6  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Industrial (Cont.)  
Part Number  
LFXP15E-3F484I  
LFXP15E-4F484I  
LFXP15E-3F388I  
LFXP15E-4F388I  
LFXP15E-3F256I  
LFXP15E-4F256I  
I/Os  
300  
300  
268  
268  
188  
188  
Voltage  
1.2V  
Grade  
-3  
Package  
Pins  
484  
484  
388  
388  
256  
256  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
Part Number  
LFXP20E-3F484I  
LFXP20E-4F484I  
LFXP20E-3F388I  
LFXP20E-4F388I  
LFXP20E-3F256I  
LFXP20E-4F256I  
I/Os  
340  
340  
268  
268  
188  
188  
Voltage  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
388  
388  
256  
256  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
5-7  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Lead-free Packaging  
Commercial  
Part Number  
LFXP3C-3QN208C  
LFXP3C-4QN208C  
LFXP3C-5QN208C  
LFXP3C-3TN144C  
LFXP3C-4TN144C  
LFXP3C-5TN144C  
LFXP3C-3TN100C  
LFXP3C-4TN100C  
LFXP3C-5TN100C  
I/Os  
136  
136  
136  
100  
100  
100  
62  
Voltage  
Grade  
-3  
Package  
PQFP  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Pins  
208  
208  
208  
144  
144  
144  
100  
100  
100  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-5  
-3  
-4  
-5  
-3  
62  
-4  
62  
-5  
Part Number  
LFXP6C-3FN256C  
LFXP6C-4FN256C  
LFXP6C-5FN256C  
LFXP6C-3QN208C  
LFXP6C-4QN208C  
LFXP6C-5QN208C  
LFXP6C-3TN144C  
LFXP6C-4TN144C  
LFXP6C-5TN144C  
I/Os  
188  
188  
188  
142  
142  
142  
100  
100  
100  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
PQFP  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
Pins  
256  
256  
256  
208  
208  
208  
144  
144  
144  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Part Number  
LFXP10C-3FN388C  
LFXP10C-4FN388C  
LFXP10C-5FN388C  
LFXP10C-3FN256C  
LFXP10C-4FN256C  
LFXP10C-5FN256C  
I/Os  
244  
244  
244  
188  
188  
188  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
9.7K  
9.7K  
9.7K  
9.7K  
9.7K  
9.7K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-5  
-3  
-4  
-5  
Part Number  
LFXP15C-3FN484C  
LFXP15C-4FN484C  
LFXP15C-5FN484C  
LFXP15C-3FN388C  
LFXP15C-4FN388C  
LFXP15C-5FN388C  
LFXP15C-3FN256C  
LFXP15C-4FN256C  
LFXP15C-5FN256C  
I/Os  
300  
300  
300  
268  
268  
268  
188  
188  
188  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
484  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
5-8  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Commercial (Cont.)  
Part Number  
LFXP20C-3FN484C  
LFXP20C-4FN484C  
LFXP20C-5FN484C  
LFXP20C-3FN388C  
LFXP20C-4FN388C  
LFXP20C-5FN388C  
LFXP20C-3FN256C  
LFXP20C-4FN256C  
LFXP20C-5FN256C  
I/Os  
340  
340  
340  
268  
268  
268  
188  
188  
188  
Voltage  
Grade  
-3  
Package  
Pins  
484  
484  
484  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Part Number  
LFXP3E-3QN208C  
LFXP3E-4QN208C  
LFXP3E-5QN208C  
LFXP3E-3TN144C  
LFXP3E-4TN144C  
LFXP3E-5TN144C  
LFXP3E-3TN100C  
LFXP3E-4TN100C  
LFXP3E-5TN100C  
I/Os  
136  
136  
136  
100  
100  
100  
62  
Voltage  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
Grade  
-3  
Package  
PQFP  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Pins  
208  
208  
208  
144  
144  
144  
100  
100  
100  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
-4  
-5  
-3  
-4  
-5  
-3  
62  
-4  
62  
-5  
Part Number  
LFXP6E-3FN256C  
LFXP6E-4FN256C  
LFXP6E-5FN256C  
LFXP6E-3QN208C  
LFXP6E-4QN208C  
LFXP6E-5QN208C  
LFXP6E-3TN144C  
LFXP6E-4TN144C  
LFXP6E-5TN144C  
I/Os  
188  
188  
188  
142  
142  
142  
100  
100  
100  
Voltage  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
PQFP  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
Pins  
256  
256  
256  
208  
208  
208  
144  
144  
144  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Part Number  
LFXP10E-3FN388C  
LFXP10E-4FN388C  
LFXP10E-5FN388C  
LFXP10E-3FN256C  
LFXP10E-4FN256C  
LFXP10E-5FN256C  
I/Os  
244  
244  
244  
188  
188  
188  
Voltage  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
9.7K  
9.7K  
9.7K  
9.7K  
9.7K  
9.7K  
1.2V  
-4  
1.2V  
-5  
1.2V  
-3  
1.2V  
-4  
1.2V  
-5  
5-9  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Commercial (Cont.)  
Part Number  
LFXP15E-3FN484C  
LFXP15E-4FN484C  
LFXP15E-5FN484C  
LFXP15E-3FN388C  
LFXP15E-4FN388C  
LFXP15E-5FN388C  
LFXP15E-3FN256C  
LFXP15E-4FN256C  
LFXP15E-5FN256C  
I/Os  
300  
300  
300  
268  
268  
268  
188  
188  
188  
Voltage  
Grade  
-3  
Package  
Pins  
484  
484  
484  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Part Number  
LFXP20E-3FN484C  
LFXP20E-4FN484C  
LFXP20E-5FN484C  
LFXP20E-3FN388C  
LFXP20E-4FN388C  
LFXP20E-5FN388C  
LFXP20E-3FN256C  
LFXP20E-4FN256C  
LFXP20E-5FN256C  
I/Os  
340  
340  
340  
268  
268  
268  
188  
188  
188  
Voltage  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
484  
388  
388  
388  
256  
256  
256  
Temp.  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
COM  
LUTs  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
-4  
-5  
-3  
-4  
-5  
-3  
-4  
-5  
Industrial  
Part Number  
LFXP3C-3QN208I  
LFXP3C-4QN208I  
LFXP3C-3TN144I  
LFXP3C-4TN144I  
LFXP3C-3TN100I  
LFXP3C-4TN100I  
I/Os  
136  
136  
100  
100  
62  
Voltage  
Grade  
-3  
Package  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Pins  
208  
208  
144  
144  
100  
100  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-3  
-4  
-3  
62  
-4  
Part Number  
LFXP6C-3FN256I  
LFXP6C-4FN256I  
LFXP6C-3QN208I  
LFXP6C-4QN208I  
LFXP6C-3TN144I  
LFXP6C-4TN144I  
I/Os  
188  
188  
142  
142  
100  
100  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
PQFP  
PQFP  
TQFP  
Pins  
256  
256  
208  
208  
144  
144  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-3  
-4  
-3  
-4  
TQFP  
5-10  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Industrial (Cont.)  
Part Number  
LFXP10C-3FN388I  
LFXP10C-4FN388I  
LFXP10C-3FN256I  
LFXP10C-4FN256I  
I/Os  
244  
244  
188  
188  
Voltage  
Grade  
-3  
Package  
Pins  
388  
388  
256  
256  
Temp.  
IND  
LUTs  
9.7K  
9.7K  
9.7K  
9.7K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
-4  
IND  
-3  
IND  
-4  
IND  
Part Number  
LFXP15C-3FN484I  
LFXP15C-4FN484I  
LFXP15C-3FN388I  
LFXP15C-4FN388I  
LFXP15C-3FN256I  
LFXP15C-4FN256I  
I/Os  
300  
300  
268  
268  
188  
188  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
388  
388  
256  
256  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-3  
-4  
-3  
-4  
Part Number  
LFXP20C-3FN484I  
LFXP20C-4FN484I  
LFXP20C-3FN388I  
LFXP20C-4FN388I  
LFXP20C-3FN256I  
LFXP20C-4FN256I  
I/Os  
340  
340  
268  
268  
188  
188  
Voltage  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
388  
388  
256  
256  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
1.8/2.5/3.3V  
-4  
-3  
-4  
-3  
-4  
Part Number  
LFXP3E-3QN208I  
LFXP3E-4QN208I  
LFXP3E-3TN144I  
LFXP3E-4TN144I  
LFXP3E-3TN100I  
LFXP3E-4TN100I  
I/Os  
136  
136  
100  
100  
62  
Voltage  
1.2V  
Grade  
-3  
Package  
PQFP  
PQFP  
TQFP  
TQFP  
TQFP  
TQFP  
Pins  
208  
208  
144  
144  
100  
100  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
3.1K  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
1.2V  
-3  
62  
1.2V  
-4  
Part Number  
LFXP6E-3FN256I  
LFXP6E-4FN256I  
LFXP6E-3QN208I  
LFXP6E-4QN208I  
LFXP6E-3TN144I  
LFXP6E-4TN144I  
I/Os  
188  
188  
142  
142  
100  
100  
Voltage  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
PQFP  
PQFP  
TQFP  
Pins  
256  
256  
208  
208  
144  
144  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
5.8K  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
TQFP  
5-11  
Ordering Information  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Industrial (Cont.)  
Part Number  
LFXP10E-3FN388I  
LFXP10E-4FN388I  
LFXP10E-3FN256I  
LFXP10E-4FN256I  
I/Os  
244  
244  
188  
188  
Voltage  
1.2V  
Grade  
-3  
Package  
Pins  
388  
388  
256  
256  
Temp.  
IND  
LUTs  
9.7K  
9.7K  
9.7K  
9.7K  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
1.2V  
-4  
IND  
1.2V  
-3  
IND  
1.2V  
-4  
IND  
Part Number  
LFXP15E-3FN484I  
LFXP15E-4FN484I  
LFXP15E-3FN388I  
LFXP15E-4FN388I  
LFXP15E-3FN256I  
LFXP15E-4FN256I  
I/Os  
300  
300  
268  
268  
188  
188  
Voltage  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
388  
388  
256  
256  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
15.5K  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
Part Number  
LFXP20E-3FN484I  
LFXP20E-4FN484I  
LFXP20E-3FN388I  
LFXP20E-4FN388I  
LFXP20E-3FN256I  
LFXP20E-4FN256I  
I/Os  
340  
340  
268  
268  
188  
188  
Voltage  
1.2V  
Grade  
-3  
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
484  
484  
388  
388  
256  
256  
Temp.  
IND  
IND  
IND  
IND  
IND  
IND  
LUTs  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
19.7K  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
1.2V  
-3  
1.2V  
-4  
5-12  
LatticeXP Family Data Sheet  
Supplemental Information  
Data Sheet DS1001  
November 2007  
For Further Information  
A variety of technical notes for the LatticeXP family are available on the Lattice website at www.latticesemi.com.  
• LatticeECP/EC and LatticeXP sysIO Usage Guide (TN1056)  
• Lattice ispTRACY Usage Guide (TN1054)  
• LatticeECP/EC and LatticeXP sysCLOCK PLL Design and Usage Guide (TN1049)  
• Memory Usage Guide for LatticeECP/EC and LatticeXP Devices (TN1051)  
• LatticeECP/EC and XP DDR Usage Guide (TN1050)  
• Power Estimation and Management for LatticeECP/EC and LatticeXP Devices (TN1052)  
• LatticeXP sysCONFIG Usage Guide (TN1082)  
For further information on interface standards refer to the following web sites:  
• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org  
• PCI: www.pcisig.com  
© 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
6-1  
DS1001 Further Information_01.3  
LatticeXP Family Data Sheet  
Revision History  
Data Sheet DS1001  
November 2007  
Revision History  
Date  
Version  
Section  
Change Summary  
February 2005  
April 2005  
May 2005  
01.0  
Initial release.  
01.1  
Architecture  
Introduction  
Architecture  
Pinout Information  
Introduction  
Architecture  
EBR memory support section updated with clarification.  
Added TransFR Reconfiguration to Features section.  
Added TransFR section.  
01.2  
June 2005  
July 2005  
01.3  
02.0  
Added pinout information for LFXP3, LFXP6, LFXP15 and LFXP20.  
Updated XP6, XP15 and XP20 EBR SRAM Bits and Block numbers.  
Updated Per Quadrant Primary Clock Selection figure.  
Added Typical I/O Behavior During Power-up section.  
Updated Device Configuration section under Configuration and Testing.  
Clarified Hot Socketing Specification  
DC and Switching  
Characteristics  
Updated Supply Current (Standby) Table  
Updated Initialization Supply Current Table  
Added Programming and Erase Flash Supply Current table  
Added LVDS Emulation section. Updated LVDS25E Output Termination  
Example figure and LVDS25E DC Conditions table.  
Updated Differential LVPECL diagram and LVPECL DC Conditions  
table.  
Deleted 5V Tolerant Input Buffer section. Updated RSDS figure and  
RSDS DC Conditions table.  
Updated sysCONFIG Port Timing Specifications  
Updated JTAG Port Timing Specifications. Added Flash Download  
Time table.  
Pinout Information  
Updated Signal Descriptions table.  
Updated Logic Signal Connections Dual Function column.  
Ordering Information Added lead-free ordering part numbers.  
July 2005  
02.1  
02.2  
DC and Switching  
Characteristics  
Clarification of Flash Programming Junction Temperature  
August 2005  
Introduction  
Architecture  
Added Sleep Mode feature.  
Added Sleep Mode section.  
DC and Switching  
Characteristics  
Added Sleep Mode Supply Current Table  
Added Sleep Mode Timing section  
Pinout Information  
Added SLEEPN and TOE signal names, descriptions and footnotes.  
Added SLEEPN and TOE to pinout information and footnotes.  
Added footnote 3 to Logic Signal Connections tables for clarification on  
emulated LVDS output.  
September 2005  
03.0  
Architecture  
Added clarification of PCI clamp.  
Added clarification to SLEEPN Pin Characteristics section.  
DC and Switching  
Characteristics  
DC Characteristics, added footnote 4 for clarification. Updated Supply  
Current (Sleep Mode), Supply Current (Standby), Initialization Supply  
Current, and Programming and Erase Flash Supply Current typical  
numbers.  
© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
7-1  
Revision History  
LatticeXP Family Data Sheet  
Lattice Semiconductor  
Date  
Version  
Section  
Change Summary  
September 2005  
(cont.)  
03.0  
(cont.)  
DC and Switching  
Characteristics (cont.)  
Updated Typical Building Block Function Performance timing numbers.  
Updated External Switching Characteristics timing numbers.  
Updated Internal Timing Parameters.  
Updated LatticeXP Family timing adders.  
Updated LatticeXP "C" Sleep Mode timing numbers.  
Updated JTAG Port Timing numbers.  
Pinout Information  
Added clarification to SLEEPN and TOE description.  
Clarification of dedicated LVDS outputs.  
Updated list of technical notes.  
Supplemental  
Information  
September 2005  
December 2005  
03.1  
04.0  
Pinout Information  
Power Supply and NC Connections table corrected VCCP1 pin number  
for 208 PQFP.  
Introduction  
Architecture  
Moved data sheet from Advance to Final.  
Added clarification to Typical I/O Behavior During Power-up section.  
Added clarification to Recommended Operating Conditions.  
DC and Switching  
Characteristics  
Updated timing numbers.  
Pinout Information  
Updated Signal Descriptions table.  
Added clarification to Differential I/O Per Bank.  
Updated Differential dedicated LVDS output support.  
Ordering Information Added 208 PQFP lead-free package and ordering part numbers.  
February 2006  
March 2006  
04.1  
04.2  
Pinout Information  
Corrected description of Signal Names VREF1(x) and VREF2(x).  
Corrected condition for IIL and IIH.  
DC and Switching  
Characteristics  
March 2006  
04.3  
DC and Switching  
Characteristics  
Added clarification to Recommended Operating Conditions for  
VCCAUX.  
April 2006  
May 2006  
04.4  
04.5  
Pinout Information  
Removed Bank designator "5" from SLEEPN/TOE ball function.  
DC and Switching  
Characteristics  
Added footnote 2 regarding threshold level for PROGRAMN to sysCON-  
FIG Port Timing Specifications table.  
June 2006  
04.6  
04.7  
DC and Switching  
Characteristics  
Corrected LVDS25E Output Termination Example.  
August 2006  
Architecture  
Added clarification to Typical I/O Behavior During Power-Up section.  
Added clarification to Left and Right sysIO Buffer Pair section.  
Changes to LVDS25E Output Termination Example diagram.  
DC and Switching  
Characteristics  
December 2006  
February 2007  
July 2007  
04.8  
04.9  
05.0  
Architecture  
Architecture  
Introduction  
Architecture  
EBR Asynchronous Reset section added.  
Updated EBR Asynchronous Reset section.  
Updated LatticeXP Family Selection Guide table.  
Updated Typical I/O Behavior During Power-up text section.  
DC and Switching  
Characteristics  
Updated sysIO Single-Ended DC Electrical Characteristics table. Split  
out LVCMOS 1.2 by supply voltage.  
November 2007  
05.1  
DC and Switching  
Characteristics  
Added JTAG Port Timing Waveforms diagram.  
Pinout Information  
Added Thermal Management text section.  
Updated title list.  
Supplemental  
Information  
7-2  

相关型号:

LFXP10C-4FN388I

LatticeXP Family Data Sheet
LATTICE

LFXP10C-5F256C

LatticeXP Family Data Sheet
LATTICE

LFXP10C-5F388C

LatticeXP Family Data Sheet
LATTICE

LFXP10C-5FN256C

LatticeXP Family Data Sheet
LATTICE

LFXP10C-5FN388C

LatticeXP Family Data Sheet
LATTICE

LFXP10E-3F256C

LatticeXP Family Data Sheet
LATTICE

LFXP10E-3F256I

LatticeXP Family Data Sheet
LATTICE

LFXP10E-3F256NI

Field Programmable Gate Array, 1216 CLBs, 375MHz, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, FPBGA-256
LATTICE

LFXP10E-3F388C

LatticeXP Family Data Sheet
LATTICE

LFXP10E-3F388I

LatticeXP Family Data Sheet
LATTICE

LFXP10E-3FN256C

LatticeXP Family Data Sheet
LATTICE

LFXP10E-3FN256I

LatticeXP Family Data Sheet
LATTICE