LX128EB-5FN208C [LATTICE]

Crossbar Switch, CMOS, PBGA208, LEAD FREE, FPBGA-208;
LX128EB-5FN208C
型号: LX128EB-5FN208C
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

Crossbar Switch, CMOS, PBGA208, LEAD FREE, FPBGA-208

外围集成电路
文件: 总75页 (文件大小:876K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ispGDX2™ Device Datasheet  
June 2010  
Select Devices Discontinued!  
Product Change Notifications (PCNs) #09-10 has been issued to discontinue select  
devices in this data sheet.  
The original datasheet pages have not been modified and do not reflect those changes.  
Please refer to the table below for reference PCN and current product status.  
Product Line  
LX64V  
Ordering Part Number  
LX64V-3F100C  
LX64V-3FN100C  
LX64V-5F100C  
Product Status  
Reference PCN  
Active / Orderable  
LX64V-5FN100C  
LX64B-3F100C  
LX64B-3FN100C  
LX64B-5F100C  
LX64B-5FN100C  
LX64C-3F100C  
LX64C-3FN100C  
LX64C-5F100C  
LC64B  
LX64C  
Discontinued  
Discontinued  
Active / Orderable  
Discontinued  
Discontinued  
Active / Orderable  
Discontinued  
PCN#09-10  
PCN#09-10  
LX64C-5FN100C  
LX128V-32F208C  
LX128V-32FN208C  
LX128V-5F208C  
LX128V-5FN208C  
LX128B-32F208C  
LX128B-32FN208C  
LX128B-5F208C  
LX128B-5FN208C  
LX128C-32F208C  
LX128C-32FN208C  
LX128C-5F208C  
LX128C-5FN208C  
LX256V-35F484C  
LX256V-35FN484C  
LX256V-5F484C  
LX256V-5FN484C  
LX256B-35F484C  
LX256B-35FN484C  
LX256B-5F484C  
LX256B-5FN484C  
LX128V  
LX128B  
LX128C  
LX256V  
LX256B  
PCN#09-10  
PCN#09-10  
PCN#09-10  
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347  
Internet: http://www.latticesemi.com  
Product Line  
LX256C  
Ordering Part Number  
LX256C-35F484C  
LX256C-35FN484C  
LX256C-5F484C  
Product Status  
Discontinued  
Reference PCN  
PCN#09-10  
LX256C-5FN484C  
LX64EV-3F100C  
LX64EV-3FN100C  
LX64EV-5F100C  
LX64EV-5F100I  
LX64EV-5FN100C  
LX64EV-5FN100I  
LX64EB-3F100C  
LX64EB-3FN100C  
LX64EB-5F100C  
LX64EB-5F100I  
LX64EB-5FN100C  
LX64EB-5FN100I  
LX64EC-3F100C  
LX64EC-3FN100C  
LX64EC-5F100C  
LX64EC-5F100I  
LX64EC-5FN100C  
LX64EC-5FN100I  
LX128EV-32F208C  
LX128EV-32FN208C  
LX128EV-5F208C  
LX128EV-5F208I  
LX128EV-5FN208C  
LX128EV-5FN208I  
LX128EB-32F208C  
LX128EB-32FN208C  
LX128EB-5F208C  
LX128EB-5F208I  
LX128EB-5FN208C  
LX128EB-5FN208I  
LX128EC-32F208C  
LX128EC-32FN208C  
LX128EC-5F208C  
LX128EC-5F208I  
LX128EC-5FN208C  
LX128EC-5FN208I  
LX256EV-35F484C  
LX256EV-35FN484C  
LX256EV-5F484C  
LX256EV-5F484I  
LX256EV-5FN484C  
LX256EV-5FN484I  
LX64EV  
LX64EB  
LX64EC  
LX128EV  
LX128EB  
LX128EC  
LX256EV  
Active / Orderable  
Discontinued  
PCN#09-10  
PCN#09-10  
Discontinued  
Active / Orderable  
Discontinued  
PCN#09-10  
PCN#09-10  
Discontinued  
Active / Orderable  
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347  
Internet: http://www.latticesemi.com  
Product Line  
LX256EB  
Ordering Part Number  
LX256EB-35F484C  
LX256EB-35FN484C  
LX256EB-5F484C  
LX256EB-5F484I  
Product Status  
Discontinued  
Reference PCN  
PCN#09-10  
LX256EB-5FN484C  
LX256EB-5FN484I  
LX256EC-35F484C  
LX256EC-35FN484C  
LX256EC-5F484C  
LX256EC-5F484I  
LX256EC  
Discontinued  
PCN#09-10  
LX256EC-5FN484C  
LX256EC-5FN484I  
5555 N.E. Moore Ct. z Hillsboro, Oregon 97124-6421 z Phone (503) 268-8000 z FAX (503) 268-8347  
Internet: http://www.latticesemi.com  
ispGDX2 Family  
High Performance Interfacing and Switching  
September 2005  
Data Sheet  
Two Options Available  
Features  
• High-performance sysHS(standard part number)  
• Low-cost, no sysHSI (“E-ies”)  
High Performance Bus Switching  
• High bandwidth  
sysHSI Blocks Prvide up t16 High-speed  
Channels  
– Up to 12.8 Gbps (SERDES)  
– Up to 38 Gbps (without SERDES)  
• Up to 16 (15x10) FIFOs for data buffering  
• High speed performance  
• Serializer/de-serialir (SRDES) included  
• Clock DaRecovery DR) built in  
• 800 Mbpper chanel  
LVDdiffeential upport  
• 1B/12support  
– f  
= 360MHz  
MAX  
– t = 3.0ns  
PD  
– t = 2.9ns  
CO  
– Encong / decoding  
it alignment  
mbol alignment  
– t = 2.0ns  
S
• Built-in programmable control logic capability  
• I/O intensive: 64 to 256 I/Os  
• Expanded MUX capability up to 188:1 MUX  
• 8B/10B support  
– Bit alignment  
– Symbol aligent  
• Source Syncronousuport  
sysCLOCK™ PLL  
• Frequency synthesis and skew managem
• Clock multiply and divide capability  
• Clock shifting up to +/-2.35ns in 335ps st
• Up to four PLLs  
Flexible Pramng and Testing  
• IEE153compliant In-System Programmabil-  
iy (IS™)  
sysIO™ Interfacing  
Boundascan test through IEEE 1149.1  
ierface  
• 3.32.5V or 1.8V power supplies  
• 5V tolerant I/O for LVCMOS 3.3 and LVTTL  
interfaces  
LVCMOS 1.8, 2.5, 3.3 and LVTTL upport for  
standard board interface
• SSTL 2/3 Class I and support  
• HSTL Class I, III and suppo
• GTL+, PCI-X for bus intface
LVPECL, LVDand us LVDS differential t  
• Hot socketing  
• Programmable de srength  
Table 1. ispGX2 Family Selection Gide  
ispDX2-64/E  
ispGDX2-128/E  
ispGDX2-256/E  
I/Os  
64  
128  
256  
16  
X Blos  
4
3.0ns  
8
3.2ns  
t
t
t
f
3.5ns  
PD  
S
2.0ns  
2.0ns  
2.0ns  
2.9ns  
3.1ns  
3.2ns  
CO  
MAX  
(Toggle)  
360MHz  
3.2Gbps  
11Gbps  
4
330MHz  
6.4Gbps  
21Gbps  
8
300MHz  
12.8Gbps  
38Gbps  
16  
S1, 2  
Withut SERDES3  
Max Bandwidth  
sysHSI Channels2  
LVDS/Bus LVDS (Pairs)  
PLLs  
32  
64  
128  
2
2
4
Package  
100-ball fpBGA  
208-ball fpBGA  
484-ball fpBGA  
1. Max number of SERDES channels per device * 800Mbps  
2. “E-Series” does not support sysHSI.  
3. f  
(Toggle) * maximum I/Os divided by 2.  
MAX  
© 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand  
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.  
www.latticesemi.com  
1
gdx2fam_13  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 1. ispGDX2 Block Diagram (256-I/O Device)  
sysIO Bank  
sysIO Bank  
sysHSI  
Block  
sysHSI  
Block  
SERDES  
FIFO  
SERDES  
FIFO  
SERDES  
SERDES  
FIFO  
sysCLOCK  
PLL  
sysCLCK  
P
FIFO  
GDX Block  
GDX Block  
GDX Block  
GDX Block  
Global Rong Pool  
(RP)  
GDX Bl
FO  
GDX Block  
GDX Block  
FI
GDX Block  
FIFO  
FIFO  
sysCLOCK  
PL  
sysCLOCK  
PLL  
sys
Block  
sysHSI  
Block  
SERDES  
SS  
ERDES  
SERDES  
ISP & Boundary Scan  
Test Port  
sysIO
sysIO Bank  
Introduction  
The ispX2™ amily is Lattic’s second eneration in-system programmable generic digital crosspoint switch for  
igh speebuswitching and ntecapplications.  
e ispDX2 family is avaible in twoptions. The standard device supports sysHSI capability for ultra fast serial  
commnications whie lor-cost “E-series” supports the same high-performance FPGA fabric without the  
sysHSI Block.  
This family of switchbines a flexible switching architecture with advanced sysIO interfaces including high  
performance sysHSI Blcks, and sysCLOCK PLLs to meet the needs of the today’s high-speed systems. Through  
a muliplexer-intensive architecture, the ispGDX2 facilitates a variety of common switching functions.  
The availability of on-chip control logic further enhances the power of these devices. A high-performance solution,  
the family supports bandwidth up to 38Gbps.  
Every device in the family has a number of PLLs to provide the system designer with the ability to generate multiple  
clocks and manage clock skews in their systems.  
2
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
The sysIO interfaces provide system-level performance and integration. These I/Os support various modes of  
LVCMOS/LVTTL and support popular high-speed standard interfaces such as GTL+, PCI-X, HSTL, SSTL, LVDS  
and Bus-LVDS. The sysHSI Blocks further extend this capability by providing high speed serial data transfer capa-  
bility.  
Devices in the family can operate at 3.3V, 2.5V or 1.8V core voltages and can be programd in-system via an  
IEEE 1149.1 interface that is compliant with the IEEE 1532 standard. Voltages required for he I/O uffers are inde-  
pendent of the core voltage supply. This further enhances the flexibility of this famiin syem designs.  
Typical applications for the ispGDX2 include multi-port multi-processor interfaces, ide dta and address bus mul-  
tiplexing, programmable control signal routing and programmable bus interfaces. e 1 shws the members of  
the ispGDX2 family and their key features.  
Architecture  
The ispGDX2 devices consist of GDX Blocks interconnected by a Glol Roung Pool (GRP). erface  
with the external system via sysIO banks. In addition, each GDX Bck is ssociated with FIFO sysHSI  
Block to facilitate the transfer of data on- and off-chip. Figur1 shos the ispGDX2 blk digram. ach GDX  
Block can be individually configured in one of four modes:  
• Basic (No FIFO or SERDES)  
• FIFO Only  
• SERDES Only  
• SERDES and FIFO  
Each sysIO bank has its own I/O power supply rence voltage. scan use any output standard  
within a bank that is compatible with the power supAny input stanard ay be used, providing it is compatible  
with the reference voltage. The banks e independent.  
Global Routing Pool (GRP)  
The ispGDX2 architecture is ganized into GDX Blocks, whh are conected via a Global Routing Pool. The inno-  
vative GRP is optimized for rtability, exibility and speed. All e signals enter via the GDX Block. The block sup-  
plies these either directy or iregistred form to the RP. TGRP routes the signals to different blocks, and  
provides separate daand control routing.The dpath ioptimized to achieve faster speed and routing flexibility  
for nibble oriented sigalThe control routing d to provide high-speed bit oriented routing of control sig-  
nals.  
There are somrestrictions on the allcation of pins for optimal bus routing. These restrictions are considered by  
the software in thallcation of pins.  
GDX lck  
The blockarorganized in a “blck” ibble) manner, with each GDX Block providing data flow and control logic  
for 6 O buffers. The da flow is oganized as four nibbles, each nibble containing four Multiplexer Register  
Blocks MRBs). Data for the RBs is provided from 64 lines from the GRP. Figure 2 illustrates the groups of signals  
goiinto and out X Blk.  
Control signals for are provided from the Control Array. The Control Array receives the 32 signals from  
the GRP and generatecontrol signals: eight MUX Select, four Clock/Clock Enable, two Set/Reset and two Out-  
put Enable. Each nibble is controlled via two MUX select signals. The remaining control signals go to all the MRBs.  
Besides the control signals from the Control Array, the following global signals are available to the MRBs in each  
GDX Block: four Clock/Clock Enable, one reset/preset, one power-on reset, two of four MUX select (two of two in  
64 I/O), four Output Enable (two in 64 I/O) and Test Out Enable (TOE).  
3
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
MUX and Register Block (MRB)  
Every MRB Block has a 4:1 MUX (I/O MUX) and a set of three registers which are connected to the I/O buffers,  
FIFO and sysHSI Blocks. Multiple MRBs can be combined to form large multiplexers as described below. Figure 3  
shows the structure of the MRB.  
Each of the three registers in the MRB can be configured as edge-triggered D-type flip-floor as a level sensitive  
latch. One register operates on the input data, the other output data and the last register yncrones the output  
enable function. The input and output data signals can bypass each of their registersThe polarity f the data out  
and output enable signals can be selected.  
The Output and OE register share the same clock and clock enable signals.The Inpugistehas a separate clock  
and clock enable.The initialization signals of each register can be independntly configuas Set or Reset.These  
registers have programmable polarity control for Clock, Clock Enable anSet/Rest. The output enle register  
input can be set either by one of the two output enables generated locly frthe Control Array oof the  
four (two in 64 I/O) Global OE enable pins. In addition to the local ock nd clock enable signalsB has  
access to Global Clock, Clock Enable, Reset and TOE nets.  
4
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 2. GDX Block  
GRP  
GDX Block  
sysIO Bank  
MUX  
Select  
32 bits  
4 bits  
4 bits  
Control Array  
Control  
8
Nibble 0  
8
OE  
IN  
MUX and Register  
Block (MRB)  
0
8
2
T  
8
OE  
IN  
MUX and Rester  
Block (MR
2
OUT  
8
E  
IN  
MUand Register  
Block (MRB)  
2
4 bits  
OUT  
8
OE  
IN  
Mand Regisr  
Bk (MRB)  
2
its  
OUT  
8
OE  
IN  
2
Nibble 1  
MRBs 4-7  
16 bits  
OUT  
4
OE  
IN  
2
Nibble 2  
MRBs 8-11  
16 bits  
OUT  
8
OE  
IN  
2
Nibble 3  
MRBs 12-15  
16 bits  
OUT  
4
The output register of the MRB has a built-in bi-directional shift register capability. Each output register correspond-  
ing to MRB “n”, receives data output from its two adjacent MRBs, MRB (n-1) and MRB (n+1), to provide shift regis-  
ter capability. Like the output register, each input register of the MRB has built-in shift register capability. Each input  
register can receive data from its two adjacent MRB input registers, to provide bi-directional shift register capability.  
The chaining crosses GDX Block boundaries. The chain of input registers and the chain of output registers can be  
combined as one shift register via the GRP.  
5
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
The four data inputs to the 4:1 MUX come from the GRP. The output of this MUX connects to the output register. A  
fast feedback path from the MUX to the GRP allows wider MUXes to be built. Table 2 summarizes the various MUX  
sizes and delay levels.  
Table 2. MUX Size Versus Internal Delay  
MUX Sizes  
Levels of Internal GRP Delays  
One Level  
4:1  
Up to 16:1  
Up to 64:1  
Two Levels  
Three Levels  
Up to 188:1 (with ispGDX2-256)  
Four Levels  
Figure 3. ispGDX2 Family MRB  
Global  
Signals  
GDX  
Control Array  
MUX Select  
Control Array Signals  
2-4  
4
2
2
4
/L  
ClK  
Q
OE  
MUX  
Select  
Global  
Signals  
OE  
CK  
Reg/Latch  
TE  
CE  
CE  
t  
Re
Flags*  
(FIFO, SERDES  
or PLL)  
V
CC  
from  
Out_Reg(n-1)  
From GRP  
Q
to Out_Reg(n-1)  
to Out_Reg(n+1)  
from  
Out_Reg(n+1)  
ClK  
Out  
Reg/Latch  
CE  
Set  
Reset  
V
CC  
Global Resetb  
To G
Delay  
FIFO Out*  
to IN_Reg(n-1)  
to IN_Reg(n+1)  
from IN_Reg(n-1)  
from IN_Reg(n+1)  
D/L  
Q
ClK  
CK  
Input  
Reg/Latch  
CE  
CE  
Set  
Reset  
S/R  
Global Resetb  
*Selected MRBs see Logic Signal Connection Table for details  
Control Array  
The control array generates control signals for the 16 MRBs within a GDX Block. The true and complement forms  
of 32 inputs from the GRP are available in the control array. The 20 NAND terms can use any or all of these inputs  
to form the control array outputs. Two AND terms are combined with a NOR term to form Set/Reset and OE sig-  
nals. Figure 4 illustrates the control array.  
6
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 4. ispGDX2 Family Control Array  
32 Inputs from Control GRP  
Each connection  
is programmable.  
MUX Select  
to Nibb
MUX elect  
to Nbble 1  
MUX Select  
to Nibble 2  
MUX Selec
to Nible 3  
To RB Clock/  
CloEnable  
On selected blocks,  
this signal can reset  
the M Divider of the  
PLL.  
To MRB  
Set/Reset  
To MRB  
Output Enable  
sysIO Banks  
The iuts nd outputs of ispGDX2 deves ardivided into eight sysIO banks, where each bank is capable of sup-  
porting erent /O standardsThe number of I/Os per bank is 32, 16 and 8 for the 256-, 128- and 64-I/O devices  
espectivelach sysIO bank haits wn I/O supply voltage (V  
) and reference voltage (V  
), allowing each  
CCO  
REF  
bacmplete independece from thother banks. Each I/O within a bank can be individually configured to any  
standarconsistent with the and V settings. Figure 5 shows the I/O banks for the ispGDX2-256 device.  
CO  
REF  
The I/O of the ispces contain a programmable strength and slew rate tri-state output buffer, a program-  
mable input buffer, mmable pull-up resistor, a programmable pull-down resistor and a programmable bus-  
keeper latch. These prmmable capabilities allow the support of a wide range of I/O standards.  
7
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 5. ispGDX2-256 sysIO Banks  
sysIO Bank 4  
sysIO Bank 5  
sysIO Bank 3  
sysIO Bk 2  
VCCO5  
VCCO
VR
GND  
VREF5  
GND  
VCCO6  
VREF6  
GND  
VCCO1  
VREF1  
GND  
sysIO Bank
sysIBank 7  
sysIO Ban
sysIBank 0  
There e hree classes of I/O terface snrds implemented in the ispGDX2 devices. The first is the non-termi-  
ned, sile-eded interfaceit inces the 3.3V LVTTL standard along with the 1.8V, 2.5V and 3.3V LVCMOS  
interface stadards. The slew rate and trength of these output buffers can be controlled individually. Additionally,  
I 3.3PCI-X and AGP-1are ll ubsets of this interface type. The second interface class implemented is the  
terminted, single-eninterce standard. This group of interfaces includes different versions of SSTL and HSTL  
interfaces along wnd GTL+. Use of these I/O interfaces requires an additional V  
signal. At the system  
REF  
level, a termination V , is also required. Typically, an output will be terminated to V at the receiving end  
TT  
TT  
of the transmission lis driving. The final types of interfaces implemented are the differential standards  
LVPECL, LVDS and Bus LVDS. Table 3 shows the I/O standards supported by the ispGDX2 devices along with  
nominal V  
, V  
and V .  
CCO REF TT  
The ispGDX2 family also features 5V tolerant I/O. I/O banks with V  
= 3.3V may have inputs driven to a maxi-  
CCO  
mum of 5.5V for easy interfacing with legacy systems. Up to 64 I/O pins per device may be driven by 5V inputs.  
8
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Table 3. ispGDX2 Supported I/O Standards  
sysIO Standard  
LVCMOS 3.3  
Nominal V  
3.3V  
2.5V  
1.8V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
2.5V  
3.3V  
2.5V  
1.5V  
1.5V  
1.5V  
Nominal V  
Nominal V  
CCO  
REF  
TT  
LVCMOS 2.5  
LVCMOS 1.8  
LVTTL  
PCI 3.3  
PCI -X  
AGP-1X  
SSTL3 class I & II  
SSTL2 class I & II  
CTT 3.3  
1.5V  
1.25V  
1V  
1.25V  
75V  
0V  
0.9V  
1.0V  
1.5V  
1.2
1.
0.75V  
0.75V  
.5V  
1.5V  
CTT 2.5  
HSTL class I  
HSTL class III  
HSTL class IV  
GTL+  
1.8/2.5/3.3V  
3.3V  
LVPECL1, 2, 3  
LVDS  
2.5/3.3V  
2.5/3.3V  
Bus-LVDS  
1. LVPECL drivers require three resistor pack (seFigure 17).  
2. Depending on the driving LVPECL output spification, GDX2 LVPECL input der maequirerminating resistors.  
3. For additional information on LVPECL refto attice technical note number 1000, sysDesign and Usage Guidelines.  
The dedicated inputs support subset of the sysIO standrds indiced in Table 4. These inputs are associated  
with a bank consistent with thir location.  
Table 4. I/O Standards Suppord y Dedicated Input
LVCMO
Yes  
LVDS  
No  
All other ASIC I/Os  
Global OE Pins  
Global MUX Sect Pins  
Resetb  
Yes2  
Yes2  
Yes2  
Yes2  
No  
Ys  
No  
Yes  
No  
GlobaClocklock Eables  
ispJTAGPort  
TOE  
Yes  
Yes
Yes  
No  
Yes  
No  
No  
1. CMS as defined by the V  
2. No Pclamp.  
pin voltag
For more informasysIO capability, please refer to Lattice technical note number TN1000, sysIO Design  
and Usage Guidelin
sysCLOCK PLL  
The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) along the various dividers and reset and feed-  
back signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and  
generate multiple clock signals for routing within the device. Furthermore, it can generate clock signals that are  
deskewed either at the board level or the device level. Figure 6 shows the ispGDX2 PLL block diagram.  
Each PLL has a set of PLL_RST, PLL_FBK and PLL_LOCK signals. In order to facilitate the multiply and divide  
capabilities of the PLL, each PLL has associated dividers.The M divider is used to divide the clock signal, while the  
9
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
N divider is used to multiply the clock signal. The K divider is used to provide a divided clock frequency of the adja-  
cent PLL. This output can be routed to the global clock net. The V divider is used to provide lower frequency output  
clocks, while maintaining a stable, high frequency output from the PLLs VCO circuit. The PLL also has a delay fea-  
ture that allows the output clock to be advanced or delayed to improve set-up and clock-to-out times for better per-  
formance. For more information on the PLL, please refer to Lattice technical note number TN1003, sysCLOCK PLL  
Design and Usage Guidelines.  
Figure 6. sysCLOCK PLL  
PLL_LOCK  
CLK_OUT  
CLK_IN  
Input Clock  
Programmable  
(M) Divider  
+Delay  
P-scalar  
(V) Dr  
1 to 32  
--------------------  
PLL (n)  
Clock Nt  
1, 2, 4, 8,  
6, 32  
Programmable  
-Delay  
PLL_RST  
Clock (K)  
Divider  
2, 4, ,  
132  
To Adjacent_PLL  
From  
Adjacent_PLL  
Feedback  
Divider (N)  
X 1 32  
PLL_FBK  
There are four lobal clock networks roted to each MRB block. These global clocks, CLK0-3, can either be gener-  
ated by e PLL ccuitor supplied eernally. xternal clock pins can be configured as single-ended or differential  
(LVDinpuFigure 7 illustrates how tsysCOCK PLL inputs and outputs can be routed to the I/O pins or gen-  
eral rog. Figue 10 shows he clock nework for the ispGDX2-256 and Figure 8 shows the clock networks for  
pGDX2-28 and ispGDX2-4. Te eset (0) pin from the Control Array of selected GDX Blocks can be pro-  
gramd to reset the M Divider of thPLLs. This provides a means for generating the reset signal internally.  
Table 5 etails which GDX Bck pvides reset to the PLLs.  
Table 5. Internal ut of the PLL (M Divider)  
PLL0  
PLL1  
PLL2  
PLL3  
ispGDX2-256  
ispGDX2-128  
ispGDX2-64  
GDX Block 5A  
GDX Block 2A  
GDX Block 0A  
GDX Block 7B  
GDX Block 1A  
GDX Block 0A  
GDX Block 1B  
GDX Block 3B  
10  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 7. I/O Pin Connection to the sysCLOCK PLL1  
PLL_LOCK  
CLK_OUT  
Output  
Reg/  
Latch  
Input Clock  
(M) Divider  
÷ 1 to 32  
Programmable  
+ Delay  
GCLK_IN  
Post-scalar  
(V) Divider  
÷
--------------------  
PLL (n)  
Clock Net  
1, 2, 4, 8,  
16, 32  
Programmable  
- Delay  
Clock  
(K) Divider  
÷
2, 4, 8,  
16, 32  
To Adjacent_PLL  
Delay  
In
g/  
Latch  
From Adjacent_PLL  
Feedback  
Divider (N)  
x 1 to 32  
GRP  
GDX Block  
PLL_FBK  
PLL_RST  
Resetb (0)  
Control Array  
(from selected blocks)  
GCK_IN  
1. Se pins shared. See Logic Signal nnections ble for details.  
11  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 8. ispGDX2-64 CLOCK Network  
Clock Net  
MRB  
sysIO Interface  
sysCLOCK  
CLK0  
K(0)  
PLL  
(0)  
Reg/  
GCLK/CE0  
+
Clock Net  
ch  
VREF0  
-
CLK_OUT0  
Reg/  
Clock Net  
Latch  
GCLK/CE1  
+
-
VREF1  
CLK_OUT2  
CLK2  
K(2)  
PLL  
(2)  
Reg
GCLK/CE2  
+
Clock Net  
h  
VREF2  
-
Reg/  
CNet  
Latch  
GCLK/CE3  
+
-
VREF3  
Figure 9. ispGDX2-128 CLOCK etwork  
Clock Net  
MRB  
sIO Interface  
sysCCK  
CLK0  
K(0)  
Reg/  
GCLK/CE0  
+
Clock Net  
Latch  
VREF0  
-
CLKUT0  
Reg/  
Clock Net  
Latch  
GCK/CE1  
+
VREF1  
CLK_OUT
CLK2  
K(2)  
PLL  
(2)  
Reg/  
GCLK/CE2  
+
Clock Net  
Latch  
-
VREF2  
Reg/  
Clock Net  
Latch  
GCLK/CE3  
+
-
VREF3  
12  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 10. ispGDX2-256 CLOCK Network  
MRB  
sysIO Interface  
sysCLOCK  
Clock Net  
CLK0  
K(0)  
PLL  
(0)  
Reg/  
GCLK/CE0  
+
Clock Net  
Latch  
VREF0  
-
CLK_OUT0  
CLK1  
CLK2  
CLK3  
K(1)  
PLL  
(1)  
Reg/  
GCLK/CE1  
+
Clock t  
Latch  
-
VREF1  
CLK_OUT1  
PLL  
(2)  
Reg/  
Latch  
GCLK/CE2  
+
Clock Net  
VREF2  
-
CLK_OUT2  
(3)  
Reg/  
Latch  
GCLK/CE3  
+
Clock Net  
-
REF3  
CLK_T3  
13  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Operating Modes  
All the GDX Blocks in the ispGDX2 family can be programmed in four modes: Basic, FIFO only, SERDES only, and  
FIFO with SERDES mode. In basic mode, the SERDES and FIFO are disabled and the MUX output of the MRB  
connects to the output register. Inputs are connected to the GRP via the MRB.  
Figure 11 shows the four different operating modes. Precise detail of the FIFO and SERES connections is pro-  
vided in their respective sections.  
Figure 11. Four Operating Modes of ispGDX2 Devices  
Basic  
Mode  
FIFO  
sysIO  
Bnk  
GDX  
Block  
GRP  
GRP  
GR
ERDS  
SERDES  
SERDES  
FIFO  
Mode  
FIFO  
sysIO  
ank  
GDX  
Block  
SERDES  
Mode  
(FIFO
Flohrough  
ode)  
FI
sysIO  
Bank  
GDX  
Block  
SEDES  
and  
IFO Mode  
FIFO  
sysIO  
Bank  
k  
GRP  
SERDES  
*FIO held in RESfor SERDES-only mode.  
FIFO Operations  
Each GDX Block is aociatewith a 10-bit wide and 15-word deep (10x15) RAM. This RAM, combined with two  
address counters omprators, is used to implement a FIFO as a “circular queue”. The FIFO has separate  
clocks, the Read LK) and Write Clock (WCLK), for asynchronous operation. The FIFO has three addi-  
tional control signals Enable, Read Enable and FIFO Reset. Three flags show the status of the FIFO: Empty,  
Full and Start Read. Eah FIFO receives the global Power-on Reset and Reset signals. Figure 12 shows the con-  
nections to the FIFO.  
14  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 12. ispGDX2 FIFO Signals  
10  
10  
Data Out (DOUT)  
Data In (DIN)  
Write Clock (WCLK)  
Write Enable (WE)  
Read Clock (RCLK)  
Read Enable (RE)  
FIFO  
10x15  
Fu(FULL)  
Emty (EMY)  
Srt Read (STRDb)  
Global Reset (RESETb)  
Power-on Reset (PORb)  
FIFO Reset (FIFORSTb)  
Read Clock and Read Enable are the same as tlock nd Clock Enable signaof thinput registers of the  
associated MRB.These registers are used to reFIFO outputs, and in mdes tht utilize the FIFO are con-  
figured to use the same clock and clock enable e Write Clock lectfrom one of the GCLK/CE sig-  
nals or the RECCLK (Recovered Clock) signal froassociated ERDS. The Write Enable is selected from  
one of the local MRB product term CK/CE signals. All FIFO operatins ocur on the rising edge of the clock  
although clock polarity of these signls an be programmed.  
The flags from the FIFO, FULLMPTY anSTRDb (Stat Read) ae each fed via a MUX in the MRB to an I/O  
buffer. The STRDb (half full) gnal is used in conjunction witSERDES. STRDb is an active low signal, the signal  
is inactive (high) on FIFO REET. Aftthe FIFO reshen tFIFO contains data in five memory locations, at  
the following write cloctransitithSTRDb becomes ctive (low). Note, if the Read Clocks arrive before writing  
the sixth location, it ay tae longer than five wcks fore the STRDb becomes active. When the FIFO has  
data in the first six loons, athe next writnsition the STRDb becomes inactive (high). Again, if the  
Read Clocks arrive befowting the seventh e STRDb may stay active for longer than one write clock  
period, even ithe FIFO contains data in s thaocations. After this event, the STRDb stays inactive until the  
FIFO is RESET gain. TRDb does nt become active again even if less than six memory locations are occupied  
in the FO. Iis thser’s responsibilto moor the FULL and EMPTY signals to avoid data underflow/overflow  
and to akappropriate actions.  
Figure 13 ws how the FIFiconncted between the I/O banks and the GDX Blocks in FIFO mode. For more  
infmaon on the FIFO, pase refer tLattice technical note number TN1020, sysHSI Usage Guidelines.  
15  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 13. Operation in FIFO Mode2  
GDX Block 1  
SERDES  
Pre-Assigned Pins  
GRP  
FIFO  
10  
Delay  
Input  
Reg/  
10  
DIN  
RXD  
Parallel  
Data  
DOUT  
ri
Dan  
(SIN)  
Latch  
RCLK  
RE  
TXD Serial  
allel Data Out  
Data (SOUT)  
10  
Output  
Reg/  
Latch  
PT-CL(0:3
WE  
GCLK/CE(0:3)  
C
Input  
Reg/  
Latch  
CAL  
WCLK  
Input  
Reg/  
Latch  
SYDT  
put  
Latc
FULL  
EMPTY  
Output  
Reg/  
Latch  
CDRRSTb  
FIFORSTb  
Notes:  
POR  
RESETb  
1. For clarity, only GDX Block is shown.  
2. Some signals sharLogic Signal Connections tables for details.  
16  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
High Speed Serial Interface Block (sysHSI Block)1  
The High Speed Serial Interface (sysHSI) allows high speed serial data transfer over a pair of LVDS I/O. The  
ispGDX2 devices have multiple sysHSI Blocks.  
Each sysHSI Block has two SERDES blocks which contain two main sub-blocks, Transmitter (with a serializer) and  
Receiver (with a deserializer) including Clock/Data Recovery Circuit (CDR). Each SERDEcan be used as a full  
duplex channel. The two SERDES in a given sysHSI Block share a common clock and mperaat the same  
nominal frequency. Figure 14 shows the sysHSI Block.  
Device features support two data coding modes: 10B/12B and 8B/10B (for use witoter encoding schemes, see  
Lattice’s sysHSI application notes). The encoding and decoding of the 10B/12standrd ae performed within the  
device in dedicated logic. For the 8B/10B standard, the symbol boundaries are aligned iternally but the encoding  
and decoding are performed outside the device.  
Each SERDES block receives a single high speed serial data inpustrem (with embedded clockinput,  
and provide a low speed 10-bit wide data stream and a recovered ock to he device. For ansmittie SER-  
DES converts a 10-bit wide low-speed data stream to a singhigh-peed data stream ith ebedded clock for  
output.  
Additionally, multiple sysHSI Blocks can be grouped togther o form a source synchronointerace of between 1-  
8 channels.  
Figure 15 shows the connections of the SERDith the FIFO, sysIO blk and the MRB. Table 6 provides  
the descriptions of the SERDES.  
For more information on the SERDES/DR, refer to attice technical ne nuber TN1020, sysHSI Usage Guide-  
lines.  
Table 6. SERDES Signal Descrtions  
Signal  
CDRRSTb  
SYDT  
I/O  
Description  
Resets the CcircusysHSI block  
I
O
Symbnmendetect for sysHSI block  
Initisynchronous calibration sequence  
Parfor sysHSI block  
CAL  
I
RXD  
Internal  
Internal  
Interna
I
TXD  
Parallel out for sysHSI block  
REFCL
S
Refeence clock received from the clock tree  
Seridata input for sysHSI block (LVDS input)  
Serial data output for sysHSI block (LVDS output)  
Clock input for source synchronous group  
Clock output for source synchronous group  
Recovered clock from encoded data by CDR of sysHSI block  
Lock output of the PLL associated with sysHSI block  
SOUT  
O
SCLKIN  
SS_CLKOUT  
RECCLK  
CSLOC
I
ternal  
Internal  
1. “E-Series” does not support sysHSI.  
17  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 14. sysHSI Block with SERDES and FIFO  
sysHSI Block  
Core Logic  
SERDES  
10  
10  
SOUT  
TXD  
Serializer  
RXD  
SIN  
De-serializer  
including CDR  
FIFO  
RECCLK  
DX  
Block  
CSLOCK  
CSLOCK  
SS_CLKOUT  
CSPLL  
SS_CLKIN  
CAL  
GRP  
Shared Source Synchronous  
pins drive multiple sysHSI  
blocks  
SERDES  
Selizer  
10  
SOUT  
N  
TXD  
RXD  
De-serializer  
including CDR  
FIFO  
RCL
GDX  
Block  
REFCLK (0:3)  
Reference clocks  
from CLK (0:3)  
Note: Sme pins are shared. Seogic SConnections table for details  
18  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 15. Operation in SERDES Only Mode1, 2  
GRP  
GDX Block  
SERDES  
Pre-Assigned Pins  
FIFO  
10  
Delay  
Input  
Reg/  
DIN  
RXD  
Parallel  
ata  
DOUT  
eria
Dan  
(SIN)  
Latch  
RCLK  
RE  
TXSerial  
allel Data Out  
ta (SOUT)  
10  
Output  
Reg/  
Latch  
PT-CE(0:3
WE  
GLK/CE(0:3)  
Input  
Reg/  
Latch  
CAL  
WCLK  
Input  
Reg/  
Latch  
SYDT  
put  
/  
Lat
FULL  
EMPTY  
Output  
Reg/  
Latch  
CDRRSTb  
FIFORSTb  
:  
POR  
RESETb  
1. Some pins sharSignal  
Connections table f
2. For SERDES only mrammable bit  
holds FIFO in reset. Inpugisters used for  
DOUT, and RECCLK configured as  
latches and held in pass through.  
19  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 16. Operation in SERDES with FIFO Mode  
GRP  
GDX Block  
SERDES  
FIFO  
Pre-Assigned Pins  
10  
Delay  
Input  
Reg/  
DIN  
RXD  
Parallel  
DOUT  
erial  
Dn  
(SIN)  
Latch  
RCLK  
RE  
TXerial  
allel Data Out  
ta (SOUT)  
10  
Output  
Reg/  
Latch  
PT-CCE(0:3
WE  
LK/CE(0:3)  
LK  
Input  
Reg/  
Latch  
CAL  
WCLK  
Input  
Reg/  
Latch  
SYDT  
put  
/  
Lat
FULL  
EMPTY  
Output  
Reg/  
Latch  
CDRRSTb  
FIFORSTb  
POR  
RESETb  
20  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
IEEE 1149.1-Compliant Boundary Scan Testability  
All ispGDX2 devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows func-  
tional testing of the circuit board on which the device is mounted through a serial scan path that can access all crit-  
ical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto  
test nodes, or test node data to be captured and shifted out for verification. In addition, these vices can be linked  
into a board-level serial scan path for more board-level testing. The test access port has its wn sply voltage that  
can operate with LVCMOS3.3, 2.5 and 1.8 standards.  
sysIO Quick Configuration  
To facilitate the most efficient board test, the physical nature of the I/O cells must be sbeforrunning any continu-  
ity tests. As these tests are fast, by nature, the overhead and time that is required foonfiguration of the I/Os'  
physical nature should be minimal so that board test time is minimized. ThispGDX2 family of devicallows this  
by offering the user the ability to quickly configure the physical nature of thsysIO cells. This quuration  
takes milliseconds to complete, whereas it takes seconds for the ere device to be prograttice's  
ispVM™ System programming software can either perform the quicconfigration through te PC pport, or  
can generate the ATE or test vectors necessary for a third-partest sstem.  
IEEE 1532-Compliant In-System Programming  
In-system programming of devices provides a number f signifiant benefits icluding pid prototyping, lower  
inventory levels, higher quality and the ability to main-fielmoifications. AlispGX2 deces provide In-System  
Programming (ISP) capability through their Bcan Test Access PorThis pability has been imple-  
mented in a manner that ensures that the port rmpliant to the E 15standard. By using IEEE 1532  
as the communication interface through which ISP eved, designers gthe benefit of a standard, well defined  
interface.  
The ispGDX2 devices can be programmacross the commciatemperaure and voltage range. The PC-based  
Lattice software facilitates in-sym programing of ispGDX2 devics. The software takes the JEDEC file output  
produced by the design implementation software, along with formation about the scan chain, and creates a set of  
vectors used to drive the scachain. Te software cae thevectors to drive a scan chain via the parallel port  
of a PC. Alternatively, te softwre cn output files in fomats understood by common automated test equipment.  
This equipment can en bused to program ispdeves during the testing of a circuit board.  
Security Schem
A programmae security scheme is povided on tispGDX2 devices as a deterrent to unauthorized copying of  
the array configution patterns. Once programmed, this scheme prevents readback of the programmed pattern by  
a devie prorammr, securing propriery desns from competitors. The security scheme also prevents program-  
ming aerificaion. The entirdevice mbe erased in order to reset the security scheme.  
Hot Socketing  
The ispDX2 devices are wl suited for those applications that require hot socketing capability. Hot socketing a  
devie requires thvicewhen powered down, can tolerate active signals on the I/Os and inputs without  
being damaged. Ait requires that the effects of the powered-down device be minimal on active signals.  
21  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Absolute Maximum Ratings1, 2, 3  
ispGDX2C (1.8V)  
ispGDX2B/V (2.5/3.3V)  
Supply Voltage V  
. . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V. . . . . . . . . . . . . . . . -0.5 to 5.5V  
CC  
PLL Supply Voltage V  
. . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V. . . . . . . . . . . . . . . . -0.5 to 5
CCP  
Output Supply Voltage V  
. . . . . . . . . . . . . . . . . -0.5 to 4.5V. . . . . . . . . . . . . . . . -0.5 to 4.5
CCO  
JTAG Supply Voltage (V  
) . . . . . . . . . . . . . . . . . -0.5 to 4.5V. . . . . . . . . . . . . . . . 0.5 to 4.5V  
CCJ  
Input or I/O Tristate Voltage Applied 4, 5 . . . . . . . . . -0.5 to 5.5V. . . . . . . . . . . . . . . . 0.to 5.5V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C . . . . . . . . . . . . . . -65 o 50°C  
Junction Temp. (T ) with Power Applied . . . . . . . . -55 to 150°C . . . . . . . . . . . . . . 5 to 150°C  
J
1. Stress above those listed under the Absolute Maximum Ratings may cause permnenamage device. Functionf the  
device at these or any other conditions above those indicated in the operational stions this specification is nompliegram-  
ming, following the programming specifications).  
2. Compliance with the Lattice Thermal Management document is required.  
3. All voltages referenced to GND.  
4. Overshoot and undershoot of -2V to (V (MAX)+2) volts is permittefor a duration of <20ns.  
IH  
5. A maximum of 64 I/Os per device with V > 3.6V is allowed.  
IN  
Recommended Operating Conditins  
Symbol  
Pa
Supply Voltage for 1.8V Devices1  
Min.  
1.65  
2.3  
3
Max.  
1.95  
2.7  
Units  
V
V
V
V
Supply Voltage for 2.5V evices  
V
CC  
Supply Voltage for 3V Dvices  
3.6  
V
Supply Voltage for PLL and ssHSI Blocks, 1.8V Device
Supply Voltagfor PLL and sysHSI Blocks, 2.5V Devices  
Supply Voltagfor PLL nd sysHSI Bloc3V Dces  
Power Supply Vgor JTAG Programmin1.8V Operation  
Por Suply Voltage for JTAG Png 2V Operation  
Power pply oltage for JTAG g 3.3V Operation  
Junction Cmmercial Operation  
1.65  
2.3  
3
1.95  
2.7  
V
V
CCP  
CCJ  
3.6  
V
1.65  
2.3  
3
1.95  
2.7  
V
V
3.6  
V
T (COM)  
0
90  
°C  
°C  
J
T (IND)  
JunctioIndustrial Opeation  
-40  
105  
J
1. sysHI specficatioalid for V and V  
= 1.7V t1.9V.  
C
CC  
Erase eprogram Secifications  
Parameter  
Min  
Max  
Units  
Erase/Rprogram Cycle  
1,000  
Cycles  
Note: Valid over commraturrange.  
Hot Socketing ecifications1, 2, 3  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
4
I
Input or Tristated I/O Leakage Current 0 V 3.0V  
+/-50  
+/-800  
μA  
DK  
IN  
1. Insensitive to sequence of V and V  
. However, assumes monotonic rise/fall rates for V and V  
provided (V - V  
) 3.6V.  
CCO  
CC  
CCO  
CC  
CCO,  
IN  
2. LVTTL, LVCMOS only.  
3. 0 < V V (MAX), 0 < V  
V  
(MAX).  
CCO  
CC  
CC  
CCO  
4. I is additive to I , I or I . Device defaults to pull-up until fuse circuitry is active.  
DK  
PU PD  
BH  
22  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
DC Electrical Characteristics  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
0 V (V - 0.2V)  
Min.  
Typ.  
Max.  
10  
Units  
μA  
IN  
CCO  
1
I , I  
Input or I/O Low Leakage  
IL IH  
(V  
- 0.2V) < V 3.6V  
30  
μA  
CCO  
IN  
3.6V < V 5.5V and  
3
IN  
I
Input High Leakage Current  
mA  
IH  
3.0V V  
3.6V  
CCO  
I
I
I
I
I
I
I/O Active Pull-up Current  
0 V 0.7 V  
CCO  
-30  
30  
30  
-150  
150  
μA  
μA  
μA  
μA  
μA  
μA  
V
PU  
IN  
I/O Active Pull-down Current  
V (MAX) V V (MAX)  
IL IN IH  
PD  
Bus Hold Low Sustaining Current V = V (MAX)  
BHLS  
BHHS  
BHLO  
BHLH  
IN  
IL  
Bus Hold High Sustaining Current V = 0.7 V  
IN  
CCO  
Bus Hold Low Overdrive Current 0 V V (MAX)  
-
IN  
IH  
Bus Hold High Overdrive Current 0 V V (MAX)  
IN  
IH  
V
Bus Hold Trip Points  
I/O Capacitance2  
V
* 0.35  
V
*
BHT  
CCO  
CCO  
V
V
V
V
V
V
= 3.3V, 2.5V, 1.8V  
CCO  
C
C
C
8
6
6
pf  
pf  
pf  
1
2
3
= 1.8V, V = 0 to V (MAX)  
CC  
IO  
IH  
= 3.3V, 2.1.8
CCO  
Clock Capacitance2  
= 1.8V, V = 0 V (AX)  
CC  
IO  
IH  
= , 1.8
CCO  
Global Input Capacitance2  
= 1to V (MAX)  
CC  
IH  
1. Input or I/O leakage current is measured with the pin configan input or as aI/O wthe output driver tri-stated. It is not  
measured with the output driver active. Bus mntenance circuare disabled.  
2. T = 25°C, f = 1.0MHz.  
A
3. 5V tolerant inputs and I/Os should be plaed in nks where 3.0V V  
3. The JTAorts are not included for the 5V tolerant inter-  
CCO  
face.  
Supply Current  
Over ecomended Operatg Contions (ispGDX2-256)4  
Symbol  
Descption  
Po
cc (V)  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
Min.  
Typ.  
59.6  
58.7  
60.0  
118.7  
118.7  
117.5  
14.7  
14.7  
17.4  
35  
Max.  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
Core Logic PowSupply Current  
1,2  
I
V
CC  
CC  
PLL/sysHSI Logic Power Supy  
Curret  
GPLL/sysHSI CSL Poer  
Supply Curt  
2
I
I
I
V
CCP  
CCP  
3
Bank Powely Current  
JTAG Programming Current  
V
35  
CCO  
CCO  
25  
1.5  
V
1.0  
CCJ  
CCJ  
800  
1. 64-input switching frequency at 20 MHz, with one GRP fanout.  
2. One GPLL with f = 400 MHz and one sysHSI Block (two receivers and two transmitters) at 622 MHz data rate.  
VCO  
3. All 8-bank reference circuit currents, all I/Os in tristate, inputs held at valid logic levels, and bus maintenance circuits disabled.  
4. T = 25°C  
A
23  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysIO Recommended Operating Conditions  
V
(V)1  
V
(V)  
REF  
CCO  
Standard  
LVCMOS 3.3  
LVCMOS 2.5  
LVCMOS 1.82  
LVTTL  
Min.  
3.0  
2.3  
1.65  
3.0  
3.0  
3.0  
3.15  
2.3  
3.0  
3.0  
2.3  
1.4  
1.4  
1.4  
1.4  
3.0  
2.3  
2.3  
Typ.  
Max.  
3.6  
2.7  
1.95  
3.6  
3.6  
3.6  
3.45  
2.7  
3.6  
3.6  
2.7  
1.6  
.6  
3.6  
6  
6  
3.6  
Min.  
Typ.  
Max.  
3.3  
2.5  
-
-
-
-
-
-
-
1.8  
-
-
3.3  
-
-
-
PCI 3.3  
3.3  
-
-
-
PCI-X  
3.3  
-
-
-
AGP-1X  
3.3  
-
-
SSTL 2  
2.5  
1.1
1.25  
1.5  
1.5  
1
0.7
.9  
0.
1.0  
-
35  
SSTL 3  
3.3  
.3  
CTT 3.3  
3.3  
1.3
CTT 2.5  
2.5  
1.35  
.65  
HSTL Class I  
HSTL Class III  
HSTL Class IV  
GTL+  
1.5  
.68  
0.9  
1.5  
-
-
1.5  
-
-
-
0.882  
1.122  
LVPECL  
3.3  
-
-
-
-
-
LVDS  
2.5/3.3  
2.3.3  
-
BLVDS  
-
1. Inputs are independent of V  
2. Software default setting.  
setting. Her, V  
must be set within thvalid opeing range for one of the supported standards.  
CCO  
CCO  
24  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysIO Single Ended DC Electrical Characteristics  
Over Recommended Operating Conditions  
V
V
IH  
2
2
IL  
Input/Output  
Standard  
V
V
I
I
OH  
OL  
OH  
OL  
Min (V)  
Max (V)  
Min (V)  
Max (V)  
Max (V)  
Min (V)  
(mA)  
(mA)  
0, 16, 12, -20, -16, -12,  
8, 5.-8, -5.33, -4  
0.4  
2.4  
LVCMOS 3.3  
LVTTL  
-0.3  
0.8  
2.0  
5.5  
0.2  
0.4  
0.2  
V
- 02  
0.1  
-0.1  
-4  
CCO  
24  
-0.3  
-0.3  
0.8  
0.7  
2.0  
1.7  
5.5  
3.6  
V
V
02  
0.1  
-0.1  
CCO  
16, 12, 8, -16, -12, -8,  
0.4  
- 0.
CCO  
5.33, 4  
-5.33, -4  
LVCMOS 2.5  
0.2  
0.
0.4  
2  
V
0.2  
- 0.4  
0.1  
-0.1  
CCO  
LVCMOS 1.81, 3  
LVCMOS 1.83  
-0.3  
-0.3  
0.68  
0.68  
1.07  
1.07  
3.6  
3.6  
8
8  
CO  
V
-0.4 15.33, 4 5.33, -4  
CCO  
CCO  
V
- 0.2  
0.
1.5  
1.5  
8
-0.1  
-0.5  
-0.5  
-0.5  
-8  
PCI 3.34  
PCI -X5  
AGP-1X4  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-3  
1.08  
1.26  
1.08  
1.5  
1.5  
1.5  
3
3.6  
3.6  
.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
.6  
3.
0.
0.9 V  
0.9 V  
0.V  
CO  
C
CCO  
0.1 V  
CCO  
0.1 V  
CCO  
CCO  
SSTL3 class I  
SSTL3 class II  
SSTL2 class I  
SSTL2 class II  
CTT 3.3  
V
V
- 0.2  
- 0.2  
V
V
+ 0
0.7  
0.5  
.1  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
CCO  
C
V
- 0.9  
0.62  
- 0.43  
+ 0.4  
+ 0.4  
- 0.4  
16  
7.6  
15.2  
8
-16  
-7.6  
-15.2  
-8  
V
- 0.18 V  
- 0.18 V  
+ 0.
+ 0.18  
+ 0.2  
+ 0.2  
+ 0.1  
+ 0.1  
+ 0.1  
+
0.54  
0.
V
REF  
REF  
CCO  
CCO  
V
V
- 02  
- 0.3  
- 0.1  
- 0.2  
- 0.
- 0.2  
V
V
- 0
- 0.4  
V
REF  
REF  
REF  
REF  
R
REF  
REF  
F  
REF  
CTT 2.5  
V
V
V
8
-8  
F  
REF  
REF  
REF  
REF  
REF  
HSTL class I  
HSTL class III  
HSTL class IV  
GTL+  
V
V
V
V
V
V
0
V
V
V
8
-8  
CCO  
CCO  
CCO  
0.4  
0.4  
0.6  
- 0.4  
24  
48  
36  
-8  
- 0.4  
-8  
n/a  
n/a  
1. Software default setting.  
2. The average DC current drn I/Os between adjacconnections, or between the last GND in an I/O bank and the end of  
the I/O bank, s shown in the gic signals conon tanot exceed n*8mA. Where n is the number of I/Os between bank GND  
connections or tween thlast GND in a bk and the end of a bank.  
3. For 1.8devices (iGD2C) these specificons are V = 0.35 V and V = 0.65V  
CC  
IH  
CC  
4. For V por suppldevices these specificons are = 0.3 * V * 3.3/1.8, V = 0.5 * V * 3.3/1.8  
L  
CC  
IH  
CC  
5. For 1V wer suply devices thesspecificatiV = 0.35 * V * 3.3/1.8 and V = 0.5 * V * 3.3/1.8  
IL  
CC  
IH  
CC  
25  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysIO Differential DC Electrical Characteristics  
Over Recommended Operating Conditions  
Parameter  
Symbol  
Parameter Description  
Test Conditions  
Min.  
Typ.  
Max.  
Units  
LVDS  
V
V
V
Input Voltage  
0
+/-100  
.4  
V
mV  
µA  
V
INP INM  
Differential Input Threshold  
Input Current  
0.2V V  
1.8V  
THD  
CM  
I
Power On  
R = 100Ω  
+/-10  
1.60  
IN  
V
V
V
Output High Voltage for V or V  
1.38  
103  
350  
OH  
OL  
OD  
OP  
OM  
T
Output Low Voltage for V or V  
R = 100Ω  
0.9  
V
OP  
OM  
T
Output Voltage Differential  
(V - V ), R = 100Ω  
250  
450  
mV  
mV  
V
OP  
OM  
T
ΔV  
Change in V Between High and Low —  
OD  
OD  
V
Output Voltage Offset  
(V - V )/2, R = 00Ω  
1.125  
1.25  
50  
OS  
OP  
OM  
T
ΔV  
Change in VOS Between H and L  
Output Short Circuit Current  
mV  
OS  
I
V
= 0V. Driveutpu
OSD  
OD  
24  
mA  
Shorted.  
Bus LVDS1  
V
V
V
Output High Voltage for V or V  
R = 27
0.95  
40  
1  
300  
1.80  
V
V
OH  
OL  
OD  
OP  
OM  
T
Output Low Voltage for V or V  
7Ω  
OP  
OM  
Output Voltage Differential  
|, RT = 27Ω  
460  
27  
mV  
mV  
V
M  
ΔV  
Change in V Between H and L  
OD  
OD  
V
Output Voltage Offset  
|V - VOM| /2, RT = 2
1.1  
1.3  
1.5  
27  
OS  
OP  
ΔV  
Change in V Between anL  
mV  
OS  
OS  
I
Output Short Circuit Current  
V
= 0. Driver Ouuts  
OSD  
OD  
36  
65  
mA  
Shorted.  
1. V and V  
are the two outputof the LVDoutput buffer.  
OP  
OM  
1
LVPECL  
DC Parameter  
meter escription  
Output ply Voltage  
Input Voltage High  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
V
V
V
V
V
V
0  
3.3  
3.6  
V
V
V
V
V
V
CCO  
IH  
1
0.86  
1.7  
2.72  
2.125  
2.11  
1.49  
0.86  
1.92  
1.06  
0.3  
2.72  
2.125  
2.28  
1.49  
0.86  
2.03  
1.25  
0.3  
2.72  
2.125  
2.41  
npuVoltage Low  
IL  
Output Voltage High  
Output VoltaLow  
Differential Inpvoltag
OH  
0.96  
0.3  
1.27  
1.43  
1.57  
2
DIF
Thesalues are valid at the put of he ource termination pack as shown above with 100-ohm differential load only (see Figure 17).  
The levels are 200below e standard LVPECL levels and are compatible with devices tolerant of the lower common mode ranges.  
OH  
2. Vid for 0.2V V  
C
Figure 17. LVPECL with Three Resistor Pack  
1/4 of Bourns P/N  
ispGDX2  
CAT 16-PC4F12  
LVPECL Buffer  
A
Zo  
Zo  
Rs  
to LVPECL  
differential  
receiver  
Rs  
26  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC External Switching Characteristics  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Output Paths  
t
t
t
t
t
Data From Input Pin to Output Pin  
Data From Global Select Pin to Output Pin  
Global Clock to Output  
3.0  
2.8  
2.9  
3.2  
3.0  
3.1  
3.
3.3  
.2  
5.0  
4.7  
5.4  
ns  
ns  
ns  
ns  
ns  
PD  
PD_SEL  
CO  
Set-up Time Before Global Clock  
Hold Time After Global Clock  
2.0  
0.0  
2.0  
0.0  
2.0  
0.0  
3.0  
0.0  
OPS  
OPH  
PT Clock Enable Setup Time Before  
Global Clock  
t
3.0  
3.0  
4.1  
6.9  
ns  
OPCES  
PT Clock Enable Hold Time After  
Global Clock  
t
t
0.0  
0
0.0  
0.0  
ns  
ns  
OPCEH  
External Reset Pin to Output Delay  
5.
6.0  
10.0  
OPRSTO  
Input Paths  
t
t
t
t
Set-up Time Before Global Clock  
0.
2.0  
0.5  
2.0  
1.0  
0.0  
0.5  
2
1.0  
0.
9  
3.0  
1.7  
0.0  
ns  
ns  
ns  
ns  
IPS  
Set-up Time Before Global Clock  
(Zero Hold Time)  
IPSZ  
IPH  
Hold Time After Global Clock  
Hold Time After Global Clock  
(Zero Hold Time)  
IPHZ  
PT Clock Enable Setup Time efore  
Global Clock  
t
3.1  
3.1  
3.1  
5.1  
ns  
IPCES  
PT Clock Enable Hold Time After bal  
Clock  
t
t
0.0  
0.
0.0  
0.0  
ns  
ns  
IPCEH  
External Reset Pin o Output elay  
5.6  
6.5  
7.5  
12.5  
IPRSTO  
Output Enable Paths  
t
t
t
t
Global Clk to utput Enabled Pin  
.2  
4.5  
5.5  
9.1  
ns  
ns  
ns  
ns  
OECO  
Output EnaRegistr Set-up Time  
Before Global loc
0  
3.5  
1.6  
0.0  
3.5  
2.0  
0.0  
4.1  
3.4  
0.0  
6.9  
OES  
Hd Time After Global Clock  
OEH  
PT Clck Eable Setup Time Before  
lobal ck  
OECES  
PT Clck Enable HolTime After bal  
Clok  
t
0.0  
0.0  
0.0  
0.0  
ns  
OCEH  
t
t
t
Global OE Inputo Output Enle/Disable  
Test OE Input to Otput Eable/Disable  
Input to nablDisable  
3.5  
5.2  
5.2  
3.8  
5.5  
5.5  
4.5  
6.2  
6.2  
7.5  
ns  
ns  
ns  
GO
TOE/DIS  
EN/DIS  
10.3  
10.3  
Clock and Reset P
t
t
t
Width of Rulse  
Clock Width  
2.5  
1.3  
1.5  
2.5  
1.5  
1.6  
2.5  
1.6  
1.6  
4.1  
2.7  
2.7  
ns  
ns  
ns  
RW  
CW  
GW  
Clock Width  
Clock Frequency with External  
f
(Ext)  
204  
360  
196  
330  
192  
300  
119 MHz  
180 MHz  
MAX  
Feedback 1/(t  
+ t  
)
OPS  
CO  
f
(Tog, Clock Frequency Maximum Toggle  
(No PLL)  
MAX  
No PLL)  
27  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC External Switching Characteristics  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
f
Clock Frequency Maximum Toggle  
MAX  
360  
330  
30
180 MHz  
(Tog, PLL) (With PLL)  
Timing v.2.2  
28  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Timing Model  
The task of determining the timing through the ispGDX2 family is relatively simple. The timing model provided in  
Figure 18 shows the specific delay paths. Once the implementation of a given function is determined either con-  
ceptually or from the software report file, the delay path of the function can easily be determined from the timing  
model. The Lattice design tools report the timing delays based on the same timing model fa particular design.  
Note that the internal timing parameters are given for reference only, and are not tested.Thexterl timing param-  
eters are tested and guaranteed for every device.  
Figure 18. ispGDX2 Timing Model Diagram (I/O Cell)  
TOE path  
tTOE_IN  
TOE/  
GOE  
tGOE_IN  
t IOI  
GOE path  
tPTOE  
from GRP  
to FIFO  
(WE)  
to sysHSI  
(REFCLK)  
tGCLK  
tPTCLKEN  
tCLK_IN  
tCLKEN_IN  
tIOI  
t OEBY
GCLK/  
GCLKEN  
from GRP  
tPLL_DELAY  
tPLL_SEC_DELAY  
tPTCLK  
OE Reg
to sysHSI/FIFO  
(Global Reset)  
to FIFO  
(WCLK)  
CE  
t SR_IN  
GSR  
from sysHSI  
(SOUT)  
tIOI  
t HSISOUT  
S
from GRP  
from GRP  
tPTSR  
from sysHSO  
(Flags)  
t HLAG  
Output  
Delays  
tSEL_IN  
tIOI  
rom sysHSI  
)  
SISSCLKOUT  
GSEL  
tBUF  
tEN  
tDIS  
t IOO  
from Adjacent  
Ce(Output)  
tOPBYPA
OUT  
tPTSEL  
Out Reg
Q
t OPAC  
tD  
XSEL  
from GRP  
CE  
to sysHSI  
(TXD)  
S/R  
from Adjacent Cells  
(Input)  
IPAC  
from FIFO  
(DOUT)  
TAOUT  
to Adjacent Cells  
(Output)  
from SI  
(RECSYDT)  
Input Reg.  
t HSIOUT  
S/R  
CE  
from
(PLL Outp
OUT  
t
t IOI  
D
Q
IN  
t ROUTEGRP  
to GRP  
tINDIO  
tIPBYPASS  
to sIFO  
(SIN, Contrset, SSCLKIN)  
to Adjacent Cells  
(Input)  
to FIFO  
(REN)  
Italicrameters are optional.  
el Vern 1.6.7  
to FIFO  
(RCLK)  
29  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 19. ispGDX2 Timing Model Diagram (with sysHSI and FIFO Receive Mode)  
to I/O Cell  
(RECCLK)  
sysHSI  
(RXD)  
FIFO  
Serial Data  
In  
Data Out  
(RXD)  
from I/O Cell  
(SIN)  
tFIFODATAIN  
Data In  
tHSISIN  
Recovered  
Clock  
Write CLK  
tFIFOWCLK  
to I/O Cell  
(DOUT)  
HSI Controls  
CAL  
HSI Flags  
CSLOCK  
to I/O Cell  
(Output Path Flag)  
from I/O Cell  
(Control)  
tHSICTRLCAL  
FIFO Flags  
to I/O Cell  
(SYDT and Output  
Path Flags)  
SYDT  
to I
(Output PaFlags)  
FULL, EMP
Source  
Synchronous Clock  
from I/O Cell  
(SSCLKIN)  
tHSISSCLKIN  
d  
Clock  
from I/O Cel
(RCLK
tIFORCLK  
from I/O Cell  
(REFCLK)  
Reference Clock  
tHSIREFCLK  
Read  
Enable  
from I/O C
(RE)  
tFIFO
RESET  
RES
from I/O Cell  
(Global RESET)  
tHSIFIFORST  
from I/O Cell  
(I/O RESET)  
Figure 20. ispGDX2 mng Model Diagram HSI Transmit Mode)  
sysHSI  
(TXD)  
Serial  
Data Out  
to I/O Cell  
(SOUT)  
from I/O Cell  
(TXD)  
Data In  
tHSIT
frI/O Cell  
(RLK)  
Reference Clock  
SIREFCLK  
Source  
to I/O Cell  
Synchronous Clock  
(SSCLKOUT)  
30  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Figure 21. ispGDX2 Timing Model Diagram (in FIFO Only Mode)  
from I/O Cell  
(DIN)  
tFIFODATAIN  
tFIFOWCLK  
tFIFOWEN  
Data In  
FIFO  
to I/O Cell  
(DOUT)  
Data Out  
from I/O Cell  
(WCLK)  
Write  
Clock  
from I/O Cell  
(WE)  
Write  
Enable  
FIFO Flags  
Cell  
(Outputh Fla)  
FULL, EMPTY  
Read  
Clock  
from I/O Cell  
(RCLK)  
tFIFORCLK  
Read  
Enable  
from I/O Cell  
(RE)  
tFIFOREN  
RESET  
from I/O Cell  
(Global RESET)  
tHSIFIFORST  
from I/O Cell  
(I/O RESET)  
31  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Sample External Timing Calculations  
The following equations illustrate the task of determining the timing through the ispGDX2 family. These are only a  
sample of equations to calculate the timing through the ispGDX2.  
Figure 18 shows the specific delay paths and the Internal Timing Parameters table provides the parameter values.  
Note that the internal timing parameters are given for reference only and are not tested. Thexternal timing param-  
eters are tested and guaranteed for every device.  
Data from global select pin to output pin:  
t
= t  
+ t  
+ t  
+ t  
PD_SEL  
SEL_IN  
MUXSEL  
OPBYPASS BUF  
Global clock to output:  
= t + t + t  
t
+ t  
BUF  
CO  
CLK_IN  
GCLK  
OPCOi  
Input register or latch set-up time before global clock:  
= t + t - (t + t  
t
)
GCLK  
IPS  
IN  
IPS  
CLK  
Input register or latch hold time after global clock:  
= (t + t ) + t - t  
t
IPH  
CLK_IN  
GCLK  
IPHi IN  
Data from product term select to output pin:  
t
= t + t  
+ t  
+ t  
+
+ t  
+ t  
PD_PTSEL  
IN  
IPBYPASS  
ROUTEGRP  
PTSEL  
XSE
PBYPASS BF  
Product term clock to output:  
= t + t + t  
t
+ t  
+ t  
t  
CO_PT  
IN  
IPBYPASS  
ROUTEGRP  
PTCLK  
BUF  
Input register or latch set-up time befoproduct term clock:  
= t + t - (t + t + t )  
PTCLK  
t
IPS_PT  
IN  
IPSi_PT  
IN  
IPBYPASS  
OUTEGRP  
Input register or latch hold timafter product term clock:  
t
= (t + t  
+ t  
+ t  
) + t  
- t  
IPH_PT  
IN  
IPBYPASS  
RUTEGRP  
PTCLK  
IPHi IN  
Global OE input to outut enabldisble:  
= t + + t  
t
GOE/DIS  
GOE_IN  
OEBASS  
EN  
External reset pin to outut dlay:  
= t + t + t  
BUF  
t
OPRSTO  
SRN  
OPASROi  
32  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Internal Timing Parameters1  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input/Output Delays  
t
t
t
t
t
t
t
t
t
t
Output Buffer Delay  
0.80  
1.00  
1.80  
1.80  
1.50  
2.00  
0.40  
1.60  
2.00  
3.7
0.80  
1.00  
1.80  
1.80  
1.80  
2.00  
40  
1.60  
.70  
3.70  
80  
1.00  
1.80  
2.5
.50  
2.00  
0.40  
1.60  
270  
30  
1.14  
1.67  
3.00  
4.17  
4.17  
3  
0  
6.17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUF  
Global Clock Input Delay  
Global Clock Enable Input Delay  
Output Disable Delay  
CLK_IN  
CLKEN_IN  
DIS  
Output Enable Delay  
EN  
Global Output Enable Path Delay  
Input Pin Delay  
GOE_IN  
IN  
Global MUX Select Input Delay  
Global Set/Reset Path Delay  
Test Output Enable Path Delay  
SEL_IN  
SR_IN  
TOE_IN  
Shift Register and MUX Delays  
Input Path Adjacent I/O Cell Delay  
(Shift Register)  
t
t
0.
1.30  
0.80  
1.3
00  
1.30  
1.33  
2.17  
ns  
ns  
IPAC  
Output Path Adjacent I/O Cell Delay  
(Shift Register)  
OPAC  
t
t
MUX Data Path Delay  
MUX Select Path Delay  
0.90  
0.4
0.90  
00  
0.90  
0.40  
1.29  
0.57  
ns  
ns  
MUXPD  
MUXSEL  
AND Arrays and Routing Delays  
t
t
t
t
FIFO Output to I/O Block Dela
Clock Tree Dela
0.00  
0.40  
.00  
0.00  
0.00  
0.40  
0.00  
0.00  
0.00  
0.40  
0.00  
0.00  
0.00  
0.67  
0.00  
0.00  
ns  
ns  
ns  
ns  
FIFODATAOUT  
GCLK  
HSI/FIFO Flag I/O BloDelay  
HSI Outut to I/O ell Bck Delay  
HSIFIFOFLAG  
HSIOUT  
HSI urce ynchronous Clock to I
Block Dl
t
0.00  
0.00  
0.00  
0.00  
ns  
HSISSCLKOUT  
t
t
t
t
t
t
PLL Delay cment  
0.33  
2.20  
2.10  
2.40  
1.70  
1.40  
0.90  
0.33  
2.20  
2.10  
2.40  
1.70  
1.40  
0.90  
0.33  
2.20  
2.10  
2.40  
1.70  
2.70  
0.90  
0.33  
3.67  
3.50  
4.00  
2.83  
4.50  
1.29  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLL_DELAY  
Clock AND Array Delay  
Clk Eable AND Array elay  
OE AND Array Delay  
PTCLK  
PTCLKE
PTOE  
elect AND ArrDelay  
Set/Reset AND Ay Del
Global RoutiPool ey  
PEL  
PTSR  
OUTEGP  
Registr/Latch Delayput ths  
t
t
t
t
ASet/Reset to Output  
AsynSet/Reset Recovery  
Registertch Bypass Delay  
2.50  
2.50  
0.00  
2.50  
2.50  
0.20  
2.50  
2.50  
0.50  
4.17  
4.17  
0.71  
ns  
ns  
ns  
ns  
OPASROi  
OPASRRi  
OPBYPASS  
OPCEHi  
Register Clock Enable Hold Time  
1.30  
1.30  
1.30  
2.17  
Register Clock Enable Setup Time  
(Global Clock Enable)  
t
t
1.10  
1.00  
1.10  
1.00  
1.10  
2.10  
1.83  
3.50  
ns  
ns  
OPCESi  
Register Clock Enable Setup Time  
(Product Term Clock Enable)  
OPCESi_PT  
t
t
Register Clock to Output Delay  
Register Hold Time  
0.70  
0.90  
1.00  
1.67  
ns  
ns  
OPCOi  
0.80  
0.80  
0.80  
1.33  
OPHi  
33  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Internal Timing Parameters1 (Continued)  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Latch Gate to Output Delay  
Latch Hold Time  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
t
1.00  
1.00  
1.0  
1.67  
ns  
ns  
OPLGOi  
0.80  
0.80  
0.80  
.3
OPLHi  
Latch Propagation Delay (Transparent  
Mode)  
t
0.30  
0.30  
0.30  
0.50  
ns  
OPLPDi  
t
t
t
t
t
Latch Setup Time (Global Gate)  
1.20  
1.00  
1.20  
1.00  
1.20  
1.00  
1.20  
.00  
2
1.0
1.20  
00  
2.00  
1.67  
2.00  
1.
ns  
ns  
ns  
ns  
ns  
OPLSi  
Latch Setup Time (Product Term Gate)  
Register Setup Time (Global Clock)  
Register Setup Time (Product Term Clock)  
Asynchronous Set/Reset Pulse Width  
OPLSi_PT  
OPSi  
OPSi_PT  
OPSRPWi  
2.50  
2.50  
2.50  
Register/Latch Delays, Input Paths  
t
t
t
t
Asynchronous Set/Reset to Output  
Asynchronous Set/Reset Recovery  
Register/Latch Bypass Delay  
00  
2.50  
0.00  
1.00  
2.50  
0.00  
70  
2.5
.00  
2.83  
4.17  
0.00  
ns  
ns  
ns  
ns  
IPASROi  
IPASRRi  
IPBYPASS  
IPCEHi  
Register Clock Enable Hold Time  
0  
1.30  
.30  
2.17  
Register Clock Enable Setup Time  
(Global Clock Enable)  
t
t
1.10  
1.10  
1.10  
1.10  
1.10  
1.10  
1.83  
1.83  
ns  
ns  
IPCESi  
Register Clock Enable Setup Time  
(Product Term Clock Enable)  
IPCESi_PT  
t
t
t
t
Register Clock to Outpuelay  
Register Hold Time  
0.00  
00  
0.00  
1.00  
0.00  
1.00  
0.00  
1.67  
ns  
ns  
ns  
ns  
IPCOi  
IPHi  
Latch Gate to Ouut Delay  
Latch Hold Tim
1.00  
1.00  
1.00  
1.67  
IPLGOi  
IPLHi  
0.00  
0.00  
0.00  
0.00  
Latch ProagatiDelay Transparent  
Mode)  
t
0.0  
0.30  
0.30  
0.50  
ns  
IPLPDi  
t
t
t
t
t
Latch etuTime (Global Term)  
1.5
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
1.50  
2.50  
2.50  
2.50  
2.50  
ns  
ns  
ns  
ns  
ns  
IPLSi  
Latch Sep Tim(Product Term G
Register Setp Time (Globaock)  
gister etup Time (Pruct Term Clock)  
Asyhronous Set/Reset ulse Wih  
IPLSi_PT  
IPSi  
IPSi_PT  
IPSRP
2.50  
2.50  
2.50  
4.17  
OE Pat
t
t
t
Asynchronous t/Ret Output  
Asynchronos Set/Reset ecovery  
Register/Latch ypass Delay  
2.50  
2.50  
0.00  
2.50  
2.50  
0.00  
2.50  
2.50  
0.00  
4.17  
4.17  
0.00  
ns  
ns  
ns  
ns  
OEASROi  
OSRR
OEBYPAS  
OECEHi  
Rek Enble Hold Time  
1.30  
1.30  
0.80  
1.33  
RegEnable Setup Time (Global  
Clock
t
t
1.20  
1.50  
1.20  
1.50  
1.20  
2.10  
2.00  
3.50  
ns  
ns  
OECESi  
Register Cock Enable Setup Time  
(Product Term Clock Enable)  
OECESi_PT  
t
t
t
t
Register Clock to Output Delay  
Register Hold Time  
0.40  
1.30  
0.40  
1.30  
0.40  
1.60  
0.67  
2.67  
ns  
ns  
ns  
ns  
OECOi  
OEHi  
Latch Gate to Output Delay  
Latch Hold Time  
1.60  
1.60  
1.60  
2.67  
OELGOi  
OELHi  
0.40  
0.40  
0.40  
0.67  
Latch Propagation Delay (Transparent  
Mode)  
t
0.30  
0.30  
0.30  
0.50  
ns  
OELPDi  
34  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Internal Timing Parameters1 (Continued)  
Over Recommended Operating Conditions  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
t
t
t
t
Latch Setup Time (Global Gate)  
1.40  
1.00  
1.00  
1.00  
1.40  
1.00  
1.00  
1.00  
1.40  
1.00  
1.0  
.00  
2.33  
.6
2.3
1.67  
ns  
ns  
ns  
ns  
ns  
OELSi  
Latch Setup Time (Product Term Gate)  
Register Setup Time (Global Clock)  
Register Setup Time (Product Term Clock)  
Asynchronous Set/Reset Pulse Width  
OELSi_PT  
OESi  
OESi_PT  
OESRPWi  
2.50  
2.50  
2.5
4.17  
Timing v.2.2  
1. Internal parameters are not tested and are for reference only. Refer to the timing model in is data sheet for details.  
2. t is the unit of increment by which the clock signal can be incremented. The PLL n adjust e clock signal by
(as  
GE  
PLL_DELAY  
given in the sysCLOCK PLL Timing section) in either direction in steps of size t  
PLL_DE.  
35  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Timing Adjusters  
-3  
-32  
-35  
-5  
Parameter  
Optional Adders  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
t
Input Delay  
1.50  
1.30  
1.50  
1.30  
1.0  
1.30  
2.50  
1.30  
ns  
ns  
INDIO  
Secondary PLL Output  
Delay  
t
PLL_SEC_DELAY  
t
Output Adjusters  
IOO  
Using Slow Slew (LVTTL and  
LVCMOS Outputs Only)  
Slow Slew  
0.90  
1.20  
0.30  
0.90  
1.20  
00  
0.9
1.20  
0.30  
0.90  
1.20  
ns  
ns  
ns  
LVTTL_out  
Using 3.3V TTL Drive  
Using 1.8V CMOS Standard,  
4mA Drive  
LVCMOS_18_4mA_out  
Using 1.8V CMOS Standard,  
5.33mA Drive  
LVCMOS_18_5.33mA_out  
LVCMOS_18_8mA_out  
LVCMOS_18_12mA_out  
LVCMOS_25_4mA_out  
LVCMOS_25_5.33mA_out  
LVCMOS_25_8mA_out  
LVCMOS_25_12mA_out  
LVCMOS_25_16mA_out  
LVCMOS_33_4mA_o
LVCMOS_33_5.33mA_out  
LVCMOS33_8mout  
LVCM_3_12mA_out  
LVCMOS_3316mA_out  
0.30  
0.00  
0.00  
1.20  
1.00  
0.
0.40  
0  
1.20  
1.20  
0.80  
0.60  
0.60  
0  
0.00  
0.00  
1.20  
.00  
0.40  
0.40  
0.40  
1.20  
1.20  
0.80  
0.60  
0.60  
0.3
0.0
0.
.20  
1.00  
0.40  
0.40  
0.40  
1.20  
1.20  
0.80  
0.60  
0.60  
0.00  
0.00  
1.20  
1.00  
0.40  
0.40  
0.40  
1.20  
1.20  
0.80  
0.60  
0.60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Using 1.8V CMOS Standard,  
8mA Drive  
Using 1.8V CMOS Standard,  
12mA Drive  
Using 2.5V CMOS Sta
4mA Drive  
Using 2.5V CMOS Stan
5.33mA Drive  
Using 2.5V MOS Standard,  
8mA Drie  
Using 2.5V CMOStandard,  
1mA Drive  
Uing 2.5V MOS Standard,  
16A Driv
Using 3.3V CMOS Stan
4mA Drive  
Uing 3.3V CMOS S
5.33mA Drive  
Using 3.3V MOS Standard,  
8mA Drive  
Using 3.3V COS Sndard,  
12A Drive  
Un.3V MOS Standard,  
16mA Drive  
ing 3.3V CMOS Standard,  
20Drive  
LVCMOS_33_20mA_o
AGP_1X_out  
0.30  
0.60  
1.00  
0.30  
0.60  
1.00  
0.30  
0.60  
1.00  
0.30  
0.60  
1.00  
ns  
ns  
ns  
Using AGP 1x Standard  
Using Bus Low Voltage Dif-  
ferential Signaling (BLVDS)  
BLVDS_out  
CTT25_out  
CTT33_out  
GTL+_out  
Using CTT 2.5v  
0.30  
0.20  
0.50  
0.50  
0.60  
0.60  
0.30  
0.20  
0.50  
0.50  
0.60  
0.60  
0.30  
0.20  
0.50  
0.50  
0.60  
0.60  
0.30  
0.20  
0.50  
0.50  
0.60  
0.60  
ns  
ns  
ns  
ns  
ns  
ns  
Using CTT 3.3v  
Using GTL+  
HSTL_I_out  
HSTL_III_out  
HSTL_IV_out  
Using HSTL 2.5V, Class I  
Using HSTL 2.5V, Class III  
Using HSTL 2.5V, Class IV  
36  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC Timing Adjusters (Continued)  
-3  
-32  
-35  
-5  
Parameter  
LVPECL_out  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Using LVPECL Differential  
Signaling  
0.30  
0.80  
0.30  
0.80  
0.30  
0.
0.30  
0.80  
ns  
ns  
Using Low Voltage Differen-  
tial Signaling (LVDS)  
LVDS_out  
PCI_out  
Using PCI Standard  
0.60  
0.60  
0.30  
0.50  
0.20  
0.40  
0.60  
0.60  
0
0.50  
20  
0.40  
0.60  
0.60  
0.0  
0.50  
0.20  
0.40  
0.60  
0.60  
0.30  
0.50  
ns  
ns  
ns  
ns  
ns  
ns  
PCI_X_out  
Using PCI-X Standard  
Using SSTL 2.5V, Class I  
Using SSTL 2.5V, Class II  
Using SSTL 3.3V, Class I  
Using SSTL 3.3V, Class II  
SSTL2_I_out  
SSTL2_II_out  
SSTL3_I_out  
SSTL3_II_out  
t
Input Adjusters  
IOI  
LVTTL_in  
Using 3.3V TTL  
Using 1.8V CMOS  
Using 2.5V CMOS  
Using 3.3V CMOS  
Using AGP 1x  
0  
0.00  
0.00  
0.0
.00  
0.00  
0.00  
0.00  
0.00  
1.0
0  
0.0
00  
0.
10  
0.00  
0.00  
0.00  
0.00  
1.00  
ns  
ns  
ns  
ns  
ns  
LVCMOS_18_in  
LVCMOS_25_in  
LVCMOS_33_in  
AGP_1X_in  
Using Bus Low Voltag
ential Signaling (BLVDS
BLVDS_in  
0.50  
0  
0.50  
0.50  
ns  
CTT25_in  
CTT33_in  
GTL+_in  
Using CTT 2V  
1.00  
1.
0.50  
0.50  
60  
0
10  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
ns  
ns  
ns  
ns  
ns  
ns  
Using CT3V  
Using GTL+  
HSTL_I_in  
HSTL_III_in  
HSTL_IV_in  
Ung HSTL 2.5V, Class I  
Uing HST2.5V, Class III  
Usg HST2.5V, Class IV  
Using Differential Sign
(LVPECL)  
LVPECL_in  
LVDS_in  
0.00  
0.50  
0.00  
0.50  
0.00  
0.50  
0.00  
0.50  
ns  
ns  
Uing Low Voltage D
tial Signaling (DS)  
PCI_in  
Using PCI  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
1.00  
1.00  
0.50  
0.50  
0.60  
0.60  
ns  
ns  
PCI_Xn  
Using PCI-
SSTL2_i
STL2_II_
SS_in  
SSTL3__in  
Usig SSTL 2., lass I  
Ung T2.5V, Class II  
Using SSTL 3.3V, Class I  
ing SSTL 3.3V, Class II  
ns  
ns  
ns  
ns  
Timing v.2.2  
37  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2V/B/C, ispGDX2EV/EB/EC FIFO Internal Timing  
-3  
-32  
-35  
-5  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Routing Delays  
t
t
t
t
t
t
FIFO Input Delay  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
.00  
0.0  
0.
0.00  
0.00  
0.0
.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
FIFODATAIN  
FIFODATAOUT  
FIFORCLK  
FIFOREN  
FIFO Output to I/O Core Delay  
Read Clock Input Delay  
Read Clock Enable Input Delay  
Write Clock Input Delay  
FIFOWCLK  
FIFOWEN  
Write Clock Enable Input Delay  
Core Delays  
t
t
t
t
Global Read Clock to Write Clock Skew  
Read Clock to Empty Flag Delay  
Write Clock to Full Flag Delay  
2.00  
1.30  
.30  
2.
.80  
1.80  
2.00  
1.80  
10  
3.0  
ns  
ns  
ns  
FIFOCLKSKEW  
FIFOEMPTY  
FIFOFULL  
Read Clock Hold after Read Clock Enable  
Time  
FIFORCEH  
0.00  
1.50  
0.00  
1.50  
0.00  
1.
0.00  
2.50  
ns  
ns  
t
Read Clock Setup before Read Clock  
Enable Time  
FIFORCES  
t
t
t
t
t
t
t
Read Clock to FIFO Out Delay  
Reset to Output Delay  
0.50  
0.70  
2.00  
1.20  
0.00  
0.5
0.70  
.00  
1.5
.00  
0.00  
050  
0.70  
2.00  
2.00  
0.00  
0.00  
0.83  
1.17  
3.33  
3.33  
0.00  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
FIFORCLKO  
FIFORSTO  
FIFORSTPW  
FIFORSTR  
FIFOSTRD  
FIFOTHRU  
FIFOWCEH  
Reset Pulse Width  
Reset Recovery Time  
Write Clock to Start Read FlaDelay  
Flow Through Delay  
Write Clock hold fter Write Clock Enable  
Time  
.00  
0.00  
2.00  
0.00  
2.00  
0.00  
3.33  
0.00  
ns  
ns  
t
Write ClocSetup fore rite Clock Enable  
Time  
FIFOWCES  
t
t
Write Daold aftr Write Clock Ti
Write Data tubefore Write Clock
0.50  
1.00  
0.50  
1.00  
0.70  
1.00  
1.17  
1.67  
ns  
ns  
FIFOWCLKH  
FIFOWCLKS  
Timing v.2.2  
38  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysHSI Block Timing  
Figure 22 provides a graphical representation of the SERDES receiver input requirements. It provides guidance on  
a number of input parameters, including signal amplitude and rise time limits, noise and jitter limits, and P and N  
input skew tolerance.  
Figure 22. Receive Data Eye Diagram Template (Differential)  
Bit Time  
VTHD  
200 mV Differential  
+/- 100 mV Single Ended  
TH  
SIN  
jtTH : Optimum Threshold Csing itter  
The data pattern eye opening at the receive enink ionsidered the timatmesure of received signal  
quality. Almost all detrimental characteristics ot signal and the interconection link design result in eye  
closure. This combined with the eye-opening limitthe line receivean e a good indication of a link’s  
ability to transfer error-free data.  
Signal jitter is of special interest to sysm designers. It is oftthe primy limiting characteristic of long digital  
links and of systems with high noise level evironments. An interestg characteristic of the clock and data recovery  
(CDR) portion of the ispGDXSERDES receiver is its abily to filter coming signal jitter that is below the clock  
recovery PLL bandwidth. For ignals wth high levels of low fruency jitter, the receiver can detect incoming data  
error free, with eye openngs snificaly less than thaoigure 22.  
sysHSI Block ASpcifications  
Opeuency Ranges  
Symbol  
Description  
Mode  
SS:CAL  
10B12
8B10B  
Test Condition  
Min.  
50  
Max.  
200  
67  
Units  
MHz  
f
eferencClock Frequency  
33  
MHz  
CLK  
40  
80  
MHz  
SS:CAL  
10B12B  
8B10B  
with eo  
400  
400  
400  
8001  
8001  
8001  
Mbps  
Mbps  
Mbps  
SIN  
f
f
Serial Input  
Serial
with eo  
N  
SIN  
with eo  
SIN  
C = 5 pF, R = 100 Ohms,  
LVDS  
400  
8001  
Mbps  
2
L
L
SOUT  
f
with no jitter  
CLK  
1. f  
2. f  
(8B/10B and 10B/10Mbps limit applicable only to the fastest speed grade. Limit is 700Mbps for the lower speed grade.  
SIN  
and f  
speeds are supported at V and V at 1.7V to 1.9V for ispGDX2C devices.  
SIN  
SOUT  
CC  
CCP  
39  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
LOCKIN Time  
Symbol  
Description  
Mode  
All  
Condition  
Min.  
Max.  
25  
Units  
t
t
CSPLL Lock Time  
After input is stabilized  
With SS mode sync pattern  
μS  
SCLOCK  
1
SS  
1024  
1024  
60  
t
RCP  
CDRPLL Lock-in Time  
10B12B With 10B12B sync pattern  
t
CDRLOCK  
RCP  
RCP  
RCP  
RCP  
RCP  
RCP  
8B10B  
SS  
With 8B10B idle pattern  
t
t
t
t
t
SyncPat Length  
1200  
1100  
50  
t
t
t
t
SYNC  
CAL Duration  
SS  
CAL  
SyncPat Set-up Time to CAL  
SyncPat Hold Time from CAL  
SS  
SUSYNC  
SS  
50  
HDSYNC  
1. REFCLK clock period.  
REFCLK and SS_CLKIN Timing  
Symbol  
Description  
Mod
Condition  
Min
Max.  
100  
Units  
ppm  
UIPP  
ns  
Frequency Deviation Between TX REFCLK and  
CDRX REFCLK on One Link  
8B1
10B12B  
t
t
t
-0  
DREFCLK  
REFCLK, SS_CLKIN Peak-to-Peak Period Jitt
All  
Randm Jitter  
0.01  
JPPREFCLK  
PWREFCLK  
REFCLK, SS_CLKIN Pulse Width, (800% o
20% to 20%).  
All  
1
REFCLK, SS_CLKIN Rise/Fall Time (% or  
80% to 20%)  
t
All  
2
ns  
RFREFCLK  
Serializer Timing2  
Symbol  
Desion  
Mode  
Cndition  
with no jitter  
CLK  
Min.  
Max.  
Units  
UIPP  
ps  
t
SOUT Peak-to-Pak Output Data Jitter  
SOUT Peakto-Pek Randm Jitter  
SOUT Pak-to-Peak Deterministic Jitter  
All  
f
0.25  
130  
JPPSOUT  
8B Mbps w/K28.7-  
t
JPP8B10B  
8B1800 Mbps w/K28.5+  
160  
ps  
DS  
DS  
700  
ps  
SOUT Opt Data ise/Fall Time (2
80%)  
t
RFSOUT  
900  
ps  
/8B10B  
10B12B  
2Bt1 + 2  
1Bt1 + 2  
2Bt1 +10  
1Bt1 +10  
ns  
t
t
RFCLK to SOUT Delay  
COSOUT  
SKTX  
ns  
Skew f SOUT with Respecto  
SS_CLKOUT  
SS  
250  
ps  
t
t
S_CLKOUT to 0 of O
TXD Data Sep Time  
TXD Data Hold me  
SS  
2Bt1 - t  
2Bt1 + t  
SKTX  
ns  
ns  
ns  
CKOSOUT  
SKTX  
All  
All  
Note 3  
Note 3  
1.5  
HXDTAS  
1.0  
HSITXDATAH  
1. Bt: Bit Time Period. d SerBit Time.  
2. The SIN and SOUations listed above are under the condition that the clock tree that drives the REFCLK to sysHSI Block is in  
sysCLOCK PLL BYP
3. Internal timing for referenly.  
40  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Deserializer Timing  
Symbol  
Description  
Mode  
Conditions  
Min.  
-100  
0.45  
Max.  
Units  
8B10B/  
10B12B  
f
SIN Frequency Deviation from REFCLK  
100  
ppm  
DSIN  
eo  
SIN Eye Opening Tolerance  
Bit Error Rate  
All  
All  
Notes 1, 2  
UIPP  
Bits  
SIN  
ber  
-12  
RXD, SYDT Valid Time Before RECCLK Fall-  
ing Edge  
t
t
t
All  
All  
All  
Note 3  
Note 3  
t
t
/2 - 0.7  
/2 - 0.
ns  
ns  
ns  
HSIOUTVALIDPRE  
HSIOUTVALIDPOST  
DSIN  
CP  
RXD, SYDT Valid Time  
After RECCLK Falling Edge  
Bit 0 of SIN Delay to RXD Valid at RECCLK  
Falling edge  
1.5 t  
+
1.5 t  
4.5B
+
RCP  
RCP  
.5Bt + 2  
1. Eye opening based on jitter frequency of 100KHz.  
2. Lower frequency operation assumes maximum eye closure of 800ps.  
3. Internal timing for reference only.  
Lock-in Timing  
CDRX_SS LOCK-IN (DE-SKEW) IMG  
SIN  
MIN. 1CPAT  
MI
DATA (RIAL)  
CAL  
tHDSYN
tSUSYNC  
SYDT  
RXD(0:7)  
SYNCPAT  
RAINING SEQUENC
DATA (RALLEL)  
SS DE DATA TRANSFER  
CDR_10B12B LOCKNG  
SI
DATA (SERIAL)  
SYDT  
RXD(0:9)  
SYNCPAT  
DATA (PARALLEL)  
41  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Lock-in Timing (Continued)  
CDR_8B10B LOCK-IN TIMING  
SIN  
240 Idle Pattern(960 TRCP)  
DATA (SERIAL)  
SYDT  
RXD(0:9)  
Idle Pattern  
DATA (PARALLEL)  
SYDT Timing  
SYDT TIMING FOR CDRX_10B12B  
RECCLK  
SYDT  
RXD(0:9)  
Data0 Data2 Data3 Dat
Parallel Data  
SYNC PARN  
SYDT TIMING FOR CDRX
RECCLK  
SYDT  
RXD(0:9)  
K28.21.4 D21.5 D21.5 K28.5 D21.4 1.5 D21.5  
D0  
D2  
D1  
E PATTERN  
IDLE PATTERN  
Data  
42  
Lattice Semiconductor  
Serializer Timing  
ispGDX2 Family Data Sheet  
8B/10B SERIALIZER DELAY TIMING  
SYMBOL N  
tCOSOUT  
SYMBOL N+1  
TXD  
REFCLK  
SOUT  
b4  
b4 b5 b6 b7 b8 b9 b0 b1 b2 b3  
b5 b6 b7 b8 bbb1 b2  
SYMBOL N  
SYMBOL N-1  
SMOL N+1  
10B/12B SERIALIZER DELAY TIMING  
SYOL
tCOST  
SYML +1  
TXD  
REFCLK  
SOUT  
b4  
b5 bb7 b9  
"0" "1"  
b4 b5 b6 b7 b8 b9  
SYMBOL N-1  
0 b1 b2 b3  
B
SS Mode SERIALIZER DEAY TIMING  
SYM
SYMBOL N+1  
TXD  
tCOSOUT  
REFC
SS_CLKOU
SO
CKOSOUT  
tSKTX  
b4  
b4  
b5  
b6  
b7  
b0  
b2  
SYMBOL N  
b5  
b1  
b3  
b6  
b7  
b0  
SYMBOL  
N+1  
SYMOL N-1  
AL TING FOR sysHSI BLOCK  
tPWREFCLK  
REFCLK  
tHSITXDDATAS  
tHSITXDDATAH  
TXD  
43  
Lattice Semiconductor  
Deserializer Timing  
ispGDX2 Family Data Sheet  
8B/10B DESERIALIZER DELAY TIMING  
SYMBOL N+1  
SYMBOL N  
SYMBOL N+2  
b4  
b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b0 b1 b2 b3  
TDSIN  
b5 b6 b7 b8 b9 b0 b1 b2 b3 b4 b5  
SIN  
RECCLK  
RXD  
SYMBOL N  
SYMBOL N-1  
10B/12B DESERIALIZER DELAY TIMING  
YMBOL
SYMBOL N  
b0 b1 b2 b3 b4 b5  
SYMBON+1  
SIN  
b8 b9  
b6 b7  
"0" "1" b0 b2 b3 4 b5 b6 b7 b8 b9  
b4  
"1"  
"01" b0 1 b2 b3  
TTDSIN  
RECCLK  
RXD  
SYM1  
SYMBOL N-2  
SYBOL N  
CDRX_SS DESERIALIZER LAY TIMING  
SMBOL N  
SYMBOL N+2  
SYMBOL 1  
b7  
b0 b1 bb3 bb5 b6 b7 b0 b1 b3 b4 b5 b6  
TDSIN  
b0 b1 b2 b3 b4  
SIN  
RECCLK  
RXD  
SMBL N-2  
SYMBOL N  
L N-1  
INTERNAL TING FOsysHSI BLOCK  
RECCLK  
tHSIOUVALIDPRE  
tHSIOUTVALIDPOST  
SYDT, RXD  
44  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
sysCLOCK PLL Timing  
Over Recommended Operating Conditions  
Symbol  
Parameter  
Conditions  
80% to 80%  
Min  
0.5  
0.5  
Max  
Units  
ns  
t
t
Input clock, high time  
Input clock, low time  
PWH  
PWL  
20% to 20%  
ns  
t , t  
Input Clock, rise and fall time  
20% to 80%  
3.0  
ns  
R
F
t
f
f
f
f
f
f
t
Input clock stability, cycle to cycle (peak)  
M Divider input, frequency range  
M Divider output, frequency range  
N Divider input, frequency range  
N Divider output, frequency range  
V Divider input, frequency range  
V Divider output, frequency range  
Output clock, duty cycle  
/- 300  
320  
320  
320  
6
ps  
INSTB  
10  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
%
MDIVIN  
MDIVOUT  
NDIVIN  
0  
10  
10  
NDIVOUT  
VDIVIN  
100  
10  
VDIVOUT  
OUTDUTY  
40  
Clean refnc
1MHz f  
100 Hz f  
an refeence1:  
40 MHz or  
160 MHz  
/- 600  
+/- 150  
+/- 600  
+/- 150  
ps  
ps  
ps  
ps  
MDIVOUT  
VDIVIN  
t
Output clock, cycle to cycle jitter (peak)  
Output clock, period jitter eak)  
JIT(CC)  
40 Hz f  
160 Hz f  
30 MHand  
400 Hz  
MDIVOUT  
VDIVIN  
lean reference1:  
10 MHz f  
100 MHz f  
40 MHz r  
1MHz  
MDOUT  
VDI
2
T
JIT(PERIOD)  
Clean rerence1:  
40 M
160 MHz f  
20 MHz and  
400 MHz  
DIVOUT  
VVIN  
t
t
t
t
t
t
Input clock to C_OUT delay  
Interal feedback  
terneedback  
3.4  
500  
25  
ns  
ps  
us  
ps  
ns  
ns  
CLK_OUT_DLY  
Input clock to exrnal feeack delta  
Time to quire phalk after input stable  
Delay cremnt (Lead/Lag)  
PHASE  
LOCK  
Typal = +/- 250ps  
+/- 120 +/- 550  
+/- 0.84 +/- 3.85  
PLL_DELAY  
RANGE  
Total outpdelarange (lead/lag)  
Minimum respulse width  
1.8  
PLL_RSTW  
1. This conition aures thathe output phasitter will remain within specification. Jitter specification is based on optimized M, N and V set-  
tings termined bhspLEVER software
2. Acmulatjitter measured over 10,000 waorm saples  
45  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Boundary Scan Timing Specifications  
Over Recommended Operating Conditions  
Parameter  
Description  
Min  
40  
2
20  
8
Max  
Units  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
TCK [BSCAN] clock pulse width  
BTCP  
TCK [BSCAN] clock pulse width high  
ns  
BTCPH  
BTCPL  
BTS  
TCK [BSCAN] clock pulse width low  
ns  
TCK [BSCAN] setup time  
ns  
TCK [BSCAN] hold time  
10  
50  
8
ns  
BTH  
TCK [BSCAN] rise/fall time  
mV/ns  
ns  
BTRF  
TAP controller falling edge of clock to valid output  
TAP controller falling edge of clock to valid disable  
TAP controller falling edge of clock to valid enable  
BSCAN test capture register setup time  
10  
BTCO  
ns  
BTCODIS  
BTCOEN  
BTCRS  
BTCRH  
BUTCO  
BTUODIS  
BTUPOEN  
ns  
ns  
BSCAN test capture register hold time  
ns  
BSCAN test update register, falling edge of clock o valid out
BSCAN test update register, falling edge of clk to vlid disable  
BSCAN test update register, falling edge of clocvalid nable  
2
25  
25  
ns  
ns  
ns  
46  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Power Consumption  
ICORE  
IHSI  
IPLL  
200  
90  
80  
100  
IHSI_D  
IPLL_D  
70  
60  
50  
40  
30  
20  
10  
0
80  
150  
100  
50  
60  
40  
2
0
IHSI_A  
IPLL_A  
0
0
200  
400  
600  
800 1000 1200  
0
50 100 150 200 250 300 350  
0
200  
400  
600  
MHz  
Mbps  
MHz  
Power Estimation Coefficients – Core and PLL  
Device  
V
I
(mA)  
K
K
K
LLA  
CC  
DC  
REF  
IN  
CORE  
LD  
3.3  
2.5  
1.8  
10.0  
3.25  
3.13  
3.00  
0139  
0.292  
.157  
07  
0.17
0.024  
ispGDX2-256  
10.0  
4.0  
0.0139  
0213  
0.292  
0.239  
0.024  
0.024  
I
:
Blank chip background curren
DC  
K
K :  
:
Reference voltage circuit cbank  
I/O current per input per MH
REF  
IN  
K
K
K
:
Core current per MHz with GRout of 1  
PLL logic current pr MHz per PLL  
PLL analog poron urrent per MHz per PL
CORE  
:
PLLD  
:
PLLA  
Power Estimation Coefficients – sysHSI  
Device  
V
K
K
K
K
K
TXA  
CC  
RXD  
RXSTBY  
XA  
TXD  
TXSTBY  
3.3  
25  
1.
0.02
0.027  
0.019  
1.3  
03  
0.0023  
0.0040  
0.011  
0.011  
0.011  
2.4  
0.0018  
0.0018  
0.0023  
ispGDX2-256  
2.4  
1.2  
K
K
K
K
K
K
Receiver Logic urrent pps  
Receiver Logstandby current  
Receiver Anag porticurrent per Mbps  
Transmtter Logicuent per Mbps  
Tranmitter gic standby current  
Transmitter Anlog portion current per Mbps  
RXD  
RXSTBY  
:
:
RX
XD  
:
STY  
:
TXA  
47  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Power Consumption (Continued)  
Power consumption in the ispGDX2 family is the sum of three components:  
I
= I  
+ I  
+ I  
(I  
combines current supplied via V pins and V pins)  
CCP  
CC-TOTAL  
CORE  
PLL  
HSI CC-TOTAL  
CC  
I
= I + I  
+ I  
CORE  
DC  
REF IN  
= Blank chip background current  
+ K * Number of Banks with V  
active  
REF  
REF  
+ (K * Number of inputs + K  
) * Average Input Switching Fquecy (MHz)  
IN  
CORE  
I
I
= I  
+ I  
PLL  
HSI  
PLL_D PLL_A  
= [K  
* F  
* Number of PLLs used] + [K  
* F  
Number of PLLs used]  
PLLD  
VCO  
PLLA  
VCO  
= [(K  
+ K  
) * F  
] * Number of PLLs used  
PLLD  
PLLA  
VCO  
= I + I  
RX  
TX  
= [(K  
+ K  
) * F + I  
] * Number of Receer Chnnels  
RXD  
RXA  
RX  
RXSTBY  
+ [(K  
+ K  
) * F + I  
] * Number of ansitter Channels  
TXD  
TXA  
TX  
TXSTBY  
Where:  
F
F
F
: sysClock PLL VCO Frequency in MHz  
sysHSI Receiver Serial Data Rat
sysHSI Transmitter Serial Data
VCO  
:
RX  
:
TX  
I
can also be determined by calculatig I  
, turrent supplieby thV pin, and I the current sup-  
HSI_A,  
HSI  
HSI_D  
CC  
plied by the V  
and V  
.
CCP0  
CCP1  
I
= I  
+ I  
HSI  
HSI_D HSI_A  
= [(K  
* F + I  
)* Number of Receer Chanls  
RXD  
R
RXSTBY  
+ (K  
* F + I  
) * Number Transmter Channels]  
TXD  
XA  
TX
TXSBY  
+[(K  
+
* F * Nmber of Receiver Cannels  
RX  
F ) * Number of Tr Chnnels]  
TX  
The I  
is supplied throgh V  
and V  
LL and sysHSI analog portion. The equation for I  
can  
CCP  
CCP0  
CCP1  
CCP  
be derived frothe equations below.  
I
= I  
+ I  
CCP  
_A HSI_A  
= [(K  
* F  
Numer of PLLs used]  
PLLA  
VC
+ [(K  
* F ) * Number of Receiver Channels  
RXA  
X  
+ (K  
* F Numer of Transmitter Channels]  
TXA  
TX  
Where:  
I
I
: PPortion Current  
: HSI ortion Current  
PLL_A  
HSI_A  
Note: For further information about the use of these coefficients, refer to Technical Note TN1034, Power Estimation  
in the ispGDX2 Family.  
I
estimates are based on typical conditions. These values are for estimates only. Since the value of I  
CC-  
CC-TOTAL  
is sensitive to operating conditions and the program in the device, the actual current should be verified.  
TOTAL  
48  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Switching Test Conditions  
Figure 23 shows the output test load used for AC testing. Specific values for resistance, capacitance, voltage and  
other test conditions are shown in Table 7.  
Figure 23. Output Test Load, LVTTL and LVCMOS Standards (1.8V)  
VCCO  
R1  
Device  
Output  
Test  
Point  
R2  
CL*  
*CL includes Test Fixture and Probe Capacitance.  
Table 7. Test Fixture Required Components  
Test Condition  
C
TiminRef.  
V
CCO  
L
Default LVCMOS 1.8 I/O (L -> H, H -> L)  
106  
35pF  
V
1.8V  
LVCMOS3.3 = 3.0V  
LVCMOS2.5 = 2.3V  
LVCMOS1.8 = 1.65V  
1.65V  
CCO  
VCMS3.3 = 1.5V  
LVCMOS I/O (L -> H, H -> L)  
35p
LVCOS2.5 = V  
LVCMOS1.8 = V  
/2  
/2  
CCO  
CCO  
Default LVCMOS 1.8 I/O (Z -> H)  
Default LVCMOS 1.8 I/O (Z -> L
Default LVCMOS 1.8 I/O (-> Z)  
Default LVCMOS 1.8 I/(L -> Z)  
106  
106  
35pF  
3pF  
V
V
/2  
/2  
CCO  
CCO  
1.65V  
1
V
- 0.15  
+ 0.15  
1.65V  
OH  
106  
5pF  
V
1.65V  
OL  
Note: Output test conditionall otheinterfaces are dehe respective standards.  
49  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Signal Descriptions1  
Signal Names  
General Purpose  
BKx_IOy  
Description  
Input/Output – General purpose I/O number y in I/O Bank X.  
Input – Global clock/clock enable inputs.  
GCLK/CE0, GCLK/CE1, GCLK/CE2,  
GCLK/CE3  
SEL0, SEL1, SEL22, SEL32  
GOE0, GOE1, GOE22, GOE32  
Input – Global MUX select inputs.  
Input – Global output enable inputs.  
Input – Global RESET signal (active low).  
No connect.  
RESETb  
NC  
GND  
GND – Ground.  
V
V
V
V
VCC – The power supply pins for ce log.  
VCC – The power supply for the TAG gic.  
VCC – The power supply pins for O BanX.  
Input – Defines the reference oltafor I/O Bank X.  
CC  
CCJ  
CCO  
x
REF  
x
Testing and Programming  
TMS  
Input – Test Mode elecinput, used to control the 1149state machine.  
Input – Test Clock Inppin, sed to clock the 11.1 state machine.  
Input – Tepin, ued to load data intdevicng 1149.1 state machine.  
Output – Tut pin used to sha ouf device using 1149.1.  
Input – Test OEnable pin. TOtristas all I/O pins when driven low.  
TCK  
TDI  
TDO  
TOE  
PLL Functions  
PLL_FBKz  
PLL_RSTz  
CLK_OUTz  
Int – Optional feedback pallows exrnal feedback for PLL z.  
Input Optional input resets the divider in PLL z.  
Output – Optional clock tput from PLL z (clock signal occupies the input path of  
is I/O pad).  
PLL_LOCKz  
Output – Optional lok output from PLL z (lock signal occupies the input path of this  
I/O pad).  
GND GND  
GND – LLs.  
P0,  
P1  
V
V
VCC – Tpply pins for PLLs.  
CCP0, CCP1  
FIFO Function
FIFOy_Nw  
nput – DTA IN Bit w of FIFO y.  
FIFODOUw  
Iernal gnal – DATA OUT Bit w of FIFO y  
Input – Reset input for FIFO y (active low).  
utput – FULL flag for FIFO y.  
FIFOy_FORST
FIFOy_FUL
FOy_MPTY  
Output – EMPTY flag for FIFO y.  
FIFOySTRDb  
Output – Start read (STRDb) flag for FIFO y.  
SERDES Functio
HSImA_SINP, HSImB
HSImA_SINN, HSImB_SIN  
HSImA_SOUTP, HSImB_SOUTP  
HSImA_SOUTN, HSImB_SOUTN  
HSImA_SYDT, HSImB_ SYDT  
HSImA_RECCLK, HSImB_RECCLK  
Input – Positive sense serial input for sysHSI BLOCK m channel A, B.  
Input – Negative (minus) sense serial input for sysHSI BLOCK m channel A, B.  
Output – Positive sense serial output for sysHSI BLOCK m channel A, B.  
Output – Negative (minus) sense serial output for sysHSI BLOCK m channel A, B.  
Output – Symbol alignment detect for sysHSI BLOCK m channel A, B.  
Internal Signal – Recovered clock for sysHSI BLOCK m channel A, B.  
HSImA_CDRRSTb, HSImB_CDRRSTb Input – Resets the CDR circuit of sysHSI BLOCK m channel A, B.  
HSIm_CSLOCK Output – LOCK output of the PLL associated with channel m.  
50  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Signal Descriptions1 (Continued)  
Signal Names  
Description  
HSImA_TXDw, HSImB_ TXDw  
HSImA_RXDw, HSImB_ RXDw  
Source Synchronous Functions  
SS_SCLKIN0P, SS_SCLKIN1P  
SS_SCLKIN0N, SS_SCLKIN1N  
SS_CLKOUT0N, SS_CLKOUT1P  
SS_CLKOUT0N, SS_CLKOUT1N  
CAL  
Internal Signal – Parallel data in bit w for sysHSI BLOCK m channel A, B.  
Internal Signal – Parallel data out bit w for sysHSI BLOCK m channel A, B.  
Input – Positive sense clock input for Source Synchronougrp A, .  
Input – Negative (minus) sense clock input for Soure Synchronougroup A, B.  
Output – Positive sense clock output for Source ynchnous group A, B.  
Output – Negative (minus) sense clock output for Srce Schronous group A, B.  
Input – Initiates source synchronous caliation seque.  
1. m, w, x, y and z are variables.  
2. Not on ispGDX2-64  
ispGDX2-64 Power Supply and NC Connectios1  
Signal  
ispGDX2-64 (10BapBGA)2  
V
V
V
V
V
V
V
V
V
V
A1, K10  
CC  
J7  
CCO0  
CCO1  
CCO2  
CCO3  
CCO4  
CCO
CCO6  
CCO7  
CCJ  
F10  
B
B4  
E1  
F1  
K4  
K1  
G6  
CCP0  
GND  
GND  
G5  
P0  
C8, E6, E5, F6, F5, H3, J2  
1. All grounds mully connected at the board level.  
2. Pin orienttion Am the upper left corner of the top  
side w with alphabetical order ascending vertically and  
numical order scending horizontally.  
51  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2 Power Supply and NC Connections1  
Signal  
ispGDX2-128 (208-Ball fpBGA)3  
ispGDX2-256 (484-Ball fpBGA)3  
V
B15, C14, R15, B2, C3, P3, R2,  
AA3, AA20, B3, B20, C2, C11, C12, C21, H9, H10, H11,  
H12, H13, H14, J8, J15, K8, K15, L8, L15, L20, M3, M8,  
M15, M20, N8, N15, P8, P15, R9, 0, R11, R12, R13,  
R14, Y2, Y11, Y12, Y21  
CC  
V
V
V
V
V
V
V
V
V
V
V
N11, T12  
L13, M16  
E16, F13  
A12, D11  
A5, D6  
E1, F4  
L4, M1  
N6, T5  
P14  
AA14, AB20, Y17  
P21, U20, Y22  
C22, E20, J21  
A20, B14, C17  
A3, B9, C6  
C1, F3, J2  
P2, U3, Y1  
AA9, A3, Y6  
3  
CCO0  
CCO1  
CCO2  
CCO3  
CCO4  
CCO5  
CCO6  
CCO7  
CCJ  
J1  
K1  
CCP0  
CCP1  
J16  
22  
GND  
GND  
GND  
H1  
J1  
P0  
P1  
H16  
22  
A16, D13, H15, J15, N13, T16, A1, B9, J2, A2, A11, A12, A21, , A22, AA1, AA2, AA11, AA12,  
N4, R8, R9, T1, G7, G8, G9, G10, H7, H8J7, AA21, AA22AB11, AB12, AB21, AB22, B1,  
J8, J9, J10, K7, K8, K9, K10  
B2, B11B12, 21, B22, C3, C20, D4, D19, E5, E18, F6,  
F17, G7, 6, HH15, J9, J10, J11, J12, J13, J14, K9,  
K1K11, K, K13, K14, L1, L2, L7, L9, L10, L11, L12,  
13L14,L16, 1, L22, M1, M2, M7, M9, M10, M11,  
M12,3, M14, M16, M21, M22, N9, N10, N11, N12,  
N13, N1P9, P10, P11, P12, P13, P14, R8, R15, T7,  
16, U6, U17, V5, V18, W4, W19,Y3, Y20  
NC2  
A11, B16  
D11, E6, E7, E8, E9, E12, E13, E14, E15, E16, F7,  
F16, G5, G6, G18, G19, H19, K4, K19, L19, M4, M19,  
N4, P4, P19, R4, R18, T4, T5, T17, T18, U5, U7, U16, V7,  
V8, V9, V10, V11, V12, V15, V16, V17, W14, Y18  
1. All grounds must be electrily onnected at the boar
2. NC pins shonot be connected to any activnals, V ND.  
3. Pin orienation starts fm the upper left orner of the top side view with alphabetical order ascending vertically and numerical order  
ascening horizonlly.  
52  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-64 Logic Signal Connections  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
I/O Cell2  
FIFO Mode I/O  
Cell/Pin3  
100  
Signal Name  
GOE0  
Bank Pair/Polarity Block MRB  
I/O Pin1  
fpBGA  
-
-
-
-
0
1
-
-
-
-
H6  
J6  
BK0_IO0/PLL_LOCK0  
BK0_IO1  
GND  
0
0
0
0
0
0
0
0
0
0
0
-
0N  
0P  
-
0A  
0A  
-
-
-
F0_FULL  
HSI0A_CDRRSTb  
-
FFO0_FRSTb  
K6  
-
-
-
-
-
GND  
G7  
BK0_IO2  
BK0_IO3  
GND  
1N  
1P  
-
0A  
0A  
-
2
3
-
HSI0A_SINN  
HSI0A_RECCL
HSI0A_SINP  
-
-
H7  
-
GND  
K7  
BK0_IO4/PLL_RST0  
BK0_IO5  
BK0_IO6  
BK0_IO7  
GND  
2N  
2P  
3N  
3P  
-
0A  
0A  
0A  
0A  
-
4
5
6
7
-
-
HSI0ARXD0/TXD0 FO0_DIN0/DOUT0  
HSI0ARXD1/TXFIFO0_DIN1/
H0A_RD2/T2 FIFO0_DI
HSI0RXD3/TXD3 FIFO0DIN3/
-
K8  
-
J8  
Note 4  
K9  
-
-
-
-
-
-
GND  
J10  
J9  
TCK  
-
-
-
-
RESETb  
-
-
-
-
-
BK1_IO0/PLL_FBK0  
BK1_IO1  
BK1_IO2  
BK1_IO3/VREF(0,1)  
GND  
1
1
1
1
1
1
1
1
1
1
-
4P  
4N  
5P  
5N  
-
0A  
0A  
0A  
0A  
-
8
9
-
I0A_YDT5  
HSI0A_RXD4/TXD4 O0_DN4/DOUT4  
HSI0A_RXD5/TD5 FIF0_DIN5/DOUT5  
HSI0A_RX/TXDFO0_DIN6/DOUT6  
HSIA_RXD7/D7 FIFO0_DIN7/DOUT7  
H10  
H9  
-
-
H8  
0_STRDb6  
G10  
GND  
G9  
-
-
-
BK1_IO4  
BK1_IO5  
GND  
6P  
6N  
0A  
0A  
12  
13  
HSI0A_SOUTP  
H0A_R8/TXD8 FIFO0_DIN8/DOUT8  
HSI0RXD9/TXD9 FIFO0_DIN9/DOUT9  
HSI0A_SOU
G8  
-
-
-
GND  
F9  
BK1_IO6  
BK1_IO7  
GCLK/CE2  
GCLK/CE3  
BK2_IO0  
BK2_IO1  
GND  
7P  
7N  
0A  
0A  
-
14  
15  
-
SS_KIN1P  
HSI0A_SYDT5  
-
SS_CLK1N  
-
FIFO0_ EMPTY  
F8  
K2P  
CLK2N  
8N  
-
-
F7  
-
-
-
-
-
-
E7  
2
2
2
2
2
2
2
3
3
3
3
3
3
3
0B  
0B  
_CLKUT0N  
-
FIFO1_FULL  
E8  
8P  
CLKOUT0P  
-
FIFO1_EMPTY  
E9  
-
-
-
-
GND  
D8  
BK2_IO2  
BK2_IO
GND  
9N  
0B  
0B  
2
HSI0B_SOUTN  
HSI0BA_SYDT5  
HSI0B_RXD0/TXD0  
-
-
9P  
3
HSI0B_SOUTP  
FIFO1_DIN0  
-
D9  
-
-
GND  
D10  
C9  
_IO4/
BK2_I5  
2_IO6  
BK_I
BK3_IO0  
BK3_IO1  
BK3_IO2  
BK3_IO3  
GND  
(2)  
10N  
10P  
11N  
1P  
12P  
12N  
13P  
13N  
-
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
-
4
-
HSI0B_RXD1/TXD1 FIFO1_DIN1/DOUT1  
HSI0B_RXD2/TXD2 FIFO1_DIN2/DOUT2  
HSI0B_RXD3/TXD3 FIFO1_DIN3/DOUT3  
HSI0B_RXD4/TXD4 FIFO1_DIN4/DOUT4  
HSI0B_RXD5/TXD5 FIFO1_DIN5/DOUT5  
HSI0B_RXD6/TXD6 FIFO1_DIN6/DOUT6  
HSI0B_RXD7/TXD7 FIFO1_DIN7/DOUT7  
HSI0B_RXD8/TXD8 FIFO1_DIN8/DOUT8  
F  
5
-
6
HSI0_CSLOCK  
Note 4  
C10  
B10  
A9  
7
8
-
9
HSI0B_SYDT5  
B8  
10  
11  
-
A8  
-
A7  
-
-
-
GND  
C7  
BK3_IO4  
BK3_IO5  
GND  
14P  
14N  
-
0B  
0B  
-
12  
13  
-
HSI0B_SINP  
HSI0B_SINN  
-
HSI0B_RXD9/TXD9 FIFO1_DIN9/DOUT9  
HSI0B_RECCLK  
-
D7  
-
-
-
-
GND  
B6  
BK3_IO6  
15P  
15N  
0B  
0B  
14  
FIFO1_STRDb6  
-
BK3_IO7/CLK_OUT0  
15 HSI0B_CDRRSTb  
FIFO1_FIFORSTb  
C6  
53  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-64 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
100  
fpBGA  
Signal Name  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
SEL0  
SEL1  
-
-
-
-
-
-
-
-
D6  
D5  
-
-
-
-
-
-
BK4_IO0/CLK_OUT2  
BK4_IO1  
GND  
4
4
4
4
4
4
4
4
4
4
-
16N  
16P  
-
1A7  
1A7  
-
1A7  
1A7  
0
1
-
HSI1A_CDRRSTb  
FIFO2_STRDb6  
-
FFO2_FIFORSTb  
C5  
-
-
-
-
B5  
-
-
GND  
D4  
BK4_IO2  
BK4_IO3  
GND  
17N  
17P  
2
3
HSI1A_SINN  
HSI1A_RECCK  
HSI1A_SINP  
HSI1A_RXD9/TXDFIFO_DIN9/DOUT9  
C4  
-
-
-
GND  
A6  
BK4_IO4  
BK4_IO5  
BK4_IO6  
BK4_IO7  
TMS  
18N  
18P  
19N  
19P  
1A7  
1A7  
1A7  
1A7  
-
4
5
-
HSI1ARXD8/TXFIFO2_DIN8/D
1A_D7/TX7 FIFO2_DI
HSI1_RXD6/TXD6 FIFO2_DIN6
SI1A_D5/TXD5 FIF2_DIN5/DO
CAL  
HSI1A_SYDT5  
A5  
6
A4  
7
-
A3  
-
-
-
-
-
-
-
-
-
-
-
B3  
TDI  
-
-
-
-
-
-
A2  
GND  
-
-
-
-
GND  
B1  
TDO  
-
-
-
-
-
TOE  
-
-
-
B2  
BK5_IO0  
BK5_IO1  
BK5_IO2  
BK5_IO3/Vref(4,5)  
GND  
5
5
5
5
5
5
5
5
5
5
20P  
20N  
21P  
21N  
-
1A7  
1A7  
1A7  
1A7  
1A
1A7  
-
Note 4  
HSI1A_RXD4XD4 FIFO2_DIN4/DOUT4  
HSI1XDFIFO2_DIN3/DOUT3  
1A_RD2/TXD2 FIFO2_DIN2/DOUT2  
HSI1_RXD1/TXD1 FIFO2_DIN1/DOUT1  
C1  
_CSLOCK  
C2  
10  
11  
-
-
C3  
-
D1  
-
-
-
GND  
D3  
BK5_IO4  
BK5_IO5  
GND  
P  
22N  
-
12  
13  
HSI1SOUTP  
SI1A_RXD0/TXD0 FIFO2_DIN0/DOUT0  
HSI1A_SUTN  
HSI1A_SYDT5  
-
D2  
-
-
GND  
E2  
BK5_IO6  
BK5_IO7  
GCLK/CE0  
GCLK/CE1  
BK6_IO0  
BK6_IO
GND  
23
23N  
LK0P  
CLK0N  
24N  
24P  
1A7  
1A7  
-
14  
SSLKIN1P  
-
FIFO2_EMPTY  
S_CLIN1N  
-
FIFO2_FULL  
E3  
-
-
-
E4  
-
-
-
-
-
F4  
6
6
6
6
6
6
7
7
7
7
7
7
7
1B  
1B  
-
0
SS_CLKOUT1N  
-
FIFO3_EMPTY  
F3  
1
SS_CLKOUT1P  
HSI1B_SYDT5  
-
-
F2  
-
-
-
GND  
G3  
G2  
GND  
G1  
H1  
BK6_IO2  
BK6_IO3  
D  
25N  
P  
-
1B  
1B  
-
2
HSI1B_SOUTN  
HSI1B_RXD9/TXD9 FIFO3_DIN9/DOUT9  
HSI1B_RXD8/TXD8 FIFO3_DIN8/DOUT8  
3
HSI1B_SOUTP  
-
-
-
-
BK6_IO/Vref(Bank6,7)  
BK6_IO5  
BK6_IO6  
BK6_IO7/PLL_FBK2  
BK7_IO0  
BK7_IO1  
BK7_IO2  
BK7_IO3/PLL_RST2  
GND  
6N  
26P  
27N  
27P  
28P  
28N  
29P  
29N  
-
1B  
1B  
1B  
1B  
1B  
1B  
1B  
1B  
-
4
FIFO3_STRDb6  
HSI1B_RXD7/TXD7 FIFO3_DIN7/DOUT7  
HSI1B_RXD6/TXD6 FIFO3_DIN6/DOUT6  
HSI1B_RXD5/TXD5 FIFO3_DIN5/DOUT5  
HSI1B_RXD4/TXD4 FIFO3_DIN4/DOUT4  
HSI1B_RXD3/TXD3 FIFO3_DIN3/DOUT3  
HSI1B_RXD2/TXD2 FIFO3_DIN2/DOUT2  
HSI1B_RXD1/TXD1 FIFO3_DIN1/DOUT1  
HSI1B_RXD0/TXD0 FIFO3_DIN0/DOUT0  
5
-
6
-
H2  
7
HSI1B_SYDT5  
J1  
8
Note 4  
J3  
9
-
K2  
10  
11  
-
-
J4  
-
K3  
-
-
-
-
-
GND  
G4  
H4  
BK7_IO4  
BK7_IO5  
30P  
30N  
1B  
1B  
12  
13  
HSI1B_SINP  
HSI1B_SINN  
-
HSI1B_RECCLK  
54  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-64 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
100  
fpBGA  
Signal Name  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
GND  
7
7
7
7
-
-
-
-
-
-
-
-
-
FIFOFIFORSTb  
FIFO3_FULL  
-
GND  
K5  
BK7_IO6  
31P  
31N  
-
1B  
1B  
-
14 HSI1B_CDRRSTb  
BK7_IO7/PLL_LOCK2  
GOE1  
15  
-
-
-
J5  
H5  
1. The signals in this column route to/from the assigned pins of the associated I/O cell.  
2. The signals in this column use the I/O cell. If a receiver signal is present in the I/O cell, the associatpin ivailable for output only. When  
transmit data (TXD) is present in the cell, the associated pin is available for input only.  
3. The DOUT outputs are routed to GRP through the input register of the cell and the DIN inputs routeirecrom the associated pins in  
FIFO only mode. In SERDES with FIFO mode, the FULL and EMPTY flags are routed to tassociated pithrough the output MUX and  
the pins.  
4. If the Source Synchronous Receiver is used in the HSI Block, this pin is unavailable or aner use ad must be left un
5. The SYDT signal has two routing options. If direct output through the dedicated pin is ed, t/O ell (the whole HSavail-  
able for transmitter. The SYDT in the I/O Cell column is routed to the GRP throughe int register of the cell anfrees for  
transmitter.  
6. FIFO_STRDb flag output is used in SERDES with FIFO Mode only.  
7. sysHSI Source Synchronous Receive Mode is not available for chann1A.  
55  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-128 Logic Signal Connections  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
I/O Cell2  
FIFO Mode I/O  
Cell/Pin3  
208  
fpBGA  
Signal Name  
Bank Pair/Polarity Block MRB  
I/O Pin1  
TOE  
-
-
-
-
-
-
-
-
-
-
P8  
P9  
BK0_IO0  
BK0_IO1  
0
0
0N  
0P  
0A  
0A  
0
1
O0A_FULL  
T10  
BK0_IO2 / PLL_LOCK2 /  
PLL_RST2  
0
1N  
1P  
0A  
2
-
-
-
R10  
BK0_IO3  
GND  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
0A  
-
3
-
-
HSI0A_SY5  
-
FIFO0A_ EMPTY  
-
T11  
-
GND  
BK0_IO4  
BK0_IO5  
BK0_IO6  
BK0_IO7  
BK0_IO8  
BK0_IO9 / PLL_FB2  
BK0_IO10  
BK0_IO11  
GND  
2N  
2P  
3N  
3P  
4N  
4P  
5N  
5P  
0A  
0A  
4
HSI0A_SINN  
HSI0ARXD0/TXD0 FO0A_DIN0/DOUT0 P10  
HSI0_RXD1/T1 FIFO0A_DIN1/UT1 N10  
SI0AXD2/TD2 FIFO0A_DR11  
HSA_RXD3/TXD3 FIFO0A_DIT13  
HSI0AXD4/TXD4 FIF0A_DIN4/4 P11  
SI0A_RXD5/TXD5 FO0ADIN5/DOUT5 R12  
I0A_RXD6/TXDFIFA_DINDOUT6 P12  
HSI0A_RXD7/TXD7 FIFO0IN7/DOUT7 N12  
5
HSI0A_SINP  
6
-
0A  
0A  
0A  
0A  
0A  
-
7
-
8
Note 4  
9
-
10  
11  
-
HSI0_SOUTN  
H0A_SUTP  
-
-
GND  
BK0_IO12  
BK0_IO13  
BK0_IO14  
BK0_IO15 / VREF0  
GOE3  
6N  
6P  
7N  
7P  
0A  
0A  
0A  
0A  
-
1
HSI0A_D8/T8 FIO0A_DIN8/DOUT8 T14  
HSI0A_RXDTXD9 FIFO0A_DIN9/DOUT9 R13  
0A_SYDT5  
_CDRRSTb  
H
FIFO0A_FIFORSTb  
T15  
P13  
T9  
15  
-
O0A_STRDb6  
-
-
-
-
-
TDO  
-
-
-
-
-
-
R16  
GND  
N14  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
-
-
BK1_IO0 / VREF1  
BK1_IO1  
BK1_IO2  
BK1_IO3  
BK1_IO4  
BK1_IO5  
BK1_IO6  
BK1_IO7  
BK1_I
BK1_IO9  
BK1_IO10  
BIO1
GND  
8P  
8N  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
0B  
-
0
-
HSI0B_SYDT5  
FIFO0B_FULL  
1
-
HSI0B_RXD0/TXD0 FIFO0B_DIN0/DOUT0 P15  
HSI0B_RXD1/TXD1 FIFO0B_DIN1/DOUT1 N15  
HSI0B_RXD2/TXD2 FIFO0B_DIN2/DOUT2 L14  
HSI0B_RXD3/TXD3 FIFO0B_DIN3/DOUT3 M14  
HSI0B_RXD4/TXD4 FIFO0B_DIN4/DOUT4 M13  
HSI0B_RXD5/TXD5 FIFO0B_DIN5/DOUT5 M15  
HSI0B_RXD6/TXD6 FIFO0B_DIN6/DOUT6 L15  
HSI0B_RXD7/TXD7 FIFO0B_DIN7/DOUT7 P16  
HSI0B_RXD8/TXD8 FIFO0B_DIN8/DOUT8 N16  
HSI0B_RXD9/TXD9 FIFO0B_DIN9/DOUT9 K14  
2
ote 4  
9N  
10P  
10N  
11P  
11N  
12P  
12N  
13N  
0B_SOUTP  
0B_SOUTN  
HSI0_CSLOCK  
HSI0B_SYDT5  
-
6
7
8
9
-
10  
11  
-
HSI0B_SINP  
HSI0B_SINN  
-
HSI0B_RECCLK  
-
K13  
GND  
K15  
L16  
J14  
J13  
N8  
-
-
-
BK1_IO12  
BK1_IO13  
BK1_IO14  
BK1_IO15 / CLK_OUT2  
GCLK/CE2  
SEL2  
4P  
14N  
15P  
15N  
0B  
0B  
0B  
0B  
-
12  
FIFO0B_STRDb6  
-
13 HSI0B_CDRRSTb  
-
FIFO0B_FIFORSTb  
14  
15  
-
SS_CLKIN1P  
-
-
SS_CLKIN1N  
-
FIFO0B_ EMPTY  
-
-
-
-
-
-
-
-
-
K16  
G16  
N9  
SEL3  
-
-
-
-
-
-
GCLK/CE3  
BK2_IO0  
BK2_IO1  
BK2_IO2  
-
-
-
-
-
-
2
2
2
16N  
16P  
17N  
1A7  
1A7  
1A7  
0
1
2
SS_CLKOUT1N  
SS_CLKOUT1P  
-
-
FIFO1A_FULL  
H13  
H14  
G15  
-
-
-
HSI1A_SYDT5  
56  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-128 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
208  
Signal Name  
BK2_IO3  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
fpBGA  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
-
17P  
1A7  
-
3
-
-
HSI1A_RXD0/TXD0 FIFO1A_DIN0/DOUT0 F16  
GND  
GND  
-
-
-
BK2_IO4  
BK2_IO5  
BK2_IO6  
BK2_IO7  
BK2_IO8  
BK2_IO9  
BK2_IO10  
BK2_IO11  
GND  
18N  
18P  
19N  
19P  
20N  
20P  
21N  
21P  
1A7  
1A7  
1A7  
1A7  
1A7  
1A7  
1A7  
1A7  
-
1A7  
1A7  
1A7  
1A7  
-
4
HSI1A_SINN  
HSI1A_SINP  
HSI1_CSLOCK  
Note 4  
HSI1A_RXD1/TXD1 FO1A_DIN1/DOUT1 G13  
HSI1A_RXD2/TXD2 FIA_DINDOUT2 G14  
HSI1A_RXD3/TX3 FIFO1A_D3/DOUT3 F14  
HSI1A_RXD4D4 FIFO1A_DIN4/DOUT4 F15  
HSI1A_RXD5/TXFIF1A_DIN5/DOUT5 D16  
HSI1RXD6/TXD6 IFO1A_DIN6/DOUT6 E15  
HSI1_RXD7/T7 FIFO1A_DINT7 E13  
SI1AXD8/TD8 FIFO1A_E14  
5
6
7
8
CAL  
9
-
10  
11  
-
HSI1A_SOUTN  
HSI1A_SOUTP  
-
-
-
GND  
BK2_IO12  
BK2_IO13  
BK2_IO14  
BK2_IO15 / VREF2  
TCK  
22N  
22P  
23N  
23P  
12  
HSI1A_SYDT5  
HSI1AXD9/TXD9 FIO1A_DIN9/9 C16  
13 HSI1A_CDRRb  
HSI1A_RECCLK  
IFO_FIFORSTb  
D15  
C15  
D14  
R14  
A9  
14  
15  
-
FIFOA_STRDb6  
-
-
-
-
-
FIFO_EMPTY  
-
-
GOE2  
-
-
BK3_IO0 / VREF3  
BK3_IO1  
BK3_IO2  
BK3_IO3  
GND  
3
3
3
3
3
3
3
3
24P  
24N  
25P  
25N  
1B  
1B  
1B  
1B  
1
2
3
-
-
HSI1B_RXDXD0 FIFO1B_DIN0/DOUT0 C13  
HSIRXD1 FIFO1B_DIN1/DOUT1 B14  
SI1B_XD2/TXD2 FIFO1B_DIN2/DOUT2 A15  
HS_RXD3/TXD3 FIFO1B_DIN3/DOUT3 B13  
Note 4  
-
-
-
-
-
GND  
BK3_IO4  
BK3_IO5  
BK3_IO6  
BK3_IO7  
6
26N  
27P  
1B  
1B  
1B  
4
5
6
HSI1BSOUTP  
HSI1B_SUTN  
HSI1B_RXD4/TXD4 FIFO1B_DIN4/DOUT4 D12  
HSI1B_RXD5/TXD5 FIFO1B_DIN5/DOUT5 C12  
HSI1B_RXD6/TXD6 FIFO1B_DIN6/DOUT6 A14  
FIFO1B_DIN7/DOUT7  
3
27N  
1B  
-
HSI1B_RXD7/TXD7  
A13  
/ FIFO1B_STRDb  
BK3_IO8  
BK3_IO9  
BK3_IO10  
BK3_IO11  
GND  
3
3
3
3
3
3
3
3
8P  
28N  
29P  
29N  
1B  
1B  
1B  
1B  
-
-
HSI1B_RXD8/TXD8 FIFO1B_DIN8/DOUT8 B12  
HSI1B_RXD9/TXD9 FIFO1B_DIN9/DOUT9 C11  
I1B_SYDT5  
10  
11  
-
HSI1B_SINP  
HSI1B_RECCLK  
-
D10  
C10  
GND  
B11  
B10  
A10  
C9  
HSI1B_SINN  
-
-
-
-
-
-
BK3_IO1
BK3_IO13  
BKO
BK3_IO1
RESET  
30P  
3
31P  
31N  
1B  
1B  
1B  
1B  
-
12  
HSI1B_SYDT5  
FIFO1B_FULL  
FIFO1B_FIFORSTb  
-
13 HSI1B_CDRRSTb  
-
-
-
-
-
14  
15  
-
-
-
-
-
FIFO1B_ EMPTY  
-
A7  
BK4_IO0  
32N  
32P  
2A  
0
FIFO2A_EMPTY  
C8  
BK4_IO1 / PLL_LOCK0 /  
PLL_RST0  
2A  
1
-
-
-
B7  
BK4_IO2  
BK4_IO3  
GND  
4
4
4
4
4
4
4
33N  
33P  
2A  
2A  
2
3
HSI2A_CDRRSTb  
-
FIFO2A_FIFORSTb  
A6  
B6  
-
HSI2A_SYDT5  
FIFO2A_FULL  
-
-
-
-
-
GND  
C7  
BK4_IO4  
BK4_IO5  
BK4_IO6  
BK4_IO7  
34N  
34P  
35N  
35P  
2A  
2A  
2A  
2A  
4
5
6
7
HSI2A_SINN  
HSI2A_SINP  
HSI2A_SYDT5  
-
-
HSI2A_RECCLK  
D7  
HSI2A_RXD9/TXD9 FIFO2A_DIN9/DOUT9 C6  
HSI2A_RXD8/TXD8 FIFO2A_DIN8/DOUT8 B5  
57  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-128 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
208  
Signal Name  
BK4_IO8  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
fpBGA  
4
4
4
4
4
4
4
4
4
-
36N  
36P  
37N  
37P  
2A  
2A  
2A  
2A  
8
9
FIFO2A_STRDb6  
HSI2A_RXD7/TXD7 FIFO2A_DIN7/DOUT7 A4  
HSI2A_RXD6/TXD6 FIFO_DIN6/DOUT6 A3  
HSI2A_RXD5/TXD5 FO2A_DIN5/DOUT5 C5  
HSI2A_RXD4/TXD4 FIA_DINDOUT4 D5  
BK4_IO9 / PLL_FB0  
BK4_IO10  
BK4_IO11  
GND  
-
10  
11  
-
HSI2A_SOUTN  
HSI2A_SOUTP  
-
-
GND  
BK4_IO12  
BK4_IO13  
BK4_IO14  
BK4_IO15 / VREF4  
GOE1  
38N  
38P  
39N  
39P  
2A  
2A  
2A  
2A  
12  
13  
14  
15  
-
-
HSI2A_RXD3D3 FIFO2A_DIN3/DOUT3 B4  
HSI2A_RXD2/TXFIF2A_DIN2/DOUT2 A2  
HSI2RXD1/TXD1 IFO2A_DIN1/DOUT1 B3  
HSI2_RXD0/T0 FIFO2A_DINT0 C4  
-
Note 4  
-
-
-
A8  
R1  
TMS  
-
-
-
-
-
-
GND  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
-
-
-
-
-
GND  
D3  
BK5_IO0 / VREF5  
BK5_IO1  
BK5_IO2  
BK5_IO3  
BK5_IO4  
BK5_IO5  
BK5_IO6  
BK5_IO7  
BK5_IO8  
BK5_IO9  
BK5_IO10  
BK5_IO11  
GND  
40P  
40N  
41P  
41N  
42P  
42N  
43P  
43N  
44P  
44N  
5
45N  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
B  
2B  
2B  
-
0
-
-
FIF2B_EMPTY  
-
1
FIFOB_STRDb6  
-
C2  
2
HB_CRSTb  
HSISYDT
HSI2B_RECCLK  
FIFO2FIFORSTb  
D2  
3
HSI2B_RXD9XD9 FIO2B_DIN9/DOUT9 B1  
HSI2B_RD8/TXFO2B_DIN8/DOUT8 E3  
HSI2B_RXDXD7 FIFO2B_DIN7/DOUT7 E4  
HSIRXD6 FIFO2B_DIN6/DOUT6 F3  
SI2B_XD5/TXD5 FIFO2B_DIN5/DOUT5 E2  
HS_RXD4/TXD4 FIFO2B_DIN4/DOUT4 F2  
HSI2BRXD3/TXD3 FIFO2B_DIN3/DOUT3 C1  
HSI2B_RXD2/TXD2 FIFO2B_DIN2/DOUT2 G3  
HSI2B_RXD1/TXD1 FIFO2B_DIN1/DOUT1 G4  
I2B_TP  
B_SOUTN  
6
-
7
-
8
Note 4  
9
HSI2_CSOC
10  
11  
-
HSI2_SINP  
HSI2B_NN  
-
-
GND  
BK5_IO12  
BK5_IO13  
BK5_IO14  
BK5_IO15 / CLK_OUT0  
GCLK/CE0  
SEL0  
4
46N  
2B  
2B  
2B  
2B  
-
12  
-
-
HSI2B_RXD0/TXD0 FIFO2B_DIN0/DOUT0 D1  
HSI2B_SYDT5  
-
G2  
H4  
H3  
D9  
F1  
47P  
_CLKIN0P  
-
-
47N  
S_CLKIN0N  
-
FIFO2B_FULL  
CLK0P  
-
-
-
-
-
-
-
-
-
SEL1  
-
-
-
-
-
-
G1  
D8  
J4  
GCLK/CE
BK6_IO0  
6_IO1  
BK6_IO
BK6_IO3  
GND  
-
CLK0N  
N  
-
-
-
-
-
6
6
6
6
6
6
6
6
6
3A  
3A  
3A  
3A  
-
0
SS_CLKOUT0N  
SS_CLKOUT0P  
HSI3A_CDRRSTb  
FIFO3A_STRDb6  
-
-
FIFO3A_EMPTY  
48
1
-
-
J3  
49N  
2
-
FIFO3A_FIFORSTb  
K1  
K2  
GND  
K4  
49P  
3
-
-
-
-
-
-
BK6_IO4  
BK6_IO5  
BK6_IO6  
BK6_IO7  
BK6_IO8  
BK6_IO9  
BK6_IO10  
BK6_IO11  
50N  
50P  
51N  
51P  
52N  
52P  
53N  
53P  
3A  
3A  
3A  
3A  
3A  
3A  
3A  
3A  
4
HSI3A_SINN  
HSI3A_SINP  
-
HSI3A_RECCLK  
5
HSI3A_RXD9/TXD9 FIFO3A_DIN9/DOUT9 K3  
HSI3A_RXD8/TXD8 FIFO3A_DIN8/DOUT8 L1  
HSI3A_RXD7/TXD7 FIFO3A_DIN7/DOUT7 L2  
HSI3A_RXD6/TXD6 FIFO3A_DIN6/DOUT6 N1  
HSI3A_RXD5/TXD5 FIFO3A_DIN5/DOUT5 M2  
HSI3A_RXD4/TXD4 FIFO3A_DIN4/DOUT4 M4  
HSI3A_RXD3/TXD3 FIFO3A_DIN3/DOUT3 M3  
6
7
-
8
HSI3A_SYDT5  
HSI3_CSLOCK  
HSI3A_SOUTN  
HSI3A_SOUTP  
9
10  
11  
58  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-128 Logic Signal Connections (Continued)  
sysIO  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
208  
fpBGA  
Signal Name  
Bank Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
GND  
6
6
6
6
6
-
-
-
12  
13  
14  
15  
-
-
-
-
GND  
BK6_IO12  
BK6_IO13  
BK6_IO14  
BK6_IO15 / VREF6  
TDI  
54N  
54P  
55N  
55P  
3A  
3A  
3A  
3A  
-
-
HSI3A_RXD2/TXD2 FIFO_DIN2/DOUT2 L3  
HSI3A_RXD1/TXD1 FO3A_DIN1/DOUT1 N2  
HSI3A_RXD0/TXD0 FIA_DINDOUT0 P1  
Note 4  
-
-
HSI3A_SYDT
FIFO3FULL  
P2  
N3  
-
-
-
GOE0  
-
-
-
-
-
-
T8  
GND  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
-
GND  
T2  
BK7_IO0 / VREF7  
BK7_IO1  
BK7_IO2  
BK7_IO3  
BK7_IO4  
BK7_IO5  
BK7_IO6  
BK7_IO7  
BK7_IO8  
BK7_IO9  
BK7_IO10  
BK7_IO11  
GND  
56P  
56N  
57P  
57N  
58P  
58N  
59P  
59N  
60P  
60N  
61P  
61N  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
3B  
-
0
FIFO3B_STRDb6  
-
-
1
HSI3B_CDRRSTb  
HSI3B_SYDT5  
HSI3RECCK  
FIFO3B
R3  
2
HS_RXD9/TXD9 FIFO3B_DIP4  
HSI3BXD8/TXD8 FIO3B_DIN8/8 T3  
SI3B_RXD7/TXD7 O3_DIN7/DOUT7 N5  
I3B_RXD6/TXDFIFB_DI/DOUT6 P5  
HSI3B_RXD5/TXD5 IFO3BIN5/DOUT5 R4  
HSI3B_RXD4XD4 FIO3B_DIN4/DOUT4 T4  
HSI3B_RD3/TXFO3B_DIN3/DOUT3 R5  
HSI3B_RXDXD2 FIFO3B_DIN2/DOUT2 P6  
HSIRXD1 FIFO3B_DIN1/DOUT1 N7  
SI3B_XD0/TXD0 FIFO3B_DIN0/DOUT0 P7  
3
-
4
HSI3B_SOU
5
HSI_SOUTN  
6
-
7
e 4  
-
1
11  
-
3B_SINP  
HSI3B_SINN  
-
-
-
-
-
GND  
R6  
BK7_IO12  
BK7_IO13  
BK7_IO14  
BK7_IO15  
62P  
2
63P  
63N  
B  
3B  
3B  
3B  
12  
13  
14  
15  
HSIB_SYDT5  
FIFO3B_ EMPTY  
-
-
-
-
T6  
-
R7  
FIFO3B_FULL  
T7  
1. The signals in this columroute to/froassigned pins of the assiated I/O cell.  
2. The signals in this con usthe I/O cell. If a receiver esenn the I/O cell, the associated pin is available for output only. When  
transmit data (TXD) is pnt in thcell, the associatable for input only.  
3. The DOUT outputs are roud to RP through the inphe cell and the DIN inputs are routed direct from the associated pins in  
FIFO only me. In SERDES ith FIFO mode, tFULL TY flags are routed to the associated pins through the output MUX and  
the pins.  
4. If the Surce Synronos Receiver is usen the HSI lock, this pin is unavailable for another use and must be left unconnected.  
5. The YDT snal hawo routing options. If ect outpthrough the dedicated pin is used, the I/O cell (the whole HSI Block) is not avail-  
able r trsmitter. The SYDT in thCell cmn routed to the GRP through the input register of the cell and frees the I/O cell for  
transmr.  
6. FIFO_STflag output is used SDES ith FIFO Mode only.  
7. sSource Synchronoueceive Mode not available for channel 1A.  
59  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
I/O Cell2  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
BK0_IO0  
BK0_IO1  
0
0
0N  
0P  
0A  
0A  
0
1
-
-
-
-
FIFO0A_FULL  
AB13  
AA13  
BK0_IO2/  
PLL_LOCK2  
0
1N  
0A  
2
-
-
V13  
BK0_IO3  
GND  
0
0
0
0
0
0
0
1P  
-
0A  
-
3
-
-
-
FIFO0A_ EMTY  
-
V14  
GND  
U12  
U13  
W12  
Y13  
-
SYDT_HSI0A5  
BK0_IO4  
BK0_IO5  
BK0_IO6  
BK0_IO7  
BK0_IO8  
2N  
2P  
3N  
3P  
4N  
0A  
0A  
4
5
6
7
8
HSI0A_SINN  
HSI0A_RXD0/TXD0  
HSI0A_RXD1XD1  
HSI0A_RXDTXD2  
HSI0ARXD3XD3  
HSA_R4/TXD4  
IFO0ADIN0/DOUT0  
0A_DIN1/DOUT1  
FIFO0A_DIN2/DO2  
FIFO0A_DIN3
FIFO0A_DIN4/
HSI0A_SINP  
-
0A  
0A  
-
Note 4  
W13  
BK0_IO9/  
PLL_FB2  
0
4P  
0A  
9
-
HSI0RXD5/D5  
FIFOA_DIN5/DOU
Y14  
BK0_IO10  
BK0_IO11  
GND  
0
0
0
0
0
0
0
0
5N  
5P  
-
0A  
0A  
-
10  
11  
-
HSI0A_SOUTN  
HAXD6/TXD6  
FIFO_IN6/DOUT6  
O0A_N7OUT7  
-
T12  
T13  
HSI0A_SOP  
HSI0A_RXD7/TXD7  
-
-
GND  
AB14  
AB15  
Y15  
BK0_IO12  
BK0_IO13  
BK0_IO14  
BK0_IO15  
BK0_IO16  
6N  
6P  
7N  
7P  
8N  
0A  
0A  
0A  
0A  
1A  
12  
13  
14  
15  
0
-
SI0A_RXD8/TXD8  
FIFO_DIN8/DOUT8  
0A_DIN9/DOUT9  
FIFO0A_FIFORSTb  
-
T5  
HTb  
FIFODb6  
-
HSI0A_RXD9/TX
HSI0A_LK  
-
W15  
AA15  
FIFO1A_FULL  
BK0_IO17/  
PLL_RST2  
0
8P  
1A  
-
-
-
AA16  
BK0_IO18  
BK0_IO19  
GND  
0
0
0
0
9N  
9P  
-
1A  
1A  
-
2
3
-
-
HA_SYDT5  
HSI1A_RXD0/TXD0  
-
-
Y16  
W16  
GND  
U14  
-
FIFO1A_DIN0/DOUT0  
-
-
BK0_IO20  
10N  
4
HSI1A_SOU
HSI1A_RXD1/TXD1  
FIFO1A_DIN1/DOUT1  
BK0_IO21/  
VREF0  
0
P  
1A  
5
TP  
HSI1A_RXD2/TXD2  
FIFO1A_DIN2/DOUT2  
U15  
BK0_IO22  
BK0_IO23  
BK0_IO2
BK0_I5  
BK0_IO
BK0_IO27  
BKO
BK0_IO
BK0_IO30  
BK0_IO31  
GND  
0
0
0
0
0
0
0
0
0
0
-
1
11P  
12N  
12P  
13N  
13P  
14
14P  
1A  
1A  
1A  
1A  
1A  
A  
1A  
1A  
1A  
1A  
-
6
7
HSI1A_RXD3/TXD3  
FIFO1A_DIN3/DOUT3  
AB16  
AB17  
AA17  
W17  
T14  
4  
HSI1A_RXD4/TXD4  
FIFO1A_DIN4/DOUT4  
8
-
HSI1A_RXD5/TXD5  
FIFO1A_DIN5/DOUT5  
9
-
HSI1A_RXD6/TXD6  
FIFO1A_DIN6/DOUT6  
10  
11  
12  
13  
14  
15  
-
HSI1A_SINN  
HSI1A_RXD7/TXD7  
FIFO1A_DIN7/DOUT7  
HSI1A_SINP  
HSI1A_SYDT5  
HSI1A_CDRRSTb5  
FIFO1A_STRDb6  
HSI1A_RXD8/TXD8  
FIFO1A_DIN8/DOUT8  
T15  
HSI1A_RXD9/TXD9  
FIFO1A_DIN9/DOUT9  
AA18  
AB18  
W18  
Y19  
HSI1A_RECCLK  
FIFO1A_FIFORSTb  
-
-
-
-
FIFO1A_EMPTY  
-
-
-
GND  
AA19  
AB19  
GND  
W21  
W20  
V22  
GOE3  
-
-
-
-
-
-
TDO  
-
-
-
-
-
-
-
GND  
1
1
1
1
1
1
-
-
-
-
-
-
BK1_IO0  
BK1_IO1  
BK1_IO2  
BK1_IO3  
BK1_IO4  
16P  
16N  
17P  
17N  
18P  
0B  
0B  
0B  
0B  
0B  
0
-
-
FIFO0B_ FULL  
-
1
-
-
HSI0B_SYDT5  
HSI0B_RXD0/TXD0  
HSI0B_RXD1/TXD1  
HSI0B_RXD2/TXD2  
2
FIFO0B_DIN0/DOUT0  
FIFO0B_DIN1/DOUT1  
FIFO0B_DIN2/DOUT2  
3
Note 4  
HSI0B_SINP  
W22  
P16  
4
60  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
BK1_IO5  
BK1_IO6  
BK1_IO7  
BK1_IO8  
BK1_IO9  
1
1
1
1
1
18N  
19P  
19N  
20P  
20N  
0B  
0B  
0B  
0B  
0B  
5
6
7
8
9
HSI0B_SINN  
HSI0B_RXD3/TXD3  
HSI0B_RXD4/TXD4  
HSI0B_RXD5/TXD5  
HSI0B_RXD6/TXD6  
HSI0B_RXD7/TXD7  
FIFO0B_DIN3/DOUT3  
FIFO0BN4/DOUT4  
FIFOB_DIN5DOUT5  
FIFODIN6/DUT6  
FIFO0B_DIN7OUT7  
P17  
U18  
V19  
V20  
V21  
HSI0_CSLOCK  
-
-
HSI0B_SYDT5  
BK1_IO10/  
VREF1  
1
21P  
0B  
10  
HSI0B_SOUTP  
HSI0B_RXD8/TXD8  
FO0B_DIN8/DOUT8  
R16  
BK1_IO11  
GND  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
21N  
-
0B  
-
11  
-
HSI0B_SOUTN  
HSI0B_RXD9XD9  
FOB_DIN9/DOUT9  
R17  
GND  
U19  
T19  
U21  
U22  
R19  
T20  
T21  
T22  
GND  
N16  
N17  
R20  
R21  
N19  
P20  
P18  
N18  
GND  
R22  
P22  
M18  
-
-
-
BK1_IO12  
BK1_IO13  
BK1_IO14  
BK1_IO15  
BK1_IO16  
BK1_IO17  
BK1_IO18  
BK1_IO19  
GND  
22P  
22N  
23P  
23N  
24P  
24N  
25P  
25N  
-
0B  
0B  
0B  
0B  
1B  
1B  
1B  
1B  
-
12  
13  
14  
15  
0
HSI0B_CDRRSTb  
FIFO0B_STRDb6  
HSI0_RELK  
FIFO0B_FIF
-
-
-
-
-
-
O0B_MPTY  
FIB_FUL
FO1B_DOUT0  
FIFOB_DIN1/DOUT1  
FIFO_DIN2/DOUT2  
-
-
SYDT5  
HSI1B_RXD0/TXD0  
HI1B_RXD1/TXD1  
HSI1B_RXD2/TD2  
-
1
-
2
Note 4  
3
-
BK1_IO20  
BK1_IO21  
BK1_IO22  
BK1_IO23  
BK1_IO24  
BK1_IO25  
BK1_IO26  
BK1_IO27  
GND  
26P  
26N  
27P  
27N  
28P  
28N  
29P  
29N  
1B  
1B  
1B  
1
1B  
1B  
1B  
1B  
-
4
HP  
HSI1UTN  
HSI1_CSLOCK  
HSI1B_SYDT5  
-
HSI1B_R3  
HSI1RXD4XD4  
HI1B_RD5/TX5  
I1B_RXDXD6  
HSI_RXD7/TXD7  
HSI1B_XD8/TXD8  
HSI1B_RXD9/TXD9  
HSI1B_RECCLK  
-
FIFO1B_DIN3/DOUT3  
FIFO1B_DIN4/DOUT4  
FIFO1B_DIN5/DOUT5  
FIFO1B_DIN6/DOUT6  
FIFO1B_DIN7/DOUT7  
FIFO1B_DIN8/DOUT8  
FIFO1B_DIN9/DOUT9  
-
5
6
8
9
-
10  
11  
-
HSI1B_P  
HSI1B_SI
Db6  
HSTb  
SSIN1P  
-
BK1_IO28  
BK1_IO29  
BK1_IO30  
0P  
3
31P  
1B  
1B  
1B  
12  
13  
14  
-
-
-
FIFO1B_FIFORSTb  
-
-
BK1_IO3
CLK_OT2  
1
31N  
1B  
15  
S_CLKIN1N  
-
FIFO1B_EMPTY  
M17  
GCLK/2  
2  
-
-
-
CLK2P  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N20  
N21  
K21  
K20  
-
SEL3  
CLK/C
CLK2
BKI0/  
CLK_OUT3  
2
3A7  
0
SS_CLKOUT1N  
-
FIFO3A_FULL  
K17  
BK2_IO1  
BK2_IO2  
BK2_IO3  
GND  
2
2
2
2
2
2
2
2
2
2
33P  
3A7  
3A7  
3A7  
-
3A7  
3A7  
3A7  
3A7  
3A7  
3A7  
1
2
3
-
SS_CLKOUT1P  
-
-
K18  
L17  
L18  
GND  
J17  
J18  
J22  
J20  
H22  
H21  
-
HSI3A_SYDT5  
-
-
HSI3A_RXD0/TXD0  
-
FIFO3A_DIN0/DOUT0  
-
-
HSI3A_SINN  
HSI3A_SINP  
HSI3_CSLOCK  
Note 4  
BK2_IO4  
BK2_IO5  
BK2_IO6  
BK2_IO7  
BK2_IO8  
BK2_IO9  
34N  
34P  
35N  
35P  
36N  
36P  
4
5
6
7
8
9
HSI3A_RXD1/TXD1  
HSI3A_RXD2/TXD2  
HSI3A_RXD3/TXD3  
HSI3A_RXD4/TXD4  
HSI3A_RXD5/TXD5  
HSI3A_RXD6/TXD6  
FIFO3A_DIN1/DOUT1  
FIFO3A_DIN2/DOUT2  
FIFO3A_DIN3/DOUT3  
FIFO3A_DIN4/DOUT4  
FIFO3A_DIN5/DOUT5  
FIFO3A_DIN6/DOUT6  
CAL  
-
61  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
BK2_IO10  
BK2_IO11  
GND  
2
2
2
2
2
2
2
2
2
2
2
2
37N  
37P  
-
3A7  
3A7  
-
10  
11  
-
HSI3A_SOUTN  
HSI3A_RXD7/TXD7  
FIFO3A_DIN7/DOUT7  
K16  
J16  
HSI3A_SOUTP  
HSI3A_RXD8/TXD8  
FIFO3AN8/DOUT8  
-
-
-
GND  
J19  
BK2_IO12  
BK2_IO13  
BK2_IO14  
BK2_IO15  
BK2_IO16  
BK2_IO17  
BK2_IO18  
BK2_IO19  
GND  
38N  
38P  
39N  
39P  
40N  
40P  
41N  
41P  
-
3A7  
3A7  
3A7  
3A7  
2A  
2A  
2A  
2A  
-
12  
13  
14  
15  
0
HSI3A_SYDT5  
HSI3A_RXD9/TXD9  
FIFODIN9/DUT9  
HSI3A_CDRRSTb  
FIFO3A_STRDb6  
HSI3A_RECCLK  
FIFO3A_FIFRSTb  
H20  
G21  
G20  
G22  
F22  
F20  
F21  
GND  
-
-
-
-
FIF3A_EMPTY  
-
-
IFO2A_FULL  
1
-
HSI2A_SDT5  
HSI2AXD0/D0  
HSA_RX1/TXD1  
-
-
2
-
FIFO2A_DIN
FIFO2A_DIN1/
-
3
Note 4  
-
-
BK2_IO20/  
PLL_FB3  
2
2
42N  
42P  
2A  
2A  
4
5
HSI2A_SOUTN  
HSI2A_STP  
HAXD2/TXD2  
HSI2A_RXD3/TXD3  
FIFO_IN2/DOUT2  
FI2A_D/DOUT3  
H18  
G17  
BK2_IO21/  
VREF2  
BK2_IO22  
BK2_IO23  
BK2_IO24  
BK2_IO25  
BK2_IO26  
BK2_IO27  
BK2_IO28  
BK2_IO29  
BK2_IO30  
BK2_IO31  
GND  
2
2
2
2
2
2
2
2
2
2
2
-
43N  
43P  
44N  
44P  
45N  
45P  
46N  
46P  
47N  
7P  
-
2A  
2A  
2A  
2A  
2A  
2A  
2A  
2A  
2A  
2A  
-
6
7
HSI2_CSLOC
SI2A_RXD4/TXD4  
HSI2A_RXD5/TX
HSI2A_R6/TXD6  
HSI2A_RXDTXD7  
HS2A_D8/T8  
SI2A_RX/TXD9  
I2A_RECCLK  
-
FIFO_DIN4/DOUT4  
IF2A_DIN5/DOUT5  
FIFO2A_DIN6/DOUT6  
FIFO2A_DIN7/DOUT7  
FIFO2A_DIN8/DOUT8  
FIFO2A_DIN9/DOUT9  
FIFO2A_FIFORSTb  
-
E21  
F19  
E22  
D22  
H17  
H16  
E19  
F18  
D20  
D21  
GND  
B19  
C19  
E17  
D18  
A19  
A18  
GND  
G15  
G14  
D17  
D16  
C18  
B18  
8
9
HST5  
10  
1  
12  
13  
14  
15  
-
HSI2ASINN  
HSI2A_SINP  
HSI2A_CDRRSTb  
FIFO2A_STRDb
-
-
-
-
-
FIFO2A_EMPTY  
-
-
TCK  
-
-
-
-
GOE2  
-
-
-
-
-
BK3_IO0  
BK3_IO1  
BK3_IO
BK3_I
D  
3
3
3
3
3
3
3
3
3
3
48
8N  
49P  
49N  
-
3B  
3B  
3B  
B  
HSI3B_SYDT5  
HSI3B_RXD0/TXD0  
HSI3B_RXD1/TXD1  
HSI3B_RXD2/TXD2  
-
FIFO3B_FULL  
1
-
FIFO3B_DIN0/DOUT0  
FIFO3B_DIN1/DOUT1  
FIFO3B_DIN2/DOUT2  
-
2
Note 4  
-
-
-
BK3_
K3_IO5  
BK_6  
BK3_IO7  
BK3_IO8  
BK3_IO9  
5P  
50N  
P  
N  
3B  
3B  
3B  
3B  
3B  
4
HSI3B_SINP  
HSI3B_RXD3/TXD3  
HSI3B_RXD4/TXD4  
HSI3B_RXD5/TXD5  
HSI3B_RXD6/TXD6  
HSI3B_RXD7/TXD7  
HSI3B_RXD8/TXD8  
FIFO3B_DIN3/DOUT3  
FIFO3B_DIN4/DOUT4  
FIFO3B_DIN5/DOUT5  
FIFO3B_DIN6/DOUT6  
FIFO3B_DIN7/DOUT7  
FIFO3B_DIN8/DOUT8  
5
HSI3B_SINN  
6
-
7
HSI3B_SYDT5  
8
-
-
9
BK3_IO10/  
VREF3  
3
53P  
3B  
10  
HSI3B_SOUTP  
HSI3B_RXD9/TXD9  
FIFO3B_DIN9/DOUT9  
F15  
BK3_IO11  
GND  
3
3
3
3
53N  
-
3B  
-
11  
-
HSI3B_SOUTN  
-
FIFO3B_STRDb6  
HSI3B_RECCLK  
-
F14  
GND  
B17  
A17  
-
-
BK3_IO12  
BK3_IO13  
54P  
54N  
3B  
3B  
12  
13  
-
-
HSI3B_CDRRSTb  
HSI3B_RECCLK  
FIFO3B_FIFORSTb  
BK3_IO14/  
PLL_RST3  
3
55P  
3B  
14  
-
-
-
A16  
62  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
BK3_IO15  
BK3_IO16  
BK3_IO17  
BK3_IO18  
BK3_IO19  
GND  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
55N  
56P  
56N  
57P  
57N  
-
3B  
2B  
2B  
2B  
2B  
-
15  
0
-
-
FIFO3B_EMPTY  
FIFO2BN0/DOUT0  
FIFOB_DIN1DOUT1  
FIFODIN2/DUT2  
FIFO2B_DIN3OUT3  
-
C16  
D15  
D14  
B16  
C15  
GND  
G13  
G12  
B15  
A15  
C14  
A14  
F13  
F12  
GND  
D13  
C13  
-
HSI2B_RXD0/TXD0  
HSI2B_RXD1/TXD1  
HSI2B_RXD2/TXD2  
HSI2B_RXD3/TXD3  
-
1
Note 4  
2
-
3
-
-
-
BK3_IO20  
BK3_IO21  
BK3_IO22  
BK3_IO23  
BK3_IO24  
BK3_IO25  
BK3_IO26  
BK3_IO27  
GND  
58P  
58N  
59P  
59N  
60P  
60N  
61P  
61N  
-
2B  
2B  
2B  
2B  
2B  
2B  
2B  
2B  
-
4
HSI2B_SOUTP  
HSI2B_RXD4/TXD4  
HSI2B_RXDTXD5  
HSI2B_RXDTXD6  
HSI2BXD7/D7  
HSB_RX8/TXD8  
HSI2RXD9XD9  
HSI2RECCLK  
-
IFO2DIN4/DOUT4  
F2B_DIN5/DOUT5  
FIFO2B_DIN6/D
FIFO2B_DIN
FIFO2B_DIN8/
FIFO_DIN9/DOU
5
HSI2B_SOUTN  
6
-
7
FIFO2B_STRDb6  
8
-
HSI2B_SYDT5  
HSI2B_SINP  
HSI2B_SIN
-
9
10  
11  
-
-
-
BK3_IO28  
BK3_IO29  
62P  
62N  
2B  
2B  
12  
13  
-
HSI2B_SYDT5  
FO2B_FULL  
HSIRSTb  
-
FIF2B_FIFORSTb  
BK3_IO30/  
3
63P  
63N  
2B  
14  
-
B13  
PLL_LOCK3  
BK3_IO31  
RESETb  
BK4_IO0  
3
-
2B  
-
15  
-
-
-
-
-
FIFO2B_ EMPTY  
A13  
D12  
A10  
-
4
64N  
64P  
4
FIFO4A_EMPTY  
BK4_IO1/  
PLL_LOCK0  
4
A  
1
-
-
-
B10  
BK4_IO2  
BK4_IO3  
GND  
4
4
4
4
4
4
4
4
65N  
5P  
4A  
4A  
2
3
HSI4A_CDRRSTb  
-
FIFO4A_FIFORSTb  
E11  
E10  
GND  
F11  
F10  
C10  
C9  
-
-
HSI4A_SYDT5  
FIFO4A_FULL  
-
-
BK4_IO4  
BK4_IO5  
BK4_IO6  
BK4_IO7  
BK4_IO
N  
P  
67
7P  
68N  
4A  
4A  
4A  
4A  
4A  
4
5
7
8
N  
P  
HDT5  
-
-
-
HSI4A_RECCLK  
HSI4A_RXD9/TXD9  
HSI4A_RXD8/TXD8  
HSI4A_RXD7/TXD7  
-
FIFO4A_DIN9/DOUT9  
FIFO4A_DIN8/DOUT8  
FIFO4A_DIN7 /DOUT7  
FO4A_STRDb6  
D10  
BK4_I
PLL_FB0  
4
68P  
4A  
9
-
HSI4A_RXD6/TXD6  
FIFO4A_DIN6/DOUT6  
D9  
BK4_IO10  
B_IO1
GND  
4
4
4
4
4
4
4
4
69N  
69
4A  
4A  
10  
11  
-
HSI4A_SOUTN  
HSI4A_RXD5/TXD5  
HSI4A_RXD4/TXD4  
-
FIFO4A_DIN5/DOUT5  
FIFO4A_DIN4/DOUT4  
-
G11  
G10  
GND  
A9  
HSI4A_SOUTP  
-
BK4_IO12  
BK4_IO13  
BK4_IO14  
BK4_IO15  
BK4_IO16  
71P  
72N  
4A  
4A  
4A  
4A  
5A  
12  
13  
14  
15  
0
-
HSI4A_RXD3/TXD3  
HSI4A_RXD2/TXD2  
HSI4A_RXD1/TXD1  
HSI4A_RXD0/TXD0  
-
FIFO4A_DIN3/DOUT3  
FIFO4A_DIN2/DOUT2  
FIFO4A_DIN1/DOUT1  
FIFO4A_DIN0/DOUT0  
FIFO5A_EMPTY  
-
C8  
Note 4  
B8  
-
-
A8  
B7  
BK4_IO17/  
PLL_RST0  
4
72P  
5A  
1
-
-
-
C7  
BK4_IO18  
BK4_IO19  
GND  
4
4
4
4
73N  
73P  
-
5A  
5A  
-
2
3
-
HSI5A_CDRRSTb  
FIFO5A_STRDb6  
-
-
FIFO5A_FIFORSTb  
A7  
B6  
-
-
-
-
-
GND  
F9  
BK4_IO20  
74N  
5A  
4
HSI5A_SOUTN  
HSI5A_RECCLK  
63  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
BK4_IO21/  
VREF4  
4
74P  
5A  
5
HSI5A_SOUTP  
HSI5A_RXD9/TXD9  
FIFO5A_DIN9/DOUT9  
F8  
BK4_IO22  
BK4_IO23  
BK4_IO24  
BK4_IO25  
BK4_IO26  
BK4_IO27  
BK4_IO28  
BK4_IO29  
BK4_IO30  
BK4_IO31  
GND  
4
4
4
4
4
4
4
4
4
4
4
-
75N  
75P  
76N  
76P  
77N  
77P  
78N  
78P  
79N  
79P  
5A  
5A  
5A  
5A  
5A  
5A  
5A  
5A  
5A  
5A  
-
6
7
-
HSI5A_RXD8/TXD8  
HSI5A_RXD7/TXD7  
HSI5A_RXD6/TXD6  
HSI5A_RXD5/TXD5  
HSI5A_RXD4/TXD4  
HSI5A_RXD3XD3  
HSI5A_RXDTXD2  
HSI5ARXDXD1  
HSA_RD0/TX
H5A_ST5  
-
FIFO_DIN8/DOUT8  
FIFOA_7/DUT7  
FIFO5A_DIN6/OUT6  
FI5A_DIN5/DOUT5  
IFO5ADIN4/DOUT4  
FOA_DIN3/DOUT3  
FIFO5A_DIN2/DOUT2  
FIFO5A_DIN1
FIFO5A_DIN0
FIF5A_FUL
D7  
D6  
A6  
A5  
G9  
G8  
C5  
B5  
D5  
C4  
GND  
B4  
A4  
GND  
D2  
D3  
F5  
-
8
HSI5A_SYDT5  
9
-
10  
11  
12  
13  
14  
15  
-
HSI5A_SINN  
HSI5A_SINP  
-
Note 4  
-
-
-
-
GOE1  
-
-
-
TMS  
-
-
-
-
-
GND  
5
5
5
5
5
5
5
5
5
5
5
-
-
-
-
-
BK5_IO0  
BK5_IO1  
BK5_IO2  
BK5_IO3  
BK5_IO4  
BK5_IO5  
BK5_IO6  
BK5_IO7  
BK5_IO8  
BK5_IO9  
80P  
80N  
81P  
81N  
82P  
82N  
83P  
83N  
84P  
84N  
4B  
4B  
4B  
4B  
4B  
4
4B  
4B  
4B  
4B  
0
-
FIF4B_EMPTY  
-
1
-
2
FIb6  
HSI4BRSTb  
HSI4B_SINP  
HSI4B_SINN  
HSI4B_SYDT5  
-
-
3
HSI_RECLK  
HI4B_RD9/TX9  
I4B_RXDXD8  
HSI_RXD7/TXD7  
HSI4B_XD6/TXD6  
HSI4B_RXD5/TXD5  
HSI4_RXD4/TXD4  
FIFO4B_FIFORSTb  
FIFO4B_DIN9/DOUT9  
FIFO4B_DIN8/DOUT8  
FIFO4B_DIN7/DOUT7  
FIFO4B_DIN6/DOUT6  
FIFO4B_DIN5/DOUT5  
FIFO4B_DIN4/DOUT4  
E4  
J7  
4
J6  
6
D1  
E1  
F4  
7
8
-
9
HSI4_CSLOK  
E3  
BK5_IO10/  
VREF5  
5
8
4B  
10  
UTP  
HSI4B_RXD3/TXD3  
FIFO4B_DIN3/DOUT3  
H7  
BK5_IO11  
GND  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
N  
-
4B  
-
11  
TN  
HSI4B_RXD2/TXD2  
-
FIFO4B_DIN2/DOUT2  
-
H6  
GND  
E2  
BK5_IO12  
BK5_IO3  
BK5_I4  
_IO15  
BK5_6  
K5_IO1
BK_18  
BK5_IO19  
GND  
6P  
86N  
87P  
87N  
8P  
88N  
P  
4B  
4B  
B  
4
5B  
5B  
5B  
-
12  
13  
15  
0
Note 4  
HSI4B_RXD1/TXD1  
HSI4B_RXD0/TXD0  
HSI4B_SYDT5  
-
FIFO4B_DIN1/DOUT1  
FIFO4B_DIN0/DOUT0  
-
-
F2  
-
G4  
H5  
F1  
-
FIFO4B_FULL  
-
-
FIFO5B_EMPTY  
-
1
FIFO5B_STRDb6  
HSI5B_CDRRSTb  
HSI5B_SYDT5  
-
-
G1  
G3  
G2  
GND  
K7  
2
HSI5B_RECCLK  
HSI5B_RXD9/TXD9  
-
FIFO5B_FIFORSTb  
FIFO5B_DIN9/DOUT9  
-
3
-
BK5_IO20  
BK5_IO21  
BK5_IO22  
BK5_IO23  
BK5_IO24  
BK5_IO25  
BK5_IO26  
BK5_IO27  
P  
90N  
91P  
91N  
92P  
92N  
93P  
93N  
5B  
5B  
5B  
5B  
5B  
5B  
5B  
5B  
4
HSI5B_SOUTP  
HSI5B_SOUTN  
-
HSI5B_RXD8/TXD8  
HSI5B_RXD7/TXD7  
HSI5B_RXD6/TXD6  
HSI5B_RXD5/TXD5  
HSI5B_RXD4/TXD4  
HSI5B_RXD3/TXD3  
HSI5B_RXD2/TXD2  
HSI5B_RXD1/TXD1  
FIFO5B_DIN8/DOUT8  
FIFO5B_DIN7/DOUT7  
FIFO5B_DIN6/DOUT6  
FIFO5B_DIN5/DOUT5  
FIFO5B_DIN4/DOUT4  
FIFO5B_DIN3/DOUT3  
FIFO5B_DIN2/DOUT2  
FIFO5B_DIN1/DOUT1  
5
K6  
6
H4  
H3  
H1  
H2  
J5  
7
-
8
Note 4  
9
HSI5_CSLOCK  
HSI5B_SINP  
HSI5B_SINN  
10  
11  
K5  
64  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
GND  
5
5
5
5
-
-
-
-
-
HSI5B_RXD0/TXD0  
HSI5B_SYDT5  
-
-
GND  
J4  
BK5_IO28  
BK5_IO29  
BK5_IO30  
94P  
94N  
95P  
5B  
5B  
5B  
12  
13  
14  
-
FIFO5BN0/DOUT0  
-
-
-
J3  
SS_CLKIN0P  
L6  
BK5_IO31/  
CLK_OUT0  
5
95N  
5B  
15  
SS_CLKIN0N  
-
FIFO5ULL  
L5  
GCLK/CE0  
SEL0  
-
-
-
-
CLK0P  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L4  
K3  
K2  
N1  
-
SEL1  
-
GCLK/CE1  
CLK0N  
BK6_IO0/  
CLK_OUT1  
6
96N  
7A  
0
SS_CLKOUT0N  
-
FIFO7A_EM
N6  
BK6_IO1  
BK6_IO2  
BK6_IO3  
GND  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
96P  
97N  
97P  
-
7A  
7A  
7A  
-
1
2
SS_CLKOUT0P  
-
-
N5  
M5  
M6  
GND  
P6  
HSI7A_CDRRST  
FIFO7A_STRb6  
-
FIFAIFORSTb  
3
-
-
-
-
-
-
BK6_IO4  
BK6_IO5  
BK6_IO6  
BK6_IO7  
BK6_IO8  
BK6_IO9  
BK6_IO10  
BK6_IO11  
GND  
98N  
98P  
99N  
99P  
100N  
100P  
101N  
101P  
-
7A  
7A  
7A  
7A  
7A  
7A  
7A  
7A  
-
4
HSI7A_SINN  
HSI7A_RECCLK  
HSI7A_RXD9/TX9  
HSI7A_R8/TXD8  
HSI7A_RXDTXD7  
HSI7A_D6/TD6  
SI7A_RX/TXD5  
HA_RXD4/TXD4  
HSI7ARXD3/TXD3  
-
-
5
P  
IF7A_DIN9/DOUT9  
FIFO7A_DIN8/DOUT8  
FIFO7A_DIN7/DOUT7  
FIFO7A_DIN6/DOUT6  
FIFO7A_DIN5/DOUT5  
FIFO7A_DIN4/DOUT4  
FIFO7A_DIN3/DOUT3  
-
P5  
6
N3  
7
N2  
8
HSI7AYDT5  
P3  
9
HSI7_CSLOCK  
P1  
10  
11  
-
HSI7A_SOUTN  
N7  
HSI7A_SOUTP  
P7  
-
GND  
R3  
BK6_IO12  
BK6_IO13  
BK6_IO14  
BK6_IO15  
BK6_IO16  
BK6_IO17  
BK6_IO8  
BK6_I9  
D  
12N  
102P  
1N  
3P  
104
04P  
105N  
105P  
-
7A  
7A  
7A  
7A  
6A  
6A  
6A  
A  
12  
13  
14  
15  
-
I7A_RXD2/TXD2  
HSI7A_RXD1/TXD1  
HSI7A_RXD0/TXD0  
HSI7A_SYDT5  
-
FIFO7A_DIN2/DOUT2  
FIFO7A_DIN1/DOUT1  
FIFO7A_DIN0/DOUT0  
FIFO7A_ FULL  
FIFO6A_EMPTY  
-
e 4  
R2  
R1  
T1  
T2  
1
-
-
T3  
2
FO6A_STRDb6  
SI6A_CDRRSTb  
-
-
-
U1  
HSI6_RECCLK  
-
FIFO6A_FIFORSTb  
-
U2  
-
GND  
BK6_0/  
P_FB
6
6
10
P  
6A  
6A  
4
5
HSI6A_SOUTN  
HSI6A_RXD9/TXD9  
HSI6A_RXD8/TXD8  
FIFO6A_DIN9/DOUT9  
FIFO6A_DIN8/DOUT8  
R5  
T6  
BK6_IO/  
VR
HSI6A_SOUTP  
BK6_IO22  
BK6_IO23  
BK6_IO24  
BK6_IO25  
BK6_IO26  
BK6_IO27  
BK6_IO28  
BK6_IO29  
BK6_IO30  
BK6_IO31  
6
6
6
6
6
6
6
6
6
6
8N  
108P  
109N  
109P  
110N  
110P  
111N  
111P  
6A  
6A  
6A  
6A  
6A  
6A  
6A  
6A  
6A  
6A  
6
HSI6A_SYDT5  
HSI6A_RXD7/TXD7  
HSI6A_RXD6/TXD6  
HSI6A_RXD5/TXD5  
HSI6A_RXD4/TXD4  
HSI6A_RXD3/TXD3  
HSI6A_RXD2/TXD2  
HSI6A_RXD1/TXD1  
HSI6A_RXD0/TXD0  
HSI6A_SYDT5  
FIFO6A_DIN7/DOUT7  
FIFO6A_DIN6/DOUT6  
FIFO6A_DIN5/DOUT5  
FIFO6A_DIN4/DOUT4  
FIFO6A_DIN3/DOUT3  
FIFO6A_DIN2/DOUT2  
FIFO6A_DIN1/DOUT1  
FIFO6A_DIN0/DOUT0  
-
U4  
V4  
V3  
V2  
R6  
R7  
W1  
V1  
W2  
W3  
7
-
8
-
9
HSI6_CSLOCK  
10  
11  
12  
13  
14  
15  
HSI6A_SINN  
HSI6A_SINP  
Note 4  
-
-
-
-
FIFO6A_ FULL  
65  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
GND  
6
-
-
-
-
-
-
-
GND  
AA4  
Y4  
TDI  
-
-
-
-
-
GOE0  
-
-
-
-
-
-
-
GND  
7
7
7
7
7
7
7
7
7
7
7
-
-
-
-
-
-
GND  
AB4  
AB5  
V6  
BK7_IO0  
BK7_IO1  
BK7_IO2  
BK7_IO3  
BK7_IO4  
BK7_IO5  
BK7_IO6  
BK7_IO7  
BK7_IO8  
BK7_IO9  
112P  
112N  
113P  
113N  
114P  
114N  
115P  
115N  
116P  
116N  
7B  
7B  
7B  
7B  
7B  
7B  
7B  
7B  
7B  
7B  
0
1
2
3
4
5
6
7
8
9
-
-
FIFO7B_ EPTY  
-
FIFO7B_STRDb6  
-
HSI7B_CDRRSTb  
HSI7B_SYDT5  
HSI7B_RECCLK  
HSI7B_RXDTXD9  
HSI7B_RXDTXD8  
HSI7BXD7/D7  
HSB_RX6/TXD6  
HSI7RXD5D5  
SI7BXD4/TXD4  
HSI7BXD3/TXD3  
FIFO_FIFORSTb  
F7B_DIN9/DOUT9  
FIFO7B_DIN8/D
FIFO7B_DIN
FIFO7B_DIN6/
FIFO_DIN5/DOU
FIFB_DN4/DOUT4  
IFO7BIN3/OUT3  
W5  
T8  
HSI7B_SINP  
HSI7B_SINN  
T9  
-
W6  
Y5  
-
Note 4  
-
AA5  
AA6  
BK7_IO10/  
VREF7  
7
117P  
7B  
10  
HSI7B_SOTP  
HSI7B_RXD2/TXD2  
FIFB_DIN2/DOUT2  
U8  
BK7_IO11  
GND  
7
7
7
7
117N  
-
7B  
-
11  
-
HSIOUTN  
HSI7B_RXD1/TD1  
-
FIFO_DIN1/DOUT1  
U9  
GND  
W7  
-
BK7_IO12  
BK7_IO13  
118P  
118N  
7B  
7B  
12  
13  
HSI7B_R0  
HSB_SYT5  
FIFO7B_DIN0/DOUT0  
-
W8  
BK7_IO14/  
PLL_RST1  
7
119P  
7B  
14  
-
-
AB6  
BK7_IO15  
BK7_IO16  
BK7_IO17  
BK7_IO18  
BK7_IO19  
GND  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
119N  
120P  
120N  
1P  
121N  
7B  
6B  
6B  
6B  
6B  
-
15  
0
-
-
FIFO7B_FULL  
-
AB7  
Y7  
FIFO6B_STRDb
-
1
HSI6B_CDRRSTb  
HSI6B_S
HSI6B_RECCLK  
I6B_RXD9/TXD9  
HSI6B_RXD8/TXD8  
-
FIFO6B_FIFORSTb  
FIFO6B_DIN9/DOUT9  
FIFO6B_DIN8/DOUT8  
-
AA7  
W9  
2
3
Y8  
-
GND  
T10  
T11  
AA8  
AB8  
W10  
Y9  
BK7_IO20  
BK7_IO21  
BK7_IO22  
BK7_IO3  
BK7_I4  
_IO25  
BK7_6  
K7_IO2
GN
2P  
122
23P  
123N  
124P  
124N  
12P  
125N  
6B  
6B  
6B  
6B  
B  
6
6B  
-
4
TP  
HSI6B_RXD7/TXD7  
HSI6B_RXD6/TXD6  
HSI6B_RXD5/TXD5  
HSI6B_RXD4/TXD4  
HSI6B_RXD3/TXD3  
HSI6B_RXD2/TXD2  
HSI6B_RXD1/TXD1  
HSI6B_RXD0/TXD0  
-
FIFO6B_DIN7/DOUT7  
FIFO6B_DIN6/DOUT6  
FIFO6B_DIN5/DOUT5  
FIFO6B_DIN4/DOUT4  
FIFO6B_DIN3/DOUT3  
FIFO6B_DIN2/DOUT2  
FIFO6B_DIN1/DOUT1  
FIFO6B_DIN0/DOUT0  
-
HUTN  
6
-
7
-
Note 4  
9
-
10  
11  
-
HSI6B_SINP  
U10  
U11  
GND  
W11  
HSI6B_SINN  
-
-
BK7_IO28  
6B  
12  
HSI6B_SYDT5  
FIFO6B_ EMPTY  
BK7_IO29/  
PLL_LOCK1  
7
6B  
13  
-
-
-
Y10  
BK7_IO30  
BK7_IO31  
7
7
127P  
127N  
6B  
6B  
14  
15  
-
-
-
-
-
AA10  
AB9  
FIFO6B_FULL  
66  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
ispGDX2-256 Logic Signal Connections (Continued)  
Signal  
Name  
sysIO  
Bank  
LVDS  
GDX  
SERDES Mode  
SERDES Mode  
FIFO Mode I/O  
Cell/Pin3  
484  
fpBGA  
Pair/Polarity Block MRB  
I/O Pin1  
I/O Cell2  
TOE  
-
-
-
-
-
-
-
AB10  
1. The signals in this column route to/from the assigned pins of the associated I/O cell.  
2. The signals in this column use the I/O cell. If a receiver signal is present in the I/O cell, the associated pin is ailable for output only. When  
transmit data (TXD) is present in the cell, the associated pin is available for input only.  
3. The DOUT outputs are routed to GRP through the input register of the cell and the DIN inputs are routed direct from the sociated pins in  
FIFO only mode. In SERDES with FIFO mode, the FULL and EMPTY flags are routed to the associatd pins throuh toutput MUX and  
the pins.  
4. If the Source Synchronous Receiver is used in the HSI Block, this pin is unavailable for another use amust be eft unconnected.  
5. The SYDT signal has two routing options. If direct output through the dedicated pin is used, tO cell e wle HSI Block) is not avail-  
able for transmitter. The SYDT in the I/O Cell column is routed to the GRP through the inpregister of the ll and frees the I/O cell for  
transmitter.  
6. FIFO_STRDb flag output is used in SERDES with FIFO Mode only.  
7. sysHSI Source Synchronous Receive Mode is not available for channel 3A.  
67  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Part Number Description  
LX XXX X X – XX FXXX X  
Device Family  
Grade  
C = Commercil  
I = Industrial  
LX  
Device Number  
64 = 64 I/Os  
Package  
F100 100-all fpBGA  
FN100 ead-Free 100-Ball fpBGA  
208 = 20Bl fpBGA  
FN208 = Lead-Free 208-Ball fpBGA  
484 = 84-Ball fpBG
FN4 = Lead-Free 4GA  
128 = 128 I/Os  
256 = 256 I/Os  
sysHSI Support  
Blank = Supports sysHSI  
E = No sysHSI support  
Power Supply Voltage  
V = 3.3V  
B = 2.5V  
Sed  
3 = 3.0ns  
32 = 3.2n
35 = 3.5ns  
5 = 5ns  
C = 1.8V  
Ordering Information  
Conventional Packaging  
Commercial  
Family  
LX64V  
Part Number  
LX64V-3F100C  
LX64V-5F100C  
LX128V-32F20C  
LX128V-5F08C  
LX256V-358C  
LX256V-5F484
LXB-3F100C  
LX64BF10C  
L128B-32F208C  
LX12B-5F208C  
56B-35F484C  
LX256B-5F484C  
LX64C-3F
LX64C
LX128C-
LX128C-5F2
LX256C-35F484C  
LX256C-5F484C  
I/Os  
64  
Voltage  
t
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
100  
100  
208  
208  
484  
484  
100  
100  
208  
208  
484  
484  
100  
100  
208  
208  
484  
484  
Grade  
C
P
3.3  
3.3  
3.3  
3  
2.5  
2.5  
2.5  
2.5  
2.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
3
64  
5
C
1
128  
256  
256  
64  
2  
5
C
LX128V  
LX256V  
LX64B  
C
3.5  
5
C
C
3
C
5
C
12
128  
25
26  
64  
3.2  
5
C
LX128
LX2
LXC  
C
3.5  
5
C
C
3
C
64  
5
C
128  
128  
256  
256  
3.2  
5
C
LX128C  
LX256C  
C
3.5  
5
C
C
68  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
“E-Series” Commercial  
Family  
Part Number  
LX64EV-3F100C  
LX64EV-5F100C  
LX128EV-32F208C  
LX128EV-5F208C  
LX256EV-35F484C  
LX256EV-5F484C  
LX64EB-3F100C  
LX64EB-5F100C  
LX128EB-32F208C  
LX128EB-5F208C  
LX256EB-35F484C  
LX256EB-5F484C  
LX64EC-3F100C  
LX64EC-5F100C  
LX128EC-32F208C  
LX128EC-5F208C  
I/Os  
64  
Voltage  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.8  
1.8  
1.8  
1.8  
t
Package  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBG
fpBGA  
fpBGA  
fpBGA  
pBGA  
fpBGA  
pBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
100  
100  
208  
20
484  
484  
00  
100  
208  
208  
484  
484  
10  
0  
208  
208  
Grade  
C
PD  
3
LX64EV  
64  
5
C
128  
128  
256  
256  
64  
3.2  
5
C
LX128EV  
LX256EV  
LX64EB  
C
3.5  
5
C
C
3
C
64  
5
C
128  
128  
256  
256  
64  
3.2  
5
C
LX128EB  
LX256EB  
LX64EC  
LX128EC  
3.5  
5
C
C
64  
5
C
128  
128  
3.2  
5
C
C
Industrial  
Family  
Part Number  
I/Os  
6
Vo
3.3  
t
ackage  
fGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
fpBGA  
Pins  
100  
100  
100  
208  
208  
208  
484  
484  
484  
Grade  
PD  
LX64EV LX64EV-5F100I  
LX64EB LX64EB-5F100I  
LX64EC LX64EC-5F100I  
LX128EV LX128EV-5F208I  
LX128EB LX128EB-5F208I  
LX128EC LX128EC-508I  
LX256EV LX256EV-48
LX256EB LX256EB-5F44I  
LX256EC LX56EC-5F484I  
I
I
I
I
I
I
I
I
I
64  
2.5  
5
5
5
5
5
5
5
64  
1.8  
128  
1
28  
256  
256  
256  
3.3  
2.5  
1.8  
69  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
Lead-Free Packaging  
Commercial  
Family  
LX64V  
Part Number  
LX64V-3FN100C  
LX64V-5FN100C  
LX64B-3FN100C  
LX64B-5FN100C  
LX64C-3FN100C  
LX64C-5FN100C  
LX128V-32FN208C  
LX128V-5FN208C  
LX128B-32FN208C  
LX128B-5FN208C  
LX128C-32FN208C  
LX128C-5FN208C  
LX256V-35FN484C  
LX256V-5FN484C  
LX256B-35FN484C  
LX256B-5FN484C  
LX256C-35FN484C  
LX256C-5FN484C  
I/Os  
64  
Voltage  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
3.
3.
.5  
.8  
t
Package  
Pins  
100  
100  
10
10  
100  
100  
208  
20
20
208  
208  
84  
484  
484  
484  
484  
484  
Grade  
C
PD  
3.0  
5.0  
3.0  
5.0  
3.0  
5.0  
3.2  
5.0  
3.2  
5.0  
3.2  
5
3.5  
50  
3.5  
5.0  
3.5  
5.0  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free BGA  
Lead-frfpBA  
Lead-free fGA  
ead-free fpB
ead-free pBGA  
Le-frefpBGA  
ead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBA  
Lead-e fpBGA  
Led-free BGA  
Lead-ee fpBGA  
eapBGA  
Ld-free fpBGA  
64  
C
64  
C
LX64B  
64  
C
64  
C
LX64C  
64  
C
128  
128  
128  
128  
128  
128  
256  
256  
256  
256  
256  
256  
C
LX128V  
LX128B  
LX128C  
LX256V  
LX256B  
LX256C  
C
C
C
C
C
C
C
C
C
C
C
“E-Series” Commeral  
Family  
Part Numbe
LX64EV-3FN100
LX64EV-5F100C  
LX64EBFN1C  
LX64EB-5100C  
LX64EC-3FNC  
L4EC-5FN100C  
LX12EV32FN208C  
LX128EV-5FN208C  
LX28EB-32FN20C  
LX128EB-5FN208C  
LX128EC-32FN8C  
LX128208C  
LX2584C  
LX256E4C  
LX256EB-3FN484C  
LX256EB-5FN484C  
LX256EC-35FN484C  
LX256EC-5FN484C  
I/Os  
64  
Voltage  
3.3  
3.
.5  
1.8  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
t
Package  
Pins  
100  
100  
100  
100  
100  
100  
208  
208  
208  
208  
208  
208  
484  
484  
484  
484  
484  
484  
Grade  
C
PD  
3.0  
.0  
3.0  
5.0  
3.0  
5.0  
3.2  
5.0  
3.2  
5.0  
3.2  
5.0  
3.5  
5.0  
3.5  
5.0  
3.5  
5.0  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
LX64EV  
64  
C
64  
C
LX64EB  
64  
C
64  
C
LX64EC  
LX128V  
LX128EB  
LX128E
LX256EV  
LX256EB  
LX256EC  
64  
C
128  
128  
128  
128  
128  
128  
256  
256  
256  
256  
256  
256  
C
C
C
C
C
C
C
C
C
C
C
C
70  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
“E-Series” Industrial  
Family  
LX64EV  
Part Number  
LX64EV-5FN100I  
LX64EB-5FN100I  
LX64EC-5FN100I  
LX128EV-5FN208I  
LX128EB-5FN208I  
LX128EC-5FN208I  
LX256EV-5FN484I  
LX256EB-5FN484I  
LX256EC-5FN484I  
I/Os  
64  
Voltage  
3.3  
t
Package  
Pins  
100  
100  
100  
2
2
208  
484  
484  
484  
Grade  
PD  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fpBGA  
Lead-free fBGA  
Lead-frfpBA  
Lead-free GA  
ead-free fpB
ead-free pBGA  
I
I
I
I
I
I
I
I
I
LX64EB  
64  
2.5  
LX64EC  
LX128EV  
LX128EB  
LX128EC  
LX256EV  
LX256EB  
LX256EC  
64  
1.8  
128  
128  
128  
256  
256  
256  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
71  
Lattice Semiconductor  
ispGDX2 Family Data Sheet  
For Further Information  
In addition to this data sheet, the following Lattice technical notes may be helpful when designing with the ispGDX2  
Family:  
sysIO Design and Usage Guidelines (TN1000)  
• sysCLOCK PLL Design and Usage Guidelines (TN1003)  
sysHSI Usage Guide (TN1020)  
Power Estimation in ispGDX2 Devices (TN1021)  
72  

相关型号:

LX128EB-5FN208I

Crossbar Switch, CMOS, PBGA208, LEAD FREE, FPBGA-208
LATTICE

LX128EBCF1003

High Performance Interfacing and Switching
LATTICE

LX128EBCF10032

High Performance Interfacing and Switching
LATTICE

LX128EBCF10035

High Performance Interfacing and Switching
LATTICE

LX128EBCF1005

High Performance Interfacing and Switching
LATTICE

LX128EBCF2083

High Performance Interfacing and Switching
LATTICE

LX128EBCF20832

High Performance Interfacing and Switching
LATTICE

LX128EBCF20835

High Performance Interfacing and Switching
LATTICE

LX128EBCF2085

High Performance Interfacing and Switching
LATTICE

LX128EBCF4843

High Performance Interfacing and Switching
LATTICE

LX128EBCF48432

High Performance Interfacing and Switching
LATTICE

LX128EBCF48435

High Performance Interfacing and Switching
LATTICE