PALCE16V8Q-15JC/4 [LATTICE]

EE CMOS Zero-Power 20-Pin Universal Programmable Array Logic; EE CMOS零功耗的20引脚通用可编程阵列逻辑
PALCE16V8Q-15JC/4
型号: PALCE16V8Q-15JC/4
厂家: LATTICE SEMICONDUCTOR    LATTICE SEMICONDUCTOR
描述:

EE CMOS Zero-Power 20-Pin Universal Programmable Array Logic
EE CMOS零功耗的20引脚通用可编程阵列逻辑

可编程逻辑器件 输出元件 输入元件 时钟
文件: 总32页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PALCE16V8  
COML:H-5/7/10/15/25, Q-10/15/25 IND:H-10/15/25, Q-20/25  
IND:-12/15/25  
PALCE16V8Z COML:-25  
PALCE16V8 and PALCE16V8Z Families  
EE CMOS (Zero-Power) 20-Pin Universal  
Programmable Array Logic  
DISTINCTIVE CHARACTERISTICS  
®
  Pin and function compatible w ith all 20-pin PAL devices  
  Electrically erasable CMOS technology provides reconfigurable logic and full testability  
  High-speed CMOS technology  
— 5-ns propagation delay for “-5” version  
— 7.5-ns propagation delay for “-7” version  
  Direct plug-in replacement for the PAL16R8 series  
  Outputs programmable as registered or combinatorial in any combination  
  Peripheral Component Interconnect (PCI) compliant  
  Programmable output polarity  
  Programmable enable/disable control  
  Preloadable output registers for testability  
  Automatic register reset on pow er up  
  Cost-effective 20-pin plastic DIP, PLCC, and SOIC packages  
  Extensive third-party softw are and programmer support  
  Fully tested for 100% programming and functional yields and high reliability  
  5-ns version utilizes a split leadframe for improved performance  
GENERAL DESCRIPTION  
The PALCE16V8 is an advanced PAL device built with low-power, high-speed, electrically-  
erasable CMOS technology. It is functionally compatible with all 20-pin GAL devices. The  
macrocells provide a universal device architecture. The PALCE16V8 will directly replace the  
PAL16R8, with the exception of the PAL16C1.  
The PALCE16V8Z provides zero standby power and high speed. At 30-µA maximum standby  
current, the PALCE16V8Z allows battery-powered operation for an extended period.  
The PALCE16V8 utilizes the familiar sum-of-products (AND/OR) architecture that allows users to  
implement complex logic functions easily and efficiently. Multiple levels of combinatorial logic  
can always be reduced to sum-of-products form, taking advantage of the very wide input gates  
available in PAL devices. The equations are programmed into the device through floating-gate  
cells in the AND logic array that can be erased electrically.  
The fixed OR array allows up to eight data product terms per output for logic functions. The  
sum of these products feeds the output macrocell. Each macrocell can be programmed as  
registered or combinatorial with an active-high or active-low output. The output configuration  
is determined by two global bits and one local bit controlling four multiplexers in each  
macrocell.  
Publication# 1 6493  
Amendment/0  
Rev: F  
Issue Date: September 2000  
BLOCK DIAGRAM  
I – I  
CLK/I  
1
8
0
8
Programmable AND Array  
32 x 64  
MACRO  
MC0  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MACRO  
MC1  
MC2  
MC3  
MC4  
MC5  
MC6  
MC7  
OE/I  
9
I/O0  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
16493E-1  
FUNCTIONAL DESCRIPTION  
The PALCE16V8 is a universal PAL device. The PALCE16V8Z is the zero-power version of the  
PALCE16V8. It has all the architectural features of the PALCE16V8. In addition, the PALCE16V8Z  
has zero standby power and an unused product term disable feature for reduced power  
consumption. It has eight independently configurable macrocells (MC0-MC7). Each macrocell can  
be configured as registered output, combinatorial output, combinatorial I/O or dedicated input.  
The programming matrix implements a programmable AND logic array, which drives a fixed OR  
logic array. Buffers for device inputs have complementary outputs to provide user-  
programmable input signal polarity. Pins 1 and 11 serve either as array inputs or as clock (CLK)  
and output enable (OE), respectively, for all flip-flops.  
Unused input pins should be tied directly to VCC or GND. Product terms with all bits  
unprogrammed (disconnected) assume the logical HIGH state, and product terms with both true  
and complement of any input signal connected assume a logical LOW state.  
The programmable functions on the PALCE16V8 are automatically configured from the users  
design specification. The design specification is processed by development software to verify  
the design and create a programming file (JEDEC). This file, once downloaded to a programmer,  
configures the device according to the users desired function.  
The user is given two design options with the PALCE16V8. First, it can be programmed as a  
standard PAL device from the PAL16R8 series. The PAL programmer manufacturer will supply  
device codes for the standard PAL device architectures to be used with the PALCE16V8.  
The programmer will program the PALCE16V8 in the corresponding architecture. This allows  
the user to use existing standard PAL device JEDEC files without making any changes to them.  
2
PALCE16V8 and PALCE16V8Z Families  
Alternatively, the device can be programmed as a PALCE16V8. Here the user must use the  
PALCE16V8 device code. This option allows full utilization of the macrocell.  
To  
Adjacent  
Macrocell  
1 1  
OE  
1 0  
0 0  
0 1  
1 1  
V
CC  
0 X  
1 0  
SL0  
X
SG1  
1 1  
0 X  
I/O  
X
D
Q
Q
1 0  
SL1  
X
CLK  
1 0  
1 1  
0 X  
From  
Adjacent  
Pin  
*SG1  
SL0  
X
*In macrocells MC and MC , SG1 is replaced by SG0 on the feedback multiplexer.  
0
7
16493E-2  
Figure 1. PALCE16V8 Macrocell  
CONFIGURATION OPTIONS  
Each macrocell can be configured as one of the following: registered output, combinatorial  
output, combinatorial I/O, or dedicated input. In the registered output configuration, the output  
buffer is enabled by the OE pin. In the combinatorial configuration, the buffer is either controlled  
by a product term or always enabled. In the dedicated input configuration, it is always disabled.  
With the exception of MC and MC , a macrocell configured as a dedicated input derives the  
0
7
input signal from an adjacent I/O. MC derives its input from pin 11 (OE) and MC from pin 1  
0
7
(CLK).  
The macrocell configurations are controlled by the configuration control word. It contains 2  
global bits (SG0 and SG1) and 16 local bits (SL0 through SL0 and SL1 through SL1 ). SG0  
0
7
0
7
determines whether registers will be allowed. SG1 determines whether the PALCE16V8 will  
emulate a PAL16R8 family or a PAL10H8 family device. Within each macrocell, SL0 , in  
x
conjunction with SG1, selects the configuration of the macrocell, and SL1 sets the output as  
x
either active low or active high for the individual macrocell.  
The configuration bits work by acting as control inputs for the multiplexers in the macrocell.  
There are four multiplexers: a product term input, an enable select, an output select, and a  
feedback select multiplexer. SG1 and SL0 are the control signals for all four multiplexers. In  
x
MC and MC , SG0 replaces SG1 on the feedback multiplexer. This accommodates CLK being  
0
7
the adjacent pin for MC and OE the adjacent pin for MC .  
7
0
PALCE16V8 and PALCE16V8Z Families  
3
Registered Output Configuration  
The control bit settings are SG0 = 0, SG1 = 1 and SL0 = 0. There is only one registered  
x
configuration. All eight product terms are available as inputs to the OR gate. Data polarity is  
determined by SL1 The flip-flop is loaded on the LOW-to-HIGH transition of CLK. The feedback  
x.  
path is from Q on the register. The output buffer is enabled by OE.  
Combinatorial Configurations  
The PALCE16V8 has three combinatorial output configurations: dedicated output in a non-  
registered device, I/O in a non-registered device and I/O in a registered device.  
Dedicated Output in a Non-Registered Device  
The control bit settings are SG0 = 1, SG1 = 0 and SL0 = 0. All eight product terms are available  
x
to the OR gate. Although the macrocell is a dedicated output, the feedback is used, with the  
exception of pins 15 and 16. Pins 15 and 16 do not use feedback in this mode. Because CLK  
and OE are not used in a non-registered device, pins 1 and 11 are available as input signals. Pin  
1 will use the feedback path of MC , and pin 11 will use the feedback path of MC .  
7
0
Combinatorial I/O in a Non-Registered Device  
The control bit settings are SG0 = 1, SG1 = 1, and SL0 = 1. Only seven product terms are  
x
available to the OR gate. The eighth product term is used to enable the output buffer. The signal  
at the I/O pin is fed back to the AND array via the feedback multiplexer. This allows the pin to  
be used as an input.  
Because CLK and OE are not used in a non-registered device, pins 1 and 11 are available as  
inputs. Pin 1 will use the feedback path of MC , and pin 11 will use the feedback path of MC .  
7
0
Combinatorial I/O in a Registered Device  
The control bit settings are SG0 = 0, SG1 = 1 and SL0 = 1. Only seven product terms are available  
x
to the OR gate. The eighth product term is used as the output enable. The feedback signal is the  
corresponding I/O signal.  
Dedicated Input Configuration  
The control bit settings are SG0 = 1, SG1 = 0 and SL0 = 1. The output buffer is disabled. Except  
x
for MC and MC , the feedback signal is an adjacent I/O. For MC and MC , the feedback signals  
0
7
0
7
are pins 1 and 11. These configurations are summarized in Table 1 and illustrated in Figure 2.  
Table 1. Macrocell Configuration  
Cell  
Devices  
Cell  
Devices  
SG0  
SG1  
SL0  
Configuration  
Emulated  
SG0  
SG1  
SL0  
Configuration  
Emulated  
X
X
Device Uses Registers  
Device Uses No Registers  
PAL10H8, 12H6,  
14H4, 16H2, 10L8,  
12L6, 14L4, 16L2  
PAL16R8, 16R6,  
16R4  
Combinatorial  
0
0
1
1
0
1
Registered Output  
1
0
0
Output  
PAL12H6, 14H4,  
16H2, 12L6, 14L4,  
16L2  
Combinatorial  
I/O  
PAL16R6, 16R4  
1
1
0
1
1
1
Input  
Combinatorial  
I/O  
PAL16L8  
4
PALCE16V8 and PALCE16V8Z Families  
Programmable Output Polarity  
The polarity of each macrocell can be active-high or active-low, either to match output signal  
needs or to reduce product terms. Programmable polarity allows Boolean expressions to be  
written in their most compact form (true or inverted), and the output can still be of the desired  
polarity. It can also save “DeMorganizing” efforts.  
Selection is through a programmable bit SL1 which controls an exclusive-OR gate at the output  
x
of the AND/OR logic. The output is active high if SL1 is 1 and active low if SL1 is 0.  
x
x
PALCE16V8 and PALCE16V8Z Families  
5
OE  
OE  
D
Q
Q
D
Q
Q
CLK  
CLK  
a. Registered active low  
b. Registered active high  
c. Combinatorial I/O active low  
d. Combinatorial I/O active high  
V
V
CC  
CC  
Note 1  
Note 1  
e. Combinatorial output active low  
f. Combinatorial output active high  
Notes:  
1. Feedback is not available on pins 15 and 16 in the  
combinatorial output mode.  
Adjacent I/O pin  
Note 2  
2. This configuration is not available on pins 15 and 16.  
g. Dedicated input  
16493E-2  
Figure 2. Macrocell Configurations  
6
PALCE16V8 and PALCE16V8Z Families  
Pow er-Up Reset  
All flip-flops power up to a logic LOW for predictable system initialization. Outputs of the  
PALCE16V8 will depend on whether they are selected as registered or combinatorial. If registered  
is selected, the output will be HIGH. If combinatorial is selected, the output will be a function  
of the logic.  
Register Preload  
The register on the PALCE16V8 can be preloaded from the output pins to facilitate functional  
testing of complex state machine designs. This feature allows direct loading of arbitrary states,  
making it unnecessary to cycle through long test vector sequences to reach a desired state. In  
addition, transitions from illegal states can be verified by loading illegal states and observing  
proper recovery.  
Security Bit  
A security bit is provided on the PALCE16V8 as a deterrent to unauthorized copying of the array  
configuration patterns. Once programmed, this bit defeats readback and verification of the  
programmed pattern by a device programmer, securing proprietary designs from competitors.  
The bit can only be erased in conjunction with the array during an erase cycle.  
Electronic Signature Word  
An electronic signature word is provided in the PALCE16V8 device. It consists of 64 bits of  
programmable memory that can contain user-defined data. The signature data is always available  
to the user independent of the security bit.  
Programming and Erasing  
The PALCE16V8 can be programmed on standard logic programmers. It also may be erased to  
reset a previously configured device back to its unprogrammed state. Erasure is automatically  
performed by the programming hardware. No special erase operation is required.  
Quality and Testability  
The PALCE16V8 offers a very high level of built-in quality. The erasability of the device provides  
a direct means of verifying performance of all AC and DC parameters. In addition, this verifies  
complete programmability and functionality of the device to provide the highest programming  
yields and post-programming functional yields in the industry.  
Technology  
The high-speed PALCE16V8 is fabricated with Vantis’ advanced electrically-erasable (EE) CMOS  
process. The array connections are formed with proven EE cells. Inputs and outputs are  
designed to be compatible with TTL devices. This technology provides strong input clamp  
diodes, output slew-rate control, and a grounded substrate for clean switching.  
PCI Compliance  
PALCE16V8 devices in the -5/-7/-10 speed grades are fully compliant with the PCI Local Bus  
Specification published by the PCI Special Interest Group. The PALCE16V8’s predictable timing  
ensures compliance with the PCI AC specifications independent of the design.  
Zero-Standby Pow er Mode  
The PALCE16V8Z features a zero-standby power mode. When none of the inputs switch for an  
extended period (typically 50 ns), the PALCE16V8Z will go into standby mode, shutting down  
PALCE16V8 and PALCE16V8Z Families  
7
most of its internal circuitry. The current will go to almost zero (I < 15 µA). The outputs will  
CC  
maintain the states held before the device went into the standby mode. There is no speed  
penalty associated with coming out of standby mode.  
When any input switches, the internal circuitry is fully enabled, and power consumption returns  
to normal. This feature results in considerable power savings for operation at low to medium  
frequencies. This saving is illustrated in the I vs. frequency graph.  
CC  
Product-Term Disable  
On a programmed PALCE16V8Z, any product terms that are not used are disabled. Power is cut  
off from the product terms so that they do not draw current. As shown in the I vs. frequency  
CC  
graph, product-term disabling results in considerable power savings. This saving is greater at the  
higher frequencies.  
Further hints on minimizing power consumption can be found in a separate document entitled,  
Minimizing Power Consumption with Zero-Power PLDs.  
8
PALCE16V8 and PALCE16V8Z Families  
LOGIC DIAGRAM  
0
3
4
7
8
11 12 15 16 19 20 23 24 27 28 31  
CLK/I  
1
2
3
4
0
20  
19  
1 1  
1 0  
0 0  
0 1  
V
CC  
1 1  
V
CC  
0 X  
1 0  
SL07  
0
7
SG1  
1 1  
0 X  
I/O  
7
D
Q
Q
1 0  
SL17  
1 0  
1 1  
0 X  
I
1
SG0  
SL07  
1 1  
1 0  
0 0  
0 1  
1 1  
V
CC  
0 X  
1 0  
SL06  
8
SG1  
1 1  
0 X  
18 I/O  
6
D
Q
1 0  
Q
15  
SL16  
1 0  
1 1  
0 X  
I
2
SG1  
SL06  
1 1  
1 0  
0 0  
0 1  
1 1  
V
CC  
0 X  
1 0  
SL05  
16  
23  
SG1  
1 1  
0 X  
17 I/O  
5
D
Q
Q
1 0  
SL15  
1 0  
1 1  
0 X  
I
3
SG1  
SL05  
1 1  
1 0  
0 0  
0 1  
1 1  
V
CC  
0 X  
1 0  
SL04  
24  
31  
SG1  
1 1  
0 X  
16  
I/O  
4
D
Q
Q
1 0  
SL14  
1 0  
1 1  
0 X  
5
I
4
SG1  
SL04  
CLK OE  
0
3
4
7
8
11 12 15 16 19 20 23 24 27 28 31  
16493E-2  
PALCE16V8 and PALCE16V8Z Families  
9
LOGIC DIAGRAM (CONTINUED)  
0
3
4
7
8
11 12 15 16 19 20 23 24 27 28 31  
CLK OE  
1 1  
1 0  
0 0  
0 1  
1 1  
V
CC  
0 X  
1 0  
SL03  
32  
39  
SG1  
1 1  
0 X  
15  
14  
13  
I/O  
3
D
Q
Q
1 0  
SL13  
1 0  
1 1  
0 X  
6
7
8
I
5
SG1  
SL03  
SL02  
SL01  
1 1  
1 0  
0 0  
0 1  
1 1  
V
CC  
0 X  
1 0  
SL02  
40  
47  
SG1  
1 1  
0 X  
I/O  
2
D
Q
Q
1 0  
SL12  
1 0  
1 1  
0 X  
I
6
SG1  
1 1  
1 0  
0 0  
0 1  
1 1  
V
CC  
0 X  
1 0  
SL01  
48  
55  
SG1  
1 1  
0 X  
I/O  
1
D
Q
Q
1 0  
SL11  
1 0  
1 1  
0 X  
I
7
SG1  
1 1  
1 0  
0 0  
0 1  
1 1  
V
CC  
0 X  
1 0  
SL00  
56  
63  
SG1  
1 1  
0 X  
12 I/O  
0
D
Q
Q
1 0  
SL10  
1 0  
1 1  
0 X  
9
I
8
SL00  
SG0  
11  
OE/I  
9
0
3
4
7
8
11 12 15 16 19 20 23 24 27 28 31  
GND 10  
16493E-6  
(concluded)  
10  
PALCE16V8 and PALCE16V8Z Families  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . .-55°C to +125°C  
Ambient Temperature (T )  
A
Operating in Free Air . . . . . . . . . . . . . . . 0°C to +75°C  
Supply Voltage  
with Respect to Ground . . . . . . . . . . -0.5 V to +7.0 V  
Supply Voltage (V  
with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V  
)
CC  
DC Input Voltage . . . . . . . . . . . -0.5 V to V  
+ 0.5 V  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
CC  
DC Output or I/O  
Pin Voltage . . . . . . . . . . . . . . . . .-0.5 V to V + 0.5 V  
CC  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
Latchup Current (T = 0°C to 75°C) . . . . . . . . . 100 mA  
A
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum Rat-  
ings for extended periods may affect device reliability. Pro-  
gramming conditions may differ.  
DC CHARACTERISTICS OVER COMMERCIAL OPERATING RANGES  
Parameter  
Symbol  
Parameter Description  
Output HIGH Voltage  
Test Description  
= -3.2 mA, V = V or V , V = Min  
Min  
Max  
Unit  
V
V
I
2.4  
OH  
OH  
IN  
IH  
IL CC  
V
Output LOW Voltage  
Input HIGH Voltage  
I
= 24 mA, V = V or V , V = Min  
0.5  
V
OL  
OL  
IN  
IH  
IL CC  
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Note 1)  
V
2.0  
V
V
IH  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Note 1)  
V
Input LOW Voltage  
0.8  
IL  
I
Input HIGH Leakage Current  
Input LOW Leakage Current  
V = 5.25 V, V = Max (Note 2)  
10  
µA  
µA  
IH  
IN  
CC  
I
V = 0 V, V = Max (Note 2)  
–100  
IL  
IN  
CC  
V
= 5.25 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current HIGH  
10  
µA  
OZH  
V = V or V (Note 2)  
IN  
IH  
IL  
V
= 0 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current LOW  
Output Short-Circuit Current  
Supply Current for -5  
–100  
–150  
125  
µA  
mA  
mA  
OZL  
V = V or V (Note 2)  
IN  
IH  
IL  
I
V
= 0.5 V, V = Max (Note 3)  
–30  
SC  
OUT  
CC  
Outputs Open (I = 0 mA), V = 0 V  
OUT  
IN  
I (Static)  
CC  
V = Max  
CC  
Outputs Open (I = 0 mA),  
OUT  
I (Dynamic) Supply Current for -7  
115  
mA  
CC  
V = Max, f = 25 MHz  
CC  
Notes:  
1. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.  
2. I/O pin leakage is the worst case of I and I (or I and I ).  
IL  
OZL  
IH  
OZH  
3. Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.  
V
= 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
OUT  
PALCE16V8H-5/7 (Coml)  
11  
CAPACITANCE1  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Typ  
5
Unit  
pF  
C
V = 2.0 V  
IN  
V = 5.0 V, T = 25 °C,  
CC A  
IN  
C
V
= 2.0 V  
f = 1 MHz  
8
pF  
OUT  
OUT  
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where  
capacitance may be affected.  
SWITCHING CHARACTERISTICS OVER COMMERCIAL OPERATING RANGES1  
-5  
-7  
Parameter  
Symbol  
2
2
Parameter Description  
Input or Feedback to Combinatorial Output  
Min  
1
Max  
Min  
3
Max  
Unit  
ns  
t
5
7.5  
PD  
t
Setup Time from Input or Feedback to Clock  
Hold Time  
3
5
ns  
S
t
0
0
ns  
H
t
Clock to Output  
1
4
1
1
5
1
ns  
CO  
t
Skew Between Registered Outputs (Note 3)  
ns  
SKEWR  
t
LOW  
Clock Width  
3
3
4
4
ns  
WL  
t
HIGH  
ns  
WH  
External Feedback  
1/(t +t )  
142.8  
166  
166  
1
100  
125  
125  
1
MHz  
MHz  
MHz  
ns  
S
CO  
Maximum Frequency  
(Note 4)  
f
Internal Feedback (f  
)
1/(t +t ) (Note 5)  
S CF  
MAX  
CNT  
No Feedback  
1/(t +t )  
WH WL  
t
OE to Output Enable  
OE to Output Disable  
6
5
6
5
6
6
9
9
PZX  
t
1
1
ns  
PXZ  
t
Input to Output Enable Using Product Term Control  
Input to Output Disable Using Product Term Control  
2
3
ns  
EA  
t
2
3
ns  
ER  
Notes:  
1. See “Switching Test Circuit” for test conditions.  
2. Output delay minimums for t , t , t , t , t , and t are defined under best case conditions. Future process improvements  
PD CO PZX PXZ EA  
ER  
may alter these values; therefore, minimum values are recommended for simulation purposes only.  
3. Skew testing takes into account pattern and switching direction differences between outputs that have equal loading.  
4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where  
frequency may be affected.  
5. t is a calculated value and is not guaranteed. t can be found using the following equation:  
CF  
CF  
t
= 1/f  
(internal feedback) – t .  
CF  
MAX S  
12  
PALCE16V8H-5/7 (Coml)  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . .-55°C to +125°C  
Ambient Temperature (T )  
Operating in Free Air . . . . . . . . . . . . . . . 0°C to +75°C  
A
Supply Voltage  
with Respect to Ground . . . . . . . . . .-0.5 V to + 7.0 V  
Supply Voltage (V  
with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V  
)
CC  
DC Input Voltage . . . . . . . . . . . -0.5 V to V + 0.5 V  
CC  
Industrial (I) Devices  
DC Output or I/O  
Temperature (T ) Operating  
A
Pin Voltage . . . . . . . . . . . . . . . . . -0.5 V to V + 0.5 V  
CC  
in Free Air. . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
Supply Voltage (V  
)
CC  
Latchup Current (T = -40°C to +85°C). . . . . . . 100 mA  
with Respect to Ground . . . . . . . . . . . +4.5 V to +5.5 V  
A
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum Rat-  
ings for extended periods may affect device reliability. Pro-  
gramming conditions may differ.  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS OVER COMMERCIAL AND INDUSTRIAL OPERATING  
RANGES  
Parameter  
Symbol  
Parameter Description  
Output HIGH Voltage  
Test Description  
= –3.2 mA, V = V or V , V = Min  
Min  
Max  
Unit  
V
V
I
2.4  
OH  
OH  
IN  
IH  
IL CC  
V
Output LOW Voltage  
Input HIGH Voltage  
I
= 24 mA, V = V or V , V = Min  
0.5  
V
OL  
OL  
IN  
IH  
IL CC  
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Note 1)  
V
2.0  
V
V
IH  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Note 1)  
V
Input LOW Voltage  
0.8  
IL  
I
Input HIGH Leakage Current  
Input LOW Leakage Current  
V = 5.25 V, V = Max (Note 2)  
10  
µA  
µA  
IH  
IN  
CC  
I
V = 0 V, V = Max (Note 2)  
–100  
IL  
IN  
CC  
V
= 5.25 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current HIGH  
Off-State Output Leakage Current LOW  
10  
µA  
µA  
OZH  
V = V or V (Note 2)  
IN  
IH  
IL  
V
= 0 V, V = Max  
CC  
OUT  
I
–100  
OZL  
V = V or V (Note 2)  
IN  
IH  
IL  
I
Output Short-Circuit Current  
Commercial Supply Current  
Industrial Supply Current  
V
= 0.5 V, V = Max (Note 3)  
–30  
–150  
115  
mA  
mA  
mA  
SC  
OUT  
CC  
Outputs Open (I = 0 mA)  
OUT  
I (Dynamic)  
CC  
V = Max, f = 15 MHz  
CC  
130  
Notes:  
1. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.  
2. I/O pin leakage is the worst case of I and I (or I and I ).  
IL  
OZL  
IH  
OZH  
3. Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.  
V
= 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
OUT  
PALCE16V8H-10 (Coml, Ind)  
13  
CAPACITANCE1  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Typ  
5
Unit  
pF  
C
V = 2.0 V  
IN  
V = 5.0 V, T = 25 °C,  
CC A  
IN  
C
V
= 2.0 V  
f = 1 MHz  
8
pF  
OUT  
OUT  
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where  
capacitance may be affected.  
SWITCHING CHARACTERISTICS OVER COMMERCIAL AND INDUSTRIAL  
OPERATING RANGES1  
-10  
Parameter  
Symbol  
2
Parameter Description  
Input or Feedback to Combinatorial Output  
Min  
3
Max  
Unit  
ns  
t
10  
PD  
t
Setup Time from Input or Feedback to Clock  
Hold Time  
7.5  
0
ns  
S
t
ns  
H
t
Clock to Output  
3
7.5  
ns  
CO  
t
LOW  
Clock Width  
6
ns  
WL  
t
HIGH  
6
ns  
WH  
External Feedback  
1/(t +t )  
66.7  
71.4  
83.3  
2
MHz  
MHz  
MHz  
ns  
S
CO  
Maximum Frequency  
(Note 3)  
f
Internal Feedback (f  
)
1/(t +t ) (Note 4)  
S CF  
MAX  
CNT  
No Feedback  
1/(t +t )  
WH WL  
t
OE to Output Enable  
OE to Output Disable  
10  
10  
10  
10  
PZX  
t
2
ns  
PXZ  
t
Input to Output Enable Using Product Term Control  
Input to Output Disable Using Product Term Control  
3
ns  
EA  
t
3
ns  
ER  
Notes:  
1. See “Switching Test Circuit” for test conditions.  
2. Output delay minimums for t , t , t , t , t , and t are defined under best case conditions. Future process improvements  
PD CO PZX PXZ EA  
ER  
may alter these values; therefore, minimum values are recommended for simulation purposes only.  
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where  
frequency may be affected.  
4. t is a calculated value and is not guaranteed. t can be found using the following equation:  
CF  
CF  
t
= 1/f  
(internal feedback) – t .  
CF  
MAX S  
14  
PALCE16V8H-10 (Coml, Ind)  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . .-55°C to +125°C  
Ambient Temperature (T )  
A
Operating in Free Air . . . . . . . . . . . . . . . 0°C to +75°C  
Supply Voltage  
with Respect to Ground . . . . . . . . . . -0.5 V to +7.0 V  
Supply Voltage (V  
with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V  
)
CC  
DC Input Voltage . . . . . . . . . . . -0.5 V to V  
+ 0.5 V  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
CC  
DC Output or I/O  
Pin Voltage . . . . . . . . . . . . . . . . .-0.5 V to V + 0.5 V  
CC  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
Latchup Current (T = 0°C to 75°C) . . . . . . . . . 100 mA  
A
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum Rat-  
ings for extended periods may affect device reliability. Pro-  
gramming conditions may differ.  
DC CHARACTERISTICS OVER COMMERCIAL OPERATING RANGES  
Parameter  
Symbol  
Parameter Description  
Output HIGH Voltage  
Test Description  
= -3.2 mA, V = V or V , V = Min  
Min  
Max  
Unit  
V
V
I
2.4  
OH  
OH  
IN  
IH  
IL CC  
V
Output LOW Voltage  
Input HIGH Voltage  
I
= 24 mA, V = V or V , V = Min  
0.5  
V
OL  
OL  
IN  
IH  
IL CC  
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Note 1)  
V
2.0  
V
V
IH  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Note 1)  
V
Input LOW Voltage  
0.8  
IL  
I
Input HIGH Leakage Current  
Input LOW Leakage Current  
V = 5.25 V, V = Max (Note 2)  
10  
µA  
µA  
IH  
IN  
CC  
I
V = 0 V, V = Max (Note 2)  
–100  
IL  
IN  
CC  
V
= 5.25 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current HIGH  
10  
µA  
OZH  
V = V or V (Note 2)  
IN  
IH  
IL  
V
= 0 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current LOW  
Output Short-Circuit Current  
Supply Current (Dynamic)  
–100  
–150  
55  
µA  
mA  
mA  
OZL  
V = V or V (Note 2)  
IN  
IH  
IL  
I
V
= 0.5 V, V = Max (Note 3)  
–30  
SC  
OUT  
CC  
Outputs Open (I = 0 mA),  
OUT  
I
CC  
V = Max, f = 15 MHz  
CC  
Notes:  
1. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.  
2. I/O pin leakage is the worst case of I and I (or I and I ).  
IL  
OZL  
IH  
OZH  
3. Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.  
V
= 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
OUT  
PALCE16V8Q-10 (Coml)  
15  
CAPACITANCE1  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Typ  
5
Unit  
pF  
C
V = 2.0 V  
IN  
V = 5.0 V, T = 25 °C,  
CC A  
IN  
C
V
= 2.0 V  
f = 1 MHz  
8
pF  
OUT  
OUT  
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where  
capacitance may be affected.  
SWITCHING CHARACTERISTICS OVER COMMERCIAL OPERATING RANGES1  
-10  
Parameter  
Symbol  
2
Parameter Description  
Input or Feedback to Combinatorial Output  
Min  
3
Max  
Unit  
ns  
t
10  
PD  
t
Setup Time from Input or Feedback to Clock  
Hold Time  
7.5  
0
ns  
S
t
ns  
H
t
Clock to Output  
3
7.5  
ns  
CO  
t
LOW  
Clock Width  
6
ns  
WL  
t
HIGH  
6
ns  
WH  
External Feedback  
1/(t +t )  
66.7  
71.4  
83.3  
2
MHz  
MHz  
MHz  
ns  
S
CO  
Maximum Frequency  
(Note 3)  
f
Internal Feedback (f  
)
1/(t +t ) (Note 4)  
S CF  
MAX  
CNT  
No Feedback  
1/(t +t )  
WH WL  
t
OE to Output Enable  
OE to Output Disable  
10  
10  
10  
10  
PZX  
t
2
ns  
PXZ  
t
Input to Output Enable Using Product Term Control  
Input to Output Disable Using Product Term Control  
3
ns  
EA  
t
3
ns  
ER  
Notes:  
1. See “Switching Test Circuit” for test conditions.  
2. Output delay minimums for t , t , t , t , t , and t are defined under best case conditions. Future process improvements  
PD CO PZX PXZ EA  
ER  
may alter these values; therefore, minimum values are recommended for simulation purposes only.  
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where  
frequency may be affected.  
4. t is a calculated value and is not guaranteed. t can be found using the following equation:  
CF  
CF  
t
= 1/f  
(internal feedback) – t .  
CF  
MAX S  
16  
PALCE16V8Q-10 (Coml)  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . .-55°C to +125°C  
Ambient Temperature (T )  
Operating in Free Air . . . . . . . . . . . . . . . 0°C to +75°C  
A
Supply Voltage  
with Respect to Ground . . . . . . . . . .-0.5 V to + 7.0 V  
Supply Voltage (V  
with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V  
)
CC  
DC Input Voltage . . . . . . . . . . . -0.5 V to V + 0.5 V  
CC  
Industrial (I) Devices  
DC Output or I/O  
Temperature (T ) Operating  
A
Pin Voltage . . . . . . . . . . . . . . . . . -0.5 V to V + 0.5 V  
CC  
in Free Air. . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
Supply Voltage (V  
)
CC  
Latchup Current (T = -40°C to +85°C). . . . . . . 100 mA  
with Respect to Ground . . . . . . . . . . . +4.5 V to +5.5 V  
A
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum Rat-  
ings for extended periods may affect device reliability. Pro-  
gramming conditions may differ.  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS OVER COMMERCIAL AND INDUSTRIAL OPERATING  
RANGES  
Parameter  
Symbol  
Parameter Description  
Output HIGH Voltage  
Test Description  
= –3.2 mA, V = V or V , V = Min  
Min  
Max  
Unit  
V
V
I
2.4  
OH  
OH  
IN  
IH  
IL CC  
V
Output LOW Voltage  
Input HIGH Voltage  
I
= 24 mA, V = V or V , V = Min  
0.5  
V
OL  
OL  
IN  
IH  
IL CC  
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Note 1)  
V
2.0  
V
V
IH  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Note 1)  
V
Input LOW Voltage  
0.8  
IL  
I
Input HIGH Leakage Current  
Input LOW Leakage Current  
V = 5.25 V, V = Max (Note 2)  
10  
µA  
µA  
IH  
IN  
CC  
I
V = 0 V, V = Max (Note 2)  
–100  
IL  
IN  
CC  
V
= 5.25 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current HIGH  
10  
µA  
OZH  
V = V or V (Note 2)  
IN  
IH  
IL  
V
= 0 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current LOW  
Output Short-Circuit Current  
–100  
µA  
OZL  
V = V or V (Note 2)  
IN  
IH  
IL  
I
V
= 0.5 V, V = Max (Note 3)  
–30  
–150  
90  
mA  
SC  
OUT  
CC  
H
Q
H
Q
Commercial Supply Current  
Industrial Supply Current  
mA  
mA  
55  
Outputs Open (I = 0 mA)  
OUT  
I (Dynamic)  
CC  
V = Max, f = 15 MHz  
CC  
130  
65  
Notes:  
1. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.  
2. I/O pin leakage is the worst case of I and I (or I and I ).  
IL  
OZL  
IH  
OZH  
3. Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.  
V
= 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
OUT  
PALCE16V8H-15/25 (Coml, Ind), Q-15/25 (Coml), Q-20/25 (Ind)  
17  
CAPACITANCE1  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Typ  
5
Unit  
pF  
C
V = 2.0 V  
IN  
V = 5.0 V, T = 25 °C,  
CC A  
IN  
C
V
= 2.0 V  
f = 1 MHz  
8
pF  
OUT  
OUT  
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where  
capacitance may be affected.  
SWITCHING CHARACTERISTICS OVER COMMERCIAL AND INDUSTRIAL  
OPERATING RANGES1  
-15  
-20  
-25  
Parameter  
Symbol  
Parameter Description  
Input or Feedback to Combinatorial Output  
Setup Time from Input or Feedback to Clock  
Hold Time  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
ns  
t
15  
20  
25  
PD  
t
12  
0
13  
0
15  
0
ns  
S
t
ns  
H
t
Clock to Output  
10  
11  
12  
ns  
CO  
t
LOW  
Clock Width  
8
8
10  
10  
12  
12  
37  
ns  
WL  
t
HIGH  
ns  
WH  
External Feedback  
1/(t +t )  
45.5  
41.6  
MHz  
S
CO  
Maximum  
Internal Feedback  
Frequency  
1/(t +t )  
S CF  
(Note 3)  
f
50  
45.4  
50.0  
40  
MHz  
MAX  
(f  
)
CNT  
(Note 2)  
No Feedback  
1/(t +t )  
62.5  
41.6  
MHz  
ns  
WH WL  
t
OE to Output Enable  
15  
15  
15  
15  
18  
18  
18  
18  
20  
20  
20  
20  
PZX  
t
OE to Output Disable  
ns  
PXZ  
t
Input to Output Enable Using Product Term Control  
Input to Output Disable Using Product Term Control  
ns  
EA  
t
ns  
ER  
Notes:  
1. See “Switching Test Circuit” for test conditions.  
2. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where  
frequency may be affected.  
3. t is a calculated value and is not guaranteed. t can be found using the following equation:  
CF  
CF  
t
= 1/f  
(internal feedback) – t .  
CF  
MAX S  
18  
PALCE16V8H-15/25 (Coml, Ind), Q-15/25 (Coml), Q-20/25 (Ind)  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C  
Industrial (I) Devices  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . .-55°C to +125°C  
Ambient Temperature (T )  
Operating in Free Air . . . . . . . . . . . . . . -40°C to +85°C  
A
Supply Voltage  
with Respect to Ground . . . . . . . . . .-0.5 V to + 7.0 V  
Supply Voltage (V  
with Respect to Ground . . . . . . . . . . . +4.5 V to +5.5 V  
)
CC  
DC Input Voltage . . . . . . . . . . . -0.5 V to V + 0.5 V  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
CC  
DC Output or I/O Pin Voltage . . . -0.5 V to V + 0.5 V  
CC  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
Latchup Current (T = -40°C to +85°C). . . . . . . 100 mA  
A
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum Rat-  
ings for extended periods may affect device reliability. Pro-  
gramming conditions may differ.  
DC CHARACTERISTICS OVER INDUSTRIAL OPERATING RANGES  
Parameter  
Symbol  
Parameter Description  
Output HIGH Voltage  
Test Description  
Min  
Max  
Unit  
V
I
= 6 mA  
= 20 µA  
= 24 mA  
= 6 mA  
= 20 µA  
3.84  
OH  
V
V = V or V , V = Min  
IN IH IL CC  
OH  
I
V – 0.1 V  
V
OH  
CC  
I
0.5  
0.33  
0.1  
V
OL  
V
Output LOW Voltage  
V = V or V , V = Min  
I
OL  
V
OL  
IN  
IH  
IL CC  
I
V
OL  
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Notes 1 and 2)  
V
Input HIGH Voltage  
Input LOW Voltage  
2.0  
V
V
IH  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Notes 1 and 2)  
V
0.9  
IL  
I
Input HIGH Leakage Current  
Input LOW Leakage Current  
V = 5.25 V, V = Max (Note 3)  
10  
µA  
µA  
IH  
IN  
CC  
I
V = 0 V, V = Max (Note 3)  
–10  
IL  
IN  
CC  
V
= 5.25 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current HIGH  
Off-State Output Leakage Current LOW  
10  
µA  
µA  
OZH  
V = V or V (Note 3)  
IN  
IH  
IL  
V
= 0 V, V = Max  
CC  
OUT  
I
–10  
OZL  
V = V or V (Note 3)  
IN  
IH  
IL  
I
Output Short-Circuit Current  
Supply Current (Static)  
V
= 0.5 V, V = Max (Note 4)  
–30  
–150  
30  
mA  
µA  
SC  
OUT  
CC  
f = 0 MHz  
Outputs Open (I = 0 mA)  
OUT  
I
CC  
V = Max  
Supply Current (Dynamic)  
f = 15 MHz  
75  
mA  
CC  
Notes:  
1. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.  
2. Represents the worst case of HC and HCT standards, allowing compatibility with either.  
3. I/O pin leakage is the worst case of I and I  
(or I and I  
).  
IL  
OZL  
IH  
OZH  
4. Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.  
V
= 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
OUT  
PALCE16V8Z-12 (Ind)  
19  
CAPACITANCE1  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Typ  
5
Unit  
pF  
C
V = 2.0 V  
IN  
V = 5.0 V, T = 25 °C,  
CC A  
IN  
C
V
= 2.0 V  
f = 1 MHz  
8
pF  
OUT  
OUT  
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where  
capacitance may be affected.  
SWITCHING CHARACTERISTICS OVER INDUSTRIAL OPERATING RANGES1  
-12  
Parameter  
Symbol  
Parameter Description  
Input or Feedback to Combinatorial Output (Note 2)  
Min  
Max  
Unit  
ns  
t
12  
PD  
t
Setup Time from Input or Feedback to Clock  
Hold Time  
8
0
ns  
S
t
ns  
H
t
Clock to Output  
8
ns  
CO  
t
LOW  
Clock Width  
5
5
ns  
WL  
t
HIGH  
ns  
WH  
External Feedback  
1/(t +t )  
62.5  
77  
MHz  
MHz  
MHz  
ns  
S
CO  
Maximum Frequency  
(Notes 3 and 4)  
f
Internal Feedback (f  
)
1/(t +t )  
S CF  
MAX  
CNT  
No Feedback  
1/(t +t )  
100  
WH WL  
t
OE to Output Enable  
OE to Output Disable  
8
8
PZX  
t
ns  
PXZ  
t
Input to Output Enable Using Product Term Control  
Input to Output Disable Using Product Term Control  
13  
13  
ns  
EA  
t
ns  
ER  
Notes:  
1. See “Switching Test Circuit” for test conditions.  
2. This parameter is tested in standby mode.  
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where  
frequency may be affected.  
4. Output delay minimums for t , t , t , t , t , and t are defined under best case conditions. Future process improvements  
PD CO PZX PXZ EA  
ER  
may alter these values therefore, minimum values are recommended for simulation purposes only.  
5. t is a calculated value and is not guaranteed. t can be found using the following equation:  
CF  
CF  
t
= 1/f  
(internal feedback) – t .  
CF  
MAX S  
20  
PALCE16V8Z-12 (Ind)  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C  
Industrial (I) Devices  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . .-55°C to +125°C  
Ambient Temperature (T )  
Operating in Free Air . . . . . . . . . . . . . . -40°C to +85°C  
A
Supply Voltage  
with Respect to Ground . . . . . . . . . .-0.5 V to + 7.0 V  
Supply Voltage (V  
with Respect to Ground . . . . . . . . . . . +4.5 V to +5.5 V  
)
CC  
DC Input Voltage . . . . . . . . . . . -0.5 V to V + 0.5 V  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
CC  
DC Output or I/O Pin Voltage . . . -0.5 V to V + 0.5 V  
CC  
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
Latchup Current (T = -40°C to +85°C). . . . . . . 100 mA  
A
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum Rat-  
ings for extended periods may affect device reliability. Pro-  
gramming conditions may differ.  
DC CHARACTERISTICS OVER INDUSTRIAL OPERATING RANGES  
Parameter  
Symbol  
Parameter Description  
Output HIGH Voltage  
Test Description  
Min  
Max  
Unit  
V
I
= 6 mA  
= 20 µA  
= 24 mA  
= 6 mA  
= 20 µA  
3.84  
OH  
V
V = V or V , V = Min  
IN IH IL CC  
OH  
I
V – 0.1 V  
V
OH  
CC  
I
0.5  
0.33  
0.1  
V
OL  
V
Output LOW Voltage  
V = V or V , V = Min  
I
OL  
V
OL  
IN  
IH  
IL CC  
I
V
OL  
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Notes 1 and 2)  
V
Input HIGH Voltage  
Input LOW Voltage  
2.0  
V
V
IH  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Notes 1 and 2)  
V
0.9  
IL  
I
Input HIGH Leakage Current  
Input LOW Leakage Current  
V = 5.25 V, V = Max (Note 3)  
10  
µA  
µA  
IH  
IN  
CC  
I
V = 0 V, V = Max (Note 3)  
–10  
IL  
IN  
CC  
V
= 5.25 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current HIGH  
Off-State Output Leakage Current LOW  
10  
µA  
µA  
OZH  
V = V or V (Note 3)  
IN  
IH  
IL  
V
= 0 V, V = Max  
CC  
OUT  
I
–10  
OZL  
V = V or V (Note 3)  
IN  
IH  
IL  
I
Output Short-Circuit Current  
Supply Current (Static)  
V
= 0.5 V, V = Max (Note 4)  
–30  
–150  
15  
mA  
µA  
SC  
OUT  
CC  
f = 0 MHz  
Outputs Open (I = 0 mA)  
OUT  
I
CC  
V = Max  
Supply Current (Dynamic)  
f = 25 MHz  
75  
mA  
CC  
Notes:  
1. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.  
2. Represents the worst case of HC and HCT standards, allowing compatibility with either.  
3. I/O pin leakage is the worst case of I and I  
(or I and I  
).  
IL  
OZL  
IH  
OZH  
4. Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.  
V
= 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
OUT  
PALCE16V8Z-15 (Ind)  
21  
CAPACITANCE1  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Typ  
5
Unit  
pF  
C
V = 2.0 V  
IN  
V = 5.0 V, T = 25 °C,  
CC A  
IN  
C
V
= 2.0 V  
f = 1 MHz  
8
pF  
OUT  
OUT  
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where  
capacitance may be affected.  
SWITCHING CHARACTERISTICS OVER INDUSTRIAL OPERATING RANGES1  
-15  
Parameter  
Symbol  
2
Parameter Description  
Input or Feedback to Combinatorial Output  
Min  
Max  
Unit  
ns  
t
15  
PD  
t
Setup Time from Input or Feedback to Clock  
Hold Time  
10  
0
ns  
S
t
ns  
H
t
Clock to Output  
10  
ns  
CO  
t
LOW  
Clock Width  
8
8
ns  
WL  
t
HIGH  
ns  
WH  
External Feedback  
Maximum  
Frequency (Notes 3 Internal Feedback (f  
1/(t +t )  
50  
MHz  
MHz  
MHz  
ns  
S
CO  
f
)
1/(t +t )  
58.8  
62.5  
MAX  
CNT  
S CF  
and 4)  
No Feedback  
1/(t +t )  
WH WL  
t
OE to Output Enable  
OE to Output Disable  
15  
15  
15  
15  
PZX  
t
ns  
PXZ  
t
Input to Output Enable Using Product Term Control  
Input to Output Disable Using Product Term Control  
ns  
EA  
t
ns  
ER  
Notes:  
1. See “Switching Test Circuit” for test conditions.  
2. This parameter is tested in standby mode.  
3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where  
frequency may be affected.  
4. t is a calculated value and is not guaranteed. t can be found using the following equation:  
CF  
CF  
t
= 1/f  
(internal feedback) – t .  
CF  
MAX S  
22  
PALCE16V8Z-15 (Ind)  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature . . . . . . . . . . . . . .-65°C to +150°C  
Commercial (C) Devices  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . .-55°C to +125°C  
Ambient Temperature (T )  
Operating in Free Air . . . . . . . . . . . . . . . 0°C to +75°C  
A
Supply Voltage  
with Respect to Ground . . . . . . . . . .-0.5 V to + 7.0 V  
Supply Voltage (V  
with Respect to Ground . . . . . . . . . +4.75 V to +5.25 V  
)
CC  
DC Input Voltage . . . . . . . . . . . -0.5 V to V + 0.5 V  
CC  
Industrial (I) Devices  
DC Output or I/O Pin Voltage . . . -0.5 V to V + 0.5 V  
CC  
Temperature (T ) Operating  
A
Static Discharge Voltage . . . . . . . . . . . . . . . . . 2001 V  
in Free Air. . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
Latchup Current (T = -40°C to +85°C). . . . . . . 100 mA  
Supply Voltage (V  
)
A
CC  
with Respect to Ground . . . . . . . . . . . +4.5 V to +5.5 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to Absolute Maximum Rat-  
ings for extended periods may affect device reliability. Pro-  
gramming conditions may differ.  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
DC CHARACTERISTICS OVER COMMERCIAL AND INDUSTRIAL OPERATING  
RANGES  
Parameter  
Symbol  
Parameter Description  
Output HIGH Voltage  
Test Description  
Min  
Max  
Unit  
V
I
= 6 mA  
= 20 µA  
= 24 mA  
= 6 mA  
= 20 µA  
3.84  
OH  
V
V = V or V , V = Min  
IN IH IL CC  
OH  
I
V – 0.1 V  
V
OH  
CC  
I
0.5  
0.33  
0.1  
V
OL  
V
Output LOW Voltage  
V = V or V , V = Min  
I
OL  
V
OL  
IN  
IH  
IL CC  
I
V
OL  
Guaranteed Input Logical HIGH  
Voltage for all Inputs (Notes 1 and 2)  
V
Input HIGH Voltage  
Input LOW Voltage  
2.0  
V
V
IH  
Guaranteed Input Logical LOW  
Voltage for all Inputs (Notes 1 and 2)  
V
0.9  
IL  
I
Input HIGH Leakage Current  
Input LOW Leakage Current  
V = 5.25 V, V = Max (Note 3)  
10  
µA  
µA  
IH  
IN  
CC  
I
V = 0 V, V = Max (Note 3)  
–10  
IL  
IN  
CC  
V
= 5.25 V, V = Max  
CC  
OUT  
I
Off-State Output Leakage Current HIGH  
Off-State Output Leakage Current LOW  
10  
µA  
µA  
OZH  
V = V or V (Note 3)  
IN  
IH  
IL  
V
= 0 V, V = Max  
CC  
OUT  
I
–10  
OZL  
V = V or V (Note 3)  
IN  
IH  
IL  
I
Output Short-Circuit Current  
Supply Current (Static)  
V
= 0.5 V, V = Max (Note 4)  
–30  
–150  
15  
mA  
µA  
SC  
OUT  
CC  
f = 0 MHz  
Outputs Open (I = 0 mA)  
OUT  
I
CC  
V = Max  
Supply Current (Dynamic)  
f = 25 MHz  
90  
mA  
CC  
Notes:  
1. These are absolute values with respect to device ground, and all overshoots due to system or tester noise are included.  
2. Represents the worst case of HC and HCT standards, allowing compatibility with either.  
3. I/O pin leakage is the worst case of I and I  
(or I and I  
).  
IL  
OZL  
IH  
OZH  
4. Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.  
V
= 0.5 V has been chosen to avoid test problems caused by tester ground degradation.  
OUT  
PALCE16V8Z-25 (Coml, Ind)  
23  
CAPACITANCE1  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Typ  
5
Unit  
pF  
C
V = 2.0 V  
IN  
V = 5.0 V, T = 25 °C,  
CC A  
IN  
C
V
= 2.0 V  
f = 1 MHz  
8
pF  
OUT  
OUT  
Note:  
1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where  
capacitance may be affected.  
SWITCHING CHARACTERISTICS OVER COMMERCIAL AND INDUSTRIAL  
OPERATING RANGES1  
-25  
Parameter  
Symbol  
2
Parameter Description  
Input or Feedback to Combinatorial Output (Note 3)  
Min  
Max  
Unit  
ns  
t
25  
PD  
t
Setup Time from Input or Feedback to Clock  
Hold Time  
20  
0
ns  
S
t
ns  
H
t
Clock to Output  
10  
ns  
CO  
t
LOW  
Clock Width  
8
8
ns  
WL  
t
HIGH  
ns  
WH  
External Feedback  
Maximum  
Frequency (Notes 4 Internal Feedback (f  
1/(t +t )  
33.3  
50  
50  
MHz  
MHz  
MHz  
ns  
S
CO  
f
)
1/(t +t )  
S CF  
MAX  
CNT  
and 5)  
No Feedback  
1/(t +t )  
WH WL  
t
OE to Output Enable  
OE to Output Disable  
25  
25  
25  
25  
PZX  
t
ns  
PXZ  
t
Input to Output Enable Using Product Term Control  
Input to Output Disable Using Product Term Control  
ns  
EA  
t
ns  
ER  
Notes:  
1. See “Switching Test Circuit” for test conditions.  
2. This parameter is tested in standby mode.  
3. This parameter is tested in Standby Mode. When the device is not in Standby Mode, the t will typically be 2 ns faster.  
PD  
4. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where  
frequency may be affected.  
5. t is a calculated value and is not guaranteed. t can be found using the following equation:  
CF  
CF  
t
= 1/f  
(internal feedback) – t .  
CF  
MAX S  
24  
PALCE16V8Z-25 (Coml, Ind)  
SWITCHING WAVEFORMS  
Input or  
Feedback  
V
T
Input or  
Feedback  
V
T
t
t
S
H
t
PD  
V
T
Clock  
Combinatorial  
Output  
t
CO  
V
T
Registered  
Output  
V
T
16493E-3  
16493E-5  
b. Registered output  
a. Combinatorial output  
V
Input  
T
t
WH  
t
t
EA  
ER  
V
– 0.5V  
+ 0.5V  
OH  
Clock  
V
V
T
T
Output  
V
OL  
t
WL  
16493E-6  
16493E-4  
d. Input to output disable/enable  
c. Clock w idth  
V
T
OE  
t
t
PZX  
PXZ  
V
– 0.5V  
+ 0.5V  
OH  
V
Output  
T
V
OL  
16493E-7  
e. OE to output disable/enable  
Notes:  
1. V = 1.5 V  
T
2. Input pulse amplitude 0 V to 3.0 V.  
3. Input rise and fall times 2 ns to 5 ns typical.  
PALCE16V8 and PALCE16V8Z Families  
25  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Must be  
Steady  
Will be  
Steady  
May  
Change  
from H to L  
Will be  
Changing  
from H to L  
May  
Change  
from L to H  
Will be  
Changing  
from L to H  
Don’t Care,  
Any Change  
Permitted  
Changing,  
State  
Unknown  
Does Not  
Apply  
Center  
Line is High-  
Impedance  
“Off” State  
KS000010-PAL  
SWITCHING TEST CIRCUIT  
5 V  
S
1
R
1
Output  
Test Point  
R
2
C
L
16493E-8  
Commercial  
Specification  
S
C
R
R
2
Measured Output Value  
1
L
1
t , t  
Closed  
1.5 V  
PD CO  
Z H: Open  
Z L: Closed  
H Z: Open  
L Z: Closed  
50 pF  
5 pF  
390 Ω  
t
1.5 V  
EA  
200 Ω  
H Z: V 0.5 V  
OH  
t
H-5: 200 Ω  
ER  
L Z: V + 0.5 V  
OL  
26  
PALCE16V8 and PALCE16V8Z Families  
TYPICAL ICC CHARACTERISTICS  
V
= 5 V, T = 25°C  
CC  
A
150  
125  
100  
75  
16V8H-5  
16V8H-7  
16V8H-10  
16V8H-15/25  
16V8Z-12/15  
50  
16V8Q-10/15/25  
16V8Z-25  
25  
0
0
10  
20  
30  
40  
50  
16493E-9  
Frequency (MHz)  
I
vs. Frequency  
CC  
The selected “typical” pattern utilized 50% of the device resources. Half of the macrocells were programmed as registered, and the  
other half were programmed as combinatorial. Half of the available product terms were used for each macrocell. On any vector, half  
of the outputs were switching.  
By utilizing 50% of the device, a midpoint is defined for I . From this midpoint, a designer may scale the I graphs up or down to  
CC  
CC  
estimate the I requirements for a particular design.  
CC  
PALCE16V8 and PALCE16V8Z Families  
27  
ENDURANCE CHARACTERISTICS  
The PALCE16V8 is manufactured using Vantis’ advanced electrically-erasable (EE) CMOS process.  
This technology uses an EE cell to replace the fuse link used in bipolar parts. As a result, the  
device can be erased and reprogrammed—a feature which allows 100% testing at the factory.  
Symbol  
Parameter  
Min Pattern Data Retention Time  
Min Reprogramming Cycles  
Test Conditions  
Max Storage Temperature  
Value  
10  
Unit  
Years  
Years  
Cycles  
t
DR  
Max Operating Temperature  
20  
N
Normal Programming Conditions  
100  
ROBUSTNESS FEATURES  
PALCE16V8X-X/5 devices have some unique features that make them extremely robust,  
especially when operating in high-speed design environments. Pull-up resistors on inputs and  
I/O pins cause unconnected pins to default to a known state. Input clamping circuitry limits  
negative overshoot, eliminating the possibility of false clocking caused by subsequent ringing.  
A special noise filter makes the programming circuitry completely insensitive to any positive  
overshoot that has a pulse width of less than about 100 ns for the /5 versions. Selected /4 devices  
are also being retrofitted with these robustness features.  
INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR PALCE16V8  
V
VC  
CC  
C
> 50 k  
ESD  
Protection  
and  
Programming  
Pins Only  
Programming  
Voltage  
Detection  
Positive  
Overshoot  
Filter  
Programming  
Circuitry  
Clamping  
Typical Input  
V
V
CC  
CC  
> 50 kΩ  
Provides ESD  
Protection and  
Clamping  
Preload Feedback  
Circuitry  
Input  
16493E-10  
Typical Output  
28  
PALCE16V8 and PALCE16V8Z Families  
INPUT/OUTPUT EQUIVALENT SCHEMATICS FOR PALCE16V8Z  
V
CC  
ESD  
Input  
Programming  
Programming  
Voltage  
Detection  
Positive  
Overshoot  
Filter  
Protection Transition Pins Only  
Programming  
Circuitry  
and  
Clamping  
Detection  
Typical Input  
V
CC  
16493E-11  
Provides ESD  
Protection and  
Clamping  
Preload Feedback Input  
Circuitry  
Input Transition  
Detection  
Typical Output  
POWER-UP RESET  
The PALCE16V8 has been designed with the capability to reset during system power-up.  
Following power-up, all flip-flops will be reset to LOW. The output state will be HIGH  
independent of the logic polarity. This feature provides extra flexibility to the designer and is  
especially valuable in simplifying state machine initialization. A timing diagram and parameter  
table are shown below. Due to the synchronous operation of the power-up reset and the wide  
range of ways VCC can rise to its steady state, two conditions are required to ensure a valid  
power-up reset. These conditions are:  
  The VCC rise must be monotonic.  
  Following reset, the clock input must not be driven from LOW to HIGH until all applicable input  
and feedback setup times are met.  
Parameter Symbol  
Parameter Descriptions  
Power-Up Reset Time  
Min  
Max  
Unit  
t
1000  
ns  
PR  
t
Input or Feedback Setup Time  
Clock Width LOW  
S
See Switching Characteristics  
t
WL  
PALCE16V8 and PALCE16V8Z Families  
29  
V
CC  
4 V  
Power  
t
PR  
Registered  
Output  
t
S
Clock  
t
WL  
16493E-12  
Figure 3. Pow er-Up Reset Waveform  
TYPICAL THERMAL CHARACTERISTICS  
Measured at 25°C ambient. These parameters are not tested.  
Typ  
Parameter  
Symbol  
Parameter Description  
Thermal impedance, junction to case  
PDID  
25  
PLCC  
22  
Unit  
θ
θ
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
jc  
ja  
Thermal impedance, junction to ambient  
71  
64  
200 lfpm air  
400 lfpm air  
600 lfpm air  
800 lfpm air  
61  
55  
55  
51  
θ
Thermal impedance, junction to ambient with air flow  
jma  
51  
47  
47  
45  
Plastic θ Considerations  
jc  
The data listed for plastic θ are for reference only and are not recommended for use in calculating junction temperatures. The  
jc  
heat-flow paths in plastic-encapsulated devices are complex, making the θ measurement relative to a specific location on the pack-  
jc  
age surface. Tests indicate this measurement reference point is directly below the die-attach area on the bottom center of the package.  
Furthermore, θ tests on packages are performed in a constant-temperature bath, keeping the package surface at a constant tem-  
jc  
perature. Therefore, the measurements can only be used in a similar environment.  
30  
PALCE16V8 and PALCE16V8Z Families  
CONNECTION DIAGRAMS  
Top View  
DIP/SOIC  
PLCC  
CLK/I  
1
2
3
4
5
6
7
8
9
10  
20  
V
CC  
0
1
2
3
4
5
6
7
8
I
I
I
I
I
I
I
I
19 I/O  
18 I/O  
17 I/O  
16 I/O  
15 I/O  
14 I/O  
13 I/O  
12 I/O  
7
6
5
4
3
2
1
0
3
2
1
20  
19  
I/O6  
I/O5  
I/O4  
I/O3  
18  
17  
16  
15  
4
5
6
7
I3  
I4  
I5  
I6  
14  
I/O2  
I7  
8
GND  
11 OE/I  
9
9
10 11 12 13  
16493E-9  
Note:  
16493E-10  
Pin 1 is marked for orientation.  
PIN DESIGNATIONS  
CLK = Clock  
GND = Ground  
I
= Input  
I/O  
OE  
= Input/Output  
= Output Enable  
= Supply Voltage  
V
CC  
PALCE16V8 and PALCE16V8Z Families  
31  
ORDERING INFORMATION  
Commercial and Industrial Products  
Lattice/Vantis programmable logic products for commercial and industrial applications are available with several ordering options.  
The order number (Valid Combination) is formed by a combination of:  
PAL CE 16 V 8 H -5 J C /5  
FAMILY TYPE  
PAL = Programmable Array Logic  
TECHNOLOGY  
PROGRAMMING DESIGNATOR  
Blank = Initial Algorithm  
/4 = First Revision  
CE  
= CMOS Electrically Erasable  
NUMBER OF  
ARRAY INPUTS  
/5 = Second Revision  
(Same Algorithm as /4)  
OUTPUT TYPE  
V
= Versatile  
NUMBER OF OUTPUTS  
OPERATING CONDITIONS  
POWER  
C
I
= Commercial (0°C to +75°C)  
= Industrial (-40°C to +85°C)  
H
Q
Z
= Half Power (90–125 mA I )  
CC  
= Quarter Power (55 mA I  
= Zero Power (15 µA I Standby)  
)
CC  
CC  
PACKAGE TYPE  
SPEED  
-5  
-7  
-10  
-12  
-15  
-20  
-25  
P
J
= 20-Pin Plastic DIP (PD 020)  
= 20-Pin Plastic Leaded Chip  
Carrier (PL 020)  
= 20-Pin Plastic Gull-Wing  
Small Outline Package (SO 020)  
= 5 ns t  
= 7.5 ns t  
= 10 ns t  
= 12 ns t  
= 15 ns t  
= 20 ns t  
= 25 ns t  
PD  
PD  
S
PD  
PD  
PD  
PD  
PD  
Valid Combinations  
Valid Combinations  
JC  
Valid Combinations lists configurations planned to be  
supported in volume for this device. Consult the local Lattice/  
Vantis sales office to confirm availability of specific valid  
combinations and to check on newly released combinations.  
PALCE16V8H-5  
PALCE16V8H-7  
PALCE16V8H-10  
PALCE16V8Q-10  
PALCE16V8H-15  
PALCE16V8Q-15  
PALCE16V8Q-20  
PALCE16V8H-25  
PALCE16V8Q-25  
PALCE16V8Z-12  
PALCE16V8Z-15  
PALCE16V8Z-25  
/5  
PC, JC, SC  
PC, JC, SC, PI, JI  
JC  
/4  
/5  
PC, JC, SC  
PC, JC  
PI, JI  
/4  
PC, JC, SC, PI, JI  
PC, JC, PI, JI  
PI, JI  
PC, JC, SC, PI, JI, SI  
32  
PALCE16V8 and PALCE16V8Z Families  

相关型号:

PALCE16V8Q-15JC4

EE CMOS 20-Pin Universal Programmable Array Logic
AMD

PALCE16V8Q-15JC5

EE CMOS 20-Pin Universal Programmable Array Logic
AMD

PALCE16V8Q-15JI

EE CMOS 20-Pin Universal Programmable Array Logic
AMD

PALCE16V8Q-15JI/4

EE PLD, 15ns, CMOS, PQCC20,
LATTICE

PALCE16V8Q-15JI4

EE CMOS 20-Pin Universal Programmable Array Logic
AMD

PALCE16V8Q-15JI5

EE CMOS 20-Pin Universal Programmable Array Logic
AMD

PALCE16V8Q-15PC

EE CMOS 20-Pin Universal Programmable Array Logic
AMD

PALCE16V8Q-15PC/4

EE CMOS Zero-Power 20-Pin Universal Programmable Array Logic
LATTICE

PALCE16V8Q-15PC4

EE CMOS 20-Pin Universal Programmable Array Logic
AMD

PALCE16V8Q-15PC5

EE CMOS 20-Pin Universal Programmable Array Logic
AMD

PALCE16V8Q-15PI

EE CMOS 20-Pin Universal Programmable Array Logic
AMD

PALCE16V8Q-15PI/5

EE PLD, 15ns, CMOS, PDIP20,
LATTICE