ATA010A0X3 [LINEAGEPOWER]

8.3 - 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current; 8.3 - 14VDC输入; 0.75Vdc至5.5VDC输出; 10A的输出电流
ATA010A0X3
型号: ATA010A0X3
厂家: LINEAGE POWER CORPORATION    LINEAGE POWER CORPORATION
描述:

8.3 - 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
8.3 - 14VDC输入; 0.75Vdc至5.5VDC输出; 10A的输出电流

文件: 总19页 (文件大小:686K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
March 30, 2008  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A Output Current  
Features  
RoHS Compliant  
ƒ
ƒ
ƒ
Compliant to RoHS EU Directive 2002/95/EC (-Z  
versions)  
Compliant to ROHS EU Directive 2002/95/EC with  
lead solder exemption (non-Z versions)  
Flexible output voltage sequencing EZ-  
SEQUENCETM  
ƒ
ƒ
ƒ
Delivers up to 10A output current  
High efficiency – 93% at 3.3V full load (VIN = 12.0V)  
Small size and low profile:  
EZ-SEQUENCETM  
50.8 mm x 12.7 mm x 8.1 mm  
(2.00 in x 0.5 in x 0.32 in)  
ƒ
ƒ
Low output ripple and noise  
High Reliability:  
Calculated MTBF = 15M hours at 25oC Full-load  
Applications  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Distributed power architectures  
Intermediate bus voltage applications  
ƒ
ƒ
Constant switching frequency (300 kHz)  
Telecommunications equipment  
Servers and storage applications  
Networking equipment  
Output voltage programmable from 0.75 Vdc to  
5.5Vdc via external resistor  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Line Regulation: 0.3% (typical)  
Load Regulation: 0.4% (typical)  
Temperature Regulation: 0.4 % (typical)  
Remote On/Off  
Enterprise Networks  
Latest generation IC’s (DSP, FPGA, ASIC) and  
Microprocessor powered applications  
Remote sense  
Output overcurrent protection (non-latching)  
Wide operating temperature range (-40°C to 85°C)  
UL* 60950-1Recognized, CSAC22.2 No. 60950-1-  
03 Certified, and VDE0805:2001-12 (EN60950-1)  
Licensed  
ƒ
ISO** 9001 and ISO 14001 certified manufacturing  
facilities  
Description  
Austin LynxTM II 12V SIP (singe in-line package) power modules are non-isolated dc-dc converters that can deliver  
up to 10A of output current with full load efficiency of 93% at 3.3V output. These modules provide a precisely  
regulated output voltage programmable via an external resistor from 0.75Vdc to 5.0Vdc over a wide range of input  
voltage (VIN = 8.3 – 14Vdc). The Austin LynxTM II 12V series has a sequencing feature, EZ-SEQUENCETM that  
enable designers to implement various types of output voltage sequencing when powering multiple voltages on a  
board.  
*
UL is a registered trademark of Underwriters Laboratories, Inc.  
CSA is a registered trademark of Canadian Standards Association.  
VDE is a trademark of Verband Deutscher Elektrotechniker e.V.  
** ISO is a registered trademark of the International Organization of Standards  
Document No: DS04-023 ver. 1.24  
PDF name: lynx_II_sip_12v_ds.pdf  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are  
absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in  
excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for  
extended periods can adversely affect the device reliability.  
Parameter  
Device  
Symbol  
Min  
Max  
Unit  
Input Voltage  
All  
VIN  
-0.3  
15  
Vdc  
Continuous  
Sequencing voltage  
Operating Ambient Temperature  
(see Thermal Considerations section)  
Storage Temperature  
All  
All  
Vseq  
TA  
-0.3  
-40  
VIN,max  
85  
Vdc  
°C  
All  
Tstg  
-55  
125  
°C  
Electrical Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions.  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Input Voltage  
Vo,set 3.63  
Vo,set > 3.63  
All  
VIN  
VIN  
8.3  
8.3  
12.0  
12.0  
14.0  
13.2  
70  
Vdc  
Vdc  
Adc  
Maximum Input Current  
IIN,max  
(VIN=2.4V to 5.5V, IO=IO, max  
)
Input No Load Current  
Vo = 0.75Vdc  
Vo = 5.0Vdc  
All  
IIN,No load  
IIN,No load  
IIN,stand-by  
40  
100  
2.0  
mA  
mA  
mA  
(VIN = 12.0Vdc, IO = 0, module enabled)  
Input Stand-by Current  
(VIN = 12.0Vdc, module disabled)  
Inrush Transient  
All  
All  
All  
I2t  
0.4  
A2s  
mAp-p  
dB  
Input Reflected Ripple Current, peak-to-peak  
(5Hz to 20MHz, 1μH source impedance; VIN, min to  
20  
30  
VIN, max, IO= IOmax ; See Test Configurations)  
Input Ripple Rejection (120Hz)  
CAUTION: This power module is not internally fused. An input line fuse must always be used.  
This power module can be used in a wide variety of applications, ranging from simple standalone operation to being  
part of a complex power architecture. To preserve maximum flexibility, internal fusing is not included, however, to  
achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a 15A,  
time-delay fuse (see Safety Considerations section). Based on the information provided in this data sheet on inrush  
energy and maximum dc input current, the same type of fuse with a lower rating can be used. Refer to the fuse  
manufacturer’s data sheet for further information.  
LINEAGE POWER  
2
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Electrical Specifications (continued)  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Set-point  
All  
VO, set  
-2.0  
VO, set  
+2.0  
% VO, set  
(VIN=IN, min, IO=IO, max, TA=25°C)  
Output Voltage  
All  
All  
VO, set  
-2.5%  
+3.5%  
5.5  
% VO, set  
(Over all operating input voltage, resistive load,  
and temperature conditions until end of life)  
Adjustment Range  
VO  
0.7525  
Vdc  
Selected by an external resistor  
Output Regulation  
Line (VIN=VIN, min to VIN, max  
Load (IO=IO, min to IO, max  
Temperature (Tref=TA, min to TA, max  
)
All  
All  
All  
0.3  
0.4  
0.4  
% VO, set  
% VO, set  
% VO, set  
)
)
Output Ripple and Noise on nominal output  
(VIN= VIN, min to VIN, max and IO=IO, min to IO, max  
Cout = 1μF ceramic//10μF tantalum capacitors)  
RMS (5Hz to 20MHz bandwidth)  
Peak-to-Peak (5Hz to 20MHz bandwidth)  
RMS (5Hz to 20MHz bandwidth)  
VO 3.63Vdc  
VO 3.63Vdc  
VO = 5.0Vdc  
12  
30  
25  
30  
75  
40  
mVrms  
mVpk-pk  
mVrms  
Peak-to-Peak (5Hz to 20MHz bandwidth)  
External Capacitance  
VO = 5.0Vdc  
70  
100  
mVpk-pk  
ESR 1 mΩ  
All  
All  
All  
All  
CO, max  
CO, max  
Io  
1000  
5000  
10  
μF  
μF  
0
ESR 10 mΩ  
Output Current  
Adc  
% Io  
Output Current Limit Inception (Hiccup Mode )  
IO, lim  
200  
3.0  
(VO= 90% of VO, set  
)
Output Short-Circuit Current  
(VO250mV) ( Hiccup Mode )  
Efficiency  
All  
IO, s/c  
Adc  
VO, set = 0.75Vdc  
VO, set = 1.2Vdc  
VO,set = 1.5Vdc  
VO,set = 1.8Vdc  
VO,set = 2.5Vdc  
VO,set = 3.3Vdc  
VO,set = 5.0Vdc  
All  
η
η
81.0  
87.5  
89.0  
90.0  
92.0  
93.0  
95.0  
300  
%
%
VIN= VIN, nom, TA=25°C  
IO=IO, max , VO= VO,set  
η
%
η
%
η
%
η
%
η
%
Switching Frequency  
fsw  
kHz  
Dynamic Load Response  
All  
Vpk  
250  
mV  
(dIo/dt=2.5A/μs; VIN = VIN, nom; TA=25°C)  
Load Change from Io= 50% to 100% of  
Io,max; 1μF ceramic// 10 μF tantalum  
Peak Deviation  
Settling Time (Vo<10% peak deviation)  
All  
All  
ts  
50  
μs  
Vpk  
250  
mV  
(dIo/dt=2.5A/μs; VIN = VIN, nom; TA=25°C)  
Load Change from Io= 100% to 50%of Io,max:  
1μF ceramic// 10 μF tantalum  
Peak Deviation  
Settling Time (Vo<10% peak deviation)  
All  
ts  
50  
μs  
LINEAGE POWER  
3
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Electrical Specifications (continued)  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
Dynamic Load Response  
All  
Vpk  
100  
mV  
(dIo/dt=2.5A/μs; V VIN = VIN, nom; TA=25°C)  
Load Change from Io= 50% to 100% of Io,max;  
Co = 2x150 μF polymer capacitors  
Peak Deviation  
Settling Time (Vo<10% peak deviation)  
All  
All  
ts  
25  
μs  
Vpk  
100  
mV  
(dIo/dt=2.5A/μs; VIN = VIN, nom; TA=25°C)  
Load Change from Io= 100% to 50%of Io,max:  
Co = 2x150 μF polymer capacitors  
Peak Deviation  
Settling Time (Vo<10% peak deviation)  
All  
ts  
25  
μs  
General Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Calculated MTBF (IO=IO, max, TA=25°C)  
Telecordia SR-332 Issue 1: Method 1 Case 3  
15,618,000  
5.6 (0.2)  
Hours  
g (oz.)  
Weight  
LINEAGE POWER  
4
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Feature Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions. See Feature Descriptions for additional information.  
Parameter  
Device  
Symbol  
Min  
Typ  
Max  
Unit  
On/Off Signal interface  
Device code with Suffix “4” – Positive logic  
(On/Off is open collector/drain logic input;  
Signal referenced to GND - See feature description  
section)  
Input High Voltage (Module ON)  
All  
All  
All  
All  
VIH  
IIH  
VIN, max  
10  
V
μA  
V
Input High Current  
Input Low Voltage (Module OFF)  
Input Low Current  
VIL  
IIL  
-0.2  
0.3  
1
0.2  
mA  
Device Code with no suffix – Negative Logic  
(On/OFF pin is open collector/drain logic input with  
external pull-up resistor; signal referenced to GND)  
Input High Voltage (Module OFF)  
Input High Current  
All  
All  
All  
All  
VIH  
IIH  
2.5  
0.2  
VIN,max  
1
Vdc  
mA  
Vdc  
μA  
Input Low Voltage (Module ON)  
Input low Current  
VIL  
IIL  
-0.2  
0.3  
10  
Turn-On Delay and Rise Times  
(IO=IO, max , VIN = VIN, nom, TA = 25 oC, )  
All  
All  
Tdelay  
Tdelay  
3
3
msec  
msec  
Case 1: On/Off input is set to Logic Low (Module  
ON) and then input power is applied (delay from  
instant at which VIN =VIN, min until Vo=10% of Vo,set)  
Case 2: Input power is applied for at least one second  
and then the On/Off input is set to logic Low (delay from  
instant at which Von/Off=0.3V until Vo=10% of Vo, set)  
All  
Trise  
4
6
msec  
Output voltage Rise time (time for Vo to rise from 10%  
of Vo,set to 90% of Vo, set)  
Sequencing Delay time  
Delay from VIN, min to application of voltage on SEQ pin  
All  
All  
All  
TsEQ-delay  
|VSEQ –Vo  
10  
msec  
mV  
Tracking Accuracy  
(Power-Up: 2V/ms)  
100  
200  
200  
400  
|
|VSEQ –Vo  
(Power-Down: 1V/ms)  
mV  
|
(VIN, min to VIN, max; IO, min to IO, max VSEQ < Vo)  
1
Output voltage overshoot – Startup  
% VO, set  
IO= IO, max; VIN = 8.3 to 14Vdc, TA = 25 oC  
Remote Sense Range  
0.5  
V
Overtemperature Protection  
All  
Tref  
125  
°C  
(See Thermal Consideration section)  
Input Undervoltage Lockout  
Turn-on Threshold  
All  
All  
7.9  
7.8  
V
V
Turn-off Threshold  
LINEAGE POWER  
5
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Characteristic Curves  
The following figures provide typical characteristics for the Austin LynxTM II SIP modules at 25ºC.  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
Vin=14V  
Vin=12V  
Vin=10V  
Vin=14V  
Vin=12V  
Vin=10V  
0
2
4
6
8
10  
0
2
4
6
8
10  
OUTPUT CURRENT, IO (A)  
OUTPUT CURRENT, IO (A)  
Figure 1. Converter Efficiency versus Output Current  
(Vout = 0.75Vdc).  
Figure 4. Converter Efficiency versus Output Current  
(Vout = 1.8Vdc).  
92  
90  
88  
86  
84  
82  
80  
96  
94  
92  
90  
Vin=14V  
Vin=12V  
Vin=10V  
88  
86  
84  
Vin=14V  
Vin=12V  
Vin=10V  
78  
76  
74  
82  
80  
78  
0
2
4
6
8
10  
0
2
4
6
8
10  
OUTPUT CURRENT, IO (A)  
OUTPUT CURRENT, IO (A)  
Figure 2. Converter Efficiency versus Output Current  
(Vout = 1.2Vdc).  
Figure 5. Converter Efficiency versus Output Current  
(Vout = 2.5Vdc).  
96  
94  
92  
90  
92  
90  
88  
86  
84  
82  
Vin=14V  
Vin=12V  
Vin=10V  
88  
86  
84  
Vin=14V  
Vin=12V  
80  
78  
76  
82  
80  
78  
Vin=10V  
0
2
4
6
8
10  
0
2
4
6
8
10  
OUTPUT CURRENT, IO (A)  
OUTPUT CURRENT, IO (A)  
Figure3. Converter Efficiency versus Output Current  
(Vout = 1.5Vdc).  
Figure 6. Converter Efficiency versus Output Current  
(Vout = 3.3Vdc).  
LINEAGE POWER  
6
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Characteristic Curves (continued)  
The following figures provide typical characteristics for the Austin LynxTM II SIP modules at 25ºC.  
6
Io = 10A  
5
Io=5A  
4
Io=0A  
3
2
1
0
7
8
9
10  
11  
12  
13  
14  
INPUT VOLTAGE, VIN (V)  
TIME, t (10μs/div)  
Figure 7. Input voltage vs. Input Current (Vo =  
2.5Vdc).  
Figure 10. Transient Response to Dynamic Load  
Change from 50% to 100% of full load (Vo = 3.3Vdc).  
TIME, t (2μs/div)  
Figure 8. Typical Output Ripple and Noise  
(Vin = 12.0V dc, Vo = 2.5 Vdc, Io=10A).  
TIME, t (10μs/div)  
Figure 11. Transient Response to Dynamic Load  
Change from 100% to 50% of full load (Vo = 3.3 Vdc).  
TIME, t (2μs/div)  
Figure 9. Typical Output Ripple and Noise  
(Vin = 12.0V dc, Vo = 3.3 Vdc, Io=10A).  
TIME, t (20μs/div)  
Figure 12. Transient Response to Dynamic Load  
Change from 50% to 100% of full load (Vo = 3.3 Vdc,  
Cext = 2x150 μF Polymer Capacitors).  
LINEAGE POWER  
7
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Characteristic Curves (continued)  
The following figures provide typical characteristics for the Austin LynxTM II SIP modules at 25ºC.  
TIME, t (2ms/div)  
TIME, t (10μs/div)  
Figure 13. Transient Response to Dynamic Load  
Change from 100% of 50% full load (Vo = 3.3 Vdc,  
Cext = 2x150 μF Polymer Capacitors).  
Figure 16. Typical Start-Up with application of Vin  
with low-ESR polymer capacitors at the output  
(7x150 μF) (Vin = 12Vdc, Vo = 5.0Vdc, Io = 10A)  
TIME, t (1ms/div)  
TIME, t (2ms/div)  
Figure 14. Typical Start-Up Using Remote On/Off  
(Vin = 12Vdc, Vo = 5.0Vdc, Io = 10A).  
Figure 17. Typical Start-Up with Prebias (Vin =  
12Vdc, Vo = 2.5Vdc, Io = 1A, Vbias =1.2Vdc).  
TIME, t (1ms/div)  
TIME, t (10ms/div)  
Figure 15. Typical Start-Up Using Remote On/Off with  
external capacitors (Vin = 12.0Vdc, Vo = 5.0Vdc, Io =  
10A, Co = 1050μF).  
Figure 18. Output short circuit Current  
(Vin = 5.0Vdc, Vo = 0.75Vdc).  
LINEAGE POWER  
8
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Characteristic Curves (continued)  
The following figures provide thermal derating curves for the Austin LynxTM II SIP modules.  
11  
10  
11  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
NC  
NC  
100LFM  
200LFM  
300LFM  
100 LFM  
200LFM  
300LFM  
400LFM  
400LFM  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
AMBIENT TEMPERATURE, TA OC  
AMBIENT TEMPERATURE, TA OC  
Figure 19. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12.0,  
Vo=0.75Vdc).  
Figure 22. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12.0dc,  
Vo=5.0 Vdc).  
11  
10  
9
8
7
6
NC  
5
100LFM  
4
200LFM  
3
300LFM  
2
400LFM  
1
0
20  
30  
40  
50  
60  
70  
80  
90  
AMBIENT TEMPERATURE, TA OC  
Figure 20. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12.0Vdc,  
Vo=1.8 Vdc).  
11  
10  
9
8
7
6
NC  
5
100LFM  
4
200LFM  
3
300LFM  
2
400LFM  
1
0
20  
30  
40  
50  
60  
70  
80  
90  
AMBIENT TEMPERATURE, TA OC  
Figure 21. Derating Output Current versus Local  
Ambient Temperature and Airflow (Vin = 12.0Vdc,  
Vo=3.3 Vdc).  
LINEAGE POWER  
9
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Test Configurations  
Design Considerations  
Input Filtering  
CURRENT PROBE  
TO OSCILLOSCOPE  
Austin LynxTM II SIP module should be connected to a  
low-impedance source. A highly inductive source can  
LTEST  
VIN(+)  
1μH  
affect the stability of the module. An input capacitance  
must be placed directly adjacent to the input pin of the  
module, to minimize input ripple voltage and ensure  
CIN  
CS 1000μF  
Electrolytic  
module stability.  
2x100μF  
Tantalum  
E.S.R.<0.1Ω  
@ 20°C 100kHz  
In a typical application, 4x47 µF low-ESR tantalum  
capacitors (AVX part #: TPSE476M025R0100, 47µF  
25V 100 mESR tantalum capacitor) will be sufficient  
to provide adequate ripple voltage at the input of the  
module. To minimize ripple voltage at the input, low  
ESR ceramic capacitors are recommended at the input  
of the module. Figure 26 shows input ripple voltage  
(mVp-p) for various outputs with 4x47 µF tantalum  
capacitors and with 4x22 µF ceramic capacitor (TDK  
part #: C4532X5R1C226M) at full load.  
COM  
NOTE: Measure input reflected ripple current with a simulated  
source inductance (LTEST) of 1μH. Capacitor CS offsets  
possible battery impedance. Measure current as shown  
above.  
Figure 23. Input Reflected Ripple Current Test  
Setup.  
COPPER STRIP  
VO(+)  
COM  
RESISTIVE  
LOAD  
300  
250  
200  
150  
1uF  
.
10uF  
SCOPE  
GROUND PLANE  
NOTE: All voltage measurements to be taken at the module  
terminals, as shown above. If sockets are used then  
Kelvin connections are required at the module terminals  
to avoid measurement errors due to socket contact  
resistance.  
10 0  
Tantalum  
50  
0
Figure 24. Output Ripple and Noise Test Setup.  
Ceramic  
0
1
2
3
4
5
6
Rdistribution Rcontact  
Rcontact Rdistribution  
VIN(+)  
VO  
Output Voltage (Vdc)  
RLOAD  
Figure 26. Input ripple voltage for various output  
with 4x47 µF tantalum capacitors and with 4x22 µF  
ceramic capacitors at the input (full load).  
VO  
VIN  
Rdistribution Rcontact  
Rcontact Rdistribution  
COM  
COM  
NOTE: All voltage measurements to be taken at the module  
terminals, as shown above. If sockets are used then  
Kelvin connections are required at the module terminals  
to avoid measurement errors due to socket contact  
resistance.  
Figure 25. Output Voltage and Efficiency Test Setup.  
VO. IO  
Efficiency  
=
x
100 %  
η
VIN. IIN  
LINEAGE POWER  
10  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Design Considerations (continued)  
Safety Considerations  
Output Filtering  
For safety agency approval the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standards,  
i.e., UL 60950-1, CSA C22.2 No. 60950-1-03, and VDE  
0850:2001-12 (EN60950-1) Licensed.  
The Austin LynxTM II SIP module is designed for low  
output ripple voltage and will meet the maximum output  
ripple specification with 1 µF ceramic and 10 µF  
tantalum capacitors at the output of the module.  
However, additional output filtering may be required by  
the system designer for a number of reasons. First,  
there may be a need to further reduce the output ripple  
and noise of the module. Second, the dynamic  
response characteristics may need to be customized to  
a particular load step change.  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the  
input must meet SELV requirements. The power  
module has extra-low voltage (ELV) outputs when all  
inputs are ELV.  
The input to these units is to be provided with a fast-  
acting fuse with a maximum rating of 15A in the positive  
input lead.  
To reduce the output ripple and improve the dynamic  
response to a step load change, additional capacitance  
at the output can be used. Low ESR polymer and  
ceramic capacitors are recommended to improve the  
dynamic response of the module. For stable operation  
of the module, limit the capacitance to less than the  
maximum output capacitance as specified in the  
electrical specification table.  
LINEAGE POWER  
11  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Feature Description  
VIN+  
MODULE  
Remote On/Off  
R
pull-up  
The Austin LynxTM II SMT power modules feature an  
On/Off pin for remote On/Off operation. Two On/Off  
logic options are available in the Austin LynxTM II series  
modules. Positive Logic On/Off signal, device code  
suffix “4”, turns the module ON during a logic High on  
the On/Off pin and turns the module OFF during a logic  
Low. Negative logic On/Off signal, no device code  
suffix, turns the module OFF during logic High on the  
On/Off pin and turns the module ON during logic Low.  
I
ON/OFF  
ON/OFF  
+
PWM Enable  
V
ON/OFF  
R1  
R2  
Q2  
CSS  
Q1  
GND  
_
For positive logic modules, the circuit configuration for  
using the On/Off pin is shown in Figure 27. The On/Off  
pin is an open collector/drain logic input signal (Von/Off)  
that is referenced to ground. During a logic-high (On/Off  
pin is pulled high internal to the module) when the  
transistor Q1 is in the Off state, the power module is  
ON. Maximum allowable leakage current of the  
transistor when Von/off = VIN,max is 10µA. Applying a  
logic-low when the transistor Q1 is turned-On, the power  
module is OFF. During this state VOn/Off must be less  
than 0.3V. When not using positive logic On/off pin,  
leave the pin unconnected or tie to VIN.  
Figure 28. Circuit configuration for using negative  
logic On/OFF.  
Overcurrent Protection  
To provide protection in a fault (output overload)  
condition, the unit is equipped with internal  
current-limiting circuitry and can endure current limiting  
continuously. At the point of current-limit inception, the  
unit enters hiccup mode. The unit operates normally  
once the output current is brought back into its specified  
range. The typical average output current during hiccup  
is 3.0A.  
VIN+  
MODULE  
R2  
Input Undervoltage Lockout  
ON/OFF  
Q2  
+
R1  
At input voltages below the input undervoltage lockout  
limit, module operation is disabled. The module will  
begin to operate at an input voltage above the  
undervoltage lockout turn-on threshold.  
V
ON/OFF  
I
ON/OFF  
PWM Enable  
R3  
R4  
Q1  
Overtemperature Protection  
Q3  
CSS  
To provide protection in a fault condition, the unit is  
equipped with a thermal shutdown circuit. The unit will  
shutdown if the thermal reference point Tref, exceeds  
125oC (typical), but the thermal shutdown is not  
intended as a guarantee that the unit will survive  
temperatures beyond its rating. The module will  
automatically restarts after it cools down.  
GND  
_
Figure 27. Circuit configuration for using positive  
logic On/OFF.  
For negative logic On/Off devices, the circuit  
configuration is shown is Figure 28. The On/Off pin is  
pulled high with an external pull-up resistor (typical Rpull-  
up = 68k, +/- 5%). When transistor Q1 is in the Off state,  
logic High is applied to the On/Off pin and the power  
module is Off. The minimum On/off voltage for logic  
High on the On/Off pin is 2.5Vdc. To turn the module  
ON, logic Low is applied to the On/Off pin by turning ON  
Q1. When not using the negative logic On/Off, leave  
the pin unconnected or tie to GND.  
LINEAGE POWER  
12  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Tools section, helps determine the required external trim  
resistor needed for a specific output voltage.  
Feature Descriptions (continued)  
The amount of power delivered by the module is defined  
as the voltage at the output terminals multiplied by the  
output current. When using the trim feature, the output  
voltage of the module can be increased, which at the  
same output current would increase the power output of  
the module. Care should be taken to ensure that the  
maximum output power of the module remains at or  
below the maximum rated power (Pmax = Vo,set x Io,max).  
Output Voltage Programming  
The output voltage of the Austin LynxTM II SMT can be  
programmed to any voltage from 0.75 Vdc to 5.5 Vdc by  
connecting a single resistor (shown as Rtrim in Figure  
29) between the TRIM and GND pins of the module.  
Without an external resistor between the TRIM pin and  
the ground, the output voltage of the module is 0.7525  
Vdc. To calculate the value of the resistor Rtrim for a  
particular output voltage Vo, use the following equation:  
Voltage Margining  
Output voltage margining can be implemented in the  
Austin LynxTM II modules by connecting a resistor,  
Rmargin-up, from the Trim pin to the ground pin for  
margining-up the output voltage and by connecting a  
resistor, Rmargin-down, from the Trim pin to the Output pin  
for margining-down. Figure 30 shows the circuit  
configuration for output voltage margining. The POL  
Programming Tool, available at www.lineagepower.com  
under the Design Tools section, also calculates the  
values of Rmargin-up and Rmargin-down for a specific output  
voltage and % margin. Please consult your local  
Lineage Power technical representative for additional  
details.  
10500  
Rtrim =  
1000 Ω  
Vo 0.7525  
For example, to program the output voltage of the  
Austin LynxTM II module to 1.8 Vdc, Rtrim is calculated is  
follows:  
10500  
Rtrim =  
1000  
1.8 0.75  
Rtrim = 9.024kΩ  
VIN(+)  
VO(+)  
Vo  
Rmargin-down  
LOAD  
ON/OFF  
TRIM  
Austin Lynx or  
Lynx II Series  
R
trim  
Q2  
GND  
Trim  
Rmargin-up  
Figure 29. Circuit configuration to program output  
voltage using an external resistor.  
Rtrim  
Table 1 provides Rtrim values required for some  
common output voltages.  
Q1  
Table 1  
GND  
VO, (V)  
0.7525  
1.2  
Rtrim (K)  
Open  
22.46  
Figure 30. Circuit Configuration for margining  
Output voltage.  
1.5  
13.05  
1.8  
9.024  
2.5  
5.009  
3.3  
3.122  
5.0  
1.472  
By a using 1% tolerance trim resistor, set point  
tolerance of ±2% is achieved as specified in the  
electrical specification. ThePOL Programming Tool,  
available at www.lineagepower.com under the Design  
LINEAGE POWER  
13  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Modules”, or contact the Lineage Power technical  
representative for additional information.  
Feature Descriptions (continued)  
Voltage Sequencing  
Remote Sense  
The Austin LynxTM II series of modules include a  
sequencing feature, EZ-SEQUENCETM that enables  
users to implement various types of output voltage  
sequencing in their applications. This is accomplished  
via an additional sequencing pin. When not using the  
sequencing feature, either tie the SEQ pin to VIN or  
leave it unconnected.  
The Austin LynxTM II SMT power modules have a  
Remote Sense feature to minimize the effects of  
distribution losses by regulating the voltage at the  
Remote Sense pin (See Figure 31). The voltage  
between the Sense pin and Vo pin must not exceed  
0.5V.  
The amount of power delivered by the module is defined  
as the output voltage multiplied by the output current  
(Vo x Io). When using Remote Sense, the output  
voltage of the module can increase, which if the same  
output is maintained, increases the power output by the  
module. Make sure that the maximum output power of  
the module remains at or below the maximum rated  
power. When the Remote Sense feature is not being  
used, connect the Remote Sense pin to output pin of the  
module.  
When an analog voltage is applied to the SEQ pin, the  
output voltage tracks this voltage until the output  
reaches the set-point voltage. The SEQ voltage must  
be set higher than the set-point voltage of the module.  
The output voltage follows the voltage on the SEQ pin  
on a one-to-one volt basis. By connecting multiple  
modules together, customers can get multiple modules  
to track their output voltages to the voltage applied on  
the SEQ pin.  
For proper voltage sequencing, first, input voltage is  
applied to the module. The On/Off pin of the module is  
left unconnected (or tied to GND for negative logic  
modules or tied to VIN for positive logic modules) so that  
the module is ON by default. After applying input  
voltage to the module, a minimum of 10msec delay is  
required before applying voltage on the SEQ pin.  
During this time, potential of 50mV (± 10 mV) is  
Rdistribution Rcontact  
Rcontact Rdistribution  
VIN(+)  
VO  
Sense  
RLOAD  
Rdistribution Rcontact  
Rcontact Rdistribution  
CO M  
CO M  
maintained on the SEQ pin. After 10msec delay, an  
analog voltage is applied to the SEQ pin and the output  
voltage of the module will track this voltage on a one-to-  
one volt bases until output reaches the set-point  
voltage. To initiate simultaneous shutdown of the  
modules, the SEQ pin voltage is lowered in a controlled  
manner. Output voltage of the modules tracks the  
voltages below their set-point voltages on a one-to-one  
basis. A valid input voltage must be maintained until the  
tracking and output voltages reach ground potential.  
Figure 31. Remote sense circuit configuration.  
When using the EZ-SEQUENCETM feature to control  
start-up of the module, pre-bias immunity feature during  
start-up is disabled. The pre-bias immunity feature of  
the module relies on the module being in the diode-  
mode during start-up. When using the EZ-  
SEQUENCETM feature, modules goes through an  
internal set-up time of 10msec, and will be in  
synchronous rectification mode when voltage at the  
SEQ pin is applied. This will result in sinking current in  
the module if pre-bias voltage is present at the output of  
the module. When pre-bias immunity during start-up is  
required, the EZ-SEQUENCETM feature must be  
disabled. For additional guidelines on using the EZ-  
SEQUENCETM feature please refer to Application Note  
AN04-008 “Application Guidelines for Non-Isolated  
Converters: Guidelines for Sequencing of Multiple  
LINEAGE POWER  
14  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Thermal Considerations  
Power modules operate in a variety of thermal  
environments; however, sufficient cooling should always  
be provided to help ensure reliable operation.  
Considerations include ambient temperature, airflow,  
module power dissipation, and the need for increased  
reliability. A reduction in the operating temperature of  
the module will result in an increase in reliability. The  
thermal data presented here is based on physical  
measurements taken in a wind tunnel. The test set-up  
is shown in Figure 33. Note that the airflow is parallel to  
the long axis of the module as shown in figure 32. The  
derating data applies to airflow in either direction of the  
module’s long axis.  
25.4_  
(1.0)  
Wind Tunnel  
PWBs  
Power Mod ule  
Top View  
76.2_  
(3.0)  
x
Probe Location  
for measuring  
airflow and  
ambient  
8.3_  
(0.325)  
temperature  
Air  
flow  
Tref  
Bottom View  
Figure 33. Thermal Test Set-up.  
Heat Transfer via Convection  
Increased airflow over the module enhances the heat  
transfer via convection. Thermal derating curves  
showing the maximum output current that can be  
delivered at different local ambient temperature (TA) for  
airflow conditions ranging from natural convection and  
up to 2m/s (400 ft./min) are shown in the Characteristics  
Curves section.  
Air Flow  
Figure 32. T  
ref  
Temperature measurement location.  
The thermal reference point, Tref used in the  
specifications is shown in Figure 32. For reliable  
operation this temperature should not exceed 115 oC.  
The output power of the module should not exceed the  
rated power of the module (Vo,set x Io,max).  
Please refer to the Application Note “Thermal  
Characterization Process For Open-Frame Board-  
Mounted Power Modules” for a detailed discussion of  
thermal aspects including maximum device  
temperatures.  
LINEAGE POWER  
15  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Post solder Cleaning and Drying  
Considerations  
Post solder cleaning is usually the final circuit-board  
assembly process prior to electrical board testing. The  
result of inadequate cleaning and drying can affect both  
the reliability of a power module and the testability of the  
finished circuit-board assembly. For guidance on  
appropriate soldering, cleaning and drying procedures,  
refer to Board Mounted Power Modules: Soldering and  
Cleaning Application Note.  
Through-Hole Lead-Free Soldering  
Information  
The RoHS-compliant through-hole products use the  
SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant  
components. They are designed to be processed  
through single or dual wave soldering machines. The  
pins have an RoHS-compliant finish that is compatible  
with both Pb and Pb-free wave soldering processes. A  
maximum preheat rate of 3°C/s is suggested. The wave  
preheat process should be such that the temperature of  
the power module board is kept below 210°C. For Pb  
solder, the recommended pot temperature is 260°C,  
while the Pb-free solder pot is 270°C max. Not all  
RoHS-compliant through-hole products can be  
processed with paste-through-hole Pb or Pb-free reflow  
process. If additional information is needed, please  
consult with your Lineage Power technical  
representative for more details.  
LINEAGE POWER  
16  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Mechanical Outline  
Dimensions are in millimeters and (inches).  
Tolerances: x.x mm 0.5 mm (x.xx in. 0.02 in.) [unless otherwise indicated]  
x.xx mm 0.25 mm (x.xxx in 0.010 in.)  
Top View  
Side View  
Bottom View  
PIN  
1
FUNCTION  
Vo  
2
Vo  
3
Sense+  
Vo  
4
5
GND  
GND  
VIN  
6
7
8
VIN  
B
9
SEQ  
Trim  
10  
On/Off  
LINEAGE POWER  
17  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Recommended Pad Layout  
Dimensions are in millimeters and (inches).  
Tolerances: x.x mm 0.5 mm (x.xx in. 0.02 in.) [unless otherwise indicated]  
x.xx mm 0.25 mm (x.xxx in 0.010 in.)  
PIN  
1
FUNCTION  
Vo  
2
Vo  
3
Sense+  
Vo  
4
5
GND  
GND  
VIN  
6
7
8
VIN  
B
9
SEQ  
Trim  
10  
On/Off  
LINEAGE POWER  
18  
Data Sheet  
Austin LynxTM II 12V SIP Non-isolated Power Modules:  
March 30, 2008  
8.3 – 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current  
Ordering Information  
Please contact your Lineage Power Sales Representative for pricing, availability and optional features.  
Table 2. Device Codes  
Input  
Output  
Voltage  
Output  
Current  
Efficiency  
3.3V@ 10A  
On/Off  
Logic  
Connector  
Type  
Voltage  
Range  
Device Code  
Comcodes  
ATA010A0X3  
ATA010A0X43  
ATA010A0X3Z  
ATA010A0X43Z  
8.3 – 14Vdc  
8.3 – 14Vdc  
8.3 – 14Vdc  
8.3 – 14Vdc  
0.75 – 5.5Vdc  
0.75 – 5.5Vdc  
0.75 – 5.5Vdc  
0.75 – 5.5Vdc  
10 A  
10 A  
10 A  
10 A  
Negative  
Positive  
Negative  
Positive  
SIP  
SIP  
SIP  
SIP  
108989050  
108989067  
93.0%  
93.0%  
93.0%  
93.0%  
CC109104667  
CC109104683  
-Z refers to RoHS compliant codes  
Asia-Pacific Headquarters  
Tel: +65 6416 4283  
Europe, Middle-East and Africa Headquarters  
World Wide Headquarters  
Lineage Power Corporation  
Tel: +49 89 6089 286  
3000 Skyline Drive, Mesquite, TX 75149, USA  
+1-800-526-7819  
India Headquarters  
(Outside U.S.A.: +1-972-284-2626)  
www.lineagepower.com  
Tel: +91 80 28411633  
e-mail: techsupport1@lineagepower.com  
Lineage Power reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or  
application. No rights under any patent accompany the sale of any such product(s) or information.  
© 2008 Lineage Power Corporation, (Mesquite, Texas) All International Rights Reserved.  
LINEAGE POWER  
19  
Document No: DS04-023 ver. 1.24  
PDF name: lynx_II_sip_12v_ds.pdf  

相关型号:

ATA010A0X3-SR

8.3 - 14.0 Vdc Input; 0.75Vdc to 5.5Vdc Output; 10A output current
LINEAGEPOWER

ATA010A0X3-SRZ

8.3 - 14.0 Vdc Input; 0.75Vdc to 5.5Vdc Output; 10A output current
LINEAGEPOWER

ATA010A0X3Z

8.3 - 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
LINEAGEPOWER

ATA010A0X43

8.3 - 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
LINEAGEPOWER

ATA010A0X43-SR

8.3 - 14.0 Vdc Input; 0.75Vdc to 5.5Vdc Output; 10A output current
LINEAGEPOWER

ATA010A0X43-SRZ

8.3 - 14.0 Vdc Input; 0.75Vdc to 5.5Vdc Output; 10A output current
LINEAGEPOWER

ATA010A0X43Z

8.3 - 14Vdc input; 0.75Vdc to 5.5Vdc Output; 10A output current
LINEAGEPOWER

ATA01500D1C

Transimpedance Amplifier
ETC

ATA01500S1C

Transimpedance Amplifier
ETC

ATA01501

AGC Transimpedance Amplifier
ANADIGICS

ATA01501D1C

AGC TRANSIMPEDANCE AMPLIFIER
ANADIGICS

ATA01501S2C

AGC TRANSIMPEDANCE AMPLIFIER
ANADIGICS