LT1172I [Linear]

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators; 为100kHz ,5A , 2.5A和1.25A的高效率开关稳压器
LT1172I
型号: LT1172I
厂家: Linear    Linear
描述:

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
为100kHz ,5A , 2.5A和1.25A的高效率开关稳压器

稳压器 开关
文件: 总20页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1170/LT1171/LT1172  
100kHz, 5A, 2.5A and 1.25A  
High Efficiency Switching Regulators  
U
FEATURES  
DESCRIPTIO  
Wide Input Voltage Range: 3V to 60V  
The LT®1170/LT1171/LT1172 are monolithic high power  
switching regulators. They can be operated in all standard  
switching configurations including buck, boost, flyback,  
forward, inverting and “Cuk.” A high current, high effi-  
Low Quiescent Current: 6mA  
Internal 5A Switch (2.5A for LT1171,  
1.25A for LT1172)  
Shutdown Mode Draws Only 50µA Supply Current  
Very Few External Parts Required  
ciency switch is included on the die along with all oscilla-  
tor, control and protection circuitry. Integration of all  
functionsallowstheLT1170/LT1171/LT1172tobebuiltin  
astandard5-pinTO-3orTO-220powerpackageaswellas  
the 8-pin packages (LT1172). This makes them extremely  
easy to use and provides “bust proof” operation similar to  
Self-Protected Against Overloads  
Operates in Nearly All Switching Topologies  
Flyback-Regulated Mode Has Fully Floating Outputs  
Comes in Standard 5-Pin Packages  
LT1172 Available in 8-Pin MiniDIP and Surface Mount that obtained with 3-pin linear regulators.  
Packages  
Can Be Externally Synchronized  
The LT1170/LT1171/LT1172 operate with supply volt-  
ages from 3V to 60V, and draw only 6mA quiescent  
current. They can deliver load power up to 100W with no  
external power devices. By utilizing current-mode switch-  
ing techniques, they provide excellent AC and DC load and  
line regulation.  
U
APPLICATIO S  
Logic Supply 5V at 10A  
5V Logic to ±15V Op Amp Supply  
The LT1170/LT1171/LT1172 have many unique features  
not found even on the vastly more difficult to use low  
powercontrolchipspresentlyavailable. Theyuseadaptive  
antisat switch drive to allow very wide ranging load cur-  
rents with no loss in efficiency. An externally activated  
shutdown mode reduces total supply current to 50µA  
typically for standby operation.  
Battery Upconverter  
Power Inverter (+ to –) or (– to +)  
Fully Floating Multiple Outputs  
USER NOTE:  
Thisdatasheetisonlyintendedtoprovidespecifications,graphs,andageneralfunctionaldescription  
of the LT1170/LT1171/LT1172. Application circuits are included to show the capability of the  
LT1170/LT1171/LT1172. A complete design manual (AN19) should be obtained to assist in  
developing new designs. This manual contains a comprehensive discussion of both the LT1070 and  
the external components used with it, as well as complete formulas for calculating the values of these  
components. ThemanualcanalsobeusedfortheLT1170/LT1171/LT1172byfactoringinthehigher  
frequency. A CAD design program called SwitcherCADTM is also available.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
SwitcherCAD is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Boost Converter (5V to 12V)  
Maximum Output Power*  
L1**  
5V  
L2  
OUTPUT  
FILTER  
50µH  
100  
10µH  
* ROUGH GUIDE ONLY. BUCK MODE  
LT1170  
P
= (5A)(V  
)
OUT  
OUT  
C3  
100µF  
SPECIAL TOPOLOGIES DELIVER  
MORE POWER.  
80  
60  
40  
20  
0
D1  
** DIVIDE VERTICAL POWER SCALE  
BY TWO FOR LT1171, BY FOUR  
FOR LT1172.  
V
IN  
MBR330  
BUCK-BOOST  
= 30V  
12V  
1A  
V
SW  
V
O
+
R1  
BOOST  
C2  
1000µF  
10.7k  
LT1170/1/2 TA02  
LT1170  
FLYBACK  
+
1%  
C3*  
100µF  
FB  
V
GND  
C
R2  
1.24k  
1%  
R3  
1k  
C1  
1µF  
BUCK-BOOST  
V
O
= 5V  
0
10  
20  
30  
40  
50  
*REQUIRED IF INPUT LEADS 2"  
** COILTRONICS 50-2-52  
PULSE ENGINEERING 92114  
INPUT VOLTAGE (V)  
1170/1/2 TA01  
1
LT1170/LT1171/LT1172  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Supply Voltage  
Operating Junction Temperature Range  
LT1170/71/72M......................... 55°C to 150°C  
LT1170/71/72HVC,  
LT1170/71/72HV (Note 2) .................................. 60V  
LT1170/71/72 (Note 2)....................................... 40V  
Switch Output Voltage  
LT1170/71/72HV ................................................ 75V  
LT1170/71/72..................................................... 65V  
LT1172S8........................................................... 60V  
Feedback Pin Voltage (Transient, 1ms) ................ ±15V  
Storage Temperature Range ............... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LT1170/71/72C (Oper.) .............. 0°C to 100°C  
LT1170/71/72HVC  
LT1170/71/72C (Sh. Ckt.) .......... 0°C to 125°C  
LT1170/71/72HVI,  
C
I
LT1170/71/72I (Oper.) .......... 40°C to 100°C  
LT1170/71/72HVI,  
LT1170/71/72I (Sh. Ckt.) ...... 40°C to 125°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
NC  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
NC  
NC  
E2  
V
GND  
1
2
3
4
E2  
V
8
7
6
5
NUMBER  
V
C
SW  
GND  
FB  
E1  
V
LT1172MJ8  
LT1172CJ8  
LT1172CN8  
LT1172IN8  
LT1172CS8  
LT1172IS8  
LT1172CSW  
V
C
SW  
NC*  
IN  
FB  
NC  
NC  
NC  
E1  
J8 PACKAGE  
8-LEAD CERDIP  
N8 PACKAGE  
8-LEAD PDIP  
V
IN  
NC  
NC  
S8 PACKAGE  
8-LEAD PLASTIC SO  
* Do not connect Pin 4 of the LT1172 DIP or SO to external  
circuitry. This pin may be active in future revisions.  
SW PACKAGE  
16-LEAD PLASTIC SO WIDE  
TJMAX = 150°C, θJA = 100°C/W (J)  
TJMAX = 100°C, θJA = 100°C/W (N)  
JMAX = 100°C, θJA = 120°C/W to 150°C/W  
depending on board layout (S)  
TJMAX = 100°C, θJA = 150°C/W  
S8 PART MARKING  
1172 1172I  
Based on continuous operation.  
TJMAX = 125°C for intermittent fault conditions.  
T
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
BOTTOM VIEW  
FRONT VIEW  
V
V
C
SW  
5
4
3
2
1
V
V
IN  
1
4
2
3
CASE  
IS GND  
SW  
LT1170MK  
LT1170CK  
LT1171MK  
LT1171CK  
LT1172MK  
LT1172CK  
LT1170CT  
LT1170IT  
GND  
FB  
V
FB  
IN  
K PACKAGE  
4-LEAD TO-3 METAL CAN  
V
C
LT1170HVCT  
LT1170HVIT  
LT1171CT  
T PACKAGE  
5-LEAD PLASTIC TO-220  
TJMAX  
θJC  
θJA  
LT1170MK  
LT1170CK  
LT1171MK  
LT1171CK  
LT1172MK  
LT1172CK  
150°C 2°C/W 35°C/W  
100°C 2°C/W 35°C/W  
150°C 4°C/W 35°C/W  
100°C 4°C/W 35°C/W  
150°C 8°C/W 35°C/W  
150°C 8°C/W 35°C/W  
TJMAX  
θJC  
θJA  
LT1170CT/LT1170HVCT  
LT1171CT/LT1171HVCT  
LT1172CT/LT1172HVCT  
100°C 2°C/W 75°C/W  
100°C 4°C/W 75°C/W  
100°C 8°C/W 75°C/W  
LT1171IT  
LT1171HVCT  
LT1172CT  
Based on continuous operation.  
TJMAX = 125°C for intermittent fault conditions.  
Based on continuous operation.  
TJMAX = 125°C for intermittent fault conditions.  
LT1172HVCT  
*θ will vary from  
ORDER PART  
NUMBER  
approximately  
FRONT VIEW  
25°C/W with 2.8  
sq. in. of 1oz.  
5
4
3
2
1
V
V
GND  
FB  
IN  
SW  
copper to 45°C/W  
with 0.20 sq. in. of  
1oz. copper.  
Somewhat lower  
values can be  
obtained with  
LT1170CQ  
LT1170IQ  
LT1171CQ  
LT1171HVCQ  
LT1172CQ  
LT1172HVIQ  
V
C
Q PACKAGE  
5-LEAD DD  
additional copper LT1171IQ  
TJMAX = 100°C, θJA = *°C/W  
layers in multilayer  
boards.  
2
LT1170/LT1171/LT1172  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating tem-  
perature range, otherwise specifications are at TA = 25°C. VIN = 15V, VC = 0.5V, VFB = VREF, output pin open, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Reference Voltage  
Measured at Feedback Pin  
V = 0.8V  
C
1.224 1.244 1.264  
1.214 1.244 1.274  
V
V
REF  
I
Feedback Input Current  
V
= V  
REF  
350  
4400  
200  
750  
1100  
nA  
nA  
B
FB  
g
Error Amplifier  
Transconductance  
I = ±25µA  
C
3000  
2400  
6000  
7000  
µmho  
µmho  
m
Error Amplifier Source or  
Sink Current  
V = 1.5V  
C
150  
120  
350  
400  
µA  
µA  
Error Amplifier Clamp  
Voltage  
Hi Clamp, V = 1V  
1.80  
0.25  
2.30  
0.52  
V
V
FB  
Lo Clamp, V = 1.5V  
0.38  
FB  
Reference Voltage Line  
Regulation  
3V V V  
V = 0.8V  
C
0.03  
%/V  
IN  
MAX  
A
Error Amplifier Voltage Gain  
Minimum Input Voltage (Note 5)  
Supply Current  
0.9V V 1.4V  
500  
800  
2.6  
6
V/V  
V
V
C
3.0  
9
I
3V V V  
, V = 0.6V  
C
mA  
Q
IN  
MAX  
Control Pin Threshold  
Duty Cycle = 0  
0.8  
0.6  
0.9  
1.08  
1.25  
V
V
Normal/Flyback Threshold  
on Feedback Pin  
0.4  
0.45  
16.3  
6.8  
0.54  
V
V
Flyback Reference Voltage  
(Note 5)  
I
= 50µA  
FB  
15.0  
14.0  
17.6  
18.0  
V
V
FB  
Change in Flyback Reference  
Voltage  
0.05 I 1mA  
4.5  
9
V
FB  
Flyback Reference Voltage  
Line Regulation (Note 5)  
I
= 50µA  
0.01  
300  
0.03  
650  
%/V  
FB  
7V V V  
IN  
MAX  
Flyback Amplifier  
I = ±10µA  
150  
µmho  
C
Transconductance (g )  
m
Flyback Amplifier Source  
and Sink Current  
V = 0.6V  
Source  
Sink  
15  
25  
32  
40  
70  
70  
µA  
µA  
C
I
= 50µA  
FB  
BV  
Output Switch Breakdown  
Voltage  
3V V V  
,
MAX  
LT1170/LT1171/LT1172  
LT1170HV/LT1171HV/LT1172HV  
LT1172S8  
65  
75  
60  
90  
90  
80  
V
V
V
IN  
I
= 1.5mA  
SW  
V
Output Switch  
“On” Resistance (Note 3)  
LT1170  
LT1171  
LT1172  
0.15  
0.30  
0.60  
0.24  
0.50  
1.00  
SAT  
Control Voltage to Switch  
Current Transconductance  
LT1170  
LT1171  
LT1172  
8
4
2
A/V  
A/V  
A/V  
I
Switch Current Limit (LT1170)  
Duty Cycle = 50%  
Duty Cycle = 50%  
Duty Cycle = 80% (Note 4)  
T 25°C  
T < 25°C  
J
5
5
4
10  
11  
10  
A
A
A
LIM  
J
(LT1171)  
(LT1172)  
Duty Cycle = 50%  
Duty Cycle = 50%  
Duty Cycle = 80% (Note 4)  
T 25°C  
T < 25°C  
J
2.5  
2.5  
2.0  
5.0  
5.5  
5.0  
A
A
A
J
Duty Cycle = 50%  
Duty Cycle = 50%  
Duty Cycle = 80% (Note 4)  
T 25°C  
1.25  
1.25  
1.00  
3.0  
3.5  
2.5  
A
A
A
J
T < 25°C  
J
3
LT1170/LT1171/LT1172  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating tem-  
perature range, otherwise specifications are at TA = 25°C. VIN = 15V, VC = 0.5V, VFB = VREF, output pin open, unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I  
I  
Supply Current Increase  
During Switch On-Time  
25  
35  
mA/A  
IN  
SW  
f
Switching Frequency  
88  
85  
100  
112  
115  
kHz  
kHz  
DC  
Maximum Switch Duty Cycle  
85  
92  
97  
%
MAX  
Shutdown Mode  
Supply Current  
3V V V  
V = 0.05V  
C
100  
250  
µA  
IN  
MAX  
Shutdown Mode  
Threshold Voltage  
3V V V  
100  
50  
150  
250  
300  
mV  
mV  
IN  
MAX  
Flyback Sense Delay Time (Note 5)  
1.5  
µs  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: Minimum effective switch “on” time for the LT1170/71/72 (in current  
limit only) is 0.6µs. This limits the maximum safe input voltage during an  
outputshortedcondition.Buckmodeandinvertingmodeinputvoltageduring  
an output shorted condition is limited to:  
Transformer designs will tolerate much higher input voltages because  
leakage inductance limits rate of rise of current in the switch. These  
designs must be evaluated individually to assure that current limit is well  
controlled up to maximum input voltage.  
Boost mode designs are never protected against output shorts because  
the external catch diode and inductor connect input to output.  
(R)(I ) + Vf  
Note 3: Measured with V in hi clamp, V = 0.8V. I = 4A for LT1170,  
2A for LT1171, and 1A for LT1172.  
L
C
FB  
SW  
V
(max, output shorted) = 15V +  
IN  
(t)(f)  
buck and inverting mode  
R = Inductor DC resistance  
Note 4: For duty cycles (DC) between 50% and 80%, minimum  
guaranteed switch current is given by I = 3.33 (2 – DC) for the LT1170,  
LIM  
I = 10A for LT1170, 5A for LT1171, and 2.5A for LT1172  
L
I
= 1.67 (2 – DC) for the LT1171, and I = 0.833 (2 – DC) for the  
LIM  
LIM  
Vf = Output catch diode forward voltage at I  
LT1172.  
L
t = 0.6µs, f = 100kHz switching frequency  
Note 5: Minimum input voltage for isolated flyback mode is 7V. V  
=
MAX  
55V for HV grade in fully isolated mode to avoid switch breakdown.  
Maximum input voltage can be increased by increasing R or Vf.  
External current limiting such as that shown in AN19, Figure 39, will  
provide protection up to the full supply voltage rating. C1 in Figure 39  
should be reduced to 200pF.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Current Limit vs Duty Cycle*  
Minimum Input Voltage  
Switch Saturation Voltage  
16  
12  
8
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
SWITCH CURRENT = I  
MAX  
150°C  
100°C  
25°C  
–55°C  
25°C  
–55°C  
125°C  
SWITCH CURRENT = 0A  
4
* DIVIDE VERTICAL SCALE BY TWO FOR  
LT1171, BY FOUR FOR LT1172.  
* DIVIDE CURRENT BY TWO FOR  
LT1171, BY FOUR FOR LT1172.  
0
70  
0
10 20 30 40 50 60  
80 90 100  
2
4
5
6
7
0
1
3
8
–75 –50 –25  
0
25 50 75 100 125 150  
DUTY CYCLE (%)  
SWITCH CURRENT (A)*  
TEMPERATURE (°C)  
1170/1/2 G01  
1170/1/2 G02  
1170/1/2 G03  
4
LT1170/LT1171/LT1172  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Feedback Bias Current vs  
Temperature  
Line Regulation  
Reference Voltage vs Temperature  
5
4
800  
700  
600  
500  
400  
300  
200  
100  
0
1.250  
1.248  
1.246  
1.244  
1.242  
1.240  
1.238  
1.236  
1.234  
3
T = 150°C  
J
2
1
0
T = –55°C  
J
T = 25°C  
J
–1  
–2  
–3  
–4  
–5  
–75 –50 –25  
0
25 50 75  
100 125  
150  
–75 –50 –25  
0
25 50 75 100 125 150  
0
10  
30  
40  
50  
60  
20  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1170/1/2 G04  
1170/1/2 G05  
1170/1/2 G06  
Supply Current vs Supply Voltage  
(Shutdown Mode)  
Supply Current vs Input Voltage*  
Driver Current* vs Switch Current  
15  
14  
13  
12  
11  
10  
9
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
T = 25°C  
T = 25°C  
J
J
NOTE THAT THIS CURRENT DOES NOT  
INCLUDE DRIVER CURRENT, WHICH IS  
A FUNCTION OF LOAD CURRENT AND  
DUTY CYCLE.  
T = 55°C  
V
= 50mV  
J
C
90% DUTY CYCLE  
50% DUTY CYCLE  
60  
60  
T = 25°C  
J
8
40  
40  
10% DUTY CYCLE  
0% DUTY CYCLE  
7
20  
20  
V
= 0V  
C
6
0
0
5
30  
SUPPLY VOLTAGE (V)  
0
1
2
3
4
0
10  
30  
40  
50  
1170/1/2 G09  
60  
0
10  
20  
40  
50  
5
20  
60  
SWITCH CURRENT (A)  
INPUT VOLTAGE (V)  
1170/1/2 G08  
1170/1/2 G07  
* UNDER VERY LOW OUTPUT CURRENT CONDITIONS,  
DUTY CYCLE FOR MOST CIRCUITS WILL APPROACH  
10% OR LESS.  
* AVERAGE LT1170 POWER SUPPLY CURRENT IS  
FOUND BY MULTIPLYING DRIVER CURRENT BY  
DUTY CYCLE, THEN ADDING QUIESCENT CURRENT.  
Shutdown Mode Supply Current  
Error Amplifier Transconductance  
VC Pin Characteristics  
200  
180  
160  
140  
120  
100  
80  
5000  
300  
I (V PIN)  
V (FB PIN)  
C
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
g =  
m
V
FB  
= 1.5V (CURRENT INTO V PIN)  
C
200  
100  
T = 150°C  
J
0
T
J
= 25°C  
–100  
–200  
–300  
–400  
60  
–55°C T 125°C  
J
V
FB  
= 0.8V (CURRENT OUT OF V PIN)  
C
40  
20  
0
0
100 125  
150  
0
10 20 30 40 50 60  
80  
–75 –50 –25  
0
25 50 75  
0
0.5  
1.0  
V PIN VOLTAGE (V)  
C
1.5  
2.0  
2.5  
70  
90 100  
V
C
PIN VOLTAGE (mV)  
TEMPERATURE (°C)  
1170/1/2 G10  
1170/1/2 G11  
1170/1/2 G12  
5
LT1170/LT1171/LT1172  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Idle Supply Current vs  
Temperature  
Feedback Pin Clamp Voltage  
Switch “Off” Characteristics  
11  
10  
9
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
C
= 0.6V  
–55°C  
V
8
SUPPLY  
= 40V  
V
7
V
= 60V  
= 3V  
SUPPLY  
= 15V  
25°C  
SUPPLY  
V
6
SUPPLY  
= 3V  
V
SUPPLY  
150°C  
V
SUPPLY  
5
= 55V  
4
3
2
1
0
–75 –50 –25  
0
25 50 75 100 125 150  
0
0.1 0.2 0.3 0.4 0.5 0.6  
0.8  
0
10 20 30 40 50 60  
80  
90 100  
0.7  
0.9 1.0  
70  
TEMPERATURE (°C)  
FEEDBACK CURRENT (mA)  
SWITCH VOLTAGE (V)  
1170/1/2 G13  
1170/1/2 G14  
1170/1/2 G15  
Isolated Mode Flyback  
Reference Voltage  
Shutdown Thresholds  
Flyback Blanking Time  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
–100  
50  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CURRENT (OUT OF V PIN)  
C
R
FB  
= 500Ω  
R
= 1k  
FB  
FB  
VOLTAGE  
R
= 10k  
V
VOLTAGE IS REDUCED UNTIL  
C
REGULATOR CURRENT DROPS  
BELOW 300µA  
0
0
–75 –50 –25  
0
25 50 75 100 125 150  
100  
125 150  
–75 –50 –25  
0
25 50 75  
–75 –50 –25  
0
25 50 75 100 125 150  
JUNCTION TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1170/1/2 G16  
1170/1/2 G18  
1170/1/2 G17  
Transconductance of Error  
Amplifier  
Normal/Flyback Mode Threshold on  
Feedback Pin  
–24  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
–30  
0
500  
490  
480  
470  
460  
450  
440  
430  
420  
410  
400  
–22  
–20  
–18  
–16  
–14  
–12  
–10  
–8  
θ
30  
FEEDBACK PIN VOLTAGE  
(AT THRESHOLD)  
60  
g
m
90  
120  
150  
180  
210  
FEEDBACK PIN CURRENT  
(AT THRESHOLD)  
–6  
–1000  
–4  
150  
1k  
10k  
100k  
1M  
10M  
–50  
50  
100 125  
–25  
0
25  
75  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
1170/1/2 G19  
1170/1/2 G20  
6
LT1170/LT1171/LT1172  
W
BLOCK DIAGRA  
SWITCH  
OUT  
V
IN  
16V  
2.3V  
REG  
FLYBACK  
ERROR  
AMP  
LT1172  
5A, 75V  
SWITCH  
100kHz  
OSC  
LOGIC  
COMP  
DRIVER  
ANTI-  
SAT  
MODE  
SELECT  
FB  
ERROR  
AMP  
V
C
+
+
0.02Ω  
(0.04LT1171)  
(0.16LT1172)  
SHUTDOWN  
CIRCUIT  
CURRENT  
0.16Ω  
AMP  
GAIN  
6
1.24V  
REF  
0.15V  
(LT1170 AND LT1171 ONLY)  
E1  
E2  
ALWAYS CONNECT E1 TO THE GROUND PIN ON MINIDIP, 8- AND 16-PIN SURFACE MOUNT PACKAGES.  
E1 AND E2 INTERNALLY TIED TO GROUND ON TO-3 AND TO-220 PACKAGES.  
1170/1/2 BD  
U
OPERATIO  
protection under output overload or short conditions. A  
low dropout internal regulator provides a 2.3V supply for  
all internal circuitry on the LT1170/LT1171/LT1172. This  
low dropout design allows input voltage to vary from 3V to  
60V with virtually no change in device performance. A  
100kHz oscillator is the basic clock for all internal timing.  
It turns “on” the output switch via the logic and driver  
circuitry. Special adaptive anti-sat circuitry detects onset  
of saturation in the power switch and adjusts driver  
current instantaneously to limit switch saturation. This  
minimizes driver dissipation and provides very rapid turn-  
off of the switch.  
The LT1170/LT1171/LT1172 are current mode switchers.  
This means that switch duty cycle is directly controlled by  
switch current rather than by output voltage. Referring to  
the block diagram, the switch is turned “on” at the start of  
each oscillator cycle. It is turned “off” when switch current  
reachesapredeterminedlevel. Controlofoutputvoltageis  
obtained by using the output of a voltage sensing error  
amplifier to set current trip level. This technique has  
several advantages. First, it has immediate response to  
input voltage variations, unlike ordinary switchers which  
have notoriously poor line transient response. Second, it  
reduces the 90° phase shift at midfrequencies in the  
energy storage inductor. This greatly simplifies closed-  
loop frequency compensation under widely varying input  
voltage or output load conditions. Finally, it allows simple  
pulse-by-pulsecurrentlimitingtoprovidemaximumswitch  
A 1.2V bandgap reference biases the positive input of the  
error amplifier. The negative input is brought out for  
output voltage sensing. This feedback pin has a second  
7
LT1170/LT1171/LT1172  
U
OPERATIO  
function; when pulled low with an external resistor, it  
programs the LT1170/LT1171/LT1172 to disconnect the  
main error amplifier output and connects the output of the  
flyback amplifier to the comparator input. The LT1170/  
LT1171/LT1172 will then regulate the value of the flyback  
pulse with respect to the supply voltage.* This flyback  
pulse is directly proportional to output voltage in the  
traditional transformer coupled flyback topology regula-  
tor. By regulating the amplitude of the flyback pulse, the  
output voltage can be regulated with no direct connection  
between input and output. The output is fully floating up to  
the breakdown voltage of the transformer windings. Mul-  
tiple floating outputs are easily obtained with additional  
windings. A special delay network inside the LT1170/  
LT1171/LT1172 ignores the leakage inductance spike at  
the leading edge of the flyback pulse to improve output  
regulation.  
when switch currents exceed 300mA. Also, note that chip  
dissipation will actually increase with E2 open during  
normal load operation, even though dissipation in current  
limit mode will decrease. See “Thermal Considerations”  
next.  
Thermal Considerations When Using the MiniDIP and  
SW Packages  
The low supply current and high switch efficiency of the  
LT1172 allow it to be used without a heat sink in most  
applications when the TO-220 or TO-3 package is se-  
lected. These packages are rated at 50°C/W and 35°C/W  
respectively.TheminiDIPs,however,areratedat100°C/W  
in ceramic (J) and 130°C/W in plastic (N).  
Care should be taken for miniDIP applications to ensure  
that the worst case input voltage and load current condi-  
tionsdonotcauseexcessivedietemperatures.Thefollow-  
ing formulas can be used as a rough guide to calculate  
LT1172 power dissipation. For more details, the reader is  
referred to Application Note 19 (AN19), “Efficiency Calcu-  
lations” section.  
The error signal developed at the comparator input is  
brought out externally. This pin (VC) has four different  
functions. It is used for frequency compensation, current  
limit adjustment, soft starting, and total regulator shut-  
down. During normal regulator operation this pin sits at a  
voltage between 0.9V (low output current) and 2.0V (high  
output current). The error amplifiers are current output  
(gm) types, so this voltage can be externally clamped for  
adjusting current limit. Likewise, a capacitor coupled  
external clamp will provide soft start. Switch duty cycle  
goes to zero if the VC pin is pulled to ground through a  
diode,placingtheLT1170/LT1171/LT1172inanidlemode.  
Pulling the VC pin below 0.15V causes total regulator  
shutdown, with only 50µA supply current for shutdown  
circuitry biasing. See AN19 for full application details.  
Average supply current (including driver current) is:  
IIN 6mA + ISW(0.004 + DC/40)  
ISW = switch current  
DC = switch duty cycle  
Switch power dissipation is given by:  
PSW = (ISW)2 • (RSW)(DC)  
RSW = LT1172 switch “on” resistance (1maximum)  
Total power dissipation is the sum of supply current times  
input voltage plus switch power:  
Extra Pins on the MiniDIP and Surface Mount Packages  
PD(TOT) = (IIN)(VIN) + PSW  
The 8- and 16-pin versions of the LT1172 have the  
emitters of the power transistor brought out separately  
from the ground pin. This eliminates errors due to ground  
pin voltage drops and allows the user to reduce switch  
currentlimit2:1byleavingthesecondemitter(E2)discon-  
nected. The first emitter (E1) should always be connected  
tothegroundpin.Notethatswitchonresistancedoubles  
when E2 is left open, so efficiency will suffer somewhat  
In a typical example, using a boost converter to generate  
12V at 0.12A from a 5V input, duty cycle is approximately  
60%, and switch current is about 0.65A, yielding:  
IIN = 6mA + 0.65(0.004 + DC/40) = 18mA  
PSW = (0.65)2 • (1)(0.6) = 0.25W  
PD(TOT) = (5V)(0.018A) + 0.25 = 0.34W  
*See note under block diagram.  
8
LT1170/LT1171/LT1172  
U
OPERATIO  
LT1170/LT1171/LT1172 Synchronizing  
Temperature rise in a plastic miniDIP would be 130°C/W  
times 0.34W, or approximately 44°C. The maximum am-  
bient temperature would be limited to 100°C (commercial  
temperature limit) minus 44°C, or 56°C.  
The LT1170/LT1171/LT1172 can be externally synchro-  
nized in the frequency range of 120kHz to 160kHz. This is  
accomplished as shown in the accompanying figures.  
Synchronizing occurs when the VC pin is pulled to ground  
with an external transistor. To avoid disturbing the DC  
characteristics of the internal error amplifier, the width of  
the synchronizing pulse should be under 0.3µs. C2 sets  
the pulse width at 0.2µs. The effect of a synchronizing  
pulse on the LT1170/LT1171/LT1172 amplifier offset can  
be calculated from:  
In most applications, full load current is used to calculate  
die temperature. However, if overload conditions must  
also be accounted for, four approaches are possible. First,  
if loss of regulated output is acceptable under overload  
conditions, the internal thermal limit of the LT1172 will  
protect the die in most applications by shutting off switch  
current. Thermal limit is not a tested parameter, however,  
and should be considered only for noncritical applications  
withtemporaryoverloads.Asecondapproachistousethe  
largerTO-220(T)orTO-3(K)packagewhich,evenwithout  
aheatsink, maylimitdietemperaturestosafelevelsunder  
overload conditions. In critical situations, heat sinking of  
these packages is required; especially if overload condi-  
tions must be tolerated for extended periods of time.  
VC  
R3  
KT  
q
t
f
I +  
C
( S)( S)  
VOS =  
IC  
KT  
= 26mV at 25°C  
q
tS = pulse width  
fS = pulse frequency  
The third approach for lower current applications is to  
leave the second switch emitter (miniDIP only) open. This  
increases switch “on” resistance by 2:1, but reduces  
switch current limit by 2:1 also, resulting in a net 2:1  
reduction in I2R switch dissipation under current limit  
conditions.  
IC = VC source current (200µA)  
VC = operating VC voltage (1V to 2V)  
R3 = resistor used to set mid-frequency “zero” in  
frequency compensation network.  
With tS = 0.2µs, fS = 150kHz, VC = 1.5V, and R3 = 2k, offset  
voltage shift is 3.8mV. This is not particularly bother-  
some, but note that high offsets could result if R3 were  
reduced to a much lower value. Also, the synchronizing  
transistormustsinkhighercurrentswithlowvaluesofR3,  
so larger drives may have to be used. The transistor must  
be capable of pulling the VC pin to within 200mV of ground  
to ensure synchronizing.  
ThefourthapproachistoclamptheVC pintoavoltageless  
than its internal clamp level of 2V. The LT1172 switch  
current limit is zero at approximately 1V on the VC pin and  
2A at 2V on the VC pin. Peak switch current can be  
externally clamped between these two levels with a diode.  
See AN19 for details.  
Synchronizing with Bipolar Transistor  
Synchronizing with MOS Transistor  
V
IN  
V
IN  
LT1170  
LT1170  
GND  
V
C
GND  
V
C
C2  
C2  
D1  
R1  
3k  
39pF  
100pF  
1N4158  
R3  
C1  
R3  
C1  
2N2369  
VN2222*  
R2  
2.2k  
D2  
1N4158  
R2  
2.2k  
FROM 5V  
LOGIC  
FROM 5V  
LOGIC  
1170/1/2 OP01  
* SILICONIX OR EQUIVALENT  
1170/1/2 OP02  
9
LT1170/LT1171/LT1172  
U
TYPICAL APPLICATIO S  
Flyback Converter  
CLAMP TURN-ON  
SPIKE  
OPTIONAL  
FILTER  
L2  
5µH  
V
SNUB  
C4  
100µF  
V
+ Vf  
N
OUT  
a
PRIMARY FLYBACK VOLTAGE =  
LT1170 SWITCH VOLTAGE  
V
IN  
N* = 1/3  
D1  
b
d
V
5V  
6A  
OUT  
AREA “a” = AREA “b” TO MAINTAIN  
ZERO DC VOLTS ACROSS PRIMARY  
V
IN  
0V  
V
OUT  
+ V  
f
20V TO 30V  
D3  
25V  
1W  
N*  
1
c
SECONDARY VOLTAGE  
N • V  
+
IN  
C1  
2000µF  
AREA “c” = AREA “d” TO MAINTAIN  
ZERO DC VOLTS ACROSS SECONDARY  
0V  
D2  
MUR110  
R1  
3.74k  
I  
V
I
IN  
PRI  
V
SW  
FB  
PRIMARY CURRENT  
+
C4*  
100µF  
0
0
LT1170  
I
/N  
PRI  
SECONDARY CURRENT  
V
GND  
C
I
PRI  
R3  
1.5k  
R2  
1.24k  
LT1170 SWITCH CURRENT  
0
0
C2  
I
PRI  
0.15µF  
SNUBBER DIODE CURRENT  
*REQUIRED IF INPUT LEADS 2"  
(I )(L )  
PRI  
L
t =  
V
SNUB  
1170/1/2 TA03  
LCD Contrast Supply  
5V*  
L1**  
50µH  
V
*
BAT  
3V TO 20V  
V
IN  
V
E2  
E1  
SW  
+
C1  
D1  
1N914  
1µF  
LT1172  
TANTALUM  
R1  
200k  
R2  
100k  
V
OUT  
FB  
–10V TO –26V  
V
GND  
C
D2  
C2***  
R3  
15k  
C3  
0.0047µF  
D3  
2µF  
+
TANTALUM  
OPTIONAL  
SHUTDOWN  
C4  
0.047µF  
VN2222  
D2, D3 = ER82.004 600mA SCHOTTKY. OTHER FAST SWITCHING TYPES MAY BE USED.  
* V AND BATTERY MAY BE TIED TOGETHER. MAXIMUM VALUE FOR V IS EQUAL TO THE NEGATIVE OUTPUT + 1V. WITH HIGHER  
BAT  
IN  
BATTERY VOLTAGES, HIGHEST EFFICIENCY IS OBTAINED BY RUNNING THE LT1172 V PIN FROM 5V. SHUTTING OFF THE 5V SUPPLY  
IN  
WILL AUTOMATICALLY TURN OFF THE LT1172. EFFICIENCY IS ABOUT 80% AT I  
= 25mA.  
OUT  
R1, R2, R3 ARE MADE LARGE TO MINIMIZE BATTERY DRAIN IN SHUTDOWN, WHICH IS APPROXIMATELY V  
/(R1 + R2 + R3).  
BAT  
** FOR HIGH EFFICIENCY, L1 SHOULD BE MADE ON A FERRITE OR MOLYPERMALLOY CORE. PEAK INDUCTOR CURRENTS ARE ABOUT  
600mA AT P = 0.7. INDUCTOR SERIES RESISTANCE SHOULD BE LESS THAN 0.4FOR HIGH EFFICIENCY.  
OUT  
*** OUTPUT RIPPLE IS ABOUT 200mV TO 400mV WITH C2 = 2µF TANTALUM. IF LOWER RIPPLE IS DESIRED, INCREASE C2, OR ADD  
P-P  
P-P  
A 10, 1µF TANTALUM OUTPUT FILTER.  
1170/1/2 TA04  
10  
LT1170/LT1171/LT1172  
U
(Note that maximum output currents are divided by 2 for LT1171, by 4 for LT1172.)  
TYPICAL APPLICATIO S  
Driving High Voltage FET  
(for Off-Line Applications, See AN25)  
External Current Limit  
D
Q1  
G
V
X
D1  
V
IN  
LT1170  
V
SW  
R2  
+
2V  
D1  
10V TO  
20V  
LT1170  
GND  
V
GND  
C
R1  
500Ω  
1170/1/2 TA05  
1170/1/2 TA06  
Negative-to-Positive Buck-Boost Converter†  
External Current Limit  
L1**  
50µH  
L2  
V
IN  
V
SW  
FB  
OPTIONAL  
OUTPUT  
FILTER  
C3  
LT1170  
+
D1  
V
12V  
2A  
OUT  
V
IN  
V
IN  
V
SW  
V
GND  
C
+
R1  
11.3k  
C2  
1000µF  
+
C4*  
100µF  
LT1170  
R1  
1k  
R2  
C2  
Q1  
Q1  
OPTIONAL  
INPUT FILTER  
FB  
C1  
1000pF  
V
GND  
C
L3  
R2  
1.24k  
R3  
2.2k  
R
S
1170/1/2 TA08  
C1  
0.22µF  
NOTE THAT THE LT1170  
GND PIN IS NO LONGER  
V
IN  
–20V  
COMMON TO V  
.
IN  
* REQUIRED IF INPUT LEADS 2"  
** PULSE ENGINEERING 92114, COILTRONICS 50-2-52  
THIS CIRCUIT IS OFTEN USED TO CONVERT –48V TO 5V. TO GUARANTEE  
FULL SHORT-CIRCUIT PROTECTION, THE CURRENT LIMIT CIRCUIT SHOWN  
IN AN19, FIGURE 39, SHOULD BE ADDED WITH C1 REDUCED TO 200pF.  
1170/1/2 TA07  
Negative Buck Converter  
+
C2  
1000µF  
D1  
LOAD  
R1  
4.64k  
L1**  
50µH  
* REQUIRED IF INPUT LEADS 2"  
** PULSE ENGINEERING 92114  
COILTRONICS 50-2-52  
V
IN  
–5.2V  
4.5A  
V
SW  
FB  
R4  
12k  
+
C3*  
100µF  
Q1  
2N3906  
LT1170  
OPTIONAL  
INPUT FILTER  
V
C
OPTIONAL  
OUTPUT  
FILTER  
GND  
+
C4  
200µF  
L3  
C1  
R3  
R2  
1.24k  
V
IN  
–20V  
1170/1/2 TA09  
11  
LT1170/LT1171/LT1172  
U
TYPICAL APPLICATIO S  
Positive-to-Negative Buck-Boost Converter  
D3  
1N4001  
R5  
V
470, 1W  
IN  
10V TO  
30V  
* REQUIRED IF INPUT LEADS 2"  
+
+
** PULSE ENGINEERING 92114, COILTRONICS 50-2-52  
C5  
TO AVOID STARTUP PROBLEMS FOR INPUT VOLTAGES  
V
IN  
100µF*  
V
SW  
BELOW 10V, CONNECT ANODE OF D3 TO V , AND  
IN  
REMOVE R5. C1 MAY BE REDUCED FOR LOWER OUTPUT  
+
CURRENTS. C1 (500µF)(I ).  
OUT  
C4  
1µF  
LT1170  
FOR 5V OUTPUTS, REDUCE R3 TO 1.5k, INCREASE C2 TO  
D2  
R1  
R4  
47Ω  
0.3µF, AND REDUCE R6 TO 100.  
1N914  
10.7k  
FB  
V
C
GND  
+
R3  
5k  
R2  
1.24k  
C3  
2µF  
C1  
1000µF  
R6  
470Ω  
C2  
0.1µF  
D1  
V
–12V  
2A  
OUT  
L1**  
50µH  
1170/1/2 TA10  
High Efficiency Constant Current Charger  
1.244V • R4  
R3 • R5  
R3  
25k  
I
=
= 1A AS SHOWN  
CHRG  
INPUT VOLTAGE  
> V + 2V < 35V  
V
SW  
BAT  
* L2 REDUCES RIPPLE CURRENT INTO  
THE BATTERY BY ABOUT 20:1.  
D1  
+
LT1171  
V
IT MAY BE OMITTED IF DESIRED.  
1N5819  
R2  
1k  
+
V
LT1006  
FB  
IN  
V
R4  
1k  
GND  
C
C2  
2.2µF  
35V  
+
+
C1  
C4  
0.01µF  
V
200µF  
+
L1  
100µH, 1A  
L2*  
C3  
0.47µF  
35V  
TANTALUM  
10µH, 1A  
R5  
0.05Ω  
1A  
RUN = 0V  
SHUTDOWN = 5V  
2N3904  
+
C4  
+
R6  
78k  
200µF  
BATTERY  
2V TO 25V  
D2  
MBR340  
R8  
1k  
R7  
22k  
25V  
1170/1/2 TA11  
Backlight CCFL Supply (see AN45 for details)  
INPUT VOLTAGE  
4.5V TO 20V  
L2***  
1k  
33pF  
3kV  
L1**  
300µH  
LAMP  
1N5818  
A
Q1*  
V
IN  
V
SW  
E2  
D1  
1N914  
D2  
1N914  
0.02µF  
+
50k  
INTENSITY  
ADJUST  
10µF  
TANT  
LT1172  
Q2*  
B
R1  
560Ω  
R3  
10k  
E1  
FB  
GND  
V
C
Q1,Q2 = BCP56 OR MPS650/561  
COILTRONICS CTX300-4  
SUMIDA 6345-020 OR COILTRONICS 110092-1  
*
C6  
1µF  
1170/1/2 TA12  
**  
***  
A MODIFICATION WILL ALLOW OPERATION DOWN TO 4.5V. CONSULT FACTORY.  
2µF  
12  
LT1170/LT1171/LT1172  
U
TYPICAL APPLICATIO S  
Positive Buck Converter  
V
IN  
* REQUIRED IF INPUT LEADS 2"  
** PULSE ENGINEERING 92114  
COILTRONICS 50-2-52  
D3  
L2  
4µH  
V
IN  
V
SW  
+
C3  
OPTIONAL  
OUTPUT  
FILTER  
C5  
200µF  
2.2µF  
LT1170  
D2  
R1  
+
1N914  
3.74k  
C5*  
100µF  
FB  
V
GND  
C
+
C2  
1µF  
R2  
1.24k  
R3  
R4  
10Ω  
470Ω  
L1**  
50µH  
C1  
1µF  
r
5V, 4.5A  
+
C4  
1000µF  
100mA  
MINIMUM  
D1  
1170/1/2 TA13  
Negative Boost Regulator  
D2  
V
IN  
V
SW  
R1  
27k  
R
+
+
O
C1  
1000µF  
C3  
10µF  
LT1170  
(MINIMUM  
LOAD)  
+
C4*  
470µF  
FB  
V
GND  
C
R2  
1.24k  
R3  
3.3k  
C2  
0.22µF  
L1  
50µH  
D1  
V
V
IN  
OUT  
–15V  
–28V, 1A  
1170/1/2 TA14  
* REQUIRED IF INPUT LEADS 2"  
Driving High Voltage NPN  
C1  
D2  
R2**  
R1*  
Q1  
D1  
V
IN  
V
SW  
LT1170  
GND  
* SETS I (ON)  
B
** SETS I (OFF)  
B
1170/1/2 TA15  
13  
LT1170/LT1171/LT1172  
U
TYPICAL APPLICATIO S  
Forward Converter  
L1  
25µH  
D1  
V
OUT  
T1  
5V, 6A  
1
M
N
C2  
R4  
+
C1  
2000µF  
D2  
R1  
3.74k  
D3  
V
IN  
V
SW  
FB  
V
IN  
D4  
LT1170  
20V TO 30V  
R6  
330Ω  
V
GND  
C
Q1  
R2  
1.24k  
R3  
C3  
R5  
1Ω  
C4  
1170/1/2 TA16  
High Efficiency 5V Buck Converter  
V
IN  
10µH  
3A  
V
SW  
V
IN  
+
C1  
330µF  
35V  
LT1170  
+
OPTIONAL  
OUTPUT  
FILTER  
FB  
100µF  
16V  
V
C
GND  
D2  
1N4148  
C6  
0.02µF  
C3  
+
R1  
680Ω  
C5  
0.03µF  
4.7µF  
TANT  
L1  
50µH  
R2*  
0.013Ω  
C4  
0.1µF  
V
OUT  
5V  
×
3A**  
+
D1  
MBR330p  
C2  
+
390µF  
16V  
V
V
C
DIODE  
V
V
V
IN  
LIM  
LT1432  
GND  
MODE  
OUT  
MODE LOGIC  
220pF  
* R2 IS MADE FROM PC BOARD  
COPPER TRACES.  
<0.3V = NORMAL MODE  
>2.5V = SHUTDOWN  
OPEN = BURST MODE  
** MAXIMUM CURRENT IS DETERMINED  
BY THE CHOICE OF LT1070 FAMILY.  
SEE APPLICATION SECTION.  
1170/1/2 TA17  
14  
LT1170/LT1171/LT1172  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
J8 Package  
8-Lead CERDIP (Narrow 0.300, Hermetic)  
(LTC DWG # 05-08-1110)  
0.405  
(10.287)  
MAX  
CORNER LEADS OPTION  
(4 PLCS)  
0.005  
(0.127)  
MIN  
6
5
4
8
7
2
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.045 – 0.068  
(1.143 – 1.727)  
FULL LEAD  
OPTION  
1
3
0.200  
0.300 BSC  
(5.080)  
MAX  
(0.762 BSC)  
0.015 – 0.060  
(0.381 – 1.524)  
0.008 – 0.018  
(0.203 – 0.457)  
0° – 15°  
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
J8 1298  
15  
LT1170/LT1171/LT1172  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
K Package  
4-Lead TO-3 Metal Can  
(LTC DWG # 05-08-1311)  
1.177 – 1.197  
(29.90 – 30.40)  
0.760 – 0.775  
(19.30 – 19.69)  
0.655 – 0.675  
(16.64 – 19.05)  
0.320 – 0.350  
(8.13 – 8.89)  
0.470 TP  
P.C.D.  
0.060 – 0.135  
(1.524 – 3.429)  
0.151 – 0.161  
(3.84 – 4.09)  
DIA 2 PLC  
0.420 – 0.480  
(10.67 – 12.19)  
0.167 – 0.177  
(4.24 – 4.49)  
R
0.038 – 0.043  
(0.965 – 1.09)  
0.490 – 0.510  
(12.45 – 12.95)  
R
72°  
18°  
K4(TO-3) 1098  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
8
7
6
5
4
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
0.325  
–0.015  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
16  
LT1170/LT1171/LT1172  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
Q Package  
5-Lead Plastic DD Pak  
(LTC DWG # 05-08-1461)  
0.060  
(1.524)  
TYP  
0.390 – 0.415  
(9.906 – 10.541)  
0.060  
0.256  
0.165 – 0.180  
(4.191 – 4.572)  
(1.524)  
(6.502)  
0.045 – 0.055  
(1.143 – 1.397)  
15° TYP  
+0.008  
0.004  
–0.004  
0.060  
(1.524)  
0.183  
(4.648)  
0.059  
(1.499)  
TYP  
0.330 – 0.370  
(8.382 – 9.398)  
+0.203  
–0.102  
0.102  
(
)
0.095 – 0.115  
(2.413 – 2.921)  
0.075  
(1.905)  
0.067  
(1.70)  
BSC  
0.050 ± 0.012  
(1.270 ± 0.305)  
0.300  
(7.620)  
0.013 – 0.023  
(0.330 – 0.584)  
+0.012  
0.143  
–0.020  
0.028 – 0.038  
(0.711 – 0.965)  
+0.305  
BOTTOM VIEW OF DD PAK  
HATCHED AREA IS SOLDER PLATED  
COPPER HEAT SINK  
3.632  
Q(DD5) 1098  
(
)
–0.508  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 1298  
17  
LT1170/LT1171/LT1172  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
SW Package  
16-Lead Plastic Small Outline (Wide 0.300)  
(LTC DWG # 05-08-1620)  
0.398 – 0.413*  
(10.109 – 10.490)  
15 14 12  
10  
9
16  
13  
11  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
2
3
5
7
8
1
4
6
0.291 – 0.299**  
(7.391 – 7.595)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.010 – 0.029  
(0.254 – 0.737)  
× 45°  
0° – 8° TYP  
0.050  
(1.270)  
BSC  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
NOTE 1  
(0.229 – 0.330)  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
S16 (WIDE) 1098  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
18  
LT1170/LT1171/LT1172  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
T Package  
5-Lead Plastic TO-220 (Standard)  
(LTC DWG # 05-08-1421)  
0.165 – 0.180  
(4.191 – 4.572)  
0.147 – 0.155  
(3.734 – 3.937)  
DIA  
0.390 – 0.415  
(9.906 – 10.541)  
0.045 – 0.055  
(1.143 – 1.397)  
0.230 – 0.270  
(5.842 – 6.858)  
0.570 – 0.620  
(14.478 – 15.748)  
0.620  
(15.75)  
TYP  
0.460 – 0.500  
(11.684 – 12.700)  
0.330 – 0.370  
(8.382 – 9.398)  
0.700 – 0.728  
(17.78 – 18.491)  
0.095 – 0.115  
(2.413 – 2.921)  
SEATING PLANE  
0.152 – 0.202  
(3.861 – 5.131)  
0.155 – 0.195*  
(3.937 – 4.953)  
0.260 – 0.320  
(6.60 – 8.13)  
0.013 – 0.023  
(0.330 – 0.584)  
0.067  
BSC  
0.135 – 0.165  
(3.429 – 4.191)  
0.028 – 0.038  
(0.711 – 0.965)  
(1.70)  
* MEASURED AT THE SEATING PLANE  
T5 (TO-220) 0399  
I
nformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1170/LT1171/LT1172  
U
TYPICAL APPLICATIO  
Positive Current Boosted Buck Converter  
V
IN  
28V  
470Ω  
2W  
C3  
0.47µF  
R6  
470Ω  
C6  
0.002µF  
D2  
V
IN  
1: N  
V
SW  
FB  
N 0.25  
LT1170  
R2  
R7  
1k  
1.24k  
D1  
V
IN  
V
GND  
C
7
2
C4  
0.01µF  
R3  
+
6
C5*  
100µF  
R5  
5k  
680Ω  
LM308  
3
+
C1  
0.33µF  
4
8
R4  
1.24k  
200pF  
V
OUT  
5V, 10A  
R1  
5k  
+
C2  
5000µF  
* REQUIRED IF INPUT LEADS 2"  
1170/1/2 TA18  
RELATED PARTS  
PART NUMBER  
LT1070/LT1071/LT1072  
LT1074/LT1076  
LT1082  
DESCRIPTION  
COMMENTS  
40kHz, V to 60V, V to 75V  
5A/2.5A/1.25A High Efficiency Switching Regulators  
5.5A/2A Step-Down Switching Regulators  
1A, High Voltage, High Efficiency Switching Regulator  
7.5A, 150kHz Switching Regulators  
IN  
SW  
100kHz, Also for Positive-to-Negative Conversion  
V
IN  
V
IN  
to 75V, V to 100V, Telecom  
SW  
LT1268/LT1268B  
LT1269/LT1271  
LT1270/LT1270A  
LT1370  
to 30V, V to 60V  
SW  
4A High Efficiency Switching Regulators  
100kHz/60kHz, V to 30V, V to 60V  
IN SW  
8A and 10A High Efficiency Switching Regulators  
500kHz High Efficiency 6A Switching Regulator  
500kHz High Efficiency 3A Switching Regulator  
60kHz, V to 30V, V to 60V  
IN SW  
High Power Boost, Flyback, SEPIC  
LT1371  
Good for Boost, Flyback, Inverting, SEPIC  
LT1372/LT1377  
LT1373  
500kHz and 1MHz High Efficiency 1.5A Switching Regulators  
250kHz Low Supply Current High Efficiency 1.5A Switching Regulator  
4A, 500kHz Step-Down Switching Regulator  
Directly Regulates ±V  
OUT  
Low 1mA Quiescent Current  
LT1374  
Synchronizable, V to 25V  
IN  
LT1375/LT1376  
LT1425  
1.5A, 500kHz Step-Down Switching Regulators  
Isolated Flyback Switching Regulator  
Up to 1.25A Out from an SO-8  
6W Output, ±5% Regulation,  
No Optocoupler Needed  
LT1507  
LT1533  
500kHz Monolithic Buck Mode Switching Regulator  
Ultralow Noise 1A Switching Regulator  
1.5A Switch, Good for 5V to 3.3V  
Push-Pull, <100µV Output Noise  
P-P  
117012fe LT/TP 1299 2K REV E • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1991  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
20  
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

LT1172IN8

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172IN8#PBF

LT1172 - 100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators; Package: PDIP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1172IN8#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,BIPOLAR,DIP,8PIN,PLASTIC, Switching Regulator or Controller
Linear

LT1172IS8

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172IS8#TR

暂无描述
Linear

LT1172IS8#TRPBF

LT1172 - 100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1172M

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172MJ8

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172MJ8#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,BIPOLAR,DIP,8PIN,CERAMIC, Switching Regulator or Controller
Linear

LT1172MK

100kHz, 5A, 2.5A and 1.25A High Efficiency Switching Regulators
Linear

LT1172MK#PBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,BIPOLAR,CANF,4PIN,METAL, Switching Regulator or Controller
Linear

LT1172MK#TRPBF

IC IC,SMPS CONTROLLER,CURRENT-MODE,BIPOLAR,CANF,4PIN,METAL, Switching Regulator or Controller
Linear