LT1192CS8#TRPBF [Linear]

LT1192 - Ultra High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LT1192CS8#TRPBF
型号: LT1192CS8#TRPBF
厂家: Linear    Linear
描述:

LT1192 - Ultra High Speed Operational Amplifier; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

放大器 光电二极管
文件: 总12页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1192  
Ultrahigh Speed  
Operational Amplifier  
U
FEATURES  
DESCRIPTIO  
Gain Bandwidth Product, AV = 5: 350MHz  
The LT1192 is a video operational amplifier optimized for  
operation on ±5V and a single 5V supply. Unlike many  
high speed amplifiers, this amplifier features high open-  
loop gain, over 100dB, and the ability to drive heavy loads  
to a full-power bandwidth of 20MHz at 7VP-P. In addition  
to its very fast slew rate, the LT1192 has a high gain  
bandwidth of 350MHz and is compensated for a closed-  
loop gain of 5 or greater.  
Slew Rate: 450V/µs  
Low Cost  
Output Current: ±50mA  
Settling Time: 90ns to 0.1%  
Differential Gain Error: 0.1% (RL = 1k)  
Differential Phase Error: 0.01° (RL = 1k)  
High Open-Loop Gain: 100V/mV Min  
Single Supply 5V Operation  
Output Shutdown  
Because the LT1192 is a true operational amplifier, it is an  
ideal choice for wideband signal conditioning, active fil-  
ters, and applications requiring speed, accuracy and low  
cost.  
U
APPLICATIO S  
Video Cable Drivers  
The LT1192 is available in 8-pin PDIP and SO packages  
with standard pinouts. The normally unused Pin 5 is used  
for a shutdown feature that shuts off the output and  
reduces power dissipation to a mere 15mW.  
Video Signal Processing  
Photo Diode Amplifier  
Pulse Amplifiers  
D/A Current to Voltage Conversion  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Double Terminated Cable Driver  
Inverter Pulse Response  
5V  
3
7
+
CABLE  
75  
6
LT1192  
2
4
75Ω  
–5V  
100Ω  
910Ω  
LT1192 • TA01  
–3dB BANDWIDTH = 55MHz  
LT1192 • TA02  
AV = – 5, CL = 10pF SCOPE PROBE  
1
LT1192  
W W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE DESCRIPTIO  
Total Supply Voltage (V + to V ) ............................. 18V  
Differential Input Voltage ........................................ ±6V  
Input Voltage .......................................................... ±VS  
Output Short-Circuit Duration (Note 2)........ Continuous  
Operating Temperature Range  
LT1192M (OBSOLETE) ............... –55°C to 125°C  
LT1192C................................................. 0°C to 70°C  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
NUMBER  
TOP VIEW  
BAL  
–IN  
+IN  
1
2
3
4
8
7
6
5
BAL  
+
V
LT1192CN8  
LT1192CS8  
OUT  
V
SHDN  
S8 PART MARKING  
1192  
N8 PACKAGE  
8-LEAD PDIP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 150°C, θJA = 100°C/W (N8)  
JMAX = 150°C, θJA = 150°C/W (S8)  
T
LT1192MJ8  
LT1192CJ8  
J8 PACKAGE 8-LEAD CERDIP  
TJMAX = 150°C, θJA = 100°C/W  
OBSOLETE PACKAGE  
Consider the N8 or S8 Packages for Alternate Source  
Consult LTC Marketing for parts specified with wider operating temperature  
ranges.  
ELECTRICAL CHARACTERISTICS  
VS = ±5V, TA = 25°C, CL 10pF, Pin 5 open circuit unless otherwise noted.  
LT1192M/C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
N8 Package  
SO-8 Package  
0.2  
2.5  
3
mV  
mV  
OS  
I
I
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
Input Resistance  
0.2  
±0.5  
9
1.7  
µA  
µA  
OS  
±2.5  
B
e
f = 10kHz  
nV/Hz  
pA/Hz  
kΩ  
n
O
i
f = 10kHz  
O
4
n
R
Differential Mode  
Common Mode  
16  
5
IN  
MΩ  
pF  
C
Input Capacitance  
A = 10  
V
1.8  
IN  
Input Voltage Range  
(Note 3)  
–2.5  
70  
3.5  
V
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 2.5V to 3.5V  
85  
85  
dB  
CM  
V = ±2.375V to ±8V  
S
70  
dB  
A
R = 1k, V = ±3V  
100  
16  
20  
180  
35  
60  
V/mV  
V/mV  
V/mV  
VOL  
L
O
R = 100, V = ±3V  
L
O
V = ±8V, R = 100, V = ±5V  
S
L
O
V
Output Voltage Swing  
V = ±5V, R = 1k  
±3.7  
±6.7  
±4  
±7  
V
V
OUT  
S
L
V = ±8V, R = 1k  
S
L
SR  
Slew Rate  
A = 10, R = 1k (Notes 4, 9)  
325  
450  
23.9  
350  
35  
V/µs  
MHz  
MHz  
ns  
V
O
L
FPBW  
GBW  
Full-Power Bandwidth  
Gain Bandwidth Product  
Rise Time, Fall Time  
Rise Time, Fall Time  
Propagation Delay  
Overshoot  
V
= 6V (Note 5)  
17.2  
P-P  
t , t  
r1 f1  
A = 50, V = ±1.5V, 20% to 80% (Note 9)  
23  
50  
V
O
t , t  
r2 f2  
A = 5, V = ±125mV, 10% to 90%  
2.7  
3.5  
50  
ns  
V
O
t
A = 5, V = ±125mV, 50% to 50%  
ns  
PD  
V
O
A = 5, V = ±125mV  
%
V
O
t
Settling Time  
3V Step, 0.1% (Note 6)  
90  
ns  
s
2
LT1192  
ELECTRICAL CHARACTERISTICS  
VS = ±5V, TA = 25°C, CL 10pF, Pin 5 open circuit unless otherwise noted.  
LT1192M/C  
SYMBOL  
Diff A  
PARAMETER  
CONDITIONS  
R = 150, A = 10 (Note 7)  
MIN  
TYP  
0.23  
0.15  
32  
MAX  
UNITS  
Differential Gain  
Differential Phase  
Supply Current  
%
V
L
V
Diff Ph  
R = 150, A = 10 (Note 7)  
Deg  
P-P  
L
V
I
38  
2
mA  
mA  
µA  
ns  
S
Shutdown Supply Current  
Shutdown Pin Current  
Turn On Time  
Pin 5 at V  
Pin 5 at V  
1.3  
I
t
t
20  
50  
SHDN  
ON  
Pin 5 from V to Ground, R = 1k  
100  
400  
L
Turn Off Time  
Pin 5 from Ground to V , R = 1k  
ns  
OFF  
L
VS+ = 5V, VS= 0V, VCM = 2.5V, TA = 25°C, CL 10pF, Pin 5 open circuit unless otherwise noted.  
LT1192M/C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
4
UNITS  
mV  
µA  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
All Packages  
0.4  
0.2  
OS  
I
I
1.2  
±1.5  
3.5  
OS  
±0.5  
µA  
B
Input Voltage Range  
Common Mode Rejection Ratio  
Large-Signal Voltage Gain  
Output Voltage Swing  
(Note 3)  
2
V
CMRR  
V
= 2V to 3.5V  
60  
30  
3.6  
80  
50  
dB  
CM  
A
V
R = 100to Ground, V = 1V to 3V  
L
V/mV  
V
VOL  
OUT  
O
R = 100to Ground  
L
V
High  
Low  
3.8  
0.25  
250  
350  
29  
OUT  
V
0.4  
OUT  
SR  
Slew Rate  
A = –5, V = 1V to 3V  
V/µs  
MHz  
mA  
mA  
µA  
V
O
GBW  
Gain Bandwidth Product  
Supply Current  
I
I
36  
2
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V  
Pin 5 at V  
1.2  
20  
50  
SHDN  
The denotes the specifications which apply over the full operating temperature range of 55°C TA 125°C.  
VS = ±5V, Pin 5 open circuit unless otherwise noted.  
LT1192M  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.4  
2
MAX  
UNITS  
mV  
V
Input Offset Voltage  
N8 Package  
3.5  
OS  
V /T  
OS  
Input V Drift  
µV/°C  
µA  
OS  
I
I
Input Offset Current  
0.2  
±0.5  
85  
2
OS  
B
Input Bias Current  
±2.5  
µA  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= 2.5V to 3.5V  
65  
70  
dB  
CM  
V = ±2.375V to ±5V  
S
90  
dB  
A
R = 1k, V = ±3V  
55  
5
90  
14  
V/mV  
V/mV  
VOL  
L
O
R = 100, V = ±3V  
L
O
V
Output Voltage Swing  
Supply Current  
R = 1k  
±3.7  
±3.9  
32  
V
mA  
mA  
µA  
OUT  
L
I
I
38  
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V (Note 8)  
1.5  
20  
2.5  
Pin 5 at V  
SHDN  
3
LT1192  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range of 0°C TA 70°C. VS = ±5V, Pin 5 open circuit unless otherwise noted.  
LT1191C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
N8 Package  
SO-8 Package  
0.4  
3
4
mV  
mV  
OS  
V /T  
Input V Drift  
2
0.2  
±0.5  
85  
µV/°C  
µA  
OS  
OS  
I
I
Input Offset Current  
1.7  
OS  
B
Input Bias Current  
±2.5  
µA  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
V
= – 2.5V to 3.5V  
68  
70  
dB  
CM  
V = ±2.375V to ±5V  
90  
dB  
S
A
R = 1k, V = ±3V  
R = 100, V = ±3V  
90  
10  
140  
30  
V/mV  
V/mV  
VOL  
L
O
L
O
V
Output Voltage Swing  
Supply Current  
R = 1k  
±3.7  
±3.9  
32  
V
mA  
mA  
µA  
OUT  
L
I
I
38  
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V (Note 8)  
1.4  
20  
2.1  
Pin 5 at V  
SHDN  
Note 6: Settling time measurement techniques are shown in “Take the  
Guesswork Out of Settling Time Measurements,” EDN, September 19,  
Note 1: Absolute Maximum Ratings are those values beyond which the  
life of the device may be impaired.  
Note 2: A heat sink is required to keep the junction temperature below  
absolute maximum when the output is shorted.  
Note 3: Exceeding the input common mode range may cause the output  
to invert.  
Note 4: Slew rate is measured between ±1V on the output, with a ±0.3V  
1985. A = –5, R = 1k.  
V
L
Note 7: NTSC (3.58MHz). For R = 1k, Diff A = 0.1%, Diff Ph = 0.01°.  
L
V
Diff A and Diff Ph can be reduced for A < 10.  
V
V
Note 8: See Applications section for shutdown at elevated temperatures.  
Do not operate the shutdown above T > 125°C.  
J
Note 9: AC parameters are 100% tested on the ceramic and plastic DIP  
packaged parts (J and N suffix) and are sample tested on every lot of the  
SO packaged parts (S suffix).  
input step.  
Note 5: Full-power bandwidth is calculated from the slew rate  
measurement:  
FPBW = SR/2πV .  
P
Optional Offset Nulling Circuit  
5V  
3
2
7
+
6
LT1192  
4
8
–5V  
1
INPUT OFFSET VOLTAGE CAN BE ADJUSTED OVER A ±20mV  
RANGE WITH A 1k TO 10k POTENTIOMETER  
LT1192 • TA03  
4
LT1192  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current  
Input Bias Current  
vs Temperature  
Common Mode Voltage  
vs Common Mode Voltage  
vs Supply Voltage  
4
3
–0.3  
–0.4  
10  
8
V
S
= ±5V  
V
= ±5V  
S
–55°C  
25°C  
6
+V COMMON MODE  
125°C  
4
+I  
2
1
B
–0.5  
–0.6  
–0.7  
–0.8  
2
I
OS  
0
25°C  
–2  
–4  
–6  
–8  
–10  
–55°C  
0
–1  
–2  
–55°C  
25°C  
125°C  
–I  
125°C  
–V COMMON MODE  
B
–4 –3 –2 –1  
0
1
2
3
4
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
±V SUPPLY VOLTAGE (V)  
LT1192 • TPC01  
LT1192 • TPC02  
LT1192 • TPC03  
Equivalent Input Noise Voltage  
vs Frequency  
Equivalent Input Noise Current  
vs Frequency  
Supply Current vs Supply Voltage  
300  
250  
200  
150  
100  
50  
80  
60  
40  
40  
30  
20  
10  
0
V
T
= ±5V  
= 25°C  
= 0Ω  
V
T
= ±5V  
S
S
= 25°C  
A
A
R
R
= 100k  
S
S
–55°C  
25°C  
125°C  
20  
0
0
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
±SUPPLY VOLTAGE (V)  
LT1192 • TPC04  
LT1192 • TPC05  
LT1192 • TPC06  
Shutdown Supply Current  
vs Temperature  
Open-Loop Voltage Gain  
vs Temperature  
Open-Loop Voltage Gain  
vs Load Resistance  
200k  
150k  
100k  
50k  
0
200k  
150k  
100k  
50k  
0
5.0  
4.5  
V
S
= ±5V  
V
V
T
= ±5V  
= ±3V  
= 25°C  
V
V
= ±5V  
= ±3V  
S
O
A
S
O
R = 1k  
L
V
= –V + 0.4V  
SHDN  
EE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
= –V + 0.2V  
SHDN  
EE  
R
= 100Ω  
L
V
= –V  
50  
SHDN  
EE  
10  
100  
1000  
–50 –25  
0
25  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
LOAD RESISTANCE ()  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LT1192 • TPC09  
LT1192 • TPC07  
LT1192 • TPC08  
5
LT1192  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain Bandwidth Product  
vs Supply Voltage  
Output Impedance vs Frequency  
Gain, Phase vs Frequency  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
380  
360  
340  
320  
300  
280  
260  
240  
100  
10  
V
= ±5V  
= 25°C  
= 1k  
V
= ±5V  
S
A
L
S
A
T
T
= 25°C  
T
A
= –55°C, 25°C, 125°C  
R
PHASE  
A
V
= –100  
V
1
0.1  
GAIN  
A
= – 10  
1M  
0.01  
–20  
100k  
–20  
0.001  
1M  
10M  
100M  
1G  
0
2
4
6
8
10  
1k  
10k  
100k  
10M  
100M  
FREQUENCY (Hz)  
±V SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
LT1192 • TPC10  
LT1192 • TPC13  
LT1192 • TPC11  
Common Mode Rejection Ratio  
vs Frequency  
Gain and Phase Margin  
vs Temperature  
Power Supply Rejection Ratio  
vs Frequency  
100  
80  
60  
40  
20  
0
70  
68  
50  
48  
70  
60  
V
= ±5V  
= 1k  
V
T
= ±5V  
V
V
T
= ±5V  
RIPPLE  
= 25°C  
S
L
S
S
R
= 25°C  
= ±300mV  
A
R
L
= 1k  
A
66  
64  
62  
60  
58  
56  
54  
52  
46  
44  
42  
40  
38  
36  
34  
32  
50  
40  
30  
20  
10  
GAIN = 5 FREQUENCY  
+PSRR  
PHASE MARGIN  
–PSRR  
50  
30  
–50 –25  
0
25  
50  
75 100 125  
1k  
100k  
10k  
1M  
10M  
100M  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
LT1192 • TPC15  
LT1192 • TPC12  
LT1192 • TPC14  
Output Short-Circuit Current  
vs Temperature  
Output Voltage Swing  
vs Load Resistance  
Output Swing vs Supply Voltage  
100  
90  
10  
8
5
3
R
L
= 1k  
V = ±5V  
S
V
= ±5V  
S
+V , 25°C,  
OUT  
T
= 55°C  
A
125°C, –55°C  
6
T
= 25°C  
4
A
1
2
T
= 125°C  
A
0
–1  
–3  
–5  
–2  
–4  
80  
– V , –55°C,  
OUT  
25°C, 125°C  
T
= 125°C  
A
–6  
–8  
T
= 55°C, 25°C  
A
70  
–10  
–50 –25  
0
25  
50  
75 100 125  
0
2
4
6
8
10  
10  
100  
LOAD RESISTANCE ()  
1000  
TEMPERATURE (°C)  
±V SUPPLY VOLTAGE (V)  
LT1192 • TPC16  
LT1192 • TPC17  
LT1192 • TPC18  
6
LT1192  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Step  
vs Settling Time, AV = 5  
Output Voltage Step  
vs Settling Time, AV = 5  
Slew Rate vs Temperature  
4
2
600  
500  
400  
300  
4
2
V
T
= ±5V  
= 25°C  
= 1k  
V
T
= ±5V  
= 25°C  
= 1k  
S
S
A
A
R
L
R
L
–SLEW RATE  
V
= ±2V  
O
1mV  
1mV  
10mV  
10mV  
0
0
+SLEW RATE  
10mV  
1mV  
10mV  
1mV  
–2  
–4  
–2  
–4  
V
= ±5V  
= 25°C  
= 1k  
S
A
L
T
R
20 40  
60  
80 100 120 140 160  
–50 –25  
0
25  
50  
75 100 125  
50  
100  
150  
200  
SETTLING TIME (ns)  
TEMPERATURE (°C)  
SETTLING TIME (ns)  
LT1192 • TPC20  
LT1192 • TPC19  
LT1192 • TPC21  
Large-Signal Transient Response  
Small-Signal Transient Response  
Output Overload  
LT1192 • TPC22  
LT1192 • TPC24  
LT1192 • TPC23  
AV = 5, CL = 10pF SCOPE PROBE  
AV = 10, VIN = 1.2VP-P  
AV = 5, SMALL-SIGNAL RISE TIME,  
WITH FET PROBES  
W U U  
U
APPLICATIO S I FOR ATIO  
No Supply Bypass Capacitors  
Power Supply Bypassing  
The LT1192 is quite tolerant of power supply bypassing.  
In some applications a 0.1µF ceramic disc capacitor  
placed 1/2 inch from the amplifier is all that is required. A  
scope photo of the amplifier output with no supply by-  
passing is used to demonstrate this bypassing tolerance,  
RL = 1k.  
In most applications, and those requiring good settling  
time, it is important to use multiple bypass capacitors. A  
0.1µF ceramic disc in parallel with a 4.7µF tantalum is  
recommended. Two oscilloscope photos with different  
bypass conditions are used to illustrate the settling time  
characteristics of the amplifier. Note that although the  
output waveform looks acceptable at 1V/DIV, when  
LT1192 • TA04  
AV = 5, IN DEMO BOARD, RL = 1k  
7
LT1192  
W U U  
U
APPLICATIO S I FOR ATIO  
Double Terminated Cable Driver  
amplified to 1mV/DIV the settling time to 1mV is 4.132µs  
forthe0.1µFbypass;thetimedropsto140nswithmultiple  
bypass capacitors.  
5V  
3
2
7
+
CABLE  
75Ω  
6
LT1192  
4
–5V  
75Ω  
R
FB  
R
G
Settling Time Poor Bypass  
Cable Driver Voltage Gain vs Frequency  
24  
T
= 25°C  
A
A
= +10  
= 910Ω  
= 47Ω  
V
R
FB  
20  
16  
12  
8
R
VOUT  
1mV/DIV  
G
VOUT  
1V/DIV  
A
FB  
G
= +5  
= 910Ω  
= 100Ω  
0V  
0V  
V
R
R
LT1192 • TA05  
4
SETTLING TIME TO 1mV, AV = –1  
SUPPLY BYPASS CAPACITORS = 0.1µF  
0
100k  
1M  
10M  
100M  
Settling Time Good Bypass  
FREQUENCY (Hz)  
LT1192 • TA07  
energy. The best performance can be obtained by double  
termination (75in series with the output of the ampli-  
fier, and75togroundattheotherendofthecable). This  
termination is preferred because reflected energy is  
absorbed at each end of the cable. When using the double  
termination technique it is important to note that the  
signal is attenuated by a factor of 2, or 6dB. For a cable  
driver with a gain of 5 (op amp gain of 10) the 3dB  
bandwidth is 56MHz with only 0.25dB of peaking.  
VOUT  
1mV/DIV  
VOUT  
1V/DIV  
0V  
0V  
LT1192 • TA06  
SETTLING TIME TO 1mV, AV = –1  
SUPPLY BYPASS CAPACITORS = 0.1µF + 4.7µF TANTALUM  
Using the Shutdown Feature  
The LT1192 has a unique feature that allows the amplifier  
to be shut down for conserving power or for multiplexing  
several amplifiers onto a common cable. The amplifier will  
shutdownbytakingPin5toV. Inshutdown, theamplifier  
dissipates15mWwhilemaintainingatruehighimpedance  
output state of 15kin parallel with the feedback resis-  
tors. The amplifiers must be used in a noninverting con-  
figuration for MUX applications. In inverting configura-  
tions the input signal is fed to the output through the  
feedback components. When the output is loaded with as  
little as 1kfrom the amplifier’s feedback resistors, the  
amplifier shuts off in 400ns. This shutoff can be under the  
control of HC CMOS operating between 0V and 5V.  
Cable Terminations  
The LT1192 operational amplifier has been optimized as a  
lowcostvideocabledriver.The±50mAguaranteedoutput  
current enables the LT1192 to easily deliver 7.5VP-P into  
100, while operating on ±5V supplies or 2.6VP-P on a  
single 5V supply.  
When driving a cable it is important to terminate the cable  
to avoid unwanted reflections. This can be done in one of  
two ways: single termination or double termination. With  
single termination, the cable must be terminated at the  
receiving end (75to ground) to absorb unwanted  
8
LT1192  
W U U  
U
APPLICATIO S I FOR ATIO  
Small-Signal Transient Response  
Output Shutdown  
0V  
VSHDN  
5V  
VOUT  
LT1192 • TA08  
LT1192 • TA09  
1MHz SINE WAVE GATED OFF WITH  
SHUTDOWN PIN, AV = 10, RL = 1k  
AV = 10, SMALL-SIGNAL RISE TIME, WITH FET PROBES  
Closed-Loop Voltage Gain vs Frequency  
The ability to maintain shutoff is shown on the curve  
Shutdown Supply Current vs Temperature in the Typical  
Performance Characteristics section. At very high  
elevatedtemperaturesitisimportanttoholdtheSHDNpin  
close to the negative supply to keep the supply current  
from increasing.  
24  
22  
A
= 10  
V
20  
18  
16  
14  
12  
10  
Operating with Low Closed-Loop Gains  
A
= 5  
V
When using decompensated amplifiers it should be real-  
ized that peaking in the frequency domain, and overshoot  
and ringing in the time domain occur as closed-loop gain  
is lowered. The LT1192 is stable to a closed-loop gain of  
5, however, peaking and ringing can be minimized by  
increasing the closed-loop gain. For instance, the LT1192  
peaks 5dB when used in a gain of 5, but peaks by less than  
0.5dBforaclosed-loopgainof10.Likewise,theovershoot  
drops from 50% to 4% for gains of 10.  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
LT1192 • TA10  
Other precautions include:  
1. Use a ground plane (see Design Note 50, High Fre-  
quency Amplifier Evaluation Board).  
Murphy Circuits  
2. Do not use high source impedances. The input capaci-  
tance of 2pF, and RS = 10k for instance, will give an  
8MHz 3dB bandwidth.  
There are several precautions the user should take when  
using the LT1192 in order to realize its full capability.  
Although the LT1192 can drive a 50pF load, isolating the  
capacitance with 20can be helpful. Precautions prima-  
rily have to do with driving large capacitive loads.  
3. PC board socket may reduce stability.  
4. A feedback resistor of 1k or lower reduces the effects of  
stray capacitance at the inverting input.  
9
LT1192  
W U U  
U
APPLICATIO S I FOR ATIO  
Driving Capacitive Load  
Driving Capacitive Load  
LT1192 • TA11  
LT1192 • TA12  
AV = –5, IN DEMO BOARD, CL = 50pF  
AV = –5, IN DEMO BOARD, CL = 50pF  
WITH 20ISOLATING RESISTOR  
Murphy Circuits  
5V  
5V  
3
3
7
+
7
+
LT1192  
COAX  
6
6
LT1192  
2
2
4
4
1X SCOPE  
PROBE  
–5V  
–5V  
An Unterminated Cable Is  
a Large Capacitive Load  
A 1X Scope Probe Is a  
Large Capacitive Load  
5V  
3
7
+
+
6
LT1192  
LT1192  
2
4
–5V  
SCOPE  
PROBE  
LT1192 • TA13  
A Scope Probe on the Inverting  
Input Reduces Phase Margin  
LT1192 Is Stable for Gains 5V/V  
10  
LT1192  
W
W
SI PLIFIED SCHE ATIC  
+
7
V
V
V
BIAS  
BIAS  
C
M
+
3
C
FF  
2
V
6
+V  
+V  
OUT  
*
4
V
LT1191 • TA14  
5
1
8
SHDN  
BAL  
BAL  
*SUBSTRATE DIODE, DO NOT FORWARD BIAS  
U
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead CERDIP (Narrow .300 Inch, Hermetic)  
(Reference LTC DWG # 05-08-1110)  
CORNER LEADS OPTION  
(4 PLCS)  
0.023 – 0.045  
(0.584 – 1.143)  
HALF LEAD  
OPTION  
0.405  
(10.287)  
MAX  
0.005  
(0.127)  
MIN  
0.200  
(5.080)  
MAX  
0.045 – 0.068  
0.300 BSC  
(1.143 – 1.727)  
(0.762 BSC)  
FULL LEAD  
6
5
4
8
7
OPTION  
0.015 – 0.060  
(0.381 – 1.524)  
0.025  
(0.635)  
RAD TYP  
0.220 – 0.310  
(5.588 – 7.874)  
0.008 – 0.018  
0° – 15°  
(0.203 – 0.457)  
J8 1298  
1
2
3
0.045 – 0.065  
(1.143 – 1.651)  
0.125  
3.175  
MIN  
0.014 – 0.026  
(0.360 – 0.660)  
0.100  
(2.54)  
BSC  
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE  
OR TIN PLATE LEADS  
OBSOLETE PACKAGE  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1192  
U
PACKAGE DESCRIPTIO  
N8 Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
3
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
N8 1098  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
0.010 – 0.020  
(0.254 – 0.508)  
7
5
8
6
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.016 – 0.050  
(0.406 – 1.270)  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
TYP  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
SO8 1298  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1
3
4
2
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1221  
High Speed Operational Amplifier  
High Speed Operational Amplifier  
High Speed Operational Amplifier  
150MHz Gain Bandwidth, 200V/µs Slew Rate, e = 6nV/Hz  
n
LT1222  
500MHz Gain Bandwidth, 200V/µs Slew Rate, e = 3nV/Hz  
n
LT1225  
150MHz Gain Bandwidth, 400V/µs Slew Rate, I = 7mA  
S
1192fa LT/CP 0801 1.5K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 1991  

相关型号:

LT1192M

Ultra High Speed Operational Amplifier
Linear

LT1192MJ8

Ultra High Speed Operational Amplifier
Linear

LT1192MJ8/883B

IC OP-AMP, 3500 uV OFFSET-MAX, 350 MHz BAND WIDTH, CDIP8, HERMETIC SEALED, CERDIP-8, Operational Amplifier
Linear

LT1192MN8

暂无描述
Linear

LT1192MS8

IC OP-AMP, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier
Linear

LT1192_01

Ultrahigh Speed Operational Amplifier
Linear

LT1193

Video Difference Amplifier
Linear

LT1193C

Video Difference Amplifier
Linear

LT1193CJ8

Video Difference Amplifier
Linear

LT1193CN8

Video Difference Amplifier
Linear

LT1193CS8

Video Difference Amplifier
Linear

LT1193CS8#PBF

LT1193 - Video Difference Amplifier; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear