LT1195MJ8 [Linear]

Low Power, High Speed Operational Amplifier; 低功耗,高速运算放大器
LT1195MJ8
型号: LT1195MJ8
厂家: Linear    Linear
描述:

Low Power, High Speed Operational Amplifier
低功耗,高速运算放大器

运算放大器 放大器电路
文件: 总12页 (文件大小:396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1195  
Low Power, High Speed  
Operational Amplifier  
U
DESCRIPTIO  
EATURE  
S
F
Gain-Bandwidth Product  
Unity-Gain Stable  
Slew Rate  
50MHz  
TheLTC1195isavideooperationalamplifieroptimizedfor  
operation on single 5V and ±5V supply. Unlike many high  
speed amplifiers, the LT1195 features high open-loop  
gain,over75dB,andtheabilitytodriveheavyloadstoafull  
power bandwidth of 8.5 MHz at 6VP-P. The LT1195 has a  
unity-gain stable bandwidth of 50MHz, and a 60° phase  
margin, and consumes only 12mA of supply current,  
making it extremely easy to use.  
165V/µs  
±20mA  
12mA  
Output Current  
Low Supply Current  
High Open-Loop Gain  
Low Cost  
Single Supply 5V Operation  
Industry Standard Pinout  
Output Shutdown  
7.5V/mV  
Because the LT1195 is a true operational amplifier, it is an  
ideal choice for wideband signal conditioning, fast inte-  
grators, peak detectors, active filters, and applications  
requiring speed, accuracy, and low cost.  
O U  
PPLICATI  
S
A
The LT1195 is a low power version of the popular LT1190,  
and is available in 8-pin miniDIPs and SO packages with  
standard pinouts. The normally unused pin 5 is used for a  
shutdown feature that shuts off the output and reduces  
power dissipation to a mere 15mW.  
Video Cable Drivers  
Video Signal Processing  
Fast Peak Detectors  
Fast Integrators  
Video Cable Drivers  
Pulse Amplifiers  
U
O
TYPICAL APPLICATI  
Fast Pulse Detector  
Pulse Detector Response  
5V  
R
I
1k  
D1  
3
2
7
+
1N5712  
6
C
R
I
S
V
IN  
LT1195  
60pF  
50Ω  
OUTPUT  
C
L
1000pF  
R
L
4
10k  
–5V  
–5V  
D2  
1N5712  
R
B
10k  
INPUT  
–5V  
1195 TA01  
1195TAO2  
1
LT1195  
W
U
W W W  
U
/O  
TOP VIEW  
PACKAGE RDER I FOR ATIO  
ABSOLUTE AXI U RATI GS  
Total Supply Voltage (V+ to V) ............................... 18V  
Differential Input Voltage ......................................... ±6V  
Input Voltage ........................................................... ±VS  
Output Short-Circuit Duration (Note 1).........Continuous  
Operating Temperature Range  
ORDER PART  
NUMBER  
BAL  
–IN  
+IN  
1
2
3
4
BAL  
8
7
6
5
+
V
LT1195MJ8  
LT1195CJ8  
LT1195CN8  
LT1195CS8  
OUT  
S/D  
V
LT1195M ........................................ –55°C to 125°C  
LT1195C ................................................ 0°C to 70°C  
Junction Temperature (Note 2)  
Plastic Package (CN8, CS8) ............................ 150°C  
Ceramic Package (CJ8, MJ8).......................... 175°C  
Storage Temperature Range ................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
J8 PACKAGE  
N8 PACKAGE  
8-LEAD CERAMIC DIP 8-LEAD PLASTIC DIP  
S8 PACKAGE  
8-LEAD PLASTIC SOIC  
S8 PART MARKING  
1195  
TJMAX = 175°C, θJA = 100°C/ W (J8)  
T
JMAX = 150°C, θJA = 100°C/ W (N8)  
TJMAX = 150°C, θJA = 150°C/ W (S8)  
+
±5V ELECTRICAL CHARACTERISTICS  
TA = 25°C  
VS = ±5V, CL 10pF, pin 5 open circuit, unless otherwise noted.  
LT1195M/C  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Offset Voltage  
J8, N8 Package  
S8 Package  
3.0  
3.0  
8.0  
10.0  
mV  
mV  
OS  
I
I
e
Input Offset Current  
Input Bias Current  
Input Noise Voltage  
Input Noise Current  
0.2  
±0.5  
70  
1.0  
±2.0  
µA  
µA  
nVHz  
pAHz  
OS  
B
f
f
= 10kHz  
= 10kHz  
n
O
O
i
2.0  
n
R
Input Resistance Differential Mode  
Common Mode  
230  
20  
kΩ  
MΩ  
IN  
C
Input Capacitance  
Input Voltage Range  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
A = 1  
(Note 3)  
2.2  
pF  
V
dB  
dB  
V/mV  
V/mV  
V/mV  
IN  
V
–2.5  
60  
60  
2.0  
0.5  
3.5  
CMRR  
PSRR  
A
V
= –2.5 to 3.5V  
85  
85  
7.5  
1.5  
CM  
V = ±2.375V to ±8V  
S
R = 1k, V = ±3V  
OUT  
VOL  
L
R = 150, V  
= ±3V  
L
OUT  
V = ±8V, R = 1k, V = ±5V  
S
11.0  
L
OUT  
V
Output Voltage Swing  
V = ±5V, R = 1k  
±3.8  
±6.7  
±4.0  
±7.0  
V
V
OUT  
S
L
V = ±8V, R = 1k  
S
L
SR  
FPBW  
GBW  
Slew Rate  
A = –1, R = 1k, (Note 4, 9)  
110  
165  
8.75  
50  
170  
3.4  
V/µs  
MHz  
MHz  
ns  
ns  
ns  
V
L
Full Power Bandwidth  
Gain-Bandwidth Product  
Rise Time, Fall Time  
Rise Time, Fall Time  
Propagation Delay  
Overshoot  
V
= 6V  
,
(Note 5)  
OUT  
P-P  
t , t  
A = 50, V = ±1.5V, 20% to 80%, (Note 9)  
OUT  
125  
250  
r1 f1  
V
t , t  
A = 1, V  
= ±125mV, 10% to 90%  
= ±125mV, 50% to 50%  
= ±125mV  
r2 f2  
V
OUT  
OUT  
OUT  
t
A = 1, V  
2.5  
22  
PD  
V
A = 1, V  
V
%
t
Settling Time  
Differential Gain  
Differential Phase  
3V Step, 0.1%, (Note 6)  
R = 150, A = 2, (Note 7)  
220  
1.25  
0.86  
ns  
%
DEG  
P-P  
S
Diff A  
Diff Ph  
V
L
V
R = 150, A = 2, (Note 7)  
L
V
2
LT1195  
+
±5V ELECTRICAL CHARACTERISTICS TA = 25°C  
VS = ±5V, CL 10pF, pin 5 open circuit, unless otherwise noted.  
LT1195M/C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
mA  
mA  
µA  
I
Supply Current  
12  
0.8  
5
160  
700  
16  
1.5  
25  
S
Shutdown Supply Current  
Shutdown Pin Current  
Turn-On Time  
Pin 5 at V  
Pin 5 at V  
I
t
t
S/D  
ON  
Pin 5 from V to Ground, R = 1k  
ns  
ns  
L
Turn-Off Time  
Pin 5 from Ground to V , R = 1k  
OFF  
L
5V ELECTRICAL CHARACTERISTICS TA = 25°C  
VS+ = 5V, VS, = OV, VCM = 2.5V, CL 10pF, pin 5 open circuit, unless otherwise noted.  
LT1195M/C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
J8, N8 Package  
S8 Package  
3.0  
3.0  
9.0  
11.0  
mV  
mV  
OS  
I
I
Input Offset Current  
0.2  
1.0  
±2.0  
3.5  
µA  
µA  
OS  
Input Bias Current  
±0.5  
B
Input Voltage Range  
(Note 3)  
2.0  
60  
V
CMRR  
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
Output Voltage Swing  
V
= 2V to 3.5V  
85  
3.0  
3.8  
0.25  
140  
45  
dB  
CM  
A
V
R = 150to Ground, V = 1V to 3V  
OUT  
0.5  
3.5  
V/mV  
V
VOL  
OUT  
L
R = 150to Ground  
L
V
High  
Low  
OUT  
V
0.4  
V
OUT  
SR  
Slew Rate  
A = –1, V  
V
= 1V to 3V  
OUT  
V/µs  
MHz  
mA  
mA  
µA  
GBW  
Gain-Bandwidth Product  
Supply Current  
I
I
11  
15  
1.5  
25  
S
Shutdown Supply Current  
Shutdown Pin Current  
Pin 5 at V  
Pin 5 at V  
0.8  
5
S/D  
+
±5V ELECTRICAL CHARACTERISTICS –55°C TA 125°C, (Note 10)  
VS = ±5V, pin 5 open circuit, unless otherwise noted.  
LT1195M  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
mV  
µV/°C  
µA  
µA  
dB  
dB  
V/mV  
V/mV  
V
Input Offset Voltage  
3.0  
17  
0.2  
±0.5  
85  
80  
5.0  
0.8  
15.0  
OS  
V /T  
Input V Drift  
OS  
OS  
I
I
Input Offset Current  
Input Bias Current  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
2.0  
±2.5  
OS  
B
CMRR  
PSRR  
V
= –2.5V to 3.5V  
55  
55  
1.50  
0.25  
CM  
V = ±2.375V to ±8V  
S
A
R = 1k, V = ±3V  
OUT  
VOL  
L
R = 150, V  
L
= ±3V  
OUT  
V
Output Voltage Swing  
Supply Current  
Shutdown Supply Current  
Shutdown Pin Current  
R = 1k  
±3.7  
±3.9  
12  
0.8  
5
V
mA  
mA  
µA  
OUT  
L
I
I
18  
2.5  
25  
S
Pin 5 at V , (Note 8)  
Pin 5 at V  
S/D  
3
LT1195  
+
5V  
ELECTRICAL CHARACTERISTICS  
0°C TA 70°C  
VS = ±5V, pin 5 open circuit, unless otherwise noted.  
LT1195C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
J8, N8 Package  
S8 Package  
3.0  
3.0  
10.0  
15.0  
mV  
mV  
OS  
V /T  
Input V Drift  
Input Offset Current  
Input Bias Current  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
12  
0.2  
±0.5  
85  
90  
7.5  
1.5  
µV/°C  
µA  
OS  
OS  
I
I
1.7  
±2.5  
OS  
B
µA  
dB  
dB  
V/mV  
V/mV  
CMRR  
PSRR  
V
= –2.5V to 3.5V  
60  
60  
2.0  
0.3  
CM  
V = ±2.375V to ±5V  
R = 1k, V = ±3V  
R = 150, V  
S
A
VOL  
L
OUT  
= ±3V  
OUT  
L
V
Output Voltage Swing  
Supply Current  
Shutdown Supply Current  
Shutdown Pin Current  
R = 1k  
±3.7  
±3.9  
12  
0.9  
5
V
mA  
mA  
µA  
OUT  
L
I
I
17  
2.0  
25  
S
–,  
Pin 5 at V (Note 8)  
Pin 5 at V  
S/D  
0°C TA 70°C  
5V ELECTRICAL CHARACTERISTICS  
VS+ = 5V, VS= OV, VCM = 2.5V, pin 5 open circuit, unless otherwise noted.  
LT1195C  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
V
Input Offset Voltage  
J8, N8 Package  
S8 Package  
1.0  
1.0  
10.0  
15.0  
mV  
mV  
OS  
V /T  
Input V Drift  
15  
0.2  
µV/°C  
µA  
µA  
V
OS  
OS  
I
I
Input Offset Current  
1.7  
±2.5  
3.5  
OS  
B
Input Bias Current  
±0.5  
Input Voltage Range  
Common-Mode Rejection Ratio  
Output Voltage Swing  
(Note 3)  
2.0  
60  
3.5  
CMRR  
V
CM  
= 2V to 3.5V  
85  
3.75  
0.15  
12  
0.9  
5
dB  
V
V
R = 150to Ground  
L
V
V
High  
Low  
OUT  
OUT  
0.4  
16  
2.0  
25  
V
OUT  
I
I
Supply Current  
Shutdown Supply Current  
Shutdown Pin Current  
mA  
mA  
µA  
S
Pin 5 at V , (Note 8)  
Pin 5 at V  
S/D  
Note 1: A heat sink may be required to keep the junction temperature  
below absolute maximum when the output is shorted continuously.  
Note 6: Settling time measurement techniques are shown in “Take the  
Guesswork Out of Settling Time Measurements,” EDN, September 19, 1985.  
Note 2: T is calculated from the ambient temperature T and power  
Note 7: NTSC (3.58MHz). For R = 1k, Diff A = 0.3%, Diff Ph = 0.35°.  
L V  
J
A
dissipation P according to the following formats:  
D
Note 8: See Applications Information section for shutdown at elevated  
LT1195MJ8, LT1195CJ8: T = T + (P × 100°C/W)  
temperatures. Do not operate the shutdown above T > 125°C.  
J
A
D
J
LT1195N:  
LT1195CS:  
T = T + (P × 100°C/W)  
T = T + (P × 150°C/W)  
J A D  
Note 9: AC parameters are 100% tested on the ceramic and plastic DIP  
packaged parts (J8 and N8 suffix) and are sample tested on every lot of  
the SO packaged parts (S8 suffix).  
J
A
D
Note 3: Exceeding the input common-mode range may cause the output  
to invert.  
Note 10: Do not operate at A < 2 for T < 0°C.  
V
A
Note 4: Slew rate is measured between ±1V on the output, with ±3V  
input step.  
Note 5: Full power bandwidth is calculated from the slew rate  
measurement: FPBW = SR/2πV  
P.  
4
LT1195  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Bias Current vs  
Common-Mode Voltage vs  
Input Bias Current vs  
Temperature  
Common-Mode Voltage  
Temperature  
+
V
100  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
S
= ±5V  
V
S
= ±5V  
–0.5  
–1.0  
–1.5  
–2.0  
+I  
B
+
V
= 1.8V TO 9V  
–100  
–200  
–300  
–400  
–I  
B
–55°C  
2.0  
1.5  
1.0  
0.5  
I
OS  
+
25°C  
V
= –1.8V TO –9V  
125°C  
V
–0.5  
–50 –25  
0
25  
50  
75  
100 125  
–5 –4 –3 –2 –1  
0
1
2
3
4
5
–50 –25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
1195 G03  
1195 G01  
1195 G02  
Equivalent Input Noise Voltage  
vs Frequency  
Equivalent Input Noise Current  
vs Frequency  
Supply Current vs Supply Voltage  
600  
500  
400  
300  
200  
100  
0
16  
14  
12  
10  
8
14  
12  
10  
8
V
T
= ±5V  
V
T
= ±5V  
= 25°C  
= 100k  
S
S
= 25°C  
A
A
R
= 0Ω  
R
S
S
–55°C  
25°C  
125°C  
6
4
2
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
±SUPPLY VOLTAGE (V)  
1195 G04  
1195 G05  
1195 G06  
Shutdown Supply Current  
vs Temperature  
Output Voltage Swing vs  
Load Resistance  
Open-Loop Gain vs Temperature  
5
3
1
6
5
4
3
2
1
0
10k  
8k  
6k  
4k  
2k  
0
V
S
= ±5V  
V
= ±5V  
T
= –55°C  
S
V
S
V
O
= ±5V  
= ±3V  
A
V
= –V + 0.6V  
EE  
S/D  
R
= 1k  
L
T
A
= 25°C  
T
= 125°C  
A
V
= –V + 0.4V  
EE  
S/D  
V
S/D  
= –V + 0.2V  
EE  
–1  
T
A
= 25°C  
–3  
–5  
R = 150Ω  
L
T
= –55°C  
T
A
= 125°C  
A
V
= –V  
EE  
S/D  
–50 –25  
0
25  
50  
75  
100 125  
10  
100  
LOAD RESISTANCE ()  
1k  
–50 –25  
0
25  
50  
75  
100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1195 G07  
1195 G08  
1195 G09  
5
LT1195  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Gain-Bandwidth Product vs  
Supply Voltage  
Open-Loop Voltage Gain vs  
Gain and Phase vs Frequency  
Load Resistance  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
20k  
16k  
12k  
8k  
60  
50  
40  
30  
20  
A
V
= 20dB  
V
V
T
= ±5V  
= ±3V  
= 25°C  
PHASE  
S
O
A
T
T
= –55°C  
= 25°C  
A
A
A
T
= 125°C  
GAIN  
V
= ±5V  
= 25°C  
= 1k  
4k  
S
A
L
T
R
–20  
–20  
0
100k  
1M  
10M  
100M  
100  
1k  
LOAD RESISTANCE ()  
10k  
0
2
4
6
8
10  
FREQUENCY (Hz)  
±SUPPLY VOLTAGE (V)  
1195 G10  
1195 G11  
1195 G12  
Unity-Gain Frequency and Phase  
Margin vs Temperature  
Common-Mode Rejection Ratio  
vs Frequency  
Output Impedance vs Frequency  
90  
80  
70  
60  
50  
40  
30  
20  
60  
100  
90  
80  
70  
60  
50  
40  
30  
100  
10  
V
= ±5V  
= 1k  
V
T
= ±5V  
V
T
= ±5V  
= 25°C  
= 1k  
S
L
S
A
S
UNITY-GAIN  
FREQUENCY  
R
= 25°C  
A
50  
40  
30  
20  
10  
0
R
L
UNITY-GAIN  
PHASE MARGIN  
A
= 10  
V
1
A
= 1  
V
0.1  
0.01  
100k  
1M  
10M  
100M  
50  
TEMPERATURE (°C)  
75  
100 125  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100M  
–50 –25  
0
25  
FREQUENCY (Hz)  
1195 G15  
1195 G14  
1195 G13  
Power Supply Rejection Ratio  
vs Frequency  
Output Short-Circuit Current  
vs Temperature  
±Output Swing vs Supply Voltage  
+
V
36  
35  
34  
33  
32  
31  
30  
–0.7  
–0.8  
–0.9  
–1.0  
–1.1  
0.5  
80  
60  
V
S
= ±5V  
V
= ±5V  
S
A
T
= 25°C  
125°C  
V
= ±300mV  
RIPPLE  
25°C  
+PSRR  
–PSRR  
–55°C  
40  
R
= R  
FB  
L
±1.8V V ±9V  
125°C  
25°C  
S
20  
0.4  
0.3  
0
–55°C  
8
0.2  
0.1  
–20  
–50 –25  
0
25  
50  
75  
100 125  
1k  
10k  
100k  
1M  
10M  
100M  
0
2
4
6
10  
V
TEMPERATURE (°C)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
1195 G16  
1195 G17  
1195 G18  
6
LT1195  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Step vs  
Settling Time, AV = –1  
Output Voltage Step vs  
Settling Time, AV = 1  
Slew Rate vs Temperature  
250  
200  
150  
4
2
4
2
V
T
= ±5V  
= 25°C  
= 1k  
V
= ±5V  
= 1k  
= ±2V  
= –1  
V
T
= ±5V  
= 25°C  
= 1k  
S
S
FB  
O
V
S
R
V
A
A
R
R
L
L
A
10mV  
10mV  
10mV  
1mV  
1mV  
–SLEW RATE  
+SLEW RATE  
0
0
1mV  
–2  
–4  
–2  
–4  
10mV  
1mV  
300  
200  
SETTLING TIME (ns)  
0
100  
300  
400  
200  
100  
SETTLING TIME (ns)  
–50 –25  
0
25  
50  
75  
100 125  
0
400  
TEMPERATURE (°C)  
1195 G21  
1195 G19  
1195 G20  
Large-Signal Transient Response  
Large-Signal Transient Response  
A = 1, R = 1k  
A = –1, R = 1k  
V
L
V
L
1195 G23  
1195 G22  
Overload Recovery  
5V  
3
2
7
+
6
LT1195  
4
8
1
INPUT OFFSET VOLTAGE CAN BE ADJUSTED OVER A  
±150mV RANGE WITH A 1k to 10k POTENTIOMETER.  
1195 G25  
A = 1, V = 11V  
P-P  
V
IN  
1195 G24  
7
LT1195  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
Power Supply Bypassing  
receiving end (75to ground) to absorb unwanted en-  
ergy. The best performance can be obtained by double  
termination(75inserieswiththeoutputoftheamplifier,  
and 75to ground at the other end of the cable). This  
termination is preferred because reflected energy is ab-  
sorbed at each end of the cable. When using the double  
terminationtechniqueitisimportanttonotethatthesignal  
is attenuated by a factor of 2, or 6dB. This can be compen-  
sated for by taking a gain of 2, or 6dB in the amplifier.  
The LT1195 is quite tolerant of power supply bypassing.  
In some applications a 0.1µF ceramic disc capacitor  
placed 0.5 inches from the ampifier is all that is required.  
In applicationsrequiring good settlingtime, itis important  
to use multiple bypass capacitors. A 0.1µF ceramic disc in  
parallel with a 4.7µF tantalum is recommended.  
Cable Terminations  
The LT1195 operational amplifier has been optimized as a  
lowcostvideocabledriver.The±20mAguaranteedoutput  
current enables the LT1195 to easily deliver 6VP-P into  
150, while operating on ±5V supplies.  
Using the Shutdown Feature  
The LT1195 has a unique feature that allows the amplifier  
to be shut down for conserving power, or for multiplexing  
several amplifiers onto a common cable. The amplifier will  
shutdownbytakingpin5toV. Inshutdown, theamplifier  
dissipates15mWwhilemaintainingatruehighimpedance  
output state of 15k in parallel with the feedback resistors.  
The amplifiers must be used in a noninverting configura-  
tion for MUX applications. In inverting configurations the  
input signal is fed to the output through the feedback  
components. The following scope photos show that with  
very high RL, the output is truly high impedance; the  
output slowly decays toward ground. Additionally, when  
the output is loaded with as little as 1k the amplifier shuts  
off in 700ns. This shutoff can be under the control of HC  
CMOS operating between 0V and –5V.  
Double-Terminated Cable Driver  
5V  
3
7
+
CABLE  
75Ω  
6
LT1195  
2
4
R
FB  
75Ω  
R
G
–5V  
1195 AI01  
Cable Driver Voltage Gain vs Frequency  
8
6
4
A
R
R
= 2  
FB  
= 330Ω  
V
= 1k  
2
0
Output Shutdown  
G
A
R
R
= 1  
FB  
= 1k  
V
–2  
= 1k  
G
–4  
–6  
–8  
–10  
–12  
V
= ±5V  
= 25°C  
S
A
T
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
1195 AI02  
When driving a cable it is important to terminate the cable  
to avoid unwanted reflections. This can be done in one of  
two ways: single termination or double termination. With  
single termination, the cable must be terminated at the  
1MHz SINE WAVE GATED OFF WITH SHUTDOWN PIN  
AV = 1, RL = SCOPE PROBE  
1195 AI03  
8
LT1195  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Output Shutdown  
Single 5V Video Amplifier  
V
IN  
10µF  
5V  
5V  
+
3
1k  
R
7
1000µF  
+
+
75Ω  
6
LT1195  
4
2
R1  
3k  
R
FB  
10k  
75Ω  
1k  
G
1k  
+
1195 AI05  
R2  
2k  
100µF  
1MHz SINE WAVE GATED OFF WITH SHUTDOWN PIN  
V = 1, RL = 1k  
A
1195 AI04  
Video Multiburst at Pin 6 of Amplifier  
Detecting Pulses  
The front page shows a circuit for detecting very fast  
pulses. In this open-loop design, the detector diode is D1  
and a level shifting or compensating diode is D2. A load  
resistor RL is connected to –5V, and an identical bias  
resistor RB is used to bias the compensating diode. Equal  
value resistors ensure that the diode drops are equal. A  
very fast pulse will exceed the amplifier slew rate and  
cause a long overload recovery time. Some amount of  
dV/dt limiting on the input can help this overload condi-  
tion, however too much will delay the response. Also  
shown is the response to a 4VP-P input that is 150ns wide.  
Themaximumoutputslewrateinthephotois30V/µs.This  
rate is set by the 30mA current limit driving 1000pF.  
3V  
2V  
1V  
0V  
1195 AI06  
Vector Plot of Standard Color Burst  
Operation on Single 5V Supply  
The LT1195 has been optimized for a single 5V supply.  
This circuit amplifies standard composite video (1VP-P  
including sync) by 2 and drives a double-terminated 75Ω  
cable. Resistors R1 and R2 bias the amplifier at 2V,  
allowingthesyncpulsestostaywithinthecommon-mode  
range of the amplifier. Large coupling capacitors are  
required to pass the low frequency sidebands of the  
composite signal. A multiburst response and vector plot  
standard color burst are shown.  
1195 AI07  
9
LT1195  
PPLICATI  
O U  
W
U
A
S I FOR ATIO  
1.5MHz Square Wave Input and Equalized  
Response Through 1000 Feet of Twisted-Pair  
Send Color Video Over Twisted-Pair  
With an LT1195 it is possible to send and receive color  
compositevideosignalsmorethan1000feetonalowcost  
twisted-pair. A bidirectional “video bus” consists of the  
LT1195opampandtheLT1187videodifferenceamplifier.  
A pair of LT1195s at TRANSMIT 1, is used to generate  
differential signals to drive the line which is back-termi-  
nated in its characteristic impedance. The LT1187,  
twisted-pair receiver, converts signals from differential to  
single-ended. Topology of the LT1187 provides for cable  
compensation at the amplifier’s feedback node as shown.  
In this case, 1000 feet of twisted-pair is compensated with  
1000pF and 50to boost the 3dB bandwidth of the  
systemfrom750kHzto4MHz. Thisbandwidthisadequate  
to pass a 3.58MHz chrome subcarrier, and the 4.5MHz  
soundsubcarrier.Attenuationinthecablecanbecompen-  
sated by lowering the gain set resistor RG. At TRANSMIT  
2, another pair of LT1195s serve the dual function to  
provide cable termination via low output impedance, and  
generatedifferentialsignalsforTRANSMIT2. Cabletermi-  
nation is made up of 15and 33attentuator to reduce  
the differentialinputsignaltotheLT1187. Maximuminput  
1195 A109  
Multiburst Pattern Passed Through  
1000 Feet of Twisted-Pair  
signal for the LT1187 is 760mVP-P  
.
1.5MHz Square Wave Input and Unequalized  
Response Through 1000 Feet of Twisted-Pair  
1195 A110  
Vector Plot of Standard Color Burst Through  
1000 Feet of Twisted-Pair  
1195 A108  
1195 A111  
10  
LT1195  
O U  
S
W
U
PPLICATI  
A
I FOR ATIO  
Bidirectional Video Bus  
TRANSMIT 1  
TRANSMIT 2  
3
3
+
+
6
6
1k  
2
1k  
LT1195  
LT1195  
75Ω  
75Ω  
2
1k  
1k  
1k  
1k  
1k  
1k  
2
2
6
6
LT1195  
LT1195  
3
3
+
+
33Ω  
33Ω  
33Ω  
15Ω  
33Ω  
1000 FT  
TWISTED-PAIR  
S/D  
S/D  
15Ω  
3
3
5
+
+
+
5
15Ω  
15Ω  
2
2
75Ω  
75Ω  
6
+
6
LT1187  
1
LT1187  
R
1
8
8
R
FB  
FB  
300Ω  
300Ω  
1000pF  
50Ω  
1000pF  
50Ω  
R
G
R
G
300Ω  
300Ω  
RECEIVE 1  
1195 AI12  
RECEIVE 2  
W
W
SIWPLIFIED SCHEWATIC  
+
V
7
V
V
BIAS  
BIAS  
C
M
+
3
2
C
FF  
V
OUT  
6
+V  
+V  
*
V
4
5
1
8
BAL  
S/D  
BAL  
1195 SS  
* SUBSTRATE DIODE, DO NOT FORWARD BIAS  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT1195  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
J8 Package  
8-Lead Ceramic DIP  
CORNER LEADS OPTION  
(4 PLCS)  
0.405  
(10.287)  
MAX  
0.023 – 0.045  
0.200  
(5.080)  
MAX  
0.005  
(0.127)  
MIN  
0.290 – 0.320  
(7.366 – 8.128)  
(0.58 – 1.14)  
HALF LEAD  
OPTION  
6
5
4
8
7
0.045 – 0.065  
0.015 – 0.060  
(1.14 – 1.65)  
FULL LEAD  
OPTION  
(0.381 – 1.524)  
0.025  
0.220 – 0.310  
(5.588 – 7.874)  
(0.635)  
RAD TYP  
0.008 – 0.018  
(0.203 – 0.460)  
0° – 15°  
1
2
3
0.045 – 0.065  
(1.14 – 1.65)  
0.385 ± 0.025  
(9.779 ± 0.635)  
0.125  
3.175  
MIN  
0.100 ± 0.010  
0.014 – 0.026  
(2.540 ± 0.254)  
(0.360 – 0.660)  
J8 0293  
N8 Package  
8-Lead Plastic DIP  
0.400  
(10.160)  
MAX  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.300 – 0.320  
(7.620 – 8.128)  
0.045 – 0.065  
(1.143 – 1.651)  
8
1
7
6
5
4
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
0.250 ± 0.010  
(6.350 ± 0.254)  
0.125  
(3.175)  
MIN  
0.020  
(0.508)  
MIN  
+0.025  
–0.015  
0.045 ± 0.015  
(1.143 ± 0.381)  
0.325  
+0.635  
8.255  
2
3
(
)
–0.381  
0.100 ± 0.010  
(2.540 ± 0.254)  
0.018 ± 0.003  
(0.457 ± 0.076)  
N8 0392  
S8 Package  
8-Lead Plastic SOIC  
0.189 – 0.197  
(4.801 – 5.004)  
7
5
8
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0.228 – 0.244  
0.150 – 0.157  
(5.791 – 6.197)  
(3.810 – 3.988)  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
BSC  
0.014 – 0.019  
(0.355 – 0.483)  
0°– 8° TYP  
1
3
4
2
SO8 0392  
LT/GP 0293 10K REV 0 • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1993  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
12  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  

相关型号:

LT1195MJ8/883

LT1195MJ8/883
Linear

LT1195MN8

IC OP-AMP, PDIP8, PLASTIC, DIP-8, Operational Amplifier
Linear

LT1195MS8

IC OP-AMP, PDSO8, 0.150 INCH, PLASTIC, SO-8, Operational Amplifier
Linear

LT1195_02

Low Power, High Speed Operational Amplifier
Linear

LT119A

Dual Comparator
Linear

LT119AH

Dual Comparator
Linear

LT119AJ

Dual Comparator
Linear

LT119AJ#PBF

IC COMPARATOR, Comparator
Linear

LT119AJ/883C

DUAL COMPARATOR, 2000uV OFFSET-MAX, 80ns RESPONSE TIME, CDIP14
Linear

LT119AJ883

IC DUAL COMPARATOR, 1000 uV OFFSET-MAX, CDIP14, 0.300 INCH, CERDIP-14, Comparator
Linear

LT119AJ883B

IC DUAL COMPARATOR, 10000 uV OFFSET-MAX, 1300 ns RESPONSE TIME, CDIP14, 0.300 INCH, CERDIP-14, Comparator
Linear

LT119A_1

Dual Comparator
Linear