LT1790ACS6-3.3 [Linear]

Micropower SOT-23 Low Dropout Reference Family; 微SOT- 23低压差基准系列
LT1790ACS6-3.3
型号: LT1790ACS6-3.3
厂家: Linear    Linear
描述:

Micropower SOT-23 Low Dropout Reference Family
微SOT- 23低压差基准系列

文件: 总24页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1790  
Micropower SOT-23  
Low Dropout Reference Family  
U
FEATURES  
DESCRIPTIO  
The LT®1790 is a family of SOT-23 micropower low  
dropoutseriesreferencesthatcombinehighaccuracyand  
low drift with low power dissipation and small package  
size. These micropower references use curvature com-  
pensation to obtain a low temperature coefficient and  
trimmed precision thin-film resistors to achieve high  
output accuracy. In addition, each LT1790 is post-pack-  
age trimmed to greatly reduce the temperature coefficient  
and increase the output accuracy. Output accuracy is  
further assured by excellent line and load regulation.  
Specialcarehasbeentakentominimizethermallyinduced  
hysteresis.  
High Accuracy:  
A Grade—0.05% Max  
B Grade—0.1% Max  
Low Drift:  
A Grade—10ppm/  
°
C Max  
B Grade—25ppm/  
°C Max  
Low Profile (1mm) ThinSOTTM Package  
Low Supply Current: 60µA Max  
Sinks and Sources Current  
Low Dropout Voltage  
Guaranteed Operational –40°C to 125°C  
Wide Supply Range to 18V  
Available Output Voltage Options: 1.25V, 2.048V,  
The LT1790s are ideally suited for battery-operated sys-  
tems because of their small size, low supply current and  
reduceddropoutvoltage.Thesereferencesprovidesupply  
current and power dissipation advantages over shunt  
referencesthatmustidletheentireloadcurrenttooperate.  
Since the LT1790 can also sink current, it can operate as  
a micropower negative voltage reference with the same  
performance as a positive reference.  
2.5V, 3V, 3.3V, 4U.096V and 5V  
APPLICATIO S  
Handheld Instruments  
Negative Voltage References  
Industrial Control Systems  
Data Acquisition Systems  
Battery-Operated Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Typical VOUT Distribution for LT1790-2.5  
50  
167 UNITS  
45  
40  
Positive Connection for LT1790-2.5  
LT1790B LIMITS  
35  
LT1790A LIMITS  
30  
25  
20  
15  
10  
5
4
6
V
= 2.5V  
LT1790-2.5  
1, 2  
2.6V V 18V  
IN  
OUT  
0.1µF  
1µF  
1790 TA01  
0
2.498  
2.499 2.500  
2.501  
2.502  
OUTPUT VOLTAGE (V)  
1790 TA02  
1790fa  
1
LT1790  
ABSOLUTE AXI U RATI GS  
W W  
U W  
(Note 1)  
Input Voltage .......................................................... 20V  
Operating Temperature Range  
(Note 2) ........................................... 40°C to 125°C  
Storage Temperature Range  
(Note 3) ........................................... 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
Specified Temperature Range  
Commercial ............................................ 0°C to 70°C  
Industrial ............................................ 40°C to 85°C  
Output Short-Circuit Duration......................... Indefinite  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER  
PART NUMBER  
OUTPUT  
VOLTAGE  
S6  
PART MARKING*  
LT1790AIS6-1.25  
1.250V  
2.048V  
2.500V  
3.000V  
3.300V  
4.096V  
5.000V  
LTXT  
LTXU  
LTPZ  
LTQA  
LTXW  
LTQB  
LTQC  
LT1790ACS6-1.25  
LT1790BCS6-1.25  
LT1790ACS6-2.048  
LT1790BCS6-2.048  
LT1790ACS6-2.5  
LT1790BCS6-2.5  
LT1790ACS6-3  
LT1790BIS6-1.25  
LT1790AIS6-2.048  
LT1790BIS6-2.048  
LT1790AIS6-2.5  
LT1790BIS6-2.5  
LT1790AIS6-3  
TOP VIEW  
GND 1  
GND 2  
6 V  
OUT  
5 DNC*  
4 V  
DNC* 3  
IN  
S6 PACKAGE  
6-LEAD PLASTIC SOT-23  
LT1790BIS6-3  
LT1790BCS6-3  
T
= 150°C, θ = 230°C/W  
JA  
JMAX  
LT1790AIS6-3.3  
LT1790BIS6-3.3  
LT1790AIS6-4.096  
LT1790BIS6-4.096  
LT1790AIS6-5  
LT1790ACS6-3.3  
LT1790BCS6-3.3  
LT1790ACS6-4.096  
LT1790BCS6-4.096  
LT1790ACS6-5  
*DNC: DO NOT CONNECT  
LT1790BIS6-5  
LT1790BCS6-5  
* The temperature grades and parametric grades are identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider  
operating temperature ranges.  
U
AVAILABLE OPTIO S  
TEMPERATURE RANGE  
0°C to 70°C  
40°C to 85°C  
OUTPUT  
VOLTAGE  
INITIAL  
ACCURACY  
TEMPERATURE  
COEFFICEINT  
ORDER PART NUMBER  
ORDER PART NUMBER  
1.250V  
2.048V  
2.500V  
3.000V  
3.300V  
4.096V  
5.000V  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-1.25  
LT1790BCS6-1.25  
LT1790AIS6-1.25  
LT1790BIS6-1.25  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-2.048  
LT1790BCS6-2.048  
LT1790AIS6-2.048  
LT1790BIS6-2.048  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-2.5  
LT1790BCS6-2.5  
LT1790AIS6-2.5  
LT1790BIS6-2.5  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-3  
LT1790BCS6-3  
LT1790AIS6-3  
LT1790BIS6-3  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-3.3  
LT1790BCS6-3.3  
LT1790AIS6-3.3  
LT1790BIS6-3.3  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-4.096  
LT1790BCS6-4.096  
LT1790AIS6-4.096  
LT1790BIS6-4.096  
0.05%  
0.1%  
10ppm/°C  
25ppm/°C  
LT1790ACS6-5  
LT1790BCS6-5  
LT1790AIS6-5  
LT1790BIS6-5  
1790fa  
2
LT1790  
1.25V ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1µF and VIN = 2.6V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
1.24937  
–0.05  
1.250  
1.25062  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
1.24875  
–0.10  
1.250  
1.250  
1.250  
1.250  
1.250  
1.25125  
0.10  
V
%
1.24850  
–0.120  
1.25150  
0.120  
V
%
1.24781  
–0.175  
1.25219  
0.175  
V
%
1.24656  
–0.275  
1.25344  
0.275  
V
%
1.24484  
–0.4125  
1.25516  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
T T  
MIN A MAX  
LT1790A  
LT1790B  
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
2.6V V 18V  
50  
170  
220  
ppm/V  
ppm/V  
IN  
Load Regulation (Note 6)  
I
I
Source = 5mA, V = 2.8V  
100  
120  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
IN  
Sink = 1mA, V = 3.2V  
180  
250  
ppm/mA  
ppm/mA  
IN  
Minimum Operating Voltage (Note 7)  
Supply Current  
V , V  
= 0.1%  
IN  
OUT  
I
= 0mA  
1.95  
2.15  
2.50  
2.90  
2.95  
V
V
V
V
OUT  
I
I
Source = 5mA  
Sink = 1mA  
OUT  
OUT  
No Load  
35  
60  
75  
µA  
µA  
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
C
= 1.25V, ±0.1%  
100  
250  
125  
µA  
OUT  
Turn-On Time  
= 1µF  
µs  
LOAD  
Output Noise (Note 8)  
0.1Hz f 10Hz  
10Hz f 1kHz  
10  
14  
µV  
P-P  
µV  
RMS  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/kHr  
T = 0°C to 70°C  
T = 40°C to 85°C  
40  
100  
ppm  
ppm  
1790fa  
3
LT1790  
2.048V ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1µF and VIN = 2.8V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
2.04697  
–0.05  
2.048  
2.04902  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
2.04595  
–0.10  
2.048  
2.048  
2.048  
2.048  
2.048  
2.05005  
0.10  
V
%
2.04554  
–0.120  
2.05046  
0.120  
V
%
2.04442  
–0.175  
2.05158  
0.175  
V
%
2.04237  
–0.275  
2.05363  
0.275  
V
%
2.03955  
–0.4125  
2.05645  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
T T  
MIN A MAX  
LT1790A  
LT1790B  
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
2.8V V 18V  
50  
170  
220  
ppm/V  
ppm/V  
IN  
Load Regulation (Note 6)  
I
I
Source = 5mA  
Sink = 3mA  
120  
130  
200  
280  
ppm/mA  
ppm/mA  
OUT  
OUT  
260  
450  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , V  
OUT  
= 0.1%  
IN  
OUT  
OUT  
I
= 0mA  
50  
100  
500  
750  
450  
mV  
mV  
mV  
mV  
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
75  
µA  
µA  
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
C
= 2.048V, 0.1%  
100  
350  
125  
µA  
OUT  
Turn-On Time  
= 1µF  
µs  
LOAD  
Output Noise (Note 8)  
0.1Hz f 10Hz  
10Hz f 1kHz  
22  
41  
µV  
P-P  
RMS  
µV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/kHr  
T = 0°C to 70°C  
T = 40°C to 85°C  
40  
100  
ppm  
ppm  
1790fa  
4
LT1790  
2.5V ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1µF and VIN = 3V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
2.49875  
–0.05  
2.5  
2.50125  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
2.4975  
–0.10  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5025  
0.10  
V
%
2.4970  
–0.120  
2.5030  
0.120  
V
%
2.49563  
–0.175  
2.50438  
0.175  
V
%
2.49313  
–0.275  
2.50688  
0.275  
V
%
2.48969  
–0.4125  
2.51031  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
T T  
MIN A MAX  
LT1790A  
LT1790B  
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
3V V 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
Load Regulation (Note 6)  
I
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , V  
OUT  
= 0.1%  
IN  
OUT  
OUT  
I
= 0mA  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
µA  
µA  
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
C
= 2.5V, 0.1%  
100  
700  
125  
µA  
OUT  
Turn-On Time  
= 1µF  
µs  
LOAD  
Output Noise (Note 8)  
0.1Hz f 10Hz  
10Hz f 1kHz  
32  
48  
µV  
P-P  
RMS  
µV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/kHr  
T = 0°C to 70°C  
T = 40°C to 85°C  
40  
100  
ppm  
ppm  
1790fa  
5
LT1790  
3V ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the specified temperature  
range, otherwise specifications are at TA = 25°C. CL = 1µF and VIN = 3.5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
2.9985  
–0.05  
3
3.0015  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
2.9970  
–0.10  
3
3
3
3
3
3.003  
0.10  
V
%
2.99640  
–0.120  
3.00360  
0.120  
V
%
2.99475  
–0.175  
3.00525  
0.175  
V
%
2.99175  
–0.275  
3.00825  
0.275  
V
%
2.98763  
–0.4125  
3.01238  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
T T  
MIN A MAX  
LT1790A  
LT1790B  
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
3.5V V 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
Load Regulation (Note 6)  
I
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , V  
OUT  
= 0.1%  
IN  
OUT  
OUT  
I
= 0mA  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
µA  
µA  
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
C
= 3V, 0.1%  
100  
700  
125  
µA  
OUT  
Turn-On Time  
= 1µF  
µs  
LOAD  
Output Noise (Note 8)  
0.1Hz f 10Hz  
10Hz f 1kHz  
50  
56  
µV  
P-P  
RMS  
µV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/kHr  
T = 0°C to 70°C  
T = 40°C to 85°C  
40  
100  
ppm  
ppm  
1790fa  
6
LT1790  
3.3V ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1µF and VIN = 3.8V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
3.29835  
–0.05  
3.3  
3.30165  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
3.2967  
–0.10  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3033  
0.10  
V
%
3.29604  
–0.120  
3.30396  
0.120  
V
%
3.29423  
–0.175  
3.30578  
0.175  
V
%
3.29093  
–0.275  
3.30908  
0.275  
V
%
3.28639  
–0.4125  
3.31361  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
T T  
MIN A MAX  
LT1790A  
LT1790B  
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
3.8V V 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
Load Regulation (Note 6)  
I
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , V  
OUT  
= 0.1%  
IN  
OUT  
OUT  
I
= 0mA  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
µA  
µA  
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
C
= 3.3V, 0.1%  
100  
700  
125  
µA  
OUT  
Turn-On Time  
= 1µF  
µs  
LOAD  
Output Noise (Note 8)  
0.1Hz f 10Hz  
10Hz f 1kHz  
50  
67  
µV  
P-P  
RMS  
µV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/kHr  
T = 0°C to 70°C  
T = 40°C to 85°C  
40  
100  
ppm  
ppm  
1790fa  
7
LT1790  
4.096V ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. CL = 1µF and VIN = 4.6V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
4.094  
–0.05  
4.096  
4.098  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
4.092  
–0.10  
4.096  
4.096  
4.096  
4.096  
4.096  
4.10  
0.10  
V
%
4.09108  
–0.120  
4.10092  
0.120  
V
%
4.08883  
–0.175  
4.10317  
0.175  
V
%
4.08474  
–0.275  
4.10726  
0.275  
V
%
4.07910  
–0.4125  
4.11290  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
T T  
MIN A MAX  
LT1790A  
LT1790B  
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
4.6V V 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
Load Regulation (Note 6)  
I
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , V  
OUT  
= 0.1%  
OUT  
IN  
OUT  
I
= 0mA  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
µA  
µA  
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
C
= 4.096V, 0.1%  
100  
700  
125  
µA  
OUT  
Turn-On Time  
= 1µF  
µs  
LOAD  
Output Noise (Note 8)  
0.1Hz f 10Hz  
10Hz f 1kHz  
60  
89  
µV  
P-P  
RMS  
µV  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/kHr  
T = 0°C to 70°C  
T = 40°C to 85°C  
40  
100  
ppm  
ppm  
1790fa  
8
LT1790  
5V ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the specified temperature  
range, otherwise specifications are at TA = 25°C. CL = 1µF and VIN = 5.5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage (Notes 3, 4)  
LT1790A  
4.9975  
–0.05  
5
5.0025  
0.05  
V
%
LT1790B  
LT1790AC  
LT1790AI  
LT1790BC  
LT1790BI  
4.995  
–0.10  
5
5
5
5
5
5.005  
0.10  
V
%
4.99400  
–0.120  
5.00600  
0.120  
V
%
4.99125  
–0.175  
5.00875  
0.175  
V
%
4.98625  
–0.275  
5.01375  
0.275  
V
%
4.97938  
–0.4125  
5.02063  
0.4125  
V
%
Output Voltage Temperature Coefficient (Note 5)  
T
T T  
MIN A MAX  
LT1790A  
LT1790B  
5
12  
10  
25  
ppm/°C  
ppm/°C  
Line Regulation  
5.5V V 18V  
50  
80  
70  
170  
220  
ppm/V  
ppm/V  
IN  
Load Regulation (Note 6)  
I
I
Source = 5mA  
Sink = 3mA  
160  
250  
ppm/mA  
ppm/mA  
OUT  
OUT  
110  
300  
ppm/mA  
ppm/mA  
Dropout Voltage (Note 7)  
Supply Current  
V
– V , V  
= 0.1%  
IN  
I
OUT  
OUT  
= 0mA  
50  
100  
120  
450  
250  
mV  
mV  
mV  
mV  
OUT  
I
I
Source = 5mA  
Sink = 3mA  
OUT  
OUT  
No Load  
35  
60  
80  
µA  
µA  
Minimum Operating Current—  
Negative Output (See Figure 7)  
V
= 5V, 0.1%  
100  
125  
µA  
OUT  
Turn-On Time  
C
= 1µF  
700  
µs  
LOAD  
Output Noise (Note 8)  
0.1Hz f 10Hz  
10Hz f 1kHz  
80  
118  
µV  
P-P  
µV  
RMS  
Long-Term Drift of Output Voltage (Note 9)  
Hysteresis (Note 10)  
50  
ppm/kHr  
T = 0°C to 70°C  
T = 40°C to 85°C  
40  
100  
ppm  
ppm  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: The LT1790 is guaranteed functional over the operating  
temperature range of 40°C to 125°C. The LT1790-1.25 at 125°C is  
typically less than 2% above the nominal voltage. The other voltage  
options are typically less than 0.25% above their nominal voltage.  
Note 5: Temperature coefficient is measured by dividing the change in  
output voltage by the specified temperature range. Incremental slope is  
also measured at 25°C.  
Note 6: Load regulation is measured on a pulse basis from no load to the  
specified load current. Output changes due to die temperature change  
must be taken into account separately.  
Note 3: If the part is stored outside of the specified temperature range, the  
output voltage may shift due to hysteresis.  
Note 4: ESD (Electrostatic Discharge) sensitive device. Extensive use of  
ESD protection devices are used internal to the LT1790, however, high  
electrostatic discharge can damage or degrade the device. Use proper ESD  
handling precautions.  
Note 7: Excludes load regulation errors.  
Note 8: Peak-to-peak noise is measured with a single pole highpass filter  
at 0.1Hz and a 2-pole lowpass filter at 10Hz. The unit is enclosed in a still  
air environment to eliminate thermocouple effects on the leads. The test  
time is 10 seconds. Integrated RMS noise is measured from 10Hz to 1kHz  
with the HP3561A analyzer.  
1790fa  
9
LT1790  
ELECTRICAL CHARACTERISTICS  
Note 9: Long-term drift typically has a logarithmic characteristic and  
therefore changes after 1000 hours tend to be smaller than before that  
time. Long-term drift is affected by differential stress between the IC and  
the board material created during board assembly. See Applications  
Information.  
Note 10: Hysteresis in the output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Output voltage is always measured at 25°C, but the IC is  
cycled to 85°C or 40°C before a successive measurements. Hysteresis is  
roughly proportional to the square of the temperature change. Hysteresis  
is not a problem for operational temperature excursions where the  
instrument might be stored at high or low temperature. See Applications  
Information.  
U W  
1.25V TYPICAL PERFOR A CE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Minimum Input-Output Voltage  
Differential (Sourcing)  
Minimum Input-Output Voltage  
Output Voltage Temperature Drift  
Differential (Sinking)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
1.253  
1.252  
1.251  
1.250  
1.249  
1.248  
1.247  
FOUR TYPICAL PARTS  
100µA  
5mA  
1mA  
T
A
= 125°C  
T
T
= –55°C  
= 25°C  
A
A
1
0.1  
50 70  
–50 –30 –10 10 30  
TEMPERATURE (°C)  
90  
110 130  
90 110  
0.5  
1
1.5  
2
2.5  
–50 –30 –10 10 30 50 70  
0
TEMPERATURE (°C)  
INPUT-OUTPUT VOLTAGE (V)  
17901.25 G02  
17091.25 G01  
17091.25 G03  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
Supply Current vs Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2000  
1800  
1600  
1400  
1200  
1000  
800  
0
–200  
T
= –55°C  
A
T
= –55°C  
A
–400  
T
= 25°C  
T
= 25°C  
A
A
–600  
–800  
T
= –55°C  
= 125°C  
1
T
= 125°C  
A
A
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
T
= 125°C  
A
600  
T
A
400  
T
A
= 25°C  
200  
0
0.1  
10  
0
5
10  
INPUT VOLTAGE (V)  
15  
20  
0.1  
1
10  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
17901.25 G05  
17901.25 G04  
17901.25 G06  
1790fa  
10  
LT1790  
U W  
1.25V TYPICAL PERFOR A CE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Power Supply Rejection Ratio  
vs Frequency  
Line Regulation  
Output Impedance vs Frequency  
10  
0
500  
100  
1.285  
1.280  
1.275  
1.270  
1.265  
1.260  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
V
C
= 3V  
V
= 3V  
IN  
L
IN  
= 1µF  
T
= 125°C  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
C
= 0.47µF  
L
10  
1
C
= 4.7µF  
L
T
= 25°C  
A
C
= 1µF  
L
T
A
= –55°C  
0
100  
100  
1k  
10k  
100k  
1M  
0
2
4
6
8
10 12 14 16 18 20  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
17901.25 G08  
17901.25 G09  
17901.25. G07  
Long-Term Drift  
(Data Points Reduced After 500 Hr)  
1.25V Characteristics  
Output Noise 0.1Hz to 10Hz  
0.30  
0.25  
140  
120  
100  
80  
LT1790S6-1.25V  
R1 10k  
3V  
2 TYPICAL PARTS SOLDERED TO PCB  
4
T
= 30°C  
A
LT1790-1.25  
6
1
2
V
OUT  
0.20  
0.15  
R
L
1µF  
60  
5k  
–V  
EE  
40  
20  
0.10  
0.05  
0
0
T
A
T
A
T
A
= 25°C  
= 125°C  
= –55°C  
–20  
–40  
–60  
–2.5  
–2.0  
–1.5  
–1.0  
–0.5  
0
0
200  
400  
600  
800  
100  
1000  
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT TO GROUND VOLTAGE (V)  
HOURS  
TIME (SEC)  
17091.25 G10  
17901.25 G10  
17901.2 G12  
Output Voltage Noise Spectrum  
Integrated Noise 10Hz to 1kHz  
5.0  
4.5  
4.0  
3.5  
C
= 1µF  
L
3.0  
2.5  
10  
I
= 100µA  
= 0µA  
O
2.0  
1.5  
1.0  
0.5  
0
I
O
I
O
= 250µA  
I
= 1mA  
O
1
10  
100  
1000  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
LT1790 G01  
17901.25 G13  
1790fa  
11  
LT1790  
W U  
2.048V TYPICAL PERFOR A CE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Minimum Input-Output Voltage  
Differential (Sourcing)  
Minimum Input-Output Voltage  
Output Voltage Temperature Drift  
Differential (Sinking)  
2.056  
2.054  
2.052  
2.050  
2.048  
2.046  
2.044  
2.042  
130  
110  
90  
10  
FOUR TYPICAL PARTS  
T
= 125°C  
T
= 25°C  
A
A
70  
5mA  
1mA  
T
= –55°C  
A
50  
1
30  
10  
100µA  
–10  
–30  
–50  
0.1  
–50 –30 –10 10 30 50  
TEMPERATURE (°C)  
130  
70 90 110  
–50 –30 –10 10  
TEMPERATURE (°C)  
90 110 130  
0
0.1 0.2  
INPUT-OUTPUT VOLTAGE (V)  
0.7  
30 50 70  
0.3 0.4 0.5  
0.6  
17902.048 G01  
17902.048 G03  
17902.048 G02  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
Supply Current vs Input Voltage  
0
2000  
1800  
1600  
1400  
1200  
1000  
800  
80  
T
= –55°C  
A
–200  
–400  
T
= –55°C  
70  
60  
50  
40  
30  
20  
10  
0
A
T
= 25°C  
A
–600  
T
= 125°C  
A
T
= 25°C  
–800  
A
T
= –40°C  
A
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
T
= 125°C  
A
600  
T
= 125°C  
A
400  
T
A
= 25°C  
200  
0
0.1  
1
10  
0.1  
1
10  
0
10  
INPUT VOLTAGE (V)  
20  
5
15  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
17902.048 G04  
17902.048 G05  
17902.048 G06  
Power Supply Rejection Ratio  
vs Frequency  
Line Regulation  
Output Impedance vs Frequency  
2.054  
2.052  
2.050  
2.048  
2.046  
2.044  
1000  
100  
10  
20  
10  
C
L
= 1µF  
T
T
= 125°C  
= 25°C  
A
0
C
L
= 0.47µF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
A
T
= –55°C  
A
C
= 4.7µF  
= 1µF  
L
C
L
2.042  
1
0
2
4
6
8
10 12 14 16 18 20  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
17902.048 G09  
17902.048 G08  
17902.048 G07  
1790fa  
12  
LT1790  
W U  
2.048V TYPICAL PERFOR A CE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
2.048V Characteristics  
Long-Term Drift  
0.30  
0.25  
100  
R1 10k  
3V  
4
80
LT1790-2.048  
6
60  
40  
20  
0
1
2
V
OUT  
0.20  
0.15  
R
L
1µF  
5k  
–V  
EE  
–20  
0.10  
0.05  
0
T
T
T
= 125°C  
= 25°C  
A
A
A
–40  
–60  
= –55°C  
–80  
–100  
–4 –3.5 –3 –2.5 –2 –1.5 –1 –0.5  
OUTPUT TO GROUND VOLTAGE (V)  
0
0
200  
400  
600  
800  
1000  
HOURS  
17092.048 G10  
17901.048 G11  
Output Noise 0.1Hz to 10Hz  
Output Voltage Noise Spectrum  
10  
9
C
= 1µF  
L
8
7
6
5
I
O
= 100µA  
4
3
2
1
0
I
= 0µA  
O
I
O
= 250µA  
I
O
= 1mA  
1k  
10  
100  
10k  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (SEC)  
17902.048 G13  
17902.048 G12  
Integrated Noise 10Hz to 1kHz  
100  
10  
1
10  
100  
1000  
FREQUENCY (Hz)  
LT1790 G02  
1790fa  
13  
LT1790  
U W  
2.5V TYPICAL PERFOR A CE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Minimum Input-Output Voltage  
Differential (Sourcing)  
Minimum Input-Output Voltage  
Differential (Sinking)  
Output Voltage Temperature Drift  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
90  
70  
10  
FOUR TYPICAL PARTS  
T
= –55°C  
T = 125°C  
A
A
50  
T
= 25°C  
A
30  
10  
1
100µA  
1mA  
5mA  
–10  
–30  
0.1  
50  
TEMPERATURE (°C)  
90  
130  
110  
–50 –30 –10 10  
30  
70  
90  
110 130  
–50 –30 –10 10 30 50 70  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
INPUT-OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
17902.5 G02  
17902.5 G01  
17902.5 G03  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
Supply Current vs Input Voltage  
2000  
1800  
1600  
1400  
1200  
1000  
800  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–200  
T
= 25°C  
A
T
= –55°C  
A
A
–400  
T
= –55°C  
A
–600  
T
= 125°C  
A
–800  
T
= 25°C  
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
T
= –55°C  
A
T
= 125°C  
A
600  
400  
T
= 125°C  
A
200  
T
A
= 25°C  
0
10  
0.1  
1
10  
0
5
15  
20  
0.1  
1
10  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
17902.5 G05  
17902.5 G04  
17902.5 G06  
Power Supply Rejection Ratio  
vs Frequency  
Line Regulation  
Output Impedance vs Frequency  
2.515  
2.510  
2.505  
2.500  
2.495  
2.490  
1000  
100  
10  
20  
10  
C
L
= 1µF  
T
= 125°C  
A
C
L
= 0.47µF  
0
C
L
= 1µF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
T
= 25°C  
A
C
L
= 4.7µF  
T
= –55°C  
A
2.489  
1
0
2
4
6
8
10 12 14 16 18 20  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
17902.5 G09  
17902.5 G08  
17902.5 G07  
1790fa  
14  
LT1790  
U W  
2.5V TYPICAL PERFOR A CE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Long-Term Drift  
(Data Points Reduced After 500 Hr)  
2.5V Characteristics  
140  
120  
100  
80  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
R1 10k  
3V  
4
LT1790-2.5  
1, 2  
6
V
OUT  
R
L
5k  
1µF  
60  
–V  
40  
EE  
20  
0
T
T
T
= 25°C  
= 125°C  
= –55°C  
A
A
A
–20  
–40  
–60  
0
200  
400  
600  
800  
1000  
–4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
OUTPUT TO GROUND VOLTAGE (V)  
0
HOURS  
17902.5 G11  
17902.5 G10  
Output Noise 0.1Hz to 10Hz  
Output Voltage Noise Spectrum  
10  
8
C
L
= 1µF  
I
O
= 0µA  
6
I
= 250µA  
O
4
I
O
= 1mA  
2
0
10  
100  
FREQUENCY (Hz)  
1k  
10k  
0
1
2
3
4
5
6
7
8
9
10  
TIME (SEC)  
1790 G05  
17901.5 G12  
Integrated Noise 10Hz to 1kHz  
100  
10  
1
10  
100  
1000  
FREQUENCY (Hz)  
LT1790 G03  
1790fa  
15  
LT1790  
U W  
5V TYPICAL PERFOR A CE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
Minimum Input-Output Voltage  
Differential (Sourcing)  
Minimum Input-Output Voltage  
Differential (Sinking)  
Output Voltage Temperature Drift  
90  
70  
5.025  
5.020  
5.015  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
10  
FOUR TYPICAL PARTS  
50  
T
= –55°C  
A
100µA  
T
A
= 125°C  
A
30  
T
= 25°C  
1
1mA  
10  
–10  
–30  
–50  
5mA  
0.1  
–50 –30 –10 10 30 50  
TEMPERATURE (°C)  
110 130  
70 90  
30 50  
–50 –30 –10 10  
70 90 110 130  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
INPUT-OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
17905 G02  
17905 G03  
17905 G01  
Load Regulation (Sourcing)  
Load Regulation (Sinking)  
Supply Current vs Input Voltage  
0
–200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
A
= –55°C  
T
= –55°C  
= 25°C  
A
–400  
T
= 25°C  
A
–600  
T
A
T
= 125°C  
A
–800  
–1000  
–1200  
–1400  
–1600  
–1800  
–2000  
T
= –40°C  
A
T
= 125°C  
A
600  
400  
T
A
= 125°C  
200  
T
= 25°C  
A
0
0.1  
1
10  
0.1  
1
10  
0
10  
INPUT VOLTAGE (V)  
20  
5
15  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
17905 G04  
17905 G05  
17905 G06  
Power Supply Rejection Ratio  
vs Frequency  
Line Regulation  
Output Impedance vs Frequency  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
1000  
100  
10  
20  
10  
C
L
= 1µF  
T
T
= 125°C  
= 25°C  
A
0
C
L
= 0.47µF  
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
C
L
= 1µF  
T
= –55°C  
A
C
L
= 4.7µF  
4.92  
1
0
2
4
6
8
10 12 14 16 18 20  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
17905 G09  
17905 G08  
17905 G07  
1790fa  
16  
LT1790  
U W  
5V TYPICAL PERFOR A CE CHARACTERISTICS  
Each of the voltage options have similar performance curves. For the 3V, 3.3V and the 4.096V options,  
the curves can be estimated based on the 2.5V and 5V curves.  
5V Characteristics  
Long-Term Drift  
0.30  
0.25  
100  
80  
R1 10k  
5.5V  
4
LT1790-5  
6
60  
1
2
V
40  
OUT  
0.20  
0.15  
R
L
1µF  
20  
5k  
–V  
EE  
0
–20  
–40  
–60  
–80  
–100  
0.10  
0.05  
0
T
= 125°C  
A
T
A
= 25°C  
T
A
= –55°C  
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1  
OUTPUT TO GROUND VOLTAGE (V)  
0
0
200  
400  
600  
800  
1000  
HOURS  
17905 G10  
17905 G11  
Output Noise 0.1Hz to 10Hz  
Output Voltage Noise Spectrum  
10  
8
C
L
= 1µF  
I
O
= 0µA  
6
I
O
= 250µA  
4
I
O
= 1mA  
2
0
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
TIME (SEC)  
1790 G05  
17905 G12  
Intergrated Noise 10Hz to 1kHz  
1000  
100  
10  
1
10  
100  
1000  
FREQUENCY (Hz)  
1790 G04  
1790fa  
17  
LT1790  
U
W U U  
APPLICATIONS INFORMATION  
Bypass and Load Capacitors  
Figure 1 shows the turn-on time for the LT1790-2.5 with  
a 1µF input bypass and 1µF load capacitor. Figure 2 shows  
the output response to a 0.5V transient on VIN with the  
same capacitors.  
The LT1790 voltage references should have an input  
bypass capacitor of 0.1µF or larger, however the bypass-  
ing of other local devices may serve as the required  
component. These references also require an output ca-  
pacitor for stability. The optimum output capacitance for  
most applications is 1µF, although larger values work as  
well. This capacitor affects the turn-on and settling time  
for the output to reach its final value.  
The test circuit of Figure 3 is used to measure the stability  
of various load currents. With RL = 1k, the 1V step  
produces a current step of 1mA. Figure 4 shows the  
response to a ±0.5mA load. Figure 5 is the output re-  
sponse to a sourcing step from 4mA to 5mA, and Figure 6  
is the output response of a sinking step from 4mA to  
5mA.  
All LT1790 voltages perform virtually the same, so the  
LT1790-2.5 is used as an example.  
VGEN  
3V  
VIN  
VOUT  
3V  
2V  
2V  
1V  
0V  
VOUT  
(AC COUPLED)  
1790 F04  
1790 F01  
Figure 4. LT1790-2.5 Sourcing and Sinking 0.5mA  
Figure 1. Turn-On Characteristics of LT1790-2.5  
VIN  
3V  
2V  
1V  
0V  
VOUT  
VOUT  
(AC Coupled)  
VGEN  
–2V  
–3V  
1790 F05  
1790 F02  
Figure 5. LT1790-2.5 Sourcing 4mA to 5mA  
Figure 2. Output Response to 0.5V Ripple on VIN  
1k  
4
6
V
IN  
LT1790-2.5  
1, 2  
3V  
C
C
L
1µF  
IN  
V
1V  
GEN  
0.1µF  
1790 F03  
Figure 3. Response Time Test Circuit  
1790fa  
18  
LT1790  
U
W U U  
APPLICATIONS INFORMATION  
VGEN  
8V  
stability during load transients. This connection main-  
tains nearly the same accuracy and temperature coeffi-  
cient of the positive connected LT1790.  
6V  
Long-Term Drift  
VOUT  
(AC Coupled)  
4V  
Long-term drift cannot be extrapolated from acceler-  
ated high temperature testing. This erroneous tech-  
niquegivesdriftnumbersthatarewidelyoptimistic.The  
only way long-term drift can be determined is to mea-  
sure it over the time interval of interest. The LT1790S6  
drift data was taken on over 100 parts that were soldered  
into PC boards similar to a “real world” application. The  
boards were then placed into a constant temperature oven  
with TA = 30°C, their outputs scanned regularly and  
measured with an 8.5 digit DVM. Long-term drift curves  
are shown in the Typical Performance Characteristics.  
2V  
0V  
1790 F06  
Figure 6. LT1790-2.5 Sinking 4mA to 5mA  
Positive or Negative Operation  
Series operation is ideal for extending battery life. If an  
LT1790 is operated in series mode it does not require an  
external current setting resistor. The specifications guar-  
antee that the LT1790 family operates to 18V. When the  
circuitry being regulated does not demand current, the  
series connected LT1790 consumes only a few hundred  
µW, yet the same connection can sink or source 5mA of  
load current when demanded. A typical series connection  
is shown on the front page of this data sheet.  
Hysteresis  
Hysteresis data shown in Figures 8 and 9 represent the  
worst-case data taken on parts from 0°C to 70°C and from  
40°Cto85°C. Unitswerecycledseveraltimesoverthese  
temperature ranges and the largest change is shown. As  
expected, the parts cycled over the higher temperature  
range have higher hysteresis than those cycled over the  
lower range.  
The circuit in Figure 7 shows the connection for a 2.5V  
reference, although any LT1790 voltage option can be  
configured this way to make a negative reference. The  
LT1790 can be used as very stable negative references,  
however, they require a positive voltage applied to Pin 4  
to bias internal circuitry. This voltage must be current  
limited with R1 to keep the output PNP transistor from  
turning on and driving the grounded output. C1 provides  
WhenanLT1790isIRreflowsolderedontoaPCboard,the  
output shift is typically just 150ppm (0.015%).  
Higher Input Voltage  
The circuit in Figure 10 shows an easy way to increase the  
input voltage range of the LT1790. The zener diode can be  
anywhere from 6V to 18V. For equal power sharing be-  
tween R1 and the zener (at 30V), the 18V option is better.  
The circuit can tolerate much higher voltages for short  
periods and is suitable for transient protection.  
R1  
10k  
3V  
4
6
C1  
0.1µF  
LT1790-2.5  
Assuming 80µA max supply current for the LT1790, a  
25µA load, 120mV max dropout and a 4V to 30V input  
specification, the largest that R1 can be is (4V – 3.3V –  
120mV)/(80µA + 25µA) = 5.5k. Furthermore, assuming  
220mW of dissipation in the 18V SOT-23 zener, this gives  
a max current of (220mW)/(18V) = 12.2mA. So the  
smallest that R1 should be is (30V – 18V)/12.2mA = 1k,  
1, 2  
V
= –2.5V  
OUT  
V
– V  
125µA  
C
EE  
OUT  
L
R
L
=
1µF  
V
EE  
1790 F07  
Figure 7. Using the LT1790-2.5 to Build a –2.5V Reference  
rated at 150mW.  
1790fa  
19  
LT1790  
U
W U U  
APPLICATIONS INFORMATION  
8
16  
14  
12  
10  
8
7
0°C TO 25°C  
6
5
70°C TO 25°C  
85°C TO 25°C  
–40°C TO 25°C  
4
6
3
2
1
0
4
2
0
–240  
–200  
–160  
–120  
–80  
–40  
0
40  
80  
–80 –70 –60 –50 –40 –30 –20 –10  
0
10 20 30 40 50  
DISTRIBUTION (ppm)  
DISTRIBUTION (ppm)  
1790 F09  
1790 F08  
Figure 8. Worst-Case 0°C to 70°C Hysteresis on 30 Units  
Figure 9. Worst-Case –40°C to 85°C Hysteresis on 30 Units  
the transition region. The no load standing current is only  
120µA, yet the output can deliver over 300mA.  
4V TO 30V  
R1  
Noise  
V
LT1790-3.3  
OUT  
C1  
BZX84C18  
1µF  
Anestimateofthetotalintegratednoisefrom10Hzto1kHz  
can be made by multiplying the flat band spot noise by  
BW. For example, from the Typical Performance Curves,  
the LT1790-1.25 noise spectrum shows the average spot  
noise to be about 450nV/Hz. The square root of the  
bandwidth is 990 = 31.4. The total noise 10Hz to 1kHz  
noise is (450nV)(31.4) = 14.1µV. This agrees well with the  
measured noise.  
0.1µF  
1790 F10  
Figure 10. Extended Supply Range Reference  
WithR1=1k,andassuminga450mVworst-casedropout,  
the LT1790 can deliver a minimum current of (4V – 3.3V–  
450mV)/(1k) = 250µA. In Figure 10, R1 and C1 provide  
filtering of the zener noise when the zener is in its noisy V-I  
knee.  
This estimate may not be as good with higher voltage  
options, there are several reasons for this. Higher voltage  
options have higher noise and they have higher variability  
due to process variations. 10Hz to 1kHz noise may vary by  
2dB on the LT1790-5 and 1dB on the LT1790-2.5.  
Thereareothervariationsforhighervoltageoperationthat  
use a pass transistor shown in Figures 11 and 12. These  
circuits allow the input voltage to be as high as 160V while  
maintaining low supply current.  
Measured noise may also vary because of peaking in the  
noise spectrum. This effect can be seen in the range of  
1kHz to 10kHz with all voltage options sourcing different  
load currents. From the Typical Performance Curves the  
10Hz to 1kHz noise spectrum of the LT1790-5 is shown to  
be 3µV/Hz at low frequency. The estimated noise is  
(3µV)(31.4) = 93.4µV. The actual integrated 10Hz to 1kHz  
noise measures 118.3µV. The peaking shown causes this  
largernumber. Peakingisafunctionofoutputcapacitoras  
well as load current and process variations.  
More Output Current  
The circuit in Figure 13 is a compact, high output current,  
lowdropoutprecisionsupply. ThecircuitusestheSOT-23  
LT1782andtheThinSOTLT1790.ResistivedividerR1and  
R2 set a voltage 22mV below VS. For under 1mA of output  
current, the LT1790 supplies the load. Above 1mA of load  
current, the (+) input of the LT1782 is pulled below the  
22mV divider reference and the output FET turns on to  
supply the load current. Capacitor C1 stops oscillations in  
1790fa  
20  
LT1790  
U
W U U  
APPLICATIONS INFORMATION  
V
S
V
S
6V TO 160V  
6.5V TO 160V  
R1  
330k  
C1  
0.1µF  
R2  
4.7k  
R1  
330k  
ON SEMI  
ON SEMI  
MMBT5551  
MMBT5551  
BZX84C12  
C1  
0.1µF  
LT1790  
V
OUT  
BAV99  
C2  
1µF  
V
LT1790  
OUT  
C2  
1µF  
1790 F11  
1790 F12  
Figure 11. Extended Supply Range Reference  
Figure 12. Extended Supply Range Reference  
V
S
2.8V TO 3.3V  
NO LOAD  
SUPPLY CURRENT  
120µA  
R3  
22Ω  
R4  
1k  
5%  
5%  
R1  
+
680Ω  
5%  
VISHAY SILICONIX  
Si3445DV  
LT1782  
C1  
0.1µF  
R2  
100k  
5%  
V
I
= 2.5V  
= 0mA to 300mA  
OUT  
LOAD  
LT1790-2.5  
17909 F13  
C2  
1µF  
NOTE: NOT CURRENT LIMITED  
Figure 13. Compact, High Output Current, Low Dropout, Precison 2.5V Supply  
1790fa  
21  
LT1790  
W
W
SI PLIFIED SCHE ATIC  
V
V
4
6
IN  
OUT  
GND  
1, 2  
1790 SS  
1790fa  
22  
LT1790  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1636)  
2.80 – 3.10  
(.110 – .118)  
(NOTE 3)  
SOT-23  
(Original)  
SOT-23  
(ThinSOT)  
.90 – 1.45  
1.00 MAX  
A
A1  
A2  
L
(.035 – .057)  
(.039 MAX)  
.00 – 0.15  
(.00 – .006)  
.01 – .10  
(.0004 – .004)  
2.60 – 3.00  
1.50 – 1.75  
(.102 – .118) (.059 – .069)  
(NOTE 3)  
.90 – 1.30  
(.035 – .051)  
.80 – .90  
(.031 – .035)  
PIN ONE ID  
.35 – .55  
(.014 – .021)  
.30 – .50 REF  
(.012 – .019 REF)  
.95  
(.037)  
REF  
.25 – .50  
(.010 – .020)  
(6PLCS, NOTE 2)  
.20  
(.008)  
A2  
A
DATUM ‘A’  
1.90  
(.074)  
REF  
L
.09 – .20  
(.004 – .008)  
(NOTE 2)  
A1  
S6 SOT-23 0401  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE INCLUSIVE OF PLATING  
5. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
6. MOLD FLASH SHALL NOT EXCEED .254mm  
7. PACKAGE EIAJ REFERENCE IS:  
SC-74A (EIAJ) FOR ORIGINAL  
JEDEC MO-193 FOR THIN  
1790fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT1790  
U
TYPICAL APPLICATIO  
2.5V Negative 50mA Series Reference  
No Load Supply Current  
I
CC = 1.6mA  
IEE = 440µA  
V
= 5V  
CC  
2k  
4
6
LT1790-2.5  
1, 2  
V
= 5.1V  
Z
5.1k  
–2.5V  
50mA  
V
= –5V  
EE  
MPS2907A  
1µF  
1790 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1019  
Precision Reference  
Low Noise Bandgap, 0.05%, 5ppm/°C  
LTC®1798  
LT1460  
Micropower Low Dropout Reference  
Micropower Precison Series Reference  
Micropower Precision Low Dropout Reference  
0.15% Max, 6.5µA Supply Current  
Bandgap, 130µA Supply Current, 10ppm/°C, Available in SOT-23  
Bandgap 0.04%, 3ppm/°C, 50µA Max Supply Current  
LT1461  
1790fa  
LT/CPI 0202 1.5K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 2000  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1790ACS6-3.3#PBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-3.3#TRMPBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-3.3-PBF

Micropower SOT-23 Low Dropout Reference Family
Linear

LT1790ACS6-4.096

Micropower SOT-23 Low Dropout Reference Family
Linear

LT1790ACS6-4.096#PBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-4.096#TRMPBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-4.096-PBF

Micropower SOT-23 Low Dropout Reference Family
Linear

LT1790ACS6-5

Micropower SOT-23 Low Dropout Reference Family
Linear

LT1790ACS6-5#PBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-5#TR

暂无描述
Linear

LT1790ACS6-5#TRMPBF

LT1790 - Micropower SOT-23 Low Dropout Reference Family; Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C
Linear

LT1790ACS6-5-PBF

Micropower SOT-23 Low Dropout Reference Family
Linear