LTC1275BCN [Linear]

12-Bit, 300ksps Sampling A/D Converters with Reference; 12位,高达300ksps的采样A / D转换器,内置参考
LTC1275BCN
型号: LTC1275BCN
厂家: Linear    Linear
描述:

12-Bit, 300ksps Sampling A/D Converters with Reference
12位,高达300ksps的采样A / D转换器,内置参考

转换器 模数转换器 光电二极管 信息通信管理
文件: 总24页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1273  
LTC1275/LTC1276  
12-Bit, 300ksps Sampling  
A/D Converters with Reference  
U
DESCRIPTIO  
EATURE  
S
F
Single Supply 5V or ±5V Operation  
TheLTC1273/LTC1275/LTC1276are300ksps, sampling  
12-bit A/D converters that draw only 75mW from single  
5V or ±5V supplies. These easy-to-use devices come  
complete with 600ns sample-and-holds, precision refer-  
ences and internally trimmed clocks. Unipolar and bipo-  
larconversionmodesprovideflexibilityforvariousappli-  
cations. They are built with LTBiCMOSTM switched ca-  
pacitor technology.  
300ksps Sample Rate  
75mW (Typ) Power Dissipation  
On-Chip 25ppm/°C Reference  
Internal Synchronized Clock; No Clock Required  
High Impedance Analog Input  
70dB S/(N + D) and 77dB THD at Nyquist  
±1/2LSB INL and ±3/4LSB DNL Max (A Grade)  
ESD Protected On All Pins  
These devices have 25ppm/°C (max) internal references.  
The LTC1273 converts 0V to 5V unipolar inputs from a  
single 5V supply. The LTC1275/LTC1276 convert ±2.5V  
and ±5V respectively from ±5V supplies. Maximum DC  
specifications include ±1/2LSB INL, ±3/4LSB DNL and  
25ppm/°C full scale drift over temperature. Outstanding  
AC performance includes 70dB S/(N + D) and 77dB THD  
at the Nyquist input frequency of 150kHz.  
24-Pin Narrow DIP and SOL Packages  
Variety of Input Ranges:  
0V to 5V (LTC1273)  
±2.5V (LTC1275)  
±5V (LTC1276)  
O U  
PPLICATI  
S
A
The internal clock is trimmed for 2.7µs maximum conver-  
sion time. The clock automatically synchronizes to each  
sample command eliminating problems with asynchro-  
nous clock noise found in competitive devices. A high  
speed parallel interface eases connections to FIFOs, DSPs  
and microprocessors.  
High Speed Data Acquisition  
Digital Signal Processing  
Multiplexed Data Acquisition Systems  
Audio and Telecom Processing  
Spectrum Analysis  
LTBiCMOSTM is a trademark of Linear Technology Corporation  
U
O
TYPICAL APPLICATI  
Effective Bits and Signal to (Noise + Distortion)  
vs Input Frequency  
Single 5V Supply, 300ksps, 12-Bit Sampling A/D Converter  
LTC1273  
5V  
12  
11  
10  
9
74  
68  
62  
56  
50  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
ANALOG INPUT  
(0V TO 5V)  
A
V
V
DD  
IN  
2.42V  
REF  
OUTPUT  
+
NC  
BUSY  
CS  
0.1µF  
V
REF  
10µF  
NYQUIST  
FREQUENCY  
+
3
0.1µF  
AGND  
D11  
D10  
D9  
10µF  
4
µP CONTROL  
LINES  
8
5
RD  
7
6
HBEN  
NC  
6
7
D8  
5
8
D7  
NC  
4
9
D6  
D0/8  
D1/9  
D2/10  
D3/11  
3
10  
11  
12  
8- OR 12-BIT  
PARALLEL BUS  
D5  
2
D4  
1
f
= 300kHz  
SAMPLE  
DGND  
0
10k  
100k  
1M 2M  
INPUT FREQUENCY (Hz)  
LTC1273/75/76 • TA02  
LTC1273/75/76 • TA01  
1
LTC1273  
LTC1275/LTC1276  
W W W  
U
(Notes 1 and 2)  
ABSOLUTE AXI U RATI GS  
Digital Output Voltage (Note 3)  
Supply Voltage (VDD).............................................. 12V  
Negative Supply Voltage (VSS)  
LTC1275/LTC1276.................................. 6V to GND  
Total Supply Voltage (VDD to VSS)  
LTC1275/LTC1276............................................... 12V  
Analog Input Voltage (Note 3)  
LTC1273 .................................... 0.3V to VDD + 0.3V  
LTC1275/LTC1276.............. VSS – 0.3V to VDD + 0.3V  
Power Dissipation............................................. 500mW  
Operating Temperature Range  
LTC1273AC, LTC1273BC, LTC1275AC  
LTC1275BC, LTC1276AC, LTC1276BC .... 0°C to 70°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
LTC1273 .................................... 0.3V to VDD + 0.3V  
LTC1275/LTC1276.............. VSS – 0.3V to VDD + 0.3V  
Digital Input Voltage (Note 4)  
LTC1273 ................................................ 0.3V to 12V  
LTC1275/LTC1276......................... VSS – 0.3V to 12V  
W
U
/O  
PACKAGE RDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
ORDER  
PART NUMBER  
ORDER  
A
A
1
2
3
4
5
6
7
8
9
V
V
1
2
V
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PART NUMBER  
IN  
IN  
DD  
DD  
V
V
NC  
REF  
REF  
SS  
AGND  
D11  
D10  
D9  
AGND  
D11  
D10  
D9  
BUSY  
CS  
3
BUSY  
CS  
LTC1273ACN  
LTC1273BCN  
LTC1273ACS  
LTC1273BCS  
LTC1275ACN  
LTC1275BCN  
LTC1275ACS  
LTC1275BCS  
LTC1276ACN  
LTC1276BCN  
LTC1276ACS  
LTC1276BCS  
4
5
RD  
RD  
6
HBEN  
NC  
HBEN  
NC  
D8  
D8  
7
D7  
D7  
NC  
8
NC  
D6  
D6  
D0/8  
D1/9  
D2/10  
9
D0/8  
D1/9  
D2/10  
D3/11  
(For MIL Grade:  
Contact Factory)  
D5  
D5 10  
D4 11  
10  
11  
12  
D4  
DGND  
DGND  
12  
13 D3/11  
N PACKAGE  
S PACKAGE  
N PACKAGE  
24-LEAD PLASTIC DIP 24-LEAD PLASTIC SOL  
S PACKAGE  
24-LEAD PLASTIC DIP 24-LEAD PLASTIC SOL  
(For MIL Grade:  
Contact Factory)  
TJMAX = 110°C, θJA = 100°C/W (N)  
TJMAX = 110°C, θJA = 130°C/W (S)  
TJMAX = 110°C, θJA = 100°C/W (N)  
TJMAX = 110°C, θJA = 130°C/W (S)  
U
With Internal Reference (Notes 5 and 6)  
CO VERTER  
CHARACTERISTICS  
LTC1273A/LTC1275A/LTC1276A  
LTC1273B/LTC1275B/LTC1276B  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNITS  
Resolution (No Missing Codes)  
Integral Linearity Error  
12  
12  
Bits  
(Note 7)  
Commercial  
Military  
±1/2  
±1/2  
±3/4  
±1  
±1  
±1  
LSB  
LSB  
LSB  
Differential Linearity Error  
Offset Error  
Commercial  
Military  
±3/4  
±1  
±1  
±1  
LSB  
LSB  
(Note 8)  
±3  
±4  
±4  
±6  
LSB  
LSB  
Full Scale Error  
±10  
±25  
±15  
±45  
LSB  
Full Scale Tempco  
I
= 0  
±5  
±10  
ppm/°C  
OUT(REFERENCE)  
2
LTC1273  
LTC1275/LTC1276  
W
U
(Note 5)  
DY  
A IC  
ACCURACY  
LTC1273A/LTC1275A/LTC1276A  
LTC1273B/LTC1275B/LTC1276B  
SYMBOL PARAMETER  
S/(N + D) Signal-to-Noise Plus Distortion Ratio  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
dB  
50kHz/150kHz Input Signal  
50kHz/150kHz Input Signal  
72/70  
THD  
Total Harmonic Distortion  
Up to 5th Harmonic  
83/74  
dB  
Peak Harmonic or Spurious Noise  
Intermodulation Distortion  
Full Power Bandwidth  
50kHz/150kHz Input Signal  
85/76  
80  
dB  
dB  
IMD  
f
= 29.37kHz, f = 32.446kHz  
IN2  
IN1  
4.5  
MHz  
kHz  
200  
U
Full Linear BanU dwidth (S/(N + D) 68dB)  
(Note 5)  
A ALOG I PUT  
LTC1273A/LTC1275A/LTC1276A  
LTC1273B/LTC1275B/LTC1276B  
SYMBOL PARAMETER  
CONDITIONS  
4.95V V 5.25V (LTC1273)  
MIN  
TYP  
MAX  
UNITS  
V
IN  
Analog Input Range (Note 9)  
0 to 5  
±2.5  
±5  
V
V
V
DD  
4.75V V 5.25V, 5.25V V 2.45V (LTC1275)  
DD  
SS  
4.95V V 5.25V, 5.25V V 4.95V (LTC1276)  
DD  
SS  
I
Analog Input Leakage Current  
Analog Input Capacitance  
CS = High  
±1  
µA  
IN  
C
Between Conversions (Sample Mode)  
During Conversions (Hold Mode)  
50  
5
pF  
pF  
IN  
t
Sample-and-Hold  
Acquisition Time  
Commercial  
Military  
600  
1000  
ns  
ns  
ACQ  
U U  
U
I TER AL REFERE CE CHARACTERISTICS (Note 5)  
LTC1273A/LTC1275A/LTC1276A  
LTC1273B/LTC1275B/LTC1276B  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.420  
±5  
MAX  
2.440  
±25  
MIN  
TYP  
2.420  
±10  
MAX  
2.440  
±45  
UNITS  
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
I
I
= 0  
= 0  
2.400  
2.400  
REF  
REF  
REF  
OUT  
OUT  
ppm/°C  
4.95V V 5.25V  
5.25V V 4.95V  
0.01  
0.01  
0.01  
0.01  
LSB/V  
LSB/V  
DD  
SS  
V
Load Regulation  
0V ≤  
|
I
|
1mA  
2
2
LSB/mA  
REF  
OUT  
U
U
DIGITAL I PUTS A D DIGITAL OUTPUTS (Note 5)  
LTC1273A/LTC1275A/LTC1276A  
LTC1273B/LTC1275B/LTC1276B  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 5.25V  
= 4.95V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
I
±10  
µA  
pF  
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage  
5
IN  
V
DD  
= 4.95V  
OH  
I = 10µA  
I = 200µA  
O
4.7  
V
V
O
4.0  
3
LTC1273  
LTC1275/LTC1276  
U
U
(Note 5)  
DIGITAL I PUTS A D DIGITAL OUTPUTS  
LTC1273A/LTC1275A/LTC1276A  
LTC1273B/LTC1275B/LTC1276B  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Low Level Output Voltage  
V
= 4.95V  
DD  
OL  
I = 160µA  
0.05  
0.10  
V
V
O
I = 1.6mA  
O
0.4  
±10  
15  
I
High Z Output Leakage D11-D0/8  
High Z Output Capacitance D11-D0/8  
Output Source Current  
V
= 0V to V , CS High  
µA  
pF  
OZ  
OUT  
DD  
C
OZ  
CS High (Note 9 )  
I
I
V
V
= 0V  
10  
10  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
Output Sink Current  
= V  
DD  
W U  
POWER REQUIRE E TS (Note 5)  
LTC1273A/LTC1275A/LTC1276A  
LTC1273B/LTC1275B/LTC1276B  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
Positive Supply Voltage  
LTC1273/LTC1276 (Notes 10, 11)  
LTC1275 (Note 10)  
4.95  
4.75  
5.25  
5.25  
V
V
V
SS  
Negative Supply Voltage  
LTC1275 (Note 10)  
LTC1276 (Notes 10, 11)  
2.45  
4.95  
5.25  
5.25  
V
V
I
I
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
15  
0.065  
75  
25  
mA  
mA  
DD  
SS  
LTC1275/LTC1276  
0.200  
P
mW  
D W U  
See Timing Characteristics Figures (Note 5)  
TI I G CHARACTERISTICS  
LTC1273A/LTC1275A/LTC1276A  
LTC1273B/LTC1275B/LTC1276B  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Maximum Sampling Frequency  
(Note 10)  
Commercial  
Military  
SAMPLE(MAX)  
CONV  
300  
250  
kHz  
kHz  
t
Conversion Time  
Commercial  
Military  
2.7  
3.0  
µs  
µs  
t
t
CS to RD Setup Time  
RD to BUSY Delay  
0
ns  
1
2
C = 50pF  
Commercial  
Military  
80  
40  
50  
190  
230  
270  
ns  
ns  
ns  
L
t
Data Access Time After RD↓  
C = 20pF  
90  
110  
120  
ns  
ns  
ns  
3
L
Commercial  
Military  
C = 100pF  
125  
150  
170  
ns  
ns  
ns  
L
Commercial  
Military  
t
t
t
RD Pulse Width  
t
ns  
ns  
4
5
6
3
CS to RD Hold Time  
Data Setup Time After BUSY↑  
0
40  
70  
90  
100  
ns  
ns  
ns  
Commercial  
Military  
4
LTC1273  
LTC1275/LTC1276  
W U  
See Timing Characteristics Figures (Note 5)  
CONDITIONS  
TI I G CHARACTERISTICS  
LTC1273A/LTC1275A/LTC1276A  
LTC1273B/LTC1275B/LTC1276B  
SYMBOL PARAMETER  
MIN  
TYP  
MAX  
UNITS  
t
Bus Relinquish Time  
20  
20  
20  
30  
75  
85  
90  
ns  
ns  
ns  
7
Commercial  
Military  
t
t
t
t
HBEN to RD Setup Time  
HBEN to RD Hold Time  
0
0
ns  
ns  
ns  
8
9
Delay Between RD Operations  
Delay Between Conversions  
40  
10  
11  
(Note 10)  
Commercial  
Military  
500  
600  
1000  
ns  
ns  
ns  
t
Aperture Delay of Sample-and-Hold  
25  
ns  
12  
The  
indicates specifications which apply over the full operating  
Note 6: Linearity, offset and full scale specifications apply for unipolar and  
temperature range; all other limits and typicals T = 25°C.  
bipolar modes.  
A
Note 1: Absolute maximum ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All voltage values are with respect to ground with DGND and  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
AGND wired together (unless otherwise noted).  
Note 3: When these pin voltages are taken below V (ground for  
Note 8: Bipolar offset (LTC1275/LTC1276) is the different voltage  
measured from 0.5LSB when the LTC1275/LTC1276 output code flickers  
between 0000 0000 0000 and 1111 1111 1111.  
SS  
LTC1273) or above V , they will be clamped by internal diodes. This  
DD  
product can handle input currents greater than 60mA below V (ground  
Note 9: Guaranteed by design, not subject to test.  
Note 10: Recommended operating conditions.  
SS  
for LTC1273) or above V without latch-up.  
DD  
Note 4: When these pin voltages are taken below V (ground for  
LTC1273) they will be clamped by internal diodes. This product can handle  
SS  
Note11: A must not exceed V or fall below V by more than 50mV for  
IN  
DD  
SS  
specified accuracy. Therefore the minimum supply voltage for the  
LTC1273 is +4.95V. The minimum supplies for the LTC1275 are +4.75V  
and 2.45V and the minimum supplies for the LTC1276 are ±4.95V.  
input currents greater than 60mA below V (ground for LTC1273)  
SS  
without latch-up. These pins are not clamped to V  
.
DD  
Note 5: V = 5V (V = 5V for LTC1275/LTC1276), 300kHz at 70°C and  
DD  
SS  
250kHz at 125°C, t = t = 5ns unless otherwise specified.  
r
f
W U  
TI I G CHARACTERISTICS (Note 5)  
ROM Mode, Parallel Read Timing Diagram  
Slow Memory Mode, Parallel Read Timing Diagram  
CS  
CS  
t
1
t
t
1
t
5
t
1
t
5
t
1
5
t
4
t
4
RD  
BUSY  
DATA  
RD  
BUSY  
DATA  
t
10  
t
11  
t
t
t
t
2
11  
2
2
t
t
t
CONV  
CONV  
CONV  
t
7
t
7
t
t
t
t
t
t
3
3
6
3
7
OLD DATA  
DB11 TO DB0  
NEW DATA  
DB11 TO DB0  
OLD DATA  
DB11 TO DB0  
NEW DATA  
DB11 TO DB0  
t
t
12  
12  
12  
HOLD  
HOLD  
TRACK  
TRACK  
LTC1273/75/76 • TA03  
LTC1273/75/76 • TA04  
5
LTC1273  
LTC1275/LTC1276  
W U  
TI I G CHARACTERISTICS (Note 5)  
Slow Memory Mode, Two Byte Read Timing Diagram  
HBEN  
CS  
t
8
t
9
t
t
9
8
t
1
t
t
t
1
t
5
5
t
4
RD  
t
10  
t
10  
t
11  
t
2
t
CONV  
BUSY  
DATA  
t
3
t
7
t
3
t
6
7
OLD DATA  
DB7 TO DB0  
NEW DATA  
DB7 TO DB0  
NEW DATA  
DB11 TO DB8  
t
12  
t
12  
HOLD  
TRACK  
LTC1273/75/76 • TA05  
ROM Mode, Two Byte Read Timing Diagram  
HBEN  
t
t
8
t
t
9
t
9
9
8
t
8
CS  
RD  
t
t
t
t
t
t
t
5
1
5
1
5
1
t
t
t
4
4
4
t
10  
t
11  
t
t
2
2
t
CONV  
BUSY  
DATA  
t
t
t
t
t
7
3
7
3
7
3
OLD DATA  
DB7 TO DB0  
NEW DATA  
DB11 TO DB8  
NEW DATA  
DB7 TO DB0  
t
t
12  
12  
HOLD  
LTC1273/75/76 • TA06  
TRACK  
6
LTC1273  
LTC1275/LTC1276  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Integral Nonlinearity  
Differential Nonlinearity  
Supply Current vs Temperature  
25  
1.0  
0.5  
0
1.0  
0.5  
0
20  
15  
10  
5
–0.5  
–0.5  
–1.0  
–1.0  
0
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
LTC1273/75/76 • TPC01  
LTC1273/75/76 • TPC02  
LTC1273/75/76 • TPC03  
ENOBs and S/(N + D)  
vs Input Frequency  
Signal-to-Noise Ratio (Without  
Harmonics) vs Input Frequency  
Distortion vs Input Frequency  
12  
11  
10  
9
74  
68  
62  
56  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
f
= 300kHz  
SAMPLE  
THD  
2nd HARMONIC  
3rd HARMONIC  
8
–40  
–50  
–60  
–70  
–80  
–90  
–100  
7
6
5
4
3
2
1
f
= 300kHz  
f
= 300kHz  
10k  
SAMPLE  
SAMPLE  
0
1k  
10k  
100k  
1M  
10M  
10k  
100k  
INPUT FREQUENCY (Hz)  
1M 2M  
1k  
100k  
1M  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
LTC1273/75/76 • TPC04  
LTC1273/75/76 • TPC05  
LTC1273/75/76 • TPC06  
Power Supply Feedthrough  
vs Ripple Frequency (LTC1275/76)  
Power Supply Feedthrough  
vs Ripple Frequency (LTC1273)  
0
–20  
0
–20  
f
= 300kHz  
f
= 300kHz  
SAMPLE  
SAMPLE  
V
(V  
= 1mV)  
DD RIPPLE  
DGND (V  
= 0.1V)  
RIPPLE  
–40  
–40  
V
(V  
= 10mV)  
SS RIPPLE  
V
DD  
= 1mV)  
(V  
(V  
RIPPLE  
–60  
–60  
–80  
–80  
DGND  
RIPPLE  
–100  
–120  
–100  
–120  
= 0.1V)  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
RIPPLE FREQUENCY (Hz)  
RIPPLE FREQUENCY (Hz)  
LTC1273/75/76 • TPC07  
LTC1273/75/76 • TPC08  
7
LTC1273  
LTC1275/LTC1276  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Acquisition Time  
vs Source Impedance  
S/(N + D) vs Input Frequency and  
Amplitude  
Intermodulation Distortion Plot  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–20  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
f
= 300kHz  
SAMPLE  
f
f
f
= 300kHz  
SAMPLE  
IN1  
IN2  
= 29.37kHz  
V
= 0dB  
IN  
= 32.446kHz  
V
= –20dB  
IN  
–40  
–60  
–80  
V
= –60dB  
100k  
IN  
–100  
–120  
0
120 140  
160  
0
20 40 60 80 100  
FREQUENCY (kHz)  
1k  
10k  
1M  
10M  
10  
100  
1k  
10k  
INPUT FREQUENCY (Hz)  
R
()  
SOURCE  
LTC1273/75/76 • TPC11  
LTC1273/75/76 • TPC10  
LTC1273/75/76 • F05  
Spurious Free Dynamic Range  
vs Input Frequency  
Reference Voltage  
vs Load Current  
2.435  
2.430  
0
–10  
–20  
–30  
f
= 300kHz  
SAMPLE  
2.425  
2.420  
–40  
–50  
–60  
–70  
2.415  
2.410  
2.405  
–80  
–90  
–100  
–5 –4  
–3  
–2  
–1  
0
1
2
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
INPUT FREQUENCY (Hz)  
LTC1273/75/76 • TPC13  
LTC1273/75/76 • TPC12  
U U  
U
PI FU CTIO S  
AIN (Pin 1): Analog Input. 0V to 5V (LTC1273), ±2.5V  
(LTC1275) or ±5V (LTC1276).  
HBEN (Pin 19): High Byte Enable Input. This pin is used to  
multiplex the internal 12-bit conversion result into the  
lower bit outputs (D7-D0/8). See Table 1. HBEN also  
disables conversion start when HIGH.  
VREF (Pin 2): +2.42V Reference Output. Bypass to AGND  
(10µF tantalum in parallel with 0.1µF ceramic).  
RD (Pin 20): READ Input. This active low signal starts a  
conversion when CS and HBEN are low. RD also enables  
the output drivers when CS is low.  
AGND (Pin 3): Analog Ground.  
D11-D4 (Pins 4 to 11): Three-State Data Outputs.  
DGND (Pin 12): Digital Ground.  
CS (Pin 21): The CHIP SELECT Input must be low for the  
ADC to recognize RD and HBEN inputs.  
D3/11-D0/8 (Pins 13 to 16): Three-State Data Outputs.  
NC (Pins 17 and 18): No Connection.  
BUSY (Pin 22): The BUSY Output shows the converter  
status. It is low when a conversion is in progress.  
8
LTC1273  
LTC1275/LTC1276  
U
O
U
U
PI  
FU CTI  
S
VSS (Pin23):NegativeSupply.5VforLTC1275/LTC1276.  
Bypass to AGND with 0.1µF ceramic.  
VDD (Pin 24): Positive Supply, 5V. Bypass to AGND (10µF  
tantalum in parallel with 0.1µF ceramic).  
NC (Pin 23): No Connection for LTC1273.  
Table 1. Data Bus Output, CS and RD = LOW  
Pin 4  
D11  
Pin 5  
D10  
Pin 6  
D9  
Pin 7  
D8  
Pin 8  
D7  
Pin 9  
D6  
Pin 10  
D5  
Pin 11  
D4  
Pin 13  
D3/11  
DB3  
Pin 14  
D2/10  
DB2  
Pin 15  
D1/9  
DB1  
Pin 16  
D0/8  
DB0  
MNEMONIC*  
HBEN = LOW  
HBEN = HIGH  
DB11  
DB11  
DB10  
DB10  
DB9  
DB9  
DB8  
DB8  
DB7  
LOW  
DB6  
LOW  
DB5  
LOW  
DB4  
LOW  
DB11  
DB10  
DB9  
DB8  
*D11...D0/8 are the ADC data output pins.  
DB11...DB0 are the 12-bit conversion results, DB11 is the MSB.  
U U  
FU TIO AL BLOCK DIAGRA  
W
SAMPLE  
V
V
SS  
(NC ON LTC1273)  
DD  
C
SAMPLE  
COMPARATOR  
SAMPLE  
HOLD  
A
IN  
+
D11  
12  
12  
SUCCESSIVE  
APPROXIMATION  
REGISTER  
OUTPUT  
LATCHES  
12-BIT  
CAPACITIVE  
DAC  
V
REF(OUT)  
D0/8  
BUSY  
2.42V  
REFERENCE  
CS  
RD  
INTERNAL  
CLOCK  
CONTROL  
LOGIC  
HBEN  
AGND DGND  
LTC1273/75/76 • FBD  
TEST CIRCUITS  
Load Circuits for Output Float Delay  
Load Circuits for Access Time  
5V  
3k  
5V  
3k  
DBN  
DBN  
DBN  
DBN  
3k  
C
C
3k  
10pF  
10pF  
L
L
DGND  
A) HIGH-Z TO V (t )  
DGND  
B) HIGH-Z TO V (t )  
DGND  
A) V TO HIGH-Z  
DGND  
B) V TO HIGH-Z  
OH  
3
OL  
3
OH  
OL  
AND V TO V (t )  
AND V TO V (t )  
OH OL 6  
1273/75/76 • TA08  
OL  
OH  
6
1273/75/76 • TA07  
9
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
capacitive DAC. Bit decisions are made by the high speed  
comparator. At the end of a conversion, the DAC output  
balances the AIN input charge. The SAR contents (a 12-bit  
data word) which represent the AIN are loaded into the  
12-bit output latches.  
CONVERSION DETAILS  
The LTC1273/LTC1275/LTC1276 use a successive ap-  
proximation algorithm and an internal sample-and-hold  
circuit to convert an analog signal to a 12-bit parallel or  
2-byte output. The ADCs are complete with a precision  
reference and an internal clock. The control logic provides  
easyinterfacetomicroprocessorsandDSPs.(Pleaserefer  
to the Digital Interface section for the data format.)  
DYNAMIC PERFORMANCE  
The LTC1273/LTC1275/LTC1276 have an exceptionally  
high speed sampling capability. FFT (Fast Fourier Trans-  
form) test techniques are used to characterize the ADC’s  
frequency response, distortion and noise at the rated  
throughput. By applying a low distortion sine wave and  
analyzing the digital output using an FFT algorithm, the  
ADC’s spectral content can be examined for frequencies  
outsidethefundamental.Figure2showsatypicalLTC1275  
FFT plot.  
Conversion start is controlled by the CS, RD and HBEN  
inputs. At the start of conversion the successive approxi-  
mation register (SAR) is reset and the three-state data  
outputs are enabled. Once a conversion cycle has begun  
it cannot be restarted.  
During conversion, the internal 12-bit capacitive DAC  
output is sequenced by the SAR from the most significant  
bit (MSB) to the least significant bit (LSB). Referring to  
Figure 1, the AIN input connects to the sample-and-hold  
capacitor during the acquire phase, and the comparator  
offset is nulled by the feedback switch. In this acquire  
phase, a minimum delay of 600ns will provide enough  
time for the sample-and-hold capacitor to acquire the  
analog signal. During the convert phase, the comparator  
feedback switch opens, putting the comparator into the  
compare mode. The input switch switches CSAMPLE to  
ground, injecting the analog input charge onto the sum-  
ming junction. This input charge is successively com-  
pared with the binary-weighted charges supplied by the  
Signal-to-Noise Ratio  
TheSignal-to-NoiseplusDistortionRatio[S/(N+D)]isthe  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 2 shows a typical spectral content with  
a 300kHz sampling rate and a 29kHz input. The dynamic  
performance is excellent for input frequencies up to the  
Nyquist limit of 150kHz.  
0
SAMPLE  
–20  
–40  
SI  
C
SAMPLE  
SAMPLE  
HOLD  
A
+
IN  
–60  
C
V
DAC  
COMPARATOR  
–80  
DAC  
DAC  
S
A
R
–100  
–120  
120 140  
160  
0
20  
40 60 80 100  
FREQUENCY (kHz)  
12-BIT  
LATCH  
LTC1273/75/76 • F02  
LTC1273/75/76 • F01  
Figure 1. AIN Input  
Figure 2. LTC1275 Nonaveraged, 1024 Point FFT Plot  
10  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Effective Number of Bits  
quency is shown in Figure 4. The LTC1273/LTC1275/  
LTC1276 have good distortion performance up to Nyquist  
and beyond.  
TheEffectiveNumberofBits(ENOBs)isameasurementof  
the resolution of an ADC and is directly related to the  
S/(N + D) by the equation:  
0
f
= 300kHz  
SAMPLE  
–10  
–20  
–30  
N = [S/(N + D) – 1.76]/6.02  
THD  
2nd HARMONIC  
3rd HARMONIC  
where N is the Effective Number of Bits of resolution and  
S/(N + D) is expressed in dB. At the maximum sampling  
rate of 300kHz the LTC1273/LTC1275/LTC1276 maintain  
very good ENOBs up to the Nyquist input frequency of  
150kHz. Refer to Figure 3.  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
12  
11  
10  
9
74  
68  
62  
56  
50  
1k  
10k  
100k  
1M  
10M  
INPUT FREQUENCY (Hz)  
LTC1273/75/76 • F04  
8
7
Figure 4. Distortion vs Input Frequency  
6
5
4
Intermodulation Distortion  
3
2
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused by  
the presence of another sinusoidal input at a different  
frequency.  
1
f
= 300kHz  
SAMPLE  
0
10k  
100k  
INPUT FREQUENCY (Hz)  
1M 2M  
LTC1273/75/76 • F03  
Figure 3. Effective Bits and Signal to (Noise + Distortion)  
vs Input Frequency  
If two pure sine waves of frequencies fa and fb are applied  
to the ADC input, nonlinearities in the ADC transfer func-  
tion can create distortion products at sum and difference  
frequencies of mfa ± nfb, where m and n = 0, 1, 2, 3, etc.  
Forexample, the2ndorderIMDtermsinclude(fa+fb)and  
(fa – fb) while the 3rd order IMD terms include (2fa + fb),  
(2fa – fb), (fa + 2fb), and (fa – 2fb). If the two input sine  
wavesareequalinmagnitude,thevalue(indecibels)ofthe  
2ndorderIMDproductscanbeexpressedbythefollowing  
formula:  
Total Harmonic Distortion  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
band between DC and half the sampling frequency. THD is  
expressed as:  
2
2
2
2
V2 + V3 + V4 ... + VN  
THD = 20log  
V1  
Amplitude at (fa ± fb)  
IMD (fa ± fb) = 20log  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through VN are the amplitudes of the  
second through Nth harmonics. THD versus input fre-  
Amplitude at fa  
11  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
the analog input must settle after the small current spike  
before the next conversion starts. Any op amp that settles  
in 600ns to small current transients will allow maximum  
speedoperation.Ifsloweropampsareused,moresettling  
time can be provided by increasing the time between  
conversions.SuitabledevicescapableofdrivingtheADCs’  
Figure 5 shows the IMD performance at a 30kHz input.  
0
f
f
f
= 300kHz  
SAMPLE  
IN1  
IN2  
= 29.37kHz  
–20  
–40  
= 32.446kHz  
A
IN input include the LT1190/LT1191, LT1007, LT1220,  
–60  
LT1223 and LT1224 op amps.  
–80  
The analog input tolerates source resistance very well.  
Here again, the only requirement is that the analog input  
must settle before the next conversion starts. For larger  
source resistance, full DC accuracy can be obtained if  
more time is allowed between conversions. For more  
information, see the Acquisition Time vs Source Resis-  
tance curve in the Typical Performance Characteristics  
section. For optimum frequency domain performance  
[e.g., S/(N + D)], keep the source resistance below 100.  
–100  
–120  
120 140  
160  
0
20 40 60 80 100  
FREQUENCY (kHz)  
LTC1273/75/76 • F05  
Figure 5. Intermodulation Distortion Plot  
Peak Harmonic or Spurious Noise  
Internal Reference  
The peak harmonic or spurious noise is the largest spec-  
tral component excluding the input signal and DC. This  
value is expressed in decibels relative to the RMS value of  
a full scale input signal.  
The LTC1273/LTC1275/LTC1276 have an on-chip, tem-  
perature compensated, curvature corrected, bandgap ref-  
erence which is factory trimmed to 2.42V. It is internally  
connected to the DAC and is available at pin 2 to provide  
up to 1mA current to an external load.  
Full Power and Full Linear Bandwidth  
The full power bandwidth is that input frequency at which  
the amplitude of the reconstructed fundamental is re-  
duced by 3dB for a full scale input signal.  
For minimum code transition noise the reference output  
should be decoupled with a capacitor to filter wideband  
noise from the reference (10µF tantalum in parallel with a  
0.1µF ceramic).  
The full linear bandwidth is the input frequency at which  
the S/(N + D) has dropped to 68dB (11 effective bits). The  
LTC1273/LTC1275/LTC1276 have been designed to opti-  
mize input bandwidth, allowing ADCs to undersample  
inputsignalswithfrequenciesabovetheconvertersNyquist  
Frequency. The noise floor stays very low at high frequen-  
cies; S/(N + D) becomes dominated by distortion at  
frequencies far beyond Nyquist.  
I
n the LTC1275, the VREF pin can be driven above its  
normal value with a DAC or other means to provide input  
spanadjustmentortoimprovethereferencetemperature  
drift. Figure 6 shows an LT1006 op amp driving the  
INPUT RANGE  
±1.033V  
REF(OUT)  
LTC1275  
A
+
IN  
Driving the Analog Input  
V
2.45V  
3Ω  
REF(OUT)  
LT1006  
V
REF  
The analog inputs of the LTC1273/LTC1275/LTC1276 are  
easytodrive.Theydrawonlyonesmallcurrentspikewhile  
charging the sample-and-hold capacitor at the end of  
conversion. During conversion the analog input draws no  
current. The only requirement is that the amplifier driving  
AGND  
LTC1273/75/76 • F06  
10µF  
Figure 6. Driving the VREF with the LT1006 Op Amp  
12  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
reference pin. The VREF pin must be driven to at least  
2.45V to prevent conflict with the internal reference. The  
reference should be driven to no more than 4.8V to keep  
the input span within the ±5V supplies. In the LTC1273/  
LT1276, the input spans are 0V to 5V and ±5V respec-  
tively with the internal reference. Driving the reference is  
not recommended on the LTC1273/LTC1276 since the  
inputspanswillexceedthesuppliesandcodeswillbelost  
at full scale.  
FS  
5V  
=
111...111  
111...110  
111...101  
111...100  
1LSB =  
4096 4096  
UNIPOLAR  
ZERO  
000...011  
000...010  
000...001  
000...000  
Figure 7 shows a typical reference, the LT1019A-2.5  
connected to the LTC1275. This will provide an improved  
drift(equaltothemaximum5ppm/°CoftheLT1019A-2.5)  
and a ±2.582V full scale.  
0V  
FS – 1LSB  
1
LSB  
INPUT VOLTAGE (V)  
LTC1273/75/76 • F08  
Figure 8. LTC1273 Unipolar Transfer Characteristic  
INPUT RANGE  
±2.58V  
5V  
011...111  
LTC1275  
BIPOLAR  
ZERO  
011...110  
A
IN  
V
IN  
V
V
OUT  
REF  
000...101  
000...000  
111...111  
LT1019A-2.5  
3Ω  
10µF  
AGND  
LTC1273/75/76 • F07  
GND  
111...110  
100...001  
100...000  
FS = 5V (LTC1275)  
FS = 10V (LTC1276)  
1LSB = FS/4096  
Figure 7. Supplying a 2.5V Reference Voltage  
to the LTC1275 with the LT1019A-2.5  
–1 0V  
–FS/2  
1
FS/2 – 1LSB  
LSB  
LSB  
UNIPOLAR/BIPOLAR OPERATION AND ADJUSTMENT  
INPUT VOLTAGE (V)  
LTC1273/75/76 • F09  
Figure 8 shows the ideal input/output characteristics for  
theLTC1273. Thecodetransitionsoccurmidwaybetween  
successive integer LSB values (i.e., 1/2LSB, 1 1/2LSBs,  
2 1/2LSBs, ... FS – 1 1/2LSBs). The output code is natural  
binary with 1LSB = FS/4096 = 5V/4096 = 1.22mV. Figure  
9 shows the input/output transfer characteristics for the  
LTC1275/LTC1276in2scomplementformat. Asstatedin  
the figure, 1LSB for LTC1275/LTC1276 are 1.22mV and  
2.44mV respectively.  
Figure 9. LTC1275/LTC1276 Bipolar Transfer Characteristic  
R1  
50Ω  
V
1
+
A1  
A
IN  
R4  
R2  
10k  
100Ω  
LTC1273  
LTC1275  
LTC1276  
R3  
10k  
FULL SCALE  
ADJUST  
Unipolar Offset and Full Scale Adjustment (LTC1273)  
AGND  
LTC1273/75/76 • F10a  
In applications where absolute accuracy is important,  
offset and full scale errors can be adjusted to zero. Figure  
10a shows the extra components required for full scale  
error adjustment. If both offset and full scale adjustments  
are needed, the circuit in Figure 10b can be used. Offset  
ADDITIONAL PINS OMITTED FOR CLARITY  
±20LSB TRIM RANGE  
Figure 10a. Full Scale Adjust Circuit  
13  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
S
I FOR ATIO  
A
R1  
R1  
10k  
ANALOG  
INPUT  
0V TO 5V  
10k  
ANALOG  
INPUT  
±2.5V (LTC1275)  
±5V (LTC1276)  
+
+
R2  
10k  
R2  
10k  
A
A
IN  
IN  
10k  
R4  
100k  
R4  
100k  
5V  
R9  
20Ω  
R5  
4.3k  
R5  
LTC1275  
LTC1276  
LTC1273  
4.3k  
FULL SCALE  
FULL SCALE  
ADJUST  
5V  
5V  
ADJUST  
R3  
R3  
R7  
100k  
R7  
100k  
R8  
100k  
R8  
100k  
LTC1273/75/76 • F10b  
LTC1273/75/76 • F10c  
10k  
20k  
OFFSET  
ADJUST  
OFFSET  
ADJUST  
R6  
400Ω  
R6  
200Ω  
–5V  
Figure 10b. LTC1273 Offset and Full Scale Adjust Circuit  
Figure 10c. LTC1275/LTC1276 Offset and  
Full Scale Adjust Circuit  
shouldbeadjustedbeforefullscale. Toadjustoffset, apply  
0.61mV(i.e.,1/2LSB)attheinputandadjusttheoffsettrim  
untiltheLTC1273outputcodeflickersbetween00000000  
0000 and 0000 0000 0001. To adjust full scale, apply an  
analog input of 4.99817V (i.e., FS – 1 1/2LSBs or last code  
transition) at the input and adjust the full scale trim until  
the LTC1273 output code flickers between 1111 1111  
1110 and 1111 1111 1111. It should be noted that if  
negative ADC offsets need to be adjusted or if an output  
swing to ground is required, the op amp in Figure 10b  
requires a negative power supply.  
input and R5 is adjusted until the output code flickers  
between 0111 1111 1110 and 0111 1111 1111.  
BOARD LAYOUT AND BYPASSING  
The LTC1273/LTC1275/LTC1276 are easy to use. To ob-  
tain the best performance from the devices a printed  
circuit board is required. Layout for the printed circuit  
boardshouldensurethatdigitalandanalogsignallinesare  
separated as much as possible. In particular, care should  
be taken not to run any digital track alongside an analog  
signal track. The analog input should be screened by  
AGND.  
Bipolar Offset and Full Scale Adjustment  
(LTC1275/LTC1276)  
Bipolar offset and full scale errors are adjusted in a similar  
fashion to the unipolar case. Figure 10a shows the extra  
componentsrequiredforfullscaleerroradjustment. Ifboth  
offset and full scale adjustments are needed, the circuit in  
Figure 10c can be used. Again, bipolar offset must be  
adjusted before full scale error. Bipolar offset adjustment is  
achieved by trimming the offset adjustment of Figure 10c  
whiletheinputvoltageis1/2LSBbelowground.Thisisdone  
by applying an input voltage of 0.61mV or 1.22mV  
(0.5LSB for LTC1275 or LTC1276) to the input in Figure  
10c and adjusting R8 until the ADC output code flickers  
between 0000 0000 0000 and 1111 1111 1111. For full  
scaleadjustment,aninputvoltageof2.49817Vor4.99636V  
(FS – 1 1/2LSBs for LTC1275 or LTC1276) is applied to the  
High quality tantalum and ceramic bypass capacitors  
shouldbeusedattheVDD andVREF pinsasshowninFigure  
11. For the LTC1275/LTC1276 a 0.1µF ceramic provides  
adequate bypassing for the VSS pin. The capacitors must  
be located as close to the pins as possible. The traces  
connecting the pins and the bypass capacitors must be  
kept short and should be made as wide as possible.  
Noise: Input signal leads to AIN and signal return leads  
from AGND (Pin 3) should be kept as short as possible to  
minimize input noise coupling. In applications where this  
is not possible, a shielded cable between source and ADC  
is recommended. Also, since any potential difference in  
groundsbetweenthesignalsourceandADCappearsasan  
14  
LTC1273  
LTC1275/LTC1276  
O U  
S
W
U
PPLICATI  
A
I FOR ATIO  
1
DIGITAL  
SYSTEM  
A
LTC1273  
IN  
AGND  
3
V
V
DGND  
12  
+
REF  
DD  
24  
ANALOG  
INPUT  
CIRCUITRY  
2
GROUND CONNECTION  
TO DIGITAL CIRCUITRY  
10µF  
0.1µF  
10µF  
0.1µF  
ANALOG GROUND PLANE  
LTC1273/75/76 • F11  
Figure 11. Power Supply Grounding Practice  
error voltage in series with the input signal, attention  
should be paid to reducing the ground circuit impedances  
as much as possible.  
Internal Clock  
TheseADCshaveaninternalclockthateliminatestheneed  
for synchronization between an external clock and the CS  
and RD signals found in other ADCs. The internal clock is  
factory trimmed to achieve a typical conversion time of  
2.45µs, and a maximum conversion time over the full  
operating temperature range of 2.7µs. No external adjust-  
ments are required and, with the guaranteed maximum  
acquisition time of 600ns, throughput performance of  
300ksps is assured.  
Asinglepointanaloggroundplaneseparatefromthelogic  
system ground should be established at Pin 3 (AGND) or  
as close as possible to the ADC, as shown in Figure 11. Pin  
12 (DGND) and all other analog grounds should be con-  
nected to this single analog ground point. No other digital  
grounds should be connected to this analog ground point.  
Low impedance analog and digital power supply common  
returnsareessentialtolownoiseoperationoftheADCand  
the width for these traces should be as wide as possible.  
Timing and Control  
Conversion start and data read operations are controlled  
by three digital inputs: HBEN, CS and RD. Figure 12 shows  
the logic structure associated with these inputs. The three  
signals are internally gated so that a logic “0” is required  
In applications where the ADC data outputs and control  
signals are connected to a continuously active micropro-  
cessor bus, it is possible to get errors in conversion  
results. These errors are due to feedthrough from the  
microprocessor to the ADC. The problem can be elimi-  
nated by forcing the microprocessor into a WAIT state  
during conversion or by using three-state buffers to iso-  
late the ADC data bus.  
LTC1273/75/76  
BUSY  
D
Q
CONVERSION  
START (RISING  
EDGE TRIGGER)  
19  
HBEN  
CS 21  
20  
FLIP  
FLOP  
RD  
DIGITAL INTERFACE  
CLEAR  
The ADCs are designed to interface with microprocessors  
as a memory mapped device. The CS and RD control  
inputs are common to all peripheral memory interfacing.  
The HBEN input serves as a data byte select for 8-bit  
processors and is normally either connected to the micro-  
processor address bus or grounded.  
ACTIVE HIGH  
ACTIVE HIGH  
ENABLE THREE-STATE OUTPUTS  
D11....D0/8 = DB11....DB0  
ENABLE THREE-STATE OUTPUTS  
D11....D8 = DB11....DB8  
D7....D4 = LOW  
D3/11....D0/8 = DB11....DB8  
LTC1273/75/76 • F12  
* D11....D0/8 ARE THE ADC DATA OUTPUT PINS  
DB11....DB0 ARE THE 12-BIT CONVERSION RESULTS  
Figure 12. Internal Logic for Control Inputs CS, RD and HBEN  
15  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
on all three inputs to initiate a conversion. Once initiated it  
cannot be restarted until the conversion is complete.  
Converter status is indicated by the BUSY output, and this  
is low while conversion is in progress.  
8MSBs) where it can be read in two read cycles. The  
4MSBs always appear on D11...D8 whenever the three-  
state output drivers are turned on.  
Slow Memory Mode, Parallel Read (HBEN = LOW)  
Therearetwomodesofoperationasoutlinedbythetiming  
diagrams of Figures 13 to 16. Slow Memory Mode is  
designed for microprocessors which can be driven into a  
WAITstate.AREADoperationbringsCSandRDlowwhich  
initiates a conversion and data is read when conversion is  
complete. The second is the ROM Mode which does not  
require microprocessor WAIT states. A READ operation  
brings CS and RD low which initiates a conversion and  
reads the previous conversion result.  
Figure 13 and Table 2 show the timing diagram and data  
bus status for Slow Memory Mode, Parallel Read. CS and  
RD going low trigger a conversion and the ADC acknowl-  
edgesbytakingBUSYlow. Datafromthepreviousconver-  
sion appears on the three-state data outputs. BUSY re-  
turns high at the end of conversion when the output  
latches have been updated and the conversion result is  
placed on data outputs D11...D0/8.  
Slow Memory Mode, Two Byte Read  
Data Format  
Foratwobyteread,only8dataoutputsD7...D0/8areused.  
Conversion start procedure and data output status for the  
first read operation are identical to Slow Memory Mode,  
Parallel Read. See Figure 14 timing diagram and Table 3  
data bus status. At the end of the conversion, the low data  
byte (D7...D0/8) is read from the ADC. A second READ  
operation,withtheHBENhigh,placesthehighbyteondata  
outputs D3/11...D0/8 and disables conversion start. Note  
Theoutputformatcanbeeitheracompleteparallelloadfor  
16-bit microprocessors or a two byte load for 8-bit micro-  
processors. Data is always right justified (i.e., LSB is the  
most right-hand bit in a 16-bit word). For a two byte read,  
only data outputs D7...D0/8 are used. Byte selection is  
governed by the HBEN input which controls an internal  
digital multiplexer. This multiplexes the 12-bits of conver-  
sion data onto the lower D7...D0/8 outputs (4MSBs or  
CS  
t
t
5
t
1
1
RD  
t
10  
t
t
11  
2
t
CONV  
BUSY  
DATA  
t
t
t
7
6
3
OLD DATA  
DB11-DB0  
NEW DATA  
DB11-DB0  
t
12  
HOLD  
TRACK  
LTC1273/75/76 • F13  
Figure 13. Slow Memory Mode, Parallel Read Timing Diagram  
Table 2. Slow Memory Mode, Parallel Read Data Bus Status  
Data Outputs  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3/11  
D2/10  
D1/9  
D0/8  
Read  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
16  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
HBEN  
t
t
t
t
9
8
9
8
CS  
RD  
t
t
5
t
1
t
5
1
t
4
t
10  
t
10  
t
t
11  
2
t
CONV  
BUSY  
DATA  
t
t
t
7
t
t
7
3
6
3
OLD DATA  
DB7-DB0  
NEW DATA  
DB7-DB0  
NEW DATA  
DB11-DB8  
t
t
12  
12  
HOLD  
TRACK  
LTC1273/75/76 • F14  
Figure 14. Slow Memory Mode, Two Byte Read Timing Diagram  
Table 3. Slow Memory Mode, Two Byte Read Data Bus Status  
Data Outputs  
First Read  
D7  
D6  
D5  
D4  
D3/11  
DB3  
D2/10  
DB2  
D1/9  
D0/8  
DB7  
Low  
DB6  
Low  
DB5  
Low  
DB4  
Low  
DB1  
DB9  
DB0  
DB8  
Second Read  
DB11  
DB10  
that the 4MSBs appear on data output D11...D8 during  
both READ operations.  
normal way with a READ operation and the data output  
status is the same as the ROM mode, Parallel Read (see  
Figure 16 timing diagram and Table 5 data bus status).  
TwomoreREADoperationsarerequiredtoaccessthenew  
conversion result. A delay equal at the ADCs’ conversion  
time must be allowed between conversion start and the  
third data READ operation. The second READ operation  
with HBEN high disables conversion start and places the  
high byte (4MSBs) on data outputs D3/11...D0/8. A third  
read operation accesses the low data byte (DB7...DB0)  
and starts another conversion. The 4MSBs appear on data  
outputs D11...D8 during all three read operations.  
ROM Mode, Parallel Read (HBEN = LOW)  
The ROM Mode avoids placing a microprocessor into a  
WAIT state. A conversion is started with a READ opera-  
tion, and the 12 bits of data from the previous conversion  
are available on data outputs D11...D0/8 (see Figure 15  
and Table 4). This data may be disregarded if not re-  
quired. A second READ operation reads the new data  
(DB11...DB0) and starts another conversion. A delay at  
leastaslongastheADC’sconversiontimeplusthe600ns  
minimum delay between conversions must be allowed  
between READ operations.  
MICROPROCESSOR INTERFACING  
The LTC1273/LTC1275/LTC1276 allow easy interfac-  
ing to digital signal processors as well as modern high  
speed, 8-bit or 16-bit microprocessors. Here are sev-  
eral examples.  
ROM Mode, Two Byte Read  
As previously mentioned for a two byte read, only data  
outputs D7...D0/8 are used. Conversion is started in the  
17  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
CS  
t
1
t
t
t
5
5
1
t
t
4
4
RD  
t
11  
t
2
t
t
CONV  
2
t
CONV  
BUSY  
DATA  
t
t
t
t
7
3
7
3
OLD DATA  
DB11-DB0  
NEW DATA  
DB11-DB0  
t
t
12  
12  
HOLD  
TRACK  
LTC1273/75/76 • F15  
Figure 15. ROM Mode, Parallel Read Timing Diagram (HBEN = LOW)  
Table 4. ROM Mode, Parallel Read Data Bus Status  
Data Outputs  
D11  
DB11  
DB11  
D10  
DB10  
DB10  
D9  
D8  
D7  
D6  
D5  
D4  
D3/11  
DB3  
D2/10  
DB2  
D1/9  
DB1  
DB1  
D0/8  
DB0  
DB0  
First Read (Old Data)  
Second Read  
DB9  
DB9  
DB8  
DB8  
DB7  
DB7  
DB6  
DB6  
DB5  
DB5  
DB4  
DB4  
DB3  
DB2  
HBEN  
t
t
t
t
t
t
9
8
9
8
9
8
CS  
RD  
t
t
t
t
t
t
t
5
1
5
1
5
1
4
t
t
t
4
4
t
10  
t
11  
t
2
2
t
CONV  
BUSY  
DATA  
t
t
t
t
t
t
7
3
7
3
7
3
OLD DATA  
DB7-DB0  
NEW DATA  
DB11-DB8  
NEW DATA  
DB7-DB0  
t
t
12  
12  
HOLD  
LTC1272 • TA16  
TRACK  
Figure 16. ROM Mode Two Byte Read Timing Diagram  
Table 5. ROM Mode, Two Byte Read Data Bus Status  
Data Outputs  
D7  
D6  
D5  
D4  
D3/11  
DB3  
D2/10  
DB2  
D1/9  
DB1  
DB9  
DB1  
D0/8  
DB0  
DB8  
DB0  
First Read (Old Data)  
Second Read (New Data)  
Third Read (New Data)  
DB7  
Low  
DB7  
DB6  
Low  
DB6  
DB5  
Low  
DB5  
DB4  
Low  
DB4  
DB11  
DB3  
DB10  
DB2  
18  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
TMS320C25  
S I FOR ATIO  
A
A23  
A1  
ADDRESS BUS  
ADDRESS  
Figure 17 shows an interface between the LTC1273 and  
the TMS320C25.  
AS  
EN  
DECODE  
LTC1273/75/76  
MC68000  
The W/R signal of the DSP initiates a conversion and  
conversion results are read from the LTC1273 using the  
following instruction:  
CS  
BUSY  
DTACK  
R/W  
RD  
D11  
D0  
D11  
IN  
D, PA  
DATA BUS  
D0/8  
HBEN  
where D is Data Memory Address and PA is the PORT  
ADDRESS.  
ADDITIONAL PINS OMITTED FOR CLARITY  
LTC1273/75/76 • F18  
A16  
Figure 18. MC68000 Interface  
ADDRESS BUS  
A1  
ADDRESS  
DECODE  
IS  
TMS320C25  
EN  
8085A/Z80 Microprocessor  
LTC1273/75/76  
Figure 19 shows an LTC1273 interface for the Z80/8085A.  
The LTC1273 is operating in the Slow Memory Mode and  
a two byte read is required. Not shown in the figure is the  
8-bit latch required to demultiplex the 8085A common  
address/data bus. A0 is used to assert HBEN so that an  
even address (HBEN = LOW) to the LTC1273 will start a  
conversion and read the low data byte. An odd address  
(HBEN = HIGH) will read the high data byte. This is  
accomplished with the single 16-bit LOAD instruction  
below.  
CS  
BUSY  
READY  
R/W  
RD  
D16  
D0  
D11  
DATA BUS  
D0/8  
HBEN  
ADDITIONAL PINS OMITTED FOR CLARITY  
LTC1273/75/76 • F17  
Figure 17. TMS320C25 Interface  
MC68000 Microprocessor  
For the 8085A  
For the Z80  
LHLD (B000)  
LDHL, (B000)  
Figure 18 shows a typical interface for the MC68000. The  
LTC1273 is operating in the Slow Memory Mode. Assum-  
ing the LTC1273 is located at address C000, then the  
following single 16-bit MOVE instruction both starts a  
conversion and reads the conversion result:  
A15  
A0  
ADDRESS BUS  
A0  
ADDRESS  
DECODE  
Move.W $C000,D0  
MREQ  
EN  
HBEN  
Z80  
8085A  
At the beginning of the instruction cycle when the ADC  
address is selected, BUSY and CS assert DTACK so that  
the MC68000 is forced into a WAIT state. At the end of  
conversion, BUSY returns high and the conversion result  
is placed in the D0 register of the microprocessor.  
CS  
WAIT  
BUSY  
LTC1273/75/76  
RD  
RD  
D7  
D0  
D7  
DATA BUS  
D0/8  
ADDITIONAL PINS OMITTED FOR CLARITY  
LTC1273/75/76 • F19  
Figure 19. 8085A and Z80 Interface  
19  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
This is a two byte read instruction which loads the ADC  
data (address B000) into the HL register pair. During the  
first read operation, BUSY forces the microprocessor to  
WAIT for the LTC1273 conversion. No WAIT states are  
inserted during the second read operation when the mi-  
croprocessor is reading the high data byte.  
current so it can be accurately driven by the unbuffered  
MUX. The CD4520 counter increments the MUX channel  
after each sample is taken. Figure 22 shows the acquisi-  
tion time of LTC1275 vs the source resistance. For a  
500maximum “on” resistance of the CD4051, the  
acquisition time of the ADC is not greatly affected. For  
larger source resistances, modest increases in acquisi-  
tion time must be allowed.  
TMS32010 Microcomputer  
Figure 20 shows an LTC1273/TMS32010 interface. The  
LTC1273 is operating in the ROM Mode.  
5V  
NO  
CD4051  
BUFFER  
The LTC1273 is mapped at a port address. The following  
I/O instruction starts a conversion and reads the previous  
conversion result into data memory.  
V
DD  
D11  
REQUIRED  
A
IN  
µP  
OR  
DSP  
D0  
LTC1275  
CS  
RD  
8 INPUT  
CHANNELS  
±2.8V  
IN A,PA  
(PA = PORT ADDRESS)  
BUSY  
When conversion is complete, a second I/O instruction  
reads the up-to-date data into memory and starts another  
conversion. A delay at least as long as the ADC conversion  
time must be allowed between I/O instructions.  
INPUT  
VARIES  
LTC1273/75/76 • F21  
V
SS  
5V  
V
A
B C  
EE  
ENABLE  
CD4520  
COUNTER  
RESET  
Q2  
Q1  
Q0  
PA2  
–5V  
PORT ADDRESS BUS  
PA0  
ADDRESS  
DECODE  
DEN  
TMS32010  
EN  
LTC1273/75/76  
CS  
Figure 21. MUXing the LTC1275 with CD4051  
RD  
4
D11  
D0  
D11  
DATA BUS  
D0/8  
HBEN  
R
SOURCE  
3
2
1
0
LINEAR CIRCUITRY OMITTED FOR CLARITY  
A
LTC1275  
IN  
LTC1273/75/76 • F20  
V
IN  
Figure 20. TMS32010 Interface  
500Ω  
MUXing with CD4051  
The high input impedance of the LTC1273/LTC1275/  
LTC1276providesaneasy, cheap, fast, andaccurateway  
to multiplex many channels of data through one con-  
verter. Figure 21 shows a low cost CD4051 connected to  
the LTC1275. The LTC1275’s input draws no DC input  
10  
100  
1k  
10k  
SOURCE RESISTANCE ()  
LTC1273/75/76 • F22  
Figure 22. Acqusition Time of LTC1275 vs Source Resistance  
20  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
Demodulating a Signal by Undersampling  
AtimedomainviewofthedemodulationisshowninFigure  
25. The top trace shows the 455kHz waveform modulated  
by a 6dB, 5kHz signal. The bottom trace shows the  
demodulated signal produced by the LTC1275 recon-  
structed through a 12-bit DAC. The resultant frequency is  
5kHz with a sample rate of 227.5kHz. There are roughly 45  
points per cycle.  
with LTC1275  
Figure 23 shows a 455kHz amplitude modulated input  
undersampled by the LTC1275. With a 227.5kHz sample  
rate,theconverterprovidesa100dBnoisefloorand68dB  
distortion when digitizing the 455kHz AM input.  
Figure 24 shows an FFT of the AM signal digitized at  
212.5kHz.  
5V  
455kHz  
AM SIGNAL  
227.5kHz  
SAMPLE RATE  
1V/DIV  
RD  
RD  
455kHz  
AMPLITUDE  
MODULATED  
INPUT  
A
LTC1275  
IN  
D11  
D0  
DATA OUTPUT  
DEMODULATED  
5kHz OUTPUT  
1V/DIV  
–5V  
LTC1273/75/76 • F23  
Figure 23. A 455kHz Amplitude Modulated Input  
Undersampled by the LTC1275  
LTC1273/75/76 • F27  
50µs/DIV  
Figure 25. 455kHz AM Signal Demodulated to 10.5 ENOBs  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
100ps Resolution Time Measurement with LTC1273  
Figure 26 shows a circuit that precisely measures the  
difference in time between two events. It has a 400ns full  
scale and 100ps resolution. The start signal releases the  
ramp generator made up of the PNP current source and  
the 250pF capacitor. The circuit ramps until the stop  
signal shuts off the current source. The final value of the  
ramp represents the time between the start and stop  
events.TheLTC1273digitizesthisfinalvalueandoutputs  
the digital data.  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (kHz)  
LTC1273/75/76 • F24  
Figure 24. 455kHz Input Voltage Modulated by a 5kHz Signal  
21  
LTC1273  
LTC1275/LTC1276  
O U  
W
U
PPLICATI  
A
S I FOR ATIO  
7V  
5V  
10µF  
2N2369  
2N2369  
65Ω  
65Ω  
400k  
10µF  
1N457  
REF  
V
DD  
OUT  
20k  
2N5771  
620Ω  
LM134  
12-BIT  
DATA OUTPUT  
A
IN  
LTC1273  
250pF  
POLYSTYRENE  
45.3Ω  
CS  
V
GND RD BUSY  
SS  
74HC03  
1N457  
45.3Ω  
74HC74  
5V  
D
Q
Q
START↑  
CLK  
1N4148  
1k  
CLR  
10k  
100pF  
DATA LATCH  
SIGNAL  
5V  
D
Q
Q
5V  
1k  
1N4148  
100k  
STOP↑  
CLK  
0.001µF  
CLR  
1k  
5V  
10k  
10pF  
LTC1273/75/76 • F26  
Figure 26. Time Measurement with the LTC1273  
22  
LTC1273  
LTC1275/LTC1276  
U
Dimensions in inches (millimeters) unless otherwise noted.  
PACKAGE DESCRIPTIO  
N Package  
24-Lead Plastic DIP  
1.265  
(32.131)  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10  
14  
11  
13  
12  
0.260 ± 0.010  
(6.604 ± 0.254)  
3
4
5
6
7
8
9
1
2
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.015  
(0.381)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.025  
0.125  
(3.175)  
MIN  
0.050 – 0.085  
(1.27 – 2.159)  
0.325  
0.018 ± 0.003  
(0.457 ± 0.076)  
–0.015  
+0.635  
8.255  
0.100 ± 0.010  
(2.540 ± 0.254)  
(
)
–0.381  
S Package  
24-Lead Plastic SOL  
0.598 – 0.614  
(15.190 – 15.600)  
(NOTE 2)  
24 23 22 21 20 19 18  
16 15 14 13  
17  
0.394 – 0.419  
(10.007 – 10.643)  
NOTE 1  
2
3
5
7
8
9
10  
1
4
6
11 12  
0.291 – 0.299  
(7.391 – 7.595)  
(NOTE 2)  
0.037 – 0.045  
(0.940 – 1.143)  
0.093 – 0.104  
(2.362 – 2.642)  
0.005  
0.010 – 0.029  
× 45°  
(0.127)  
(0.254 – 0.737)  
RAD MIN  
0° – 8° TYP  
0.050  
(1.270)  
TYP  
0.004 – 0.012  
(0.102 – 0.305)  
0.009 – 0.013  
(0.229 – 0.330)  
NOTE 1  
0.014 – 0.019  
0.016 – 0.050  
(0.356 – 0.482)  
(0.406 – 1.270)  
NOTE:  
1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS.  
2. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1273  
LTC1275/LTC1276  
U.S. Area Sales Offices  
SOUTHEAST REGION  
Linear Technology Corporation  
17060 Dallas Parkway  
Suite 208  
Dallas, TX 75248  
Phone: (214) 733-3071  
FAX: (214) 380-5138  
SOUTHWEST REGION  
Linear Technology Corporation  
22141 Ventura Blvd.  
NORTHEAST REGION  
Linear Technology Corporation  
One Oxford Valley  
2300 E. Lincoln Hwy.,Suite 306  
Langhorne, PA 19047  
Suite 206  
Woodland Hills, CA 91364  
Phone: (818) 703-0835  
FAX: (818) 703-0517  
Phone: (215) 757-8578  
FAX: (215) 757-5631  
CENTRAL REGION  
Linear Technology Corporation  
Chesapeake Square  
NORTHWEST REGION  
Linear Technology Corporation  
782 Sycamore Dr.  
Linear Technology Corporation  
266 Lowell St., Suite B-8  
Wilmington, MA 01887  
Phone: (508) 658-3881  
FAX: (508) 658-2701  
229 Mitchell Court, Suite A-25  
Addison, IL 60101  
Phone: (708) 620-6910  
FAX: (708) 620-6977  
Milpitas, CA 95035  
Phone: (408) 428-2050  
FAX: (408) 432-6331  
International Sales Offices  
FRANCE  
KOREA  
TAIWAN  
Linear Technology S.A.R.L.  
Immeuble "Le Quartz"  
58 Chemin de la Justice  
92290 Chatenay Malabry  
France  
Linear Technology Korea Branch  
Namsong Building, #505  
Itaewon-Dong 260-199  
Yongsan-Ku, Seoul  
Korea  
Linear Technology Corporation  
Rm. 801, No. 46, Sec. 2  
Chung Shan N. Rd.  
Taipei, Taiwan, R.O.C.  
Phone: 886-2-521-7575  
FAX: 886-2-562-2285  
Phone: 33-1-41079555  
FAX: 33-1-46314613  
Phone: 82-2-792-1617  
FAX: 82-2-792-1619  
UNITED KINGDOM  
GERMANY  
SINGAPORE  
Linear Technology (UK) Ltd.  
The Coliseum, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
Phone: 44-276-677676  
FAX: 44-276-64851  
Linear Techonolgy GMBH  
Untere Hauptstr. 9  
D-85386 Eching  
Germany  
Phone: 49-89-3197410  
FAX: 49-89-3194821  
Linear Technology Pte. Ltd.  
101 Boon Keng Road  
#02-15 Kallang Ind. Estates  
Singapore 1233  
Phone: 65-293-5322  
FAX: 65-292-0398  
JAPAN  
Linear Technology KK  
5F YZ Bldg.  
Iidabashi, Chiyoda-Ku  
Tokyo, 102 Japan  
Phone: 81-3-3237-7891  
FAX: 81-3-3237-8010  
World Headquarters  
Linear Technology Corporation  
1630 McCarthy Blvd.  
Milpitas, CA 95035-7487  
Phone: (408) 432-1900  
FAX: (408) 434-0507  
06/24/93  
LT/GP 0893 10K REV 0  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7487  
24  
(408) 432-1900 FAX: (408) 434-0507 TELEX: 499-3977  
LINEAR TECHNOLOGY CORPORATION 1993  

相关型号:

LTC1275BCN#TR

IC 1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP24, 0.300 INCH, PLASTIC, DIP-24, Analog to Digital Converter
Linear

LTC1275BCS

12-Bit, 300ksps Sampling A/D Converters with Reference
Linear

LTC1275BCSW

12-Bit, 300ksps Sampling A/D Converters with Reference
Linear

LTC1275BCSW#PBF

LTC1275 - 12-Bit, 300ksps Sampling A/D Converters with Reference; Package: SO; Pins: 24; Temperature Range: 0°C to 70°C
Linear

LTC1275BCSW#TR

LTC1275 - 12-Bit, 300ksps Sampling A/D Converters with Reference; Package: SO; Pins: 24; Temperature Range: 0°C to 70°C
Linear

LTC1275BCSW#TRPBF

暂无描述
Linear

LTC1275CSW

IC 1-CH 12-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDSO24, 0.300 INCH, PLASTIC, SO-24, Analog to Digital Converter
Linear

LTC1275_15

12-Bit, 300ksps Sampling A/D Converters with Reference
Linear

LTC1276

12-Bit, 300ksps Sampling A/D Converters with Reference
Linear

LTC1276AC

12-Bit, 300ksps Sampling A/D Converters with Reference
Linear

LTC1276ACJ

IC IC,A/D CONVERTER,SINGLE,12-BIT,CMOS,DIP,24PIN, Analog to Digital Converter
Linear

LTC1276ACN

12-Bit, 300ksps Sampling A/D Converters with Reference
Linear