LTC1407AIMSE [Linear]

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling Simultaneous Sampling; 串行12位/ 14位, 3MSPS同步采样同步采样
LTC1407AIMSE
型号: LTC1407AIMSE
厂家: Linear    Linear
描述:

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling Simultaneous Sampling
串行12位/ 14位, 3MSPS同步采样同步采样

文件: 总24页 (文件大小:444K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1407/LTC1407A  
Serial 12-Bit/14-Bit, 3Msps  
Simultaneous Sampling  
ADCs with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LTC®1407/LTC1407A are 12-bit/14-bit, 3Msps ADCs  
with two 1.5Msps simultaneously sampled differential  
inputs. The devices draw only 4.7mA from a single 3V  
supply and come in a tiny 10-lead MS package. A Sleep  
shutdown feature lowers power consumption to 10µW.  
The combination of speed, low power and tiny package  
makes the LTC1407/LTC1407A suitable for high speed,  
portable applications.  
3Msps Sampling ADC with Two Simultaneous  
Differential Inputs  
1.5Msps Throughput per Channel  
Low Power Dissipation: 14mW (Typ)  
3V Single Supply Operation  
2.5V Internal Bandgap Reference with External  
Overdrive  
3-Wire Serial Interface  
Sleep (10µW) Shutdown Mode  
Nap (3mW) Shutdown Mode  
80dB Common Mode Rejection at 100kHz  
0V to 2.5V Unipolar Input Range  
Tiny 10-Lead MS Package  
The LTC1407/LTC1407A contain two separate differential  
inputs that are sampled simultaneously on the rising edge  
of the CONV signal. These two sampled inputs are then  
converted at a rate of 1.5Msps per channel.  
The 80dB common mode rejection allows users to elimi-  
nategroundloopsandcommonmodenoisebymeasuring  
signals differentially from the source.  
U
APPLICATIO S  
Telecommunications  
The devices convert 0V to 2.5V unipolar inputs differen-  
tially. The absolute voltage swing for CH0+, CH0, CH1+  
and CH1extends from ground to the supply voltage.  
Data Acquisition Systems  
Uninterrupted Power Supplies  
Multiphase Motor Control  
I & Q Demodulation  
Industrial Control  
The serial interface sends out the two conversion results in  
32 clocks for compatibility with standard serial interfaces.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
W
BLOCK DIAGRA  
10µF 3V  
THD, 2nd and 3rd  
vs Input Frequency  
7
V
DD  
LTC1407A  
–44  
+
CH0  
CH0  
1
2
+
–50  
S & H  
THD  
–56  
–62  
2nd  
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
3Msps  
14-BIT ADC  
MUX  
8
SDO  
–68  
–74  
3rd  
+
CH1  
CH1  
4
5
3
+
–80  
–86  
S & H  
10  
9
CONV  
SCK  
–92  
TIMING  
LOGIC  
V
REF  
–98  
10µF  
–104  
GND  
2.5V  
REFERENCE  
0.1  
1
10  
100  
6
FREQUENCY (MHz)  
EXPOSED PAD  
11  
1407 G02  
1407A BD  
1407f  
1
LTC1407/LTC1407A  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Notes 1, 2)  
PACKAGE/ORDER I FOR ATIO  
Supply Voltage (VDD)................................................. 4V  
Analog Input Voltage  
ORDER PART  
NUMBER  
TOP VIEW  
(Note 3) ................................... – 0.3V to (VDD + 0.3V)  
Digital Input Voltage .................... – 0.3V to (VDD + 0.3V)  
Digital Output Voltage.................. – 0.3V to (VDD + 0.3V)  
Power Dissipation.............................................. 100mW  
Operation Temperature Range  
LTC1407C/LTC1407AC............................ 0°C to 70°C  
LTC1407I/LTC1407AI ......................... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
+
LTC1407CMSE  
CH0  
CH0  
V
1
2
3
4
5
10 CONV  
9
8
7
6
SCK  
SDO  
DD  
GND  
LTC1407IMSE  
11  
REF  
+
CH1  
CH1  
V
LTC1407ACMSE  
LTC1407AIMSE  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
MSE PART MARKING  
TJMAX = 125°C, θJA = 150°C/ W  
EXPOSED PAD IS GND (PIN 11)  
MUST BE SOLDERED TO PCB  
LTBDQ  
LTBDR  
LTAFE  
LTAFF  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
CO VERTER CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
LTC1407  
MIN TYP MAX  
LTC1407A  
MIN TYP MAX  
PARAMETER  
CONDITIONS  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Offset Error  
12  
14  
(Notes 5, 17)  
(Notes 4, 17)  
(Note 17)  
–2 ±0.25  
–10 ±1  
–5 ±0.5  
2
10  
5
–4 ±0.5  
4
LSB  
LSB  
LSB  
LSB  
LSB  
–20  
–10  
±2  
±1  
20  
10  
Offset Match from CH0 to CH1  
Gain Error  
(Notes 4, 17)  
(Note 17)  
–30  
–5  
±5  
±1  
30  
5
–60 ±10 60  
Gain Match from CH0 to CH1  
Gain Tempco  
–10  
±2  
10  
Internal Reference (Note 4)  
External Reference  
±15  
±1  
±15  
±1  
ppm/°C  
ppm/°C  
U
U
A ALOG I PUT  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
SYMBOL PARAMETER CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Analog Differential Input Range (Notes 3, 9)  
2.7V V 3.3V  
0 to 2.5  
V
V
IN  
DD  
Analog Common Mode + Differential  
Input Range (Note 10)  
0 to V  
CM  
DD  
I
Analog Input Leakage Current  
1
µA  
pF  
ns  
ns  
ps  
ps  
IN  
C
Analog Input Capacitance  
13  
IN  
t
t
t
t
Sample-and-Hold Acquisition Time  
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
Sample-and-Hold Aperture Skew from CH0 to CH1  
Analog Input Common Mode Rejection Ratio  
(Note 6)  
39  
ACQ  
AP  
1
0.3  
JITTER  
SK  
200  
CMRR  
f
f
= 1MHz, V = 0V to 3V  
= 100MHz, V = 0V to 3V  
–60  
–15  
dB  
dB  
IN  
IN  
IN  
IN  
1407f  
2
LTC1407/LTC1407A  
U W  
DY A IC ACCURACY  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
LTC1407  
MIN TYP MAX  
LTC1407A  
MIN TYP MAX  
SYMBOL  
PARAMETER  
CONDITIONS  
UNITS  
SINAD  
Signal-to-Noise Plus  
Distortion Ratio  
100kHz Input Signal  
750kHz Input Signal  
100kHz Input Signal, External V = 3.3V, V 3.3V  
70.5  
68 70.5  
72.0  
73.5  
70 73.5  
76.3  
dB  
dB  
dB  
dB  
REF  
DD  
750kHz Input Signal, External V = 3.3V, V 3.3V  
72.0  
76.3  
REF  
DD  
THD  
SFDR  
IMD  
Total Harmonic  
Distortion  
100kHz First 5 Harmonics  
750kHz First 5 Harmonics  
–87  
–83 –77  
–90  
–86 –80  
dB  
dB  
Spurious Free  
Dynamic Range  
100kHz Input Signal  
750kHz Input Signal  
–87  
–83  
–90  
–86  
dB  
dB  
+
Intermodulation  
Distortion  
1.25V to 2.5V 1.40MHz into CH0 , 0V to 1.25V,  
–82  
–82  
dB  
+
1.56MHz into CH0 . Also Applicable to CH1 and CH1  
Code-to-Code  
V
REF  
= 2.5V (Note 17)  
0.25  
1
LSB  
RMS  
Transition Noise  
Full Power Bandwidth  
V
= 2.5V , SDO = 11585LSB (–3dBFS) (Note 15)  
50  
5
50  
5
MHz  
MHz  
IN  
P-P  
P-P  
Full Linear Bandwidth S/(N + D) 68dB  
U U  
U
TA = 25°C. VDD = 3V.  
I TER AL REFERE CE CHARACTERISTICS  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
2.5  
15  
MAX  
UNITS  
V
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
Settling Time  
I
OUT  
REF  
REF  
REF  
REF  
REF  
ppm/°C  
µV/V  
V
= 2.7V to 3.6V, V = 2.5V  
600  
0.2  
2
DD  
REF  
Load Current = 0.5mA  
ms  
U
U
The denotes the specifications which apply over the  
DIGITAL I PUTS A D DIGITAL OUTPUTS  
full operating temperature range, otherwise specifications are at TA = 25°C. VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 3.3V  
= 2.7V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.6  
I
= 0V to V  
±10  
µA  
pF  
V
IN  
DD  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
5
IN  
V
= 3V, I = 200µA  
OUT  
2.5  
2.9  
OH  
OL  
DD  
V
V
= 2.7V, I  
= 2.7V, I  
= 160µA  
= 1.6mA  
0.05  
0.10  
V
V
DD  
DD  
OUT  
OUT  
0.4  
I
Hi-Z Output Leakage D  
V
= 0V to V  
DD  
±10  
µA  
pF  
OZ  
OUT  
OUT  
C
Hi-Z Output Capacitance D  
1
OZ  
OUT  
I
I
Output Short-Circuit Source Current  
Output Short-Circuit Sink Current  
V
V
= 0V, V = 3V  
20  
15  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
DD  
= V = 3V  
DD  
1407f  
3
LTC1407/LTC1407A  
W U  
POWER REQUIRE E TS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. With internal reference, VDD = 3V.  
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Current  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
2.7  
3.6  
V
DD  
I
Active Mode, f  
Nap Mode  
Sleep Mode (LTC1407)  
Sleep Mode (LTC1407A)  
= 1.5Msps  
SAMPLE  
4.7  
1.1  
2.0  
2.0  
7.0  
1.5  
15  
mA  
mA  
µA  
DD  
10  
µA  
Active Mode with SCK in Fixed State (Hi or Lo)  
12  
mW  
PD W U Power Dissipation  
The denotes the specifications which apply over the full operating temperature  
TI I G CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C. VDD = 3V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Maximum Sampling Frequency per Channel  
(Conversion Rate)  
1.5  
MHz  
SAMPLE(MAX)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Minimum Sampling Period (Conversion + Acquisiton Period)  
Clock Period  
667  
ns  
THROUGHPUT  
(Note 16)  
(Note 6)  
19.6  
32  
2
10000  
ns  
SCK  
Conversion Time  
34  
SCLK cycles  
CONV  
Minimum Positive or Negative SCLK Pulse Width  
CONV to SCK Setup Time  
(Note 6)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
1
(Notes 6, 10)  
(Note 6)  
3
2
SCK Before CONV  
0
3
Minimum Positive or Negative CONV Pulse Width  
SCK to Sample Mode  
(Note 6)  
4
4
(Note 6)  
4
5
CONV to Hold Mode  
(Notes 6, 11)  
1.2  
45  
8
6
32nd SCKto CONVInterval (Affects Acquisition Period) (Notes 6, 7, 13)  
7
Minimum Delay from SCKto Valid Bits 0 Through 11  
SCK to Hi-Z at SDO  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 14)  
8
6
9
Previous SDO Bit Remains Valid After SCK  
2
10  
12  
V
Settling Time After Sleep-to-Wake Transition  
2
REF  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All voltage values are with respect to ground GND.  
Note 10: If less than 3ns is allowed, the output data will appear one clock  
cycle later. It is best for CONV to rise half a clock before SCK, when  
running the clock at rated speed.  
Note 11: Not the same as aperture delay. Aperture delay (1ns) is the  
difference between the 2.2ns delay through the sample-and-hold and the  
1.2ns CONV to Hold mode delay.  
Note 12: The rising edge of SCK is guaranteed to catch the data coming  
out into a storage latch.  
Note 3: When these pins are taken below GND or above V , they will be  
clamped by internal diodes. This product can handle input currents greater  
DD  
than 100mA below GND or greater than V without latchup.  
DD  
+
Note 4: Offset and range specifications apply for a single-ended CH0 or  
+
CH1 input with CH0 or CH1 grounded and using the internal 2.5V  
reference.  
Note 13: The time period for acquiring the input signal is started by the  
32nd rising clock and it is ended by the rising edge of CONV.  
Note 14: The internal reference settles in 2ms after it wakes up from Sleep  
mode with one or more cycles at SCK and a 10µF capacitive load.  
Note 5: Integral linearity is tested with an external 2.55V reference and is  
defined as the deviation of a code from the straight line passing through  
the actual endpoints of a transfer curve. The deviation is measured from  
the center of quantization band.  
Note 15: The full power bandwidth is the frequency where the output code  
Note 6: Guaranteed by design, not subject to test.  
Note 7: Recommended operating conditions.  
swing drops by 3dB with a 2.5V input sine wave.  
Note 16: Maximum clock period guarantees analog performance during  
conversion. Output data can be read with an arbitrarily long clock period.  
Note 17: The LTC1407A is measured and specified with 14-bit Resolution  
(1LSB = 152µV) and the LTC1407 is measured and specified with 12-bit  
Resolution (1LSB = 610µV).  
P-P  
Note 8: The analog input range is defined for the voltage difference  
+
+
between CH0 and CH0 or CH1 and CH1 .  
+
+
Note 9: The absolute voltage at CH0 , CH0 , CH1 and CH1 must be  
within this range.  
1407f  
4
LTC1407/LTC1407A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
DD = 3V, TA = 25°C (LTC1407A)  
ENOBs and SINAD  
vs Input Sinewave Frequency  
THD, 2nd and 3rd  
vs Input Frequency  
SFDR vs Input Frequency  
–44  
–50  
–56  
–62  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
74  
71  
68  
65  
62  
59  
56  
53  
50  
104  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
THD  
2nd  
–68  
–74  
3rd  
–80  
–86  
9.0  
–92  
8.5  
–98  
8.0  
0.1  
–104  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1407 G01  
1407 G02  
1407 G19  
98kHz Sine Wave 4096 Point  
FFT Plot  
748kHz Sine Wave 4096 Point  
FFT Plot  
SNR vs Input Frequency  
74  
71  
68  
65  
62  
59  
56  
53  
50  
0
–10  
0
–10  
–20  
1.5Msps  
1.5Msps  
–20  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–60  
–70  
–80  
–80  
–90  
–100  
–110  
–120  
–90  
–100  
–110  
–120  
0.1  
1
10  
100  
0
100 200 300 400 500 600 700  
0
100 200 300 400 500 600 700  
FREQUENCY (MHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1407 G03  
1407 G04  
1407 G05  
1403kHz Input Summed with  
1563kHz Input IMD 4096 Point  
FFT Plot  
Differential Linearity for CH0 with  
Internal 2.5V Reference  
Integral Linearity End Point Fit for  
CH0 with Internal 2.5V Reference  
0
1.0  
0.8  
2.0  
1.6  
1.5Msps  
–10  
–20  
0.6  
1.2  
–30  
0.4  
0.8  
–40  
0.2  
0.4  
–50  
–60  
0
0
–70  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–80  
–90  
–100  
–110  
–120  
0
100 200 300 400 500 600 700  
FREQUENCY (kHz)  
0
8192  
OUTPUT CODE  
12288  
0
8192  
12288  
4096  
16384  
4096  
16384  
OUTPUT CODE  
1407 G06  
1407 G15  
1407 G16  
1407f  
5
LTC1407/LTC1407A  
U W  
VDD = 3V, TA = 25°C (LTC1407A)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Differential Linearity for CH1 with  
Internal 2.5V Reference  
Integral Linearity End Point Fit for  
CH1 with Internal 2.5V Reference  
1.0  
0.8  
2.0  
1.6  
0.6  
1.2  
0.8  
0.4  
0.2  
0.4  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
0
8192  
12288  
0
8192  
12288  
4096  
16384  
4096  
16384  
OUTPUT CODE  
OUTPUT CODE  
1407 G17  
1407 G18  
VDD = 3V, TA = 25°C (LTC1407/LTC1407A)  
Full-Scale Signal Frequency  
Response  
CMRR vs Frequency  
Crosstalk vs Frequency  
0
12  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
6
0
–20  
–40  
–6  
–12  
–18  
–60  
–80  
CH0  
CH1  
CH1 TO CH0  
CH0 TO CH1  
–24  
–30  
–36  
–100  
–120  
1M  
10M  
100M  
1G  
100  
1k  
10k 100k  
1M  
10M 100M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
1407 G08  
1407 G07  
1407 G09  
Simultaneous Input Steps at CH0  
and CH1 from 25Ω  
PSSR vs Frequency  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
3.0  
2.6  
2.2  
1.8  
1.4  
CH0  
CH1  
1.0  
0.6  
0.2  
–0.2  
–0.6  
1
10  
100  
1k  
10k 100k  
1M  
0
5
10  
15  
30  
20  
25  
TIME (ns)  
FREQUENCY (Hz)  
1407 G11  
1407 G10  
1407f  
6
LTC1407/LTC1407A  
U W  
VDD = 3V, TA = 25°C (LTC1407/LTC1407A)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Reference Voltage  
vs Load Current  
Reference Voltage vs VDD  
2.4902  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
LOAD CURRENT (mA)  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
V
DD  
1407 G13  
1407 G12  
U
U
U
PI FU CTIO S  
CH0+ (Pin1):NoninvertingChannel0. CH0+ operatesfully  
differentially with respect to CH0with a 0V to 2.5V  
differential swing and a 0 to VDD absolute input range.  
CH0(Pin 2): Inverting Channel 0. CH0operates fully  
differentially with respect to CH0+ with a –2.5V to 0V  
differential swing and a 0 to VDD absolute input range.  
VDD (Pin 7): 3V Positive Supply. This single power pin  
supplies3Vtotheentirechip. BypasstoGNDpinandsolid  
analog ground plane with a 10µF ceramic capacitor (or  
10µF tantalum) in parallel with 0.1µF ceramic. Keep in  
mindthatinternalanalogcurrentsanddigitaloutputsignal  
currents flow through this pin. Care should be taken to  
place the 0.1µF bypass capacitor as close to Pins 6 and 7  
as possible.  
VREF (Pin 3): 2.5V Internal Reference. Bypass to GND and  
a solid analog ground plane with a 10µF ceramic capacitor  
(or 10µF tantalum in parallel with 0.1µF ceramic). Can be  
overdriven by an external reference voltage 2.55V and  
VDD.  
SDO (Pin 8): Three-state Serial Data Output. Each pair of  
output data words represent the two analog input chan-  
nels at the start of the previous conversion.  
SCK (Pin 9): External Clock Input. Advances the conver-  
sion process and sequences the output data on the rising  
edge. One or more pulses wake from sleep.  
CH1+ (Pin4):NoninvertingChannel1. CH1+ operatesfully  
differentially with respect to CH1with a 0V to 2.5V  
differential swing and a 0 to VDD absolute input range.  
CONV (Pin 10): Convert Start. Holds the two analog input  
signals and starts the conversion on the rising edge. Two  
pulses with SCK in fixed high or fixed low state starts Nap  
mode. Four or more pulses with SCK in fixed high or fixed  
low state starts Sleep mode.  
CH1(Pin 5): Inverting Channel 1. CH1operates fully  
differentially with respect to CH1+ with a –2.5V to 0V  
differential swing and a 0 to VDD absolute input range.  
GND (Pins 6, 11): Ground and Exposed Pad. This single  
ground pin and the Exposed Pad must be tied directly to  
the solid ground plane under the part. Keep in mind that  
analog signal currents and digital output signal currents  
flow through these connections.  
1407f  
7
LTC1407/LTC1407A  
W
BLOCK DIAGRA  
10µF 3V  
7
V
DD  
LTC1407A  
+
CH0  
1
2
+
S & H  
CH0  
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
3Msps  
14-BIT ADC  
MUX  
8
SDO  
+
CH1  
CH1  
4
5
3
+
S & H  
10  
9
CONV  
SCK  
TIMING  
LOGIC  
V
REF  
10µF  
GND  
2.5V  
REFERENCE  
6
EXPOSED PAD  
11  
1407A BD  
1407f  
8
LTC1407/LTC1407A  
W U  
W
TI I G DIAGRA S  
1407f  
9
LTC1407/LTC1407A  
W U  
W
TI I G DIAGRA S  
Nap Mode and Sleep Mode Waveforms  
SCK  
t
1
t
1
CONV  
NAP  
SLEEP  
t
12  
V
1407 TD02  
REF  
NOTE: NAP AND SLEEP ARE INTERNAL SIGNALS  
SCK to SDO Delay  
SCK  
SCK  
V
IH  
V
IH  
t
10  
8
t
t
9
V
V
90%  
10%  
OH  
SDO  
SDO  
OL  
1407 TD03  
1407f  
10  
LTC1407/LTC1407A  
W U U  
APPLICATIO S I FOR ATIO  
U
DRIVING THE ANALOG INPUT  
increasing the time between conversions. The best choice  
for an op amp to drive the LTC1407/LTC1407A depends  
on the application. Generally, applications fall into two  
categories: AC applications where dynamic specifications  
are most critical and time domain applications where DC  
accuracy and settling time are most critical. The following  
list is a summary of the op amps that are suitable for  
driving the LTC1407/LTC1407A. (More detailed informa-  
tion is available in the Linear Technology Databooks and  
on the LinearViewTM CD-ROM.)  
The differential analog inputs of the LTC1407/LTC1407A  
are easy to drive. The inputs may be driven differentially or  
as a single-ended input (i.e., the CH0input is grounded).  
All four analog inputs of both differential analog input  
pairs, CH0+ with CH0and CH1+ with CH1, are sampled  
at the same instant. Any unwanted signal that is common  
to both inputs of each input pair will be reduced by the  
common mode rejection of the sample-and-hold circuit.  
The inputs draw only one small current spike while charg-  
ing the sample-and-hold capacitors at the end of conver-  
sion. During conversion, the analog inputs draw only a  
small leakage current. If the source impedance of the  
driving circuit is low, then the LTC1407/LTC1407A inputs  
can be driven directly. As source impedance increases, so  
will acquisition time. For minimum acquisition time with  
high source impedance, a buffer amplifier must be used.  
The main requirement is that the amplifier driving the  
analog input(s) must settle after the small current spike  
before the next conversion starts (settling time must be  
39ns for full throughput rate). Also keep in mind, while  
choosing an input amplifier, the amount of noise and  
harmonic distortion added by the amplifier.  
LTC1566-1: Low Noise 2.3MHz Continuous Time Low-  
pass Filter.  
LT®1630: Dual 30MHz Rail-to-Rail Voltage FB Amplifier.  
2.7V to ±15V supplies. Very high AVOL, 500µV offset and  
520ns settling to 0.5LSB for a 4V swing. THD and noise  
are 93dB to 40kHz and below 1LSB to 320kHz (AV = 1,  
2VP-P into1k,VS =5V),makingthepartexcellentforAC  
applications (to 1/3 Nyquist) where rail-to-rail perfor-  
mance is desired. Quad version is available as LT1631.  
LT1632: Dual 45MHz Rail-to-Rail Voltage FB Amplifier.  
2.7V to ±15V supplies. Very high AVOL, 1.5mV offset and  
400ns settling to 0.5LSB for a 4V swing. It is suitable for  
applications with a single 5V supply. THD and noise are  
93dB to 40kHz and below 1LSB to 800kHz (AV = 1,  
2VP-P into1k,VS =5V),makingthepartexcellentforAC  
applications where rail-to-rail performance is desired.  
Quad version is available as LT1633.  
CHOOSING AN INPUT AMPLIFIER  
Choosing an input amplifier is easy if a few requirements  
are taken into consideration. First, to limit the magnitude  
of the voltage spike seen by the amplifier from charging  
the sampling capacitor, choose an amplifier that has a low  
output impedance (< 100) at the closed-loop bandwidth  
frequency. For example, if an amplifier is used in a gain of  
1 and has a unity-gain bandwidth of 50MHz, then the  
output impedance at 50MHz must be less than 100. The  
second requirement is that the closed-loop bandwidth  
must be greater than 40MHz to ensure adequate small-  
signal settling for full throughput rate. If slower op amps  
are used, more time for settling can be provided by  
LT1801: 80MHz GBWP, –75dBc at 500kHz, 2mA/ampli-  
fier, 8.5nV/Hz.  
LT1806/LT1807: 325MHz GBWP, –80dBc distortion at  
5MHz, unity gain stable, rail-to-rail in and out,  
10mA/amplifier, 3.5nV/Hz.  
LT1810: 180MHz GBWP, –90dBc distortion at 5MHz,  
unity gain stable, rail-to-rail in and out, 15mA/amplifier,  
16nV/Hz.  
LinearView is a trademark of Linear Technology Corporation.  
1407f  
11  
LTC1407/LTC1407A  
W U U  
U
APPLICATIO S I FOR ATIO  
LT1818/LT1819: 400MHz, 2500V/µs, 9mA, Single/Dual  
inputs to minimize noise. A simple 1-pole RC filter is suf-  
ficientformanyapplications. Forexample, Figure1shows  
a 47pF capacitor from CHO+ to ground and a 51source  
resistor to limit the net input bandwidth to 30MHz. The  
47pF capacitor also acts as a charge reservoir for the input  
sample-and-hold and isolates the ADC input from sam-  
pling-glitchsensitivecircuitry.Highqualitycapacitorsand  
resistors should be used since these components can add  
distortion. NPO and silvermica type dielectric capacitors  
have excellent linearity. Carbon surface mount resistors  
can generate distortion from self heating and from dam-  
age that may occur during soldering. Metal film surface  
mount resistors are much less susceptible to both prob-  
lems. When high amplitude unwanted signals are close in  
frequency to the desired signal frequency a multiple pole  
filter is required.  
Voltage Mode Operational Amplifier.  
LT6200: 165MHz GBWP, –85dBc distortion at 1MHz,  
unity gain stable, rail-to-rail in and out, 15mA/amplifier,  
0.95nV/Hz.  
LT6203: 100MHz GBWP, –80dBc distortion at 1MHz,  
unity gain stable, rail-to-rail in and out, 3mA/amplifier,  
1.9nV/Hz.  
LT6600: Amplifier/Filter Differential In/Out with 10MHz  
Cutoff.  
INPUT FILTERING AND SOURCE IMPEDANCE  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1407/LTC1407A noise and distortion. The small-  
signalbandwidthofthesample-and-holdcircuitis50MHz.  
Any noise or distortion products that are present at the  
analog inputs will be summed over this entire bandwidth.  
Noisy input circuitry should be filtered prior to the analog  
High external source resistance, combined with 13pF of  
inputcapacitance,willreducetherated50MHzinputband-  
width and increase acquisition time beyond 39ns.  
51*  
1
+
ANALOG  
INPUT  
CH0  
47pF*  
2
CH0  
LTC1407/  
LTC1407A  
3
V
REF  
10µF  
11  
GND  
51*  
ANALOG  
INPUT  
4
+
CH1  
CH1  
47pF*  
5
1407 F01  
*TIGHT TOLERANCE REQUIRED TO AVOID  
APERTURE SKEW DEGRADATION  
Figure 1. RC Input Filter  
1407f  
12  
LTC1407/LTC1407A  
W U U  
APPLICATIO S I FOR ATIO  
U
INPUT RANGE  
overdrivenwithanexternalreferenceasshowninFigure 2.  
The voltage of the external reference must be higher than  
the2.5Voftheopen-drainP-channeloutputoftheinternal  
reference. The recommended range for an external refer-  
ence is 2.55V to VDD. An external reference at 2.55V will  
see a DC quiescent load of 0.75mA and as much as 3mA  
during conversion.  
The analog inputs of the LTC1407/LTC1407A may be  
driven fully differentially with a single supply. Either input  
may swing up to 3V, provided the differential swing is no  
greater than 2.5V. In the valid input range, the noninvert-  
ing input of each channel should always be more positive  
than the inverting input of each channel. The 0V to 2.5V  
range is also ideally suited for single-ended input use with  
single supply applications. The common mode range of  
the inputs extend from ground to the supply voltage VDD.  
If the difference between the CH0+ and CH0inputs or the  
CH1+ and CH1inputs exceeds 2.5V, the output code will  
stay fixed at all ones, and if this difference goes below 0V,  
the ouput code will stay fixed at all zeros.  
INPUT SPAN VERSUS REFERENCE VOLTAGE  
The differential input range has a unipolar voltage span  
that equals the difference between the voltage at the  
reference buffer output VREF (Pin 3) and the voltage at the  
Exposed Pad ground. The differential input range of ADC  
is 0V to 2.5V when using the internal reference. The  
internal ADC is referenced to these two nodes. This  
relationship also holds true with an external reference.  
INTERNAL REFERENCE  
The LTC1407/LTC1407A have an on-chip, temperature  
compensated, bandgap reference that is factory trimmed  
near 2.5V to obtain a precise 2.5V input span. The refer-  
enceamplifieroutputVREF,(Pin3)mustbebypassedwith  
acapacitortoground.Thereferenceamplifierisstablewith  
capacitors of 1µF or greater. For the best noise perfor-  
mance, a 10µF ceramic or a 10µF tantalum in parallel with  
a 0.1µF ceramic is recommended. The VREF pin can be  
DIFFERENTIAL INPUTS  
The ADC will always convert the unipolar difference of  
CH0+ minus CH0or the unipolar difference of CH1+  
minus CH1, independent of the common mode voltage at  
either set of inputs. The common mode rejection holds up  
at high frequencies (see Figure 3.) The only requirement is  
that both inputs not go below ground or exceed VDD.  
0
–20  
–40  
3
3V REF  
V
REF  
LTC1407/  
LTC1407A  
GND  
10µF  
11  
–60  
1407 F02  
CH0  
CH1  
–80  
Figure 2  
–100  
–120  
100  
1k  
10k 100k  
1M  
10M 100M  
FREQUENCY (Hz)  
1407 G08  
Figure 3. CMRR vs Frequency  
1407f  
13  
LTC1407/LTC1407A  
W U U  
U
APPLICATIO S I FOR ATIO  
Integral nonlinearity errors (INL) and differential nonlin-  
earityerrors(DNL)arelargelyindependentofthecommon  
mode voltage. However, the offset error will vary. CMRR  
is typically better than 60dB.  
Highqualitytantalumandceramicbypasscapacitorsshould  
be used at the VDD and VREF pins as shown in the Block  
Diagram on the first page of this data sheet. For optimum  
performance, a 10µF surface mount tantalum capacitor  
witha0.1µFceramicisrecommendedfortheVDD andVREF  
pins. Alternatively, 10µF ceramic chip capacitors such as  
X5R or X7R may be used. The capacitors must be located  
as close to the pins as possible. The traces connecting the  
pins and the bypass capacitors must be kept short and  
should be made as wide as possible. The VDD bypass ca-  
pacitorreturnstoGND(Pin6)andtheVREF bypasscapaci-  
torreturnstotheExposedPadground(Pin11).Careshould  
be taken to place the 0.1µF VDD bypass capacitor as close  
to Pins 6 and 7 as possible.  
Figure 4 shows the ideal input/output characteristics for  
the LTC1407/LTC1407A. The code transitions occur mid-  
way between successive integer LSB values (i.e., 0.5LSB,  
1.5LSB, 2.5LSB, FS – 1.5LSB). The output code is natural  
binarywith1LSB=2.5V/16384=153µVfortheLTC1407A  
and 1LSB = 2.5V/4096 = 610µV for the LTC1407. The  
LTC1407A has 1LSB RMS of Gaussian white noise.  
Board Layout and Bypassing  
Wire wrap boards are not recommended for high resolu-  
tion and/or high speed A/D converters. To obtain the best  
performance from the LTC1407/LTC1407A, a printed cir-  
cuit board with ground plane is required. Layout for the  
printed circuit board should ensure that digital and analog  
signal lines are separated as much as possible. In particu-  
lar, care should be taken not to run any digital track  
alongside an analog signal track. If optimum phase match  
between the inputs is desired, the length of the four input  
wires of the two input channels should be kept matched.  
But each pair of input wires to the two input channels  
should be kept separated by a ground trace to avoid high  
frequency crosstalk between channels.  
Figure5showstherecommendedsystemgroundconnec-  
tions. All analog circuitry grounds should be terminated at  
the LTC1407/LTC1407A Exposed Pad. The ground return  
from the LTC1407/LTC1407A Pin 6 to the power supply  
should be low impedance for noise-free operation. The  
Exposed Pad of the 10-lead MSE package is also tied to  
Pin 6 and the LTC1407/LTC1407A GND. The Exposed Pad  
should be soldered on the PC board to reduce ground  
connection inductance. Digital circuitry grounds must be  
connected to the digital supply common.  
111...111  
111...110  
111...101  
000...010  
000...001  
000...000  
0
FS – 1LSB  
INPUT VOLTAGE (V)  
1407 F04  
Figure 4. LTC1407/LTC1407A Transfer Characteristic  
1407f  
14  
LTC1407/LTC1407A  
W U U  
APPLICATIO S I FOR ATIO  
U
1407 F05  
Figure 5. Recommended Layout  
conversion within a clock cycle. Four rising edges at  
CONV, without any intervening rising edges at SCK, put  
the LTC1407/LTC1407A in Sleep mode and the power  
drain drops from 14mW to 10µW. One or more rising  
edges at SCK wake up the LTC1407/LTC1407A for opera-  
tion. The internal reference (VREF ) takes 2ms to slew and  
settle with a 10µF load. Using sleep mode more frequently  
compromises the settled accuracy of the internal refer-  
ence. Note that for slower conversion rates, the Nap and  
Sleep modes can be used for substantial reductions in  
power consumption.  
POWER-DOWN MODES  
Upon power-up, the LTC1407/LTC1407A are initialized to  
the active state and is ready for conversion. The Nap and  
Sleep mode waveforms show the power down modes for  
the LTC1407/LTC1407A. The SCK and CONV inputs con-  
trol the power down modes (see Timing Diagrams). Two  
rising edges at CONV, without any intervening rising  
edges at SCK, put the LTC1407/LTC1407A in Nap mode  
and the power drain drops from 14mW to 6mW. The  
internal reference remains powered in Nap mode. One or  
morerisingedgesatSCKwakeuptheLTC1407/LTC1407A  
for service very quickly and CONV can start an accurate  
1407f  
15  
LTC1407/LTC1407A  
W U U  
U
APPLICATIO S I FOR ATIO  
DIGITAL INTERFACE  
directly from the DSP crystal. Another problem with high  
speed processor clocks is that they often use a low cost,  
low speed crystal (i.e., 10MHz) to generate a fast, but  
jittery, phase-locked-loop system clock (i.e., 40MHz). The  
jitter in these PLL-generated high speed clocks can be  
several nanoseconds. Note that if you choose to use the  
frame sync signal generated by the DSP port, this signal  
will have the same jitter of the DSP’s master clock.  
The LTC1407/LTC1407A have a 3-wire SPI (Serial Proto-  
col Interface) interface. The SCK and CONV inputs and  
SDO output implement this interface. The SCK and CONV  
inputs accept swings from 3V logic and are TTL compat-  
ible, if the logic swing does not exceed VDD. A detailed  
description of the three serial port signals follows:  
Conversion Start Input (CONV)  
Serial Clock Input (SCK)  
The rising edge of CONV starts a conversion, but subse-  
quent rising edges at CONV are ignored by the LTC1407/  
LTC1407A until the following 32 SCK rising edges have  
occurred.ThedutycycleofCONVcanbearbitrarilychosen  
to be used as a frame sync signal for the processor serial  
port. A simple approach to generate CONV is to create a  
pulsethatisoneSCKwidetodrivetheLTC1407/LTC1407A  
and then buffer this signal to drive the frame sync input of  
the processor serial port. It is good practice to drive the  
LTC1407/LTC1407ACONVinputfirsttoavoiddigitalnoise  
interference during the sample-to-hold transition trig-  
gered by CONV at the start of conversion. It is also good  
practice to keep the width of the low portion of the CONV  
signal greater than 15ns to avoid introducing glitches in  
the front end of the ADC just before the sample-and-hold  
goes into Hold mode at the rising edge of CONV.  
The rising edge of SCK advances the conversion process  
and also udpates each bit in the SDO data stream. After  
CONV rises, the third rising edge of SCK sends out two  
sets of 12/14 data bits, with the MSB sent first. A simple  
approach is to generate SCK to drive the LTC1407/  
LTC1407A first and then buffer this signal with the appro-  
priate number of inverters to drive the serial clock input of  
the processor serial port. Use the falling edge of the clock  
to latch data from the Serial Data Output (SDO) into your  
processor serial port. The 14-bit Serial Data will be re-  
ceived right justified, in two 16-bit words with 32 or more  
clocks per frame sync. It is good practice to drive the  
LTC1407/LTC1407A SCK input first to avoid digital noise  
interference during the internal bit comparison decision  
by the internal high speed comparator. Unlike the CONV  
input, the SCK input is not sensitive to jitter because the  
input signal is already sampled and held constant.  
Minimizing Jitter on the CONV Input  
Inhighspeedapplicationswherehighamplitudesinewaves  
above 100kHz are sampled, the CONV signal must have as  
little jitter as possible (10ps or less). The square wave  
output of a common crystal clock module usually meets  
this requirement easily. The challenge is to generate a  
CONV signal from this crystal clock without jitter corrup-  
tion from other digital circuits in the system. A clock  
divider and any gates in the signal path from the crystal  
clock to the CONV input should not share the same  
integratedcircuitwithotherpartsofthesystem. Asshown  
intheinterfacecircuitexamples,the SCKandCONVinputs  
should be driven first, with digital buffers used to drive the  
serial port interface. Also note that the master clock in the  
DSP may already be corrupted with jitter, even if it comes  
Serial Data Output (SDO)  
Upon power-up, the SDO output is automatically reset to  
the high impedance state. The SDO output remains in high  
impedance until a new conversion is started. SDO sends  
out two sets of 12/14 bits in the output data stream after  
the third rising edge of SCK after the start of conversion  
withtherisingedgeofCONV.Thetwo12-/14-bitwordsare  
separated by two clock cycles in high impedance mode.  
Please note the delay specification from SCK to a valid  
SDO. SDO is always guaranteed to be valid by the next  
rising edge of SCK. The 32-bit output data stream is  
compatible with the 16-bit or 32-bit serial port of most  
processors.  
1407f  
16  
LTC1407/LTC1407A  
W U U  
APPLICATIO S I FOR ATIO  
U
HARDWARE INTERFACE TO TMS320C54x  
and the serial clock at the BCLKR pin to accept an external  
positive edge clock. Buffers near the LTC1407/LTC1407A  
may be added to drive long tracks to the DSP to prevent  
corruption of the signal to LTC1407/LTC1407A. This con-  
figuration is adequate to traverse a typical system board,  
but source resistors at the buffer outputs and termination  
resistors at the DSP, may be needed to match the charac-  
teristic impedance of very long transmission lines. If you  
need to terminate the SDO transmission line, buffer it first  
withoneortwo74ACxxgates. TheTTLthresholdinputsof  
the DSP port respond properly to the 3V swing used with  
the LTC1407/LTC1407A.  
The LTC1407/LTC1407A are serial output ADCs whose  
interface has been designed for high speed buffered serial  
ports in fast digital signal processors (DSPs). Figure 6  
shows an example of this interface using a TMS320C54X.  
The buffered serial port in the TMS320C54x has direct  
accesstoa2kBsegmentofmemory. TheADC’sserialdata  
can be collected in two alternating 1kB segments, in real  
time, at the full 3Msps conversion rate of the LTC1407/  
LTC1407A.TheDSPassemblycodesetsframesyncmode  
at the BFSR pin to accept an external positive going pulse  
3V  
5V  
7
V
V
CC  
DD  
10  
9
CONV  
LTC1407/  
LTC1407A  
SCK  
BFSR  
TMS320C54x  
BCLKR  
B13 B12  
8
6
SDO  
GND  
BDR  
CONV  
CLK  
3-WIRE SERIAL  
INTERFACELINK  
1407 F06  
0V TO 3V LOGIC SWING  
Figure 6. DSP Serial Interface to TMS320C54x  
1407f  
17  
LTC1407/LTC1407A  
W U U  
U
APPLICATIO S I FOR ATIO  
; 08-21-03 ******************************************************************  
; Files: 1407ASIAB.ASM -> 1407A Sine wave collection with Serial Port interface  
;
;
;
both channels collected in sequence in the same 2k record  
bvectors.asm  
s2k14ini.asm  
buffered mode.  
2k buffer size.  
; unipolar mode  
; Works 16 or 64 clock frames.  
; negative edge BCLKR  
; negative BFSR pulse  
; -0 data shifted  
; 1' cable from counter to CONV at DUT  
; 2' cable from counter to CLK at DUT  
; ***************************************************************************  
.width  
160  
.length 110  
.title “sineb0 BSP in auto buffer mode”  
.mmregs  
.setsect “.text”,  
0x500,0  
;Set address of executable  
.setsect “vectors”, 0x180,0  
.setsect “buffer”, 0x800,0  
.setsect “result”, 0x1800,0  
.text  
;Set address of incoming 1407A data  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
;.text marks start of code  
start:  
;this label seems necessary  
;Make sure /PWRDWN is low at J1-9  
;to turn off AC01 adc  
tim=#0fh  
prd=#0fh  
tcr = #10h  
tspc = #0h  
pmst = #01a0h  
sp = #0700h  
dp = #0  
; stop timer  
; stop TDM serial port to AC01  
; set up iptr. Processor Mode STatus register  
; init stack pointer.  
; data page  
ar2 = #1800h  
ar3 = #0800h  
ar4 = #0h  
; pointer to computed receive buffer.  
; pointer to Buffered Serial Port receive buffer  
; reset record counter  
call sineinit  
; Double clutch the initialization to insure a proper  
sinepeek:  
call sineinit  
; reset. The external frame sync must occur 2.5 clocks  
; or more after the port comes out of reset.  
wait  
;
goto  
wait  
————————Buffered Receive Interrupt Routine -————————-  
breceive:  
ifr = #10h  
TC = bitf(@BSPCE,#4000h) ; check which half (bspce(bit14)) of buffer  
if (NTC) goto bufull ; if this still the first half get next half  
; clear interrupt flags  
bspce = #(2023h + 08000h); turn on halt for second half (bspce(bit15))  
return_enable  
1407f  
18  
LTC1407/LTC1407A  
W U U  
U
APPLICATIO S I FOR ATIO  
;
———————mask and shift input data ——————————————  
bufull:  
b = *ar3+ << -0  
b = #07FFFh & b  
; load acc b with BSP buffer and shift right -0  
; mask out the TRISTATE bits with #03FFFh  
;
*ar2+ = data(#0bh)  
; store B to out buffer and advance AR2 pointer  
TC = (@ar2 == #02000h) ; output buffer is 2k starting at 1800h  
if (TC) goto start  
goto bufull  
; restart if out buffer is at 1fffh  
;
—————————dummy bsend return————————————  
return_enable ;this is also a dummy return to define bsend  
;in vector table file BVECTORS.ASM  
bsend  
;
——————————— end ISR ——————————————  
.copy “c:\dskplus\1407A\s2k14ini.asm”  
;initialize buffered serial port  
.space 16*32  
;clear a chunk at the end to mark the end  
;======================================================================  
;
;
;
VECTORS  
;======================================================================  
.sect “vectors” ;The vectors start here  
.copy “c:\dskplus\1407A\bvectors.asm” ;get BSP vectors  
.sect “buffer”  
.space 16*0x800  
.sect “result”  
.space 16*0x800  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
.end  
; ***************************************************************************  
; File: BVECTORS.ASM -> Vector Table for the ‘C54x DSKplus 10.Jul.96  
;
;
BSP vectors and Debugger vectors  
TDM vectors just return  
; ***************************************************************************  
; The vectors in this table can be configured for processing external and  
; internal software interrupts. The DSKplus debugger uses four interrupt  
; vectors. These are RESET, TRAP2, INT2, and HPIINT.  
;
;
*
DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER  
*
; All other vector locations are free to use. When programming always be sure  
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and  
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the  
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.  
;
;
;
1407f  
19  
LTC1407/LTC1407A  
W U U  
U
APPLICATIO S I FOR ATIO  
.title “Vector Table”  
.mmregs  
reset  
nmi  
goto #80h  
nop  
nop  
;00; RESET * DO NOT MODIFY IF USING DEBUGGER *  
;04; non-maskable external interrupt  
return_enable  
nop  
nop  
nop  
trap2  
int0  
goto #88h  
nop  
nop  
.space 52*16  
return_enable  
;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *  
;0C-3F: vectors for software interrupts 18-30  
;40; external interrupt int0  
nop  
nop  
nop  
int1  
return_enable  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
goto breceive  
nop  
nop  
nop  
;44; external interrupt int1  
;48; external interrupt int2  
;4C; internal timer interrupt  
;50; BSP receive interrupt  
;54; BSP transmit interrupt  
;58; TDM receive interrupt  
int2  
tint  
brint  
bxint  
trint  
goto bsend  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
txint  
int3  
return_enable  
nop  
nop  
;5C; TDM transmit interrupt  
;60; external interrupt int3  
return_enable  
nop  
nop  
nop  
hpiint  
dgoto #0e4h  
;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *  
nop  
nop  
1407f  
20  
LTC1407/LTC1407A  
W U U  
APPLICATIO S I FOR ATIO  
U
.space 24*16  
;68-7F; reserved area  
**********************************************************************  
(C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996  
**********************************************************************  
*
*
*
*
* File: BSPI1407A.ASM BSP initialization code for the ‘C54x DSKplus  
*
*
*
*
*
*
*
for use with 1407A in standard mode  
BSPC and SPC seem interchangeable in the ‘C542  
BSPCE and SPCE seem interchangeable in the ‘C542  
**********************************************************************  
.title “Buffered Serial Port Initialization Routine”  
ON  
.set 1  
OFF  
YES  
.set !ON  
.set 1  
NO  
.set !YES  
.set 2  
.set 1  
.set 3  
.set 0  
BIT_8  
BIT_10  
BIT_12  
BIT_16  
GO  
.set 0x80  
**********************************************************************  
* This is an example of how to initialize the Buffered Serial Port (BSP).  
* The BSP is initialized to require an external CLK and FSX for  
* operation. The data format is 16-bits, burst mode, with autobuffering  
* enabled. Set the variables listed below to configure the BSP for  
* your application.  
*
*****************************************************************************************************  
*LTC1407A timing with 40MHz crystal.  
*
*10MHz, divided from 40MHz, forced to CLKIN by 1407A board.  
*
*Horizontal scale is 6.25ns/chr or 25ns period at BCLKR  
*
*BFSR Pin J1-20 ~~\____/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\____/  
~~~~~~~~~~~*  
*BCLKR Pin J1-14 _/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/  
~\_/~\_/~*  
*BDR  
B12*  
Pin J1-26 _—_—_—<B13-B12-B11-B10-B09-B08-B07-B06-B05-B04-B03-B02-B01-B00>—_—<B13-  
*CLKIN Pin J5-09 ~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/  
~~~~~~~\_______/~~~~~*  
*C542 read  
0
B13 B12 B11 B10 B09 B08 B07 B06 B05 B04 B03 B02 B01 B00  
0
0
B13 B12*  
*
*
* negative edge BCLKR  
* negative BFSR pulse  
* no data shifted  
* 1' cable from counter to CONV at DUT  
1407f  
21  
LTC1407/LTC1407A  
W U U  
U
APPLICATIO S I FOR ATIO  
* 2' cable from counter to CLK at DUT  
*No right shift is needed to right justify the input data in the main program  
*
*the two msbs should also be masked  
*
****************************************************************************************************  
*
Loopback  
Format  
IntSync  
IntCLK  
BurstMode  
CLKDIV  
PCM_Mode  
FS_polarity  
CLK_polarity  
Frame_ignore  
XMTautobuf  
RCVautobuf  
XMThalt  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
NO  
BIT_16  
NO  
NO  
YES  
3
NO  
YES  
NO  
!YES  
NO  
NO  
NO  
NO  
0x600  
0x800  
0x200  
0x040  
;(digital looback mode?)  
;(Data format? 16,12,10,8)  
;(internal Frame syncs generated?) TXM bit  
;(internal clks generated?) MCM bit  
;(if BurstMode=NO, then Continuous) FSM bit  
;(3=default value, 1/4 CLOCKOUT)  
;(Turn on PCM mode?)  
;(change polarity)YES=~~~\_/~~~, NO=___/~\___  
;(change polarity)for BCLKR YES=_/~, NO=~\_  
;(inverted !YES -ignores frame)  
;(transmit autobuffering)  
DLB bit  
FO bit  
;(receive autobuffering)  
;(transmit buff halt if XMT buff is full)  
;(receive buff halt if RCV buff is full)  
;(address of transmit buffer)  
;(address of receive buffer)  
;(length of transmit buffer)  
RCVhalt  
XMTbufAddr  
RCVbufAddr  
XMTbufSize  
RCVbufSize  
*
;(length of receive buffer)  
* See notes in the ‘C54x CPU and Peripherals Reference Guide on setting up  
* valid buffer start and length values.  
*
*
**********************************************************************  
.eval ((Loopback >> 1)|((Format & 2)<<1)|(BurstMode <<3)|(IntCLK <<4)|(IntSync  
<<5)) ,SPCval  
.eval ((CLKDIV)|(FS_polarity <<5)|(CLK_polarity<<6)|((Format &  
1)<<7)|(Frame_ignore<<8)|(PCM_Mode<<9)), SPCEval  
.eval (SPCEval|(XMTautobuf<<10)|(XMThalt<<12)|(RCVautobuf<<13)|(RCVhalt<<15)),  
SPCEval  
bspi1407A:  
bspc = #SPCval  
; places buffered serial port in reset  
; programs BSPCE and ABU  
; initializes transmit buffer start address  
; initializes transmit buffer size  
; initializes receive buffer start address  
; initializes receive buffer size  
bspce = #SPCEval  
axr = #XMTbufAddr  
bkx = #XMTbufSize  
arr = #RCVbufAddr  
bkr = #RCVbufSize  
bspc = #(SPCval | GO)  
return  
; bring buffered serial port out of reset  
; for transmit and receive because GO=0xC0  
1407f  
22  
LTC1407/LTC1407A  
U
PACKAGE DESCRIPTIO  
MSE Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1663)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.794 ± 0.102  
(.110 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
2.06 ± 0.102  
(.081 ± .004)  
1
1.83 ± 0.102  
(.072 ± .004)  
5.23  
(.206)  
MIN  
2.083 ± 0.102 3.20 – 3.45  
(.082 ± .004) (.126 – .136)  
10  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
DETAIL “A”  
0.254  
RECOMMENDED SOLDER PAD LAYOUT  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
10 9  
8
7 6  
DETAIL “A”  
0.18  
(.007)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0603  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
1
2
3
4 5  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1407f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1407/LTC1407A  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC1608  
16-Bit, 500ksps Parallel ADC  
16-Bit, 250ksps Serial ADC  
12-/14-Bit, 2.8Msps Serial ADC  
14-Bit, 2.5Msps Parallel ADC  
12-Bit, 10Msps Parallel ADC  
12-Bit, 5Msps Parallel ADC  
12-Bit, 3Msps Parallel ADC  
12-Bit, 2.2Msps Serial ADC  
16-Bit, 250ksps 1-/2-Channel Serial ADCs  
±5V Supply, ±2.5V Span, 90dB SINAD  
5V Configurable Bipolar/Unipolar Inputs  
3V, 15mW, MSOP Package  
LTC1609  
LTC1403/LTC1403A  
LTC1411  
5V, Selectable Spans, 80dB SINAD  
5V, Selectable Spans, 72dB SINAD  
5V, Selectable Spans, 115mW  
LTC1420  
LTC1405  
LTC1412  
±5V Supply, ±2.5V Span, 72dB SINAD  
5V or ±5V Supply, 4.096V or ±2.5V Span  
5V or 3V (L-Version), Micropower, MSOP Package  
LTC1402  
LTC1864/LTC1865  
LTC1864L/LTC1865L  
DACs  
LTC1666/LTC1667  
LTC1668  
12-/14-/16-Bit, 50Msps DAC  
87dB SFDR, 20ns Settling Time  
LTC1592  
16-Bit, Serial SoftSpanTM  
I
DAC  
±1LSB INL/DNL, Software Selectable Spans  
OUT  
References  
LT1790-2.5  
LT1461-2.5  
LT1460-2.5  
Micropower Series Reference in SOT-23  
Precision Voltage Reference  
0.05% Initial Accuracy, 10ppm Drift  
0.04% Initial Accuracy, 3ppm Drift  
0.10% Initial Accuracy, 10ppm Drift  
Micropower Series Voltage Reference  
SoftSpan is a trademark of Linear Technology Corporation.  
1407f  
LT/TP 1103 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1407AIMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC1407AIMSE-1

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown
Linear

LTC1407CMSE

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling Simultaneous Sampling
Linear

LTC1407CMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407CMSE#TRPBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407CMSE-1

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown
Linear

LTC1407CMSE-1#PBF

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407CMSE-1#TR

LTC1407-1 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1407HMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC1407IMSE

Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling Simultaneous Sampling
Linear

LTC1407IMSE#PBF

LTC1407 - Serial 12-Bit/14-Bit, 3Msps Simultaneous Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear