LTC1623 [Linear]

SMBus Dual High Side Switch Controller; SMBus的双通道高边开关控制器
LTC1623
型号: LTC1623
厂家: Linear    Linear
描述:

SMBus Dual High Side Switch Controller
SMBus的双通道高边开关控制器

开关 控制器
文件: 总12页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1623  
SMBus Dua l Hig h Sid e  
Switc h Co ntro lle r  
U
DESCRIPTION  
FEATURES  
SMBus and I2C Compatible  
The LTC®1623 SMBus switch controller is a slave device  
that controls two high-side N-channel MOSFETs on either  
the SMBus or the I2C bus. The LTC1623 operates with an  
input voltage from 2.7V to 5.5V with a low standby current  
of 14µA (at 3.3V). In accordance with the SMBus specifi-  
Built-In Charge Pumps Drive N-Channel Switches  
16 Available Switches on the Same Bus  
0.6V V and 1.4V V for DATA and CLK  
IL  
IH  
Available in 8-Lead MSOP and S0 Packages  
Low Standby Current: 14µA  
Eight Addresses from Two Three-State Address Pins  
Internal Power-On Reset Timer  
Internal Undervoltage Lockout  
No Need for External Pull-Up Resistors at Output  
No Need for Secondary Power Source  
cation, the LTC1623 maintains the 0.6V V and 1.4V V  
input thresholds throughout the supply voltage range.  
IL  
IH  
Using the 2-wire interface, CLK and DATA, the LTC1623  
monitors the bus for a start condition (DATA going from  
hightolowwhileCLKis high).Oncedetected,theLTC1623  
compares its address with the first (address) byte sent  
overthebus fromthemaster.Ifmatched,theLTC1623will  
execute the second (command) byte from the master and  
independently control the built-in charge pumps to drive  
two external switches.  
U
APPLICATIONS  
Computer Peripheral Control  
Laptop Computer Power Plane Switching  
Portable Equipment Power Control  
Industrial Control Systems  
The LTC1623 has two three-state programmable address  
pins, thus allowing eight different addresses and a total of  
sixteen available switches on the same bus.  
Handheld Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
V
CC  
Gate Drive Voltage  
2.7V TO 5.5V  
14  
T = 25°C  
J
10µF  
12  
10  
8
*
V
CC  
GA  
GB  
Q1  
CLK  
(FROM  
SMBus)  
DATA  
Q2  
LTC1623  
AD0  
AD1  
6
(PROGRAMMABLE)  
LOAD2  
LOAD1  
GND  
4
2
* SILICONIX Si69260Q  
1623 TA01  
0
0
2
3
4
5
6
1
SUPPLY VOLTAGE (V)  
1623 G01  
1
LTC1623  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
(Voltages Referred to GND Pin)  
Operating Temperature Range  
Input Supply Voltage (V ) ..........................0.3V to 6V  
CC  
LTC1623C.................................................. 0° to 70°C  
LTC1623I............................................ –40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
DATA, CLK (Bus Pins 1, 2) ..........................0.3V to 6V  
AD0, AD1 (Address Pins 3, 5) ..... 0.3V to (V + 0.3V)  
CC  
GA,GB (Gate Drive Pins 6, 7).......... 0.3V to (V + 7V)  
CC  
Junction Temperature........................................... 125°C  
U
W
U
PACKAGE/ORDER INFORMATION  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
TOP VIEW  
DATA  
CLK  
AD0  
1
2
3
4
8
7
6
5
V
CC  
DATA 1  
CLK 2  
8 V  
CC  
7 GA  
6 GB  
5 AD1  
GA  
GB  
LTC1623CS8  
LTC1623IS8  
LTC1623CMS8  
AD0  
3
GND 4  
GND  
AD1  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
S8 PART MARKING  
MS8 PART MARKING  
LTCH  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX = 125°C, θJA = 150°C/ W  
1623  
1623I  
T
JMAX = 125°C, θJA = 110°C/ W  
Consult factory for Military grade parts.  
T = 25°C, VCC = 5V unless otherwise specified. CGA = 1000pF, CGB = 1000pF  
A
ELECTRICAL CHARACTERISTICS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Operating Supply Voltage Range  
Supply Current  
2.7  
5.5  
V
CC  
I
Charge Pump Off, AD0 and AD1High or Low,  
DATA and CLK High  
V
= 2.7V  
= 3.3V  
= 5V  
12  
14  
17  
30  
30  
30  
µA  
µA  
µA  
VCC  
CC  
V
CC  
V
CC  
I
Supply Current  
GA or GB High (Command Byte 00000001 or 00000010)  
Both GA and GB High (Command Byte 00000011)  
140  
162  
250  
250  
µA  
µA  
VCC  
V
GS  
Gate Voltage Above Supply  
V
= 2.7V  
= 3.3V  
= 5.5V  
2.7  
4.5  
4.5  
4.2  
5.4  
6.4  
7
7
7
V
V
V
CC  
V
CC  
V
CC  
V
UVLO  
Undervoltage Lockout  
Falling Edge (Note1)  
1.5  
2.0  
2.5  
V
t
Power-On Reset Delay Time  
V
V
CC  
= 2.7V (Note2)  
= 5.5V  
300  
300  
1000  
1000  
µs  
µs  
POR  
CC  
f
Charge Pump Oscillator Frequency  
(Note 3)  
300  
kHz  
OSC  
t
t
Turn-On Time into 1000pF  
V
V
CC  
= 2.7V (From ON to GA, GB = V + 1V) (Note 4)  
170  
180  
µs  
µs  
ON  
CC  
CC  
= 5.5V (From ON to GA, GB = V + 2V) (Note 4)  
CC  
Turn-Off Time into 1000pF  
V
= 2.7V (From OFF to GA, GB = 100mV) (Note 5)  
= 5.5V (From OFF to GA, GB = 100mV) (Note 5)  
17  
12  
µs  
µs  
OFF  
CC  
V
CC  
V
DATA/CLK Input Low Voltage  
DATA/CLK Input High Voltage  
V
= 2.7V to 5.5V  
= 2.7V to 5.5V  
CC  
0.6  
V
V
IL  
CC  
V
IH  
V
1.4  
2
LTC1623  
ELECTRICAL CHARACTERISTICS  
TA = 25°C, VCC = 5V unless otherwise specified. CGA = 1000pF, CGB = 1000pF  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
AD0 and AD1 Input Low Voltage  
AD0 and AD1 Input High Voltage  
Data Output Low Voltage  
V
= 2.7V to 5.5V  
= 2.7V to 5.5V  
= 2.7 to 5.5V, I = 350µA  
PULLUP  
0.2  
V
V
IL  
CC  
V
IH  
V
CC  
V – 0.2  
CC  
V
OL  
V
CC  
0.22  
5
0.4  
V
C
IN  
Input Capacitance  
pF  
(DATA, CLK, AD0, AD1)  
I
IN  
Input Leakage Current (DATA, CLK)  
Input Leakage Current(AD0, AD1)  
±1  
µA  
±250  
nA  
SMBus Related Specs (Note 6)  
f
SMBus Operating Frequency  
Start Condition Setup Time  
Bus Free Time Between Stop and Start  
Start Condition Hold Time  
Stop Condition Setup Time  
Data Hold Time  
10  
4.7  
4.7  
4.0  
4.0  
300  
250  
4.7  
4.0  
100  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µA  
SMB  
t
t
t
t
t
t
t
t
t
t
SUSTA  
BUF  
HDSTA  
SUSTP  
HDDAT  
SUDAT  
LOW  
HIGH  
f
Data Setup Time  
Clock Low Period  
Clock High Period  
50  
300  
1000  
350  
Clock /Data Fall Time  
Clock/Data Rise Time  
r
I
Current Through External Pull-Up  
Resistor on DATA Pin  
(Data Pull-Down Current Capacity)  
= 2.7V to 5.5V  
100  
PULLUP  
V
CC  
The  
denotes the specifications which apply over the full operating  
Note 4: ON is enabled upon receiving the Stop condition from the SMBus  
temperature range.  
master.  
Note 1: Approximately 3% hysteresis is provided to ensure stable  
Note 5: OFF is enabled upon receiving the Stop condition from the SMBus  
operation and eliminate false triggering by minor V glitches.  
master.  
CC  
Note 2: Measured from V > V  
to SMBus ready for data input.  
Note 6: SMBus timing specs are guaranteed but not tested.  
CC  
UVLO  
Note 3: The oscillator frequency is not tested directly but is inferred from  
turn-on time.  
U
U
U
PIN FUNCTIONS  
DATA: (Pin 1) Open-Drain Connected Serial Data Inter-  
AD1: (Pin 5) Higher Three-State Programmable Address  
face. Must be pulledhightoV with externalresistor. The  
Pin. Must be connected directly to V , GND, or V /2  
CC  
CC CC  
pull-up current must be limited to 350µA.  
(using two resistors 1M). Do not float this pin.  
CLK: (Pin 2) Serial Clock Interface. Must be pulled high to  
GB: (Pin 6) Gate Drive to External High-Side Switch. Fully  
enhanced by internal charge pump. Controlled by 2nd  
LSB of command byte.  
VCC with external resistor. The pull-up current must be  
limited to 350µA.  
AD0: (Pin 3) Lower Three-State Programmable Address  
GA: (Pin 7) Gate Drive to External High-Side Switch. Fully  
enhanced by internal charge pump. Controlled by LSB of  
command byte.  
Pin. Must be connected directly to V , GND, or V /2  
CC  
CC  
(using two resistors 1M). Do not float this pin.  
GND: (Pin 4) Ground.  
V : (Pin 8) Input Supply Voltage. Range from 2.7V to  
CC  
5.5V.  
3
LTC1623  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Standby Current  
Supply Current  
35  
400  
350  
300  
250  
200  
150  
100  
50  
V
CC  
= 2.7V  
30  
25  
20  
V
= 5V  
CC  
15  
10  
5
V
CC  
= 2.7V  
BOTH CHANNELS ON  
ONE CHANNEL ON  
0
–60  
0
–60  
–40 –20  
0
20 40  
80 100  
60  
–40 –20  
0
20 40  
60  
80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1623 G02  
1623 G04  
Supply Current  
Supply Current  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
V
CC  
= 5V  
V
CC  
= 6V  
BOTH CHANNELS ON  
BOTH CHANNELS ON  
ONE CHANNEL ON  
ONE CHANNEL ON  
0
–60  
0
–60  
–40 –20  
0
20 40  
80 100  
–40 –20  
0
20 40  
80 100  
60  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1623 G03  
1623 G05  
tON vs Temperature  
tOFF vs Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
20  
18  
16  
14  
12  
10  
8
V
= 2.7V  
CC  
V
CC  
= 5.5V  
V
= 2.7V  
= 5.5V  
CC  
V
CC  
6
4
2
0
–60  
0
–60  
–40 –20  
0
20 40  
80 100  
60  
–40 –20  
0
20 40  
80 100  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1623 G06  
1623 G07  
4
LTC1623  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
GA, GB Output Voltage  
DATA VOL vs Temperature  
16  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
CC  
= 5V  
V
CC  
= 5V  
14  
12  
10  
8
I
= 350µA  
PULLUP  
6
4
2
0
0
–60  
–40 –20  
0
20 40  
80 100  
–60 –40 –20  
0
20 40 60 80 100  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1623 G08  
1623 G09  
VGS vs Temperature  
Gate Drive Current  
7
6
5
4
3
2
1
0
100  
10  
1
V
= 5.5V  
CC  
V
= 6V  
V
= 5V  
CC  
CC  
V
CC  
= 3.3V  
= 2.7V  
V
= 3.3V  
CC  
V
CC  
V
= 2.7V  
CC  
0.1  
20 40  
80 100  
–60  
–40 –20  
0
60  
0
1
2
3
4
5
6
7
GATE VOLTAGE ABOVE SUPPLY (V  
)
GS  
TEMPERATURE (°C)  
1623 G11  
1623 G10  
5
LTC1623  
W U  
W
TI I G DIAGRA  
t
t
t
r
t
t
SUSTP  
HIGH  
HDSTA  
f
CLK  
t
t
t
HDDAT  
LOW  
SUSTA  
t
SUDAT  
DATA  
1623 TD01  
STOP  
START  
U
U
W
FU CTIO AL BLOCK DIAGRA  
V
CC  
UNDER-  
VOLTAGE  
LOCKOUT  
PORB  
POWER-ON  
RESET  
2V  
START-  
AND-STOP  
DETECTORS  
ACK  
INPUT  
BUFFER  
1
2
DATA  
CLK  
GLUE  
LOGIC  
10k  
10k  
SHIFT  
REGISTER  
7
6
GA  
GB  
REGULATING  
CHARGE  
PUMPS  
OUTPUT  
LATCHES  
INPUT  
BUFFER  
COUNTER  
AD0  
AD1  
3
5
ADDRESS  
DECODER  
ADDRESS  
COMPARATOR  
1623 BD  
6
LTC1623  
U
OPERATIO  
SMBus Operation  
acknowledges the master by pulling the data line low  
before the rising edge of the ninth clock cycle.  
SMBus is a serial bus interface that uses only two bus  
lines, DATA and CLK, to control low power peripheral  
devices inportableequipment. Itconsists ofmasters, also  
known as hosts, and slave devices. The master of the  
SMBus is always the one to initiate communications to its  
By now, all other nonmatching slave devices will have  
gone back to their original standby states to wait for the  
next start signal. Meanwhile, upon receiving the acknowl-  
edge from the matching slave, the master then sends out  
slave devices by varying the status of the DATA and CLK the command byte. In the case of the LTC1623, the two  
lines. The SMBus specification establishes a set of proto-  
cols that devices on the bus must follow during commu-  
nications.  
LSBs of this second byte from the master are the signals  
controlling the status of the external switches; a digital  
“oneturns onthechargepumptodriveuptheoutputgate  
voltage while a digital “zero” shuts down the charge pump  
and discharges the output gate voltage to zero.  
The protocol that the LTC1623 uses is the Send Byte  
Protocol.Inthis protocol,themasterfirstsends outaStart  
signal by switching the DATA line from high to low while  
CLK is high. (Because there may be more than one master  
on the same bus, an arbitration process takes place if two  
masters attempt to take control of the DATA line simulta-  
neously; the first master that outputs a one while the other  
master is zero loses the arbitration and becomes a slave  
itself.)Upondetectingthis Startsignal,allslavedevices on  
the bus wake up and get ready to shift in the next byte of  
data.  
After receiving the command byte, the slave device  
(LTC1623) needs to again acknowledge the master by  
pulling the DATA line low on the following clock cycle. The  
master then ends this Send Byte Protocol by sending the  
Stop signal, which is a transition from low to high on the  
DATA line while the CLK line is high. Valid data is shifted  
into the output latch on the last acknowledge signal; the  
externalswitchwillnotbeenabled,however,untiltheStop  
signal is detected. This double-buffering feature allows  
theusertodaisy-chainseveraldifferentlyaddressedSMBus  
devices suchthattheiroutputexecutions aresynchronous  
to the Stop signal even though valid data were loaded into  
their output latches at different times. Figure 1 shows an  
example of this special protocol. If somehow either the  
Start or the Stop signal is detected in the middle of a byte,  
the slave device (LTC1623) will regard this as an error and  
reject all previous data. Other than the Stop and Start  
conditions, DATA must be stable during CLK high; DATA  
can change state only during CLK low.  
The master then sends out the first byte. The first seven  
bits ofthis byteconsistoftheaddress ofthedevicethatthe  
master wishes to communicate with. The last bit indicates  
whether the command will be a read (logic one) or write  
(logic zero). Because the LTC1623 is a slave device that  
canonlybewrittentobyamaster,itwillignoretheensuing  
commands of the master if it wants to read from the  
LTC1623, even if the address sent by the master matches  
that of the LTC1623. After reception of the first byte, the  
slave device (LTC1623) with the matching address then  
START ADD1 A COMMAND A START ADD2 A COMMAND A START ADD3 A COMMAND A STOP  
1623 F01  
Figure 1. Daisy-Chaining Multiple SMBus Devices  
Example of Send Byte Protocol to Slave Address 1011000 Turning GA and GB On  
CLK  
1
1
0
ACK  
START  
1
0
0
0
0
0
0
0
0
0
0
1
1
ACK STOP  
(WRITE)  
(PROGRAMMABLE)  
DATA  
(GB ON)(GA ON)  
ADDRESS BYTE  
COMMAND BYTE  
1623 TD02  
7
LTC1623  
U
OPERATIO  
Address  
Charge Pump  
The LTC1623 has an address of 1011XXX; the four MSBs  
are hard-wired, but the 3 LSBs are programmed by the  
userwiththehelpoftwothree-stateaddress pins. Referto  
Table 1 for the pin configurations and their corresponding  
addresses.  
To fully enhance the external N-channel switches, an  
internalchargepumpis usedtoboosttheoutputgatedrive  
to a minimum of 2.7V and a maximum of 6V above V ,  
CC  
depending on VCC itself. The reason for the maximum  
output voltage limit is to avoid switch gate source break-  
downduetoexcessivegateoverdrive. Afeedbacknetwork  
To conserve standby current, it is preferable to tie the  
is used to limit the charge pump output to 6V above V .  
CC  
address pins to either V or GND. If more than four  
CC  
Because the output will only need to drive the gate of the  
external switch by charging and discharging the parasitic  
gate capacitances, the internal charge pump, clocked by  
anapproximately300KHzoscillator, is appropriatelysized  
to source less than 100µA.  
addresses are needed, then either one of the address pins  
can be tied to the third state of V /2 by using two equal  
CC  
value resistors (1M) shown in Figure 2. Do not connect  
both address pins to the V /2 state simultaneously  
CC  
because this is not a valid address.  
Power-On Reset and Undervoltage Lockout  
The LTC1623 starts up with both gate drives low. An  
internal power-on reset (POR) signal inhibits operation  
Table 1. Address Pin Truth Table  
AD0  
AD1  
ADDRESS  
1011000  
1011001  
1011010  
1011011  
UNUSED  
1011100  
1011101  
1011110  
1011111  
until about 300µs after V crosses the undervoltage  
CC  
GND  
GND  
GND  
GND  
lockoutthreshold(typically2V). Thecircuitincludes some  
hysteresis anddelaytoavoidnuisanceresets.Onceopera-  
V /2  
CC  
V
CC  
tion begins, V must drop below the threshold for at least  
CC  
V /2  
GND  
V /2  
CC  
100µs to trigger another POR sequence.  
V /2  
CC  
CC  
During standby, when both gate drive outputs are dis-  
abled, quiescent current is kept to a minimum (13µA  
typical) because only the UVLO block is active.  
V /2  
CC  
V
CC  
V
GND  
V /2  
CC  
V
CC  
CC  
V
CC  
V
CC  
Input Threshold  
Anticipating the trend toward lower supply voltages, the  
SMBus is specified with a V of 1.4V and a V of 0.6V.  
IH  
IL  
WhilesomeSMBus parts mayviolatethis stringentSMBus  
1
2
8
7
specification by allowing a higher V value for a corre-  
DATA  
IH  
DATA  
CLK  
V
CC  
spondingly higher input supply voltage, the LTC1623  
meets and maintains the constant SMBus input threshold  
specification across the entire supply voltage range of  
2.7V to 5.5V.  
CLOCK  
GA  
1M  
1M  
LTC1623  
3
4
6
5
AD0  
GB  
GND  
AD1  
LOAD1  
LOAD2  
1623 F02  
Figure 2. LTC1623 Programmed with Address 1011001  
8
LTC1623  
U
W U U  
APPLICATIONS INFORMATION  
To avoid turning on the external power MOSFETs too  
quickly, an internal 10k resistor has been placed in series  
with each of the output gate drive pins (see Functional  
For active-low applications in which the load needs to be  
on upon power-up, an external P-channel switch can be  
used(Figure3).This loadcanbeswitchedofflaterafterthe  
Block Diagram). Therefore, it only needs an external 0.1µF proper protocol has been sent.  
capacitor to create enough RC delay (10k• 0.1µF = 1ms)  
Used with the LT®1431, the LTC1623 makes a 3.3V/3A  
to slow down the ramp rate of the output gate drive. In  
other words, it will take a minimum of 1ms to charge up  
the external MOSFET. An additional external 1k resistor  
between the 0.1µF capacitor and the gate of the MOSFET  
(Figure 3) is required to eliminate possible MOSFET self  
oscillations.  
extremely low voltage drop regulator (Figures 4 and 5). In  
this application, the other output channel can be used to  
drive a separate load, or it can also be used to control the  
outputoftheLDOsothattheuserhas totalcontroloverthe  
switching in and switching out of the LDO (Figure 5). Also,  
with the help of the LT1304-5, the LTC1623 can be used  
to make a boost switching regulator with a low standby  
current of 22µA (Figure 6).  
V
CC  
3.5V TO 5.5V  
V
CC  
2.7V TO 5.5V  
10µF  
1k  
V
CC  
CLK  
GA  
GB  
Si3442DV  
(FROM SMBus)  
10µF  
DATA  
0.1µF  
V
CC  
1k  
LTC1623  
AD0  
AD1  
Q1  
Si3442DV  
GA  
GB  
CLK  
Si3442DV  
(FROM  
SMBus)  
(PROGRAMMABLE)  
DATA  
V
3.3V  
0.1µF  
OUT  
1k  
Q2  
GND  
LTC1623  
1
3
6
Si6433DQ  
510pF  
3.3k  
+
0.1µF  
AD0  
AD1  
8
(PROGRAMMABLE)  
470µF  
6V  
LT1431  
5
LOAD  
GND  
DISPLAY  
FAN  
10k  
680Ω  
1623 F04  
1623 F03  
Figure 4. 3.3V/3A Extremely Low Voltage Drop  
Regulator and Load Switch  
Figure 3. Dual Load Switch with Q2 On upon Power-Up  
V
CC  
2.7V TO 4.5V  
V
CC  
3.5V TO 5.5V  
10µF  
1k  
0.1µF  
V
CC  
10µF  
CLK  
Si3442DV  
GA  
GB  
(FROM  
SMBus)  
DATA  
V
CC  
CLK  
Si3442DV  
3.3k  
LTC1623  
GA  
GB  
(FROM SMBus)  
DATA  
LOAD  
AD0  
AD1  
Si3442DV  
V
OUT  
(PROGRAMMABLE)  
LTC1623  
AD0  
AD1  
3.3V  
1N5817  
GND  
22µH*  
1
3
6
510pF  
(PROGRAMMABLE)  
+
8
470µF  
GND  
LT1431  
5
6V  
3
4
10k  
499k  
8
2
5V  
200mA  
+
680Ω  
+
100µF  
LT1304-5  
100k  
LBO  
2200µF  
1k  
604k  
Si3442DV  
SWITCHED  
7
5
0.1µF  
*SUMIDA CD54-220  
SHDN  
1623 F05  
V
OUT  
3.3V  
1623 TA03  
Figure 5. SMBus Controlled Low Dropout Regulator  
Figure 6. Switching Regulator with Low-Battery  
Detect Using 22µA Standby Current  
9
LTC1623  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.118 ± 0.004**  
(3.00 ± 0.102)  
0.192 ± 0.004  
(4.88 ± 0.10)  
1
2
3
4
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
SEATING  
PLANE  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
MSOP (MS8) 1197  
0.0256  
(0.65)  
TYP  
*
DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
10  
LTC1623  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
1
3
4
2
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
SO8 0996  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofits circuits as describedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1623  
U
TYPICAL APPLICATIONS  
Single Slot PCMCIA 3.3V/5V Switch  
5V  
10µF  
V
CC  
1k  
Q1  
Si3442DY  
GA  
GB  
CLK  
TO PC CARD V  
0V/3.3V/5V  
CC  
DATA  
0.1µF  
Q2*  
Q3*  
LTC1623  
10k  
1µF  
AD0  
AD1  
1k  
1623 TA02  
GND  
0.1µF  
3.3V  
*1/2 Si6926DQ  
LTC1623 Driving Both High Side and Low Side Switches  
V
EXT  
(30V MAX)  
V
CC  
LOW SIDE  
LOAD  
2.7V TO 5.5V  
10µF  
V
CC  
1k  
Si6954DQ  
GA  
GB  
CLK  
(FROM  
SMBus)  
DATA  
0.1µF  
1k  
Si6954DQ  
LTC1623  
0.1µF  
AD0  
AD1  
(PROGRAMMABLE)  
GND  
HIGH SIDE  
LOAD  
1623 TA05  
RELATED PARTS  
PART NUMBER  
LTC1153/LTC1154  
LTC1155/LTC1255  
LTC1163  
DESCRIPTION  
COMMENTS  
Single High Side Micropower MOSFET Drivers  
Dual High Side Micropower MOSFET Drivers  
Triple 1.8V to 6V High Side MOSFET Driver  
Micropower DC/DC Converter  
Circuit Breaker with Auto Reset  
Latch-Off Current Limit  
Three MOSFET Drivers in 8-Lead SO Package  
Low-Battery Detector Active in Shutdown  
Current Limit with Timer  
LT1304  
LTC1473  
Dual PowerPathTM Switch Matrix  
LTC1479  
PowerPathController for Dual Battery Systems  
Complete Smart Battery Controller  
PowerPath is a trademark of Linear Technology Corporation.  
1623f LT/TP 0598 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
LINEAR TECHNOLOGY CORPORATION 1997  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1623C

SMBus Dual High Side Switch Controller
Linear

LTC1623CMS8

SMBus Dual High Side Switch Controller
Linear

LTC1623CMS8#PBF

暂无描述
Linear

LTC1623CMS8#TR

LTC1623 - SMBus Dual High-SideSwitch Controller; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1623CMS8#TRPBF

LTC1623 - SMBus Dual High-SideSwitch Controller; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1623CS8

SMBus Dual High Side Switch Controller
Linear

LTC1623CS8#PBF

LTC1623 - SMBus Dual High-SideSwitch Controller; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1623CS8#TR

LTC1623 - SMBus Dual High-SideSwitch Controller; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1623CS8#TRPBF

LTC1623 - SMBus Dual High-SideSwitch Controller; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1623I

SMBus Dual High Side Switch Controller
Linear

LTC1623IS8

SMBus Dual High Side Switch Controller
Linear

LTC1623IS8#PBF

LTC1623 - SMBus Dual High-SideSwitch Controller; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear