LTC2615IGNTRPBF [Linear]

Octal 16-/14-/12-Bit Rail-to Rail DACs in 16-Lead SSOP; 八通道16位/ 14位/ 12位轨至轨数模转换器采用16引脚SSOP
LTC2615IGNTRPBF
型号: LTC2615IGNTRPBF
厂家: Linear    Linear
描述:

Octal 16-/14-/12-Bit Rail-to Rail DACs in 16-Lead SSOP
八通道16位/ 14位/ 12位轨至轨数模转换器采用16引脚SSOP

转换器 数模转换器
文件: 总18页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2605/LTC2615/LTC2625  
Octal 16-/14-/12-Bit  
Rail-to Rail DACs in 16-Lead SSOP  
FEATURES  
DESCRIPTION  
The LTC®2605/LTC2615/LTC2625 are octal 16-, 14- and  
12-bit, 2.7V to 5.5V rail-to-rail voltage-output DACs  
in 16-lead narrow SSOP packages. They have built-in  
high performance output buffers and are guaranteed  
monotonic.  
n
Smallest Pin-Compatible Octal DACs:  
LTC2605: 16 Bits  
LTC2615: 14 Bits  
LTC2625: 12 Bits  
n
Guaranteed Monotonic Over Temperature  
2
n
400kHz I C Interface  
These parts establish new board-density benchmarks  
for 16-/14-bit DACs and advance performance standards  
for output drive, crosstalk and load regulation in single  
supply, voltage-output multiples.  
n
Wide 2.7V to 5.5V Supply Range  
n
Low Power Operation: 250μA per DAC at 3V  
n
Individual Channel Power-Down to 1μA (Max)  
n
Ultralow Crosstalk Between DACs (<10μV)  
2
n
Thepartsusethe2-wireI Ccompatibleserialinterface.The  
High Rail-to-Rail Output Drive ( 15mA, Min)  
n
LTC2605/LTC2615/LTC2625 operate in both the standard  
mode (maximum clock rate of 100kHz) and the fast mode  
(maximum clock rate of 400kHz).  
Double-Buffered Digital Inputs  
27 Selectable Addresses  
n
n
LTC2605/LTC2615/LTC2625: Power-On Reset to  
Zero-Scale  
The LTC2605/LTC2615/LTC2625 incorporate a power-on  
resetcircuit.Duringpower-up,thevoltageoutputsriseless  
than10mVabovezero-scale;andafterpower-up,theystay  
at zero-scale until a valid write and update take place. The  
power-on reset circuit resets the LTC2605-1/\LTC2615-1/  
LTC2625-1 to mid-scale. The voltage output stays at mid-  
scale until a valid write and update takes place.  
n
LTC2605-1/LTC2615-1/LTC2625-1: Power-On Reset  
to Mid-Scale  
Tiny 16-Lead Narrow SSOP Package  
n
APPLICATIONS  
n
Mobile Communications  
n
Process Control and Industrial Automation  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Instrumentation  
Automatic Test Equipment  
n
TYPICAL APPLICATION  
GND  
1
16  
15  
V
V
CC  
DAC A  
DAC H  
V
2
Differential Nonlinearity (LTC2605)  
OUT A  
OUT H  
1.0  
V
V
= 5V  
REF  
CC  
0.8  
0.6  
= 4.096V  
DAC B  
DAC C  
DAC G  
DAC F  
V
V
V
OUT G  
V
OUT F  
3
4
14  
13  
OUT B  
OUT C  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
DAC D  
DAC E  
V
V
5
12  
OUT D  
OUT E  
REF  
CA0  
CA1  
6
7
11  
10  
32-BIT SHIFT REGISTER  
2-WIRE INTERFACE  
0
16384  
32768  
CODE  
49152  
65535  
CA2  
2605 G02  
9
SDA  
SCL  
8
2605/15/25 BD  
2605fa  
1
LTC2605/LTC2615/LTC2625  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Any Pin to GND............................................ –0.3V to 6V  
Any Pin to V ............................................. –6V to 0.3V  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
V
V
V
CC  
CC  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range  
V
V
V
V
OUT A  
OUT B  
OUT C  
OUT H  
OUT G  
OUT F  
OUT E  
LTC2605C/LTC2615C/LTC2625C ............. 0°C to 70°C  
LTC2605C-1/LTC2615C-1/LTC2625C-1.... 0°C to 70°C  
LTC2605I/LTC2615I/LTC2625I.............–40°C to 85°C  
LTC2605I-1/LTC2615I-1/LTC2625I-1....–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
OUT D  
REF  
CA0  
CA1  
SDA  
CA2  
SCL  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
T
JMAX  
= 125°C, θ = 160°C/W  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2605CGN#PBF  
LTC2605CGN-1#PBF  
LTC2605IGN#PBF  
LTC2605IGN-1#PBF  
LTC2615CGN#PBF  
LTC2615CGN-1#PBF  
LTC2615IGN#PBF  
LTC2615IGN-1#PBF  
LTC2625CGN#PBF  
LTC2625CGN-1#PBF  
LTC2625IGN#PBF  
LTC2625IGN-1#PBF  
TAPE AND REEL  
PART MARKING  
2605  
PACKAGE DESCRIPTION  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
TEMPERATURE RANGE  
LTC2605CGN#TRPBF  
LTC2605CGN-1#TRPBF  
LTC2605IGN#TRPBF  
LTC2605IGN-1#TRPBF  
LTC2615CGN#TRPBF  
LTC2615CGN-1#TRPBF  
LTC2615IGN#TRPBF  
LTC2615IGN-1#TRPBF  
LTC2625CGN#TRPBF  
LTC2625CGN-1#TRPBF  
LTC2625IGN#TRPBF  
LTC2625IGN-1#TRPBF  
0°C to 70°C  
26051  
2605I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
2605I1  
2615  
26151  
2615I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
2615I1  
2625  
26251  
2625I  
0°C to 70°C  
–40°C to 85°C  
–40°C to 85°C  
2625I1  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2605fa  
2
LTC2605/LTC2615/LTC2625  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
unless otherwise noted.  
LTC2625/LTC2625-1 LTC2615/LTC2615-1 LTC2605/LTC2605-1  
SYMBOL  
DC Performance  
Resolution  
Monotonicity  
PARAMETER  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
l
l
l
l
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
(Note 2)  
DNL  
INL  
Differential Nonlinearity (Note 2)  
0.5  
4
1
1
Integral Nonlinearity  
Load Regulation  
(Note 2)  
1
4
16  
18  
64  
V
= V = 5V, Mid-Scale  
CC  
OUT  
OUT  
REF  
I
I
l
l
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.02 0.125  
0.03 0.125  
0.07 0.5  
0.10 0.5  
0.3  
0.4  
2
2
LSB/mA  
LSB/mA  
V
= V = 2.7V, Mid-Scale  
OUT  
OUT  
REF  
I
I
CC  
l
l
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.04 0.25  
0.07 0.25  
0.15  
0.20  
1
1
0.6  
0.8  
4
4
LSB/mA  
LSB/mA  
l
l
ZSE  
Zero-Scale Error  
Offset Error  
Code = 0  
(Note 4)  
1.7  
1
9
1.7  
1
9
1.7  
1
9
9
mV  
mV  
V
OS  
9
9
V
Temperature  
5
5
5
μV/°C  
OS  
Coefficient  
l
GE  
Gain Error  
0.1  
8
0.7  
0.1  
8
0.7  
0.1  
8
0.7  
%FSR  
Gain Temperature  
Coefficient  
ppm/°C  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded, unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
10%  
–80  
dB  
CC  
l
l
R
DC Output Impedance  
V
REF  
V
REF  
= V = 5V, Mid-Scale; –15mA ≤ I ≤ 15mA  
OUT  
0.02  
0.03  
0.15  
0.15  
Ω
Ω
OUT  
CC  
= V = 2.7V, Mid-Scale; –7.5mA ≤ I  
≤ 7.5mA  
CC  
OUT  
DC Crosstalk (Note 10)  
Due to Full-Scale Output Change (Note 11)  
Due to Load Current Change  
Due to Powering Down (per Channel)  
10  
3.5  
7
μV  
μV/mA  
μV  
I
SC  
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
CC REF  
l
l
Code: Zero-Scale; Forcing Output to V  
15  
15  
34  
34  
60  
60  
mA  
mA  
CC  
Code: Full-Scale; Forcing Output to GND  
V
= 2.7V, V = 2.7V  
CC  
REF  
l
l
Code: Zero-Scale; Forcing Output to V  
7.5  
7.5  
20  
27  
50  
50  
mA  
mA  
CC  
Code: Full-Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
l
l
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
11  
16  
90  
20  
Capacitance  
l
I
Reference Current, Power-Down Mode DAC Powered Down  
0.001  
1
μA  
REF  
Power Supply  
l
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
l
l
l
l
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
2.50  
2.00  
0.38  
0.16  
4.0  
3.2  
1.0  
1.0  
mA  
mA  
μA  
CC  
CC  
CC  
DAC Powered Down (Note 3), V = 5V  
CC  
CC  
DAC Powered Down (Note 3), V = 3V  
μA  
2605fa  
3
LTC2605/LTC2615/LTC2625  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
unless otherwise noted. (Note 9)  
SYMBOL PARAMETER  
Digital I/O (Note 9)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
V
V
V
V
Low Level Input Voltage (SDA and SCL)  
High Level Input Voltage (SDA and SCL)  
Low Level Input Voltage (CA0 to CA2)  
High Level Input Voltage (CA0 to CA2)  
0.3V  
V
V
IL  
CC  
0.7V  
IH  
CC  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
0.15V  
V
IL(CA)  
IH(CA)  
CC  
0.85V  
V
CC  
R
R
R
Resistance from CAn (n = 0,1,2) to V  
10  
10  
kΩ  
INH  
INL  
INF  
OL  
CC  
to Set CAn = V  
CC  
l
l
Resistance from CAn (n = 0,1,2) to GND See Test Circuit 2  
to Set CAn = GND  
kΩ  
Resistance from CAn (n = 0,1,2) to V  
or GND to Set CAn = FLOAT  
See Test Circuit 2  
2
0
MΩ  
CC  
l
l
V
Low Level Output Voltage  
Output Fall Time  
Sink Current = 3mA  
0.4  
V
t
t
I
V = V  
to V = V  
, C = 10pF to 400pF  
20 + 0.1CB  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
B
(Note 7)  
l
Pulse Width of Spikes Surpassed by  
Input Filter  
0
50  
ns  
SP  
IN  
l
l
l
l
Input Leakage  
0.1V ≤ V ≤ 0.9V  
1
μA  
pF  
pF  
pF  
CC  
IN  
CC  
C
C
C
I/O Pin Capacitance  
(Note 12)  
10  
IN  
Capacitance Load for Each Bus Line  
400  
10  
B
External Capacitive Load on Address  
Pins CA0, CA1 and CA2  
CAn  
The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C.  
REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded, unless otherwise noted.  
LTC2625/LTC2625-1 LTC2615/LTC2615-1 LTC2605/LTC2605-1  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
UNITS  
t
S
Settling Time (Note 5)  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
7
7
9
7
9
10  
μs  
μs  
μs  
Settling Time for 1LSB Step  
(Note 6)  
0.024% ( 1LSB at 12 Bits)  
0.006% ( 1LSB at 14 Bits)  
0.0015% ( 1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
μs  
μs  
μs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Inpulse  
0.80  
1000  
12  
0.80  
1000  
12  
0.80  
1000  
12  
V/μs  
pF  
At Mid-Scale Transition  
nV•s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise Density At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/√Hz  
nV/√Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
μV  
P-P  
2605fa  
4
LTC2605/LTC2615/LTC2625  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. See Figure 1. (Notes 8, 9)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
= 2.7V to 5.5V  
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
0
400  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Program  
Data Hold Time  
0.6  
HD(STA)  
LOW  
1.3  
0.6  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
0.6  
0
0.9  
Data Set-Up Time  
100  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 7)  
(Note 7)  
20 + 0.1CB  
20 + 0.1CB  
0.6  
300  
300  
f
SU(STO)  
BUF  
1.3  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: V = 5V, V = 4.096V. DAC is stepped 1/4-scale to 3/4-scale and  
CC REF  
3/4-scale to 1/4-scale. Load is 2kΩ in parallel with 200pF to GND.  
Note 6: V = 5V, V = 4.096V. DAC is stepped 1LSB between half-scale  
CC  
REF  
and half-scale – 1. Load is 2kΩ in parallel with 200pF to GND.  
Note 2: Linearity and monotonicity are defined from code k to code  
L
Note 7: C = capacitance of one bus line in pF.  
B
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
Note 8: All values refer to V  
and V  
levels.  
IL(MAX)  
IH(MIN)  
rounded to the nearest whole code. For V = 4.096V and N = 16,  
REF  
Note 9: These specifications apply to LTC2605/LTC2605-1,  
LTC2615/LTC2615-1 and LTC2625/LTC2625-1.  
k = 256 and linearity is defined from code 256 to code 65,535.  
L
Note 3: SDA, SCL at 0V or V , CA0, CA1 and CA2 floating.  
CC  
Note 10: DC Crosstalk is measured with V = 5V and V = 4096V, with  
CC  
REF  
Note 4: Inferred from measurement at code 256 (LTC2605/LTC2605-1),  
code 64 (LTC2615/LTC2615-1) or code 16 (LTC2625/LTC2625-1) and at  
full-scale.  
the measured DAC at mid-scale, unless otherwise noted.  
Note 11: R = 2kΩ to GND or V  
.
CC  
L
Note 12: Guaranteed by design and not production tested.  
ELECTRICAL CHARACTERISTICS  
Test Circuit 1  
Test Circuit 2  
V
DD  
100Ω  
CAn  
V
/V  
IH(CA ) IL(CA )  
n
n
R
/R /R  
INH INL INF  
2605 TC01  
2605 TC02  
GND  
2605fa  
5
LTC2605/LTC2615/LTC2625  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2605  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.8  
32  
24  
32  
24  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
CC  
= 4.096V  
= 4.096V  
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–8  
–16  
–24  
–32  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2605 G02  
2605 G01  
2605 G03  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
= 5.5V  
V
CC  
= 5.5V  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–0.5  
–1.0  
–1.5  
–16  
–24  
–32  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
REF  
(V)  
V
REF  
(V)  
2605 G04  
2605 G05  
2605 G06  
Settling to 1LSB  
Settling of Full-Scale Step  
V
OUT  
V
OUT  
100μV/DIV  
100μV/DIV  
12.3μs  
9.7μs  
9TH CLOCK  
OF 3RD DATA  
BYTE  
9TH CLOCK OF  
3RD DATA BYTE  
SCL  
2V/DIV  
SCR  
2V/DIV  
2605 G08  
2605 G07  
5μs/DIV  
2μs/DIV  
= 4.096V  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
AVERAGE OF 2048 EVENTS  
SETTLING TO 1LSB  
V
= 5V, V  
REF  
CC  
V
CC  
= 5V, V  
= 4.096V  
REF  
CODE 512 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
R
L
L
2605fa  
6
LTC2605/LTC2615/LTC2625  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2615  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
0.2  
100μV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
SCL  
2V/DIV  
–2  
–4  
–6  
–8  
8.9μs  
2605 G11  
2μs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
4096  
8192  
CODE  
12288  
16383  
0
4096  
8192  
CODE  
12288  
16383  
AVERAGE OF 2048 EVENTS  
2605 G09  
2605 G10  
LTC2625  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to 1LSB  
2.0  
1.5  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
1.0  
6.8μs  
0.4  
V
OUT  
0.5  
0.2  
1mV/DIV  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
SCL  
2V/DIV  
–0.5  
–1.0  
–1.5  
–2.0  
2605 G14  
2μs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
R
0
1024  
2048  
CODE  
3072  
4095  
0
1024  
2048  
CODE  
3072  
4095  
L
L
AVERAGE OF 2048 EVENTS  
2605 G12  
2605 G13  
LTC2605/LTC2615/LTC2625  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
1.0  
0.8  
0.10  
3
2
CODE = MID-SCALE  
CODE = MID-SCALE  
0.08  
V
V
= V = 5V  
CC  
REF  
REF  
0.6  
0.06  
0.04  
= V = 3V  
CC  
0.4  
1
0.2  
0.02  
0
0
0
V
REF  
= V = 5V  
CC  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= V = 3V  
CC  
REF  
–1  
–2  
–3  
V
REF  
= V = 3V  
V
REF  
= V = 5V  
CC  
CC  
–35 –25 –15 –5  
I
5
15  
25  
35  
–40 –30 –20 –10  
I
0
10 20 30 40  
–50 –30 –10 10  
30  
50  
70  
90  
(mA)  
(mA)  
TEMPERATURE (°C)  
OUT  
OUT  
2606 G16  
2605 G15  
2605 G17  
2605fa  
7
LTC2605/LTC2615/LTC2625  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2605/LTC2615/LTC2625  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
3
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
CC  
(V)  
2605 G18  
2605 G19  
2605 G20  
Gain Error vs VCC  
ICC Shutdown vs VCC  
Large-Signal Response  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
V
OUT  
0.5V/DIV  
0
–0.1  
–0.2  
–0.3  
–0.4  
V
= V = 5V  
CC  
REF  
1/4-SCALE TO 3/4-SCALE  
2.5μs/DIV  
2605 G23  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
CC  
(V)  
V
CC  
(V)  
2605 G22  
2605 G21  
Headroom at Rails  
vs Output Current  
Mid-Scale Glitch Impulse  
Power-On Reset Glitch  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5V SOURCING  
V
OUT  
V
CC  
10mV/DIV  
3V SOURCING  
1V/DIV  
9TH CLOCK  
OF 3RD DATA  
BYTE  
4mV PEAK  
SCL  
2V/DIV  
V
OUT  
10mV/DIV  
5V SINKING  
2605 G24  
2605 G25  
3V SINKING  
2.5μs/DIV  
250μs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
I
(mA)  
OUT  
2605 G26  
2605fa  
8
LTC2605/LTC2615/LTC2625  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2605/LTC2615/LTC2625  
Power-On Reset to Mid-Scale  
Supply Current vs Logic Voltage  
Multiplying Bandwidth  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
0
–3  
V = 5V  
CC  
SWEEP SCL  
AND SDA 0V  
TO V AND  
CC  
V
REF  
= V  
CC  
–6  
–9  
V
CC  
TO 0V  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
1V/DIV  
V
CC  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
V
OUT  
(AC) = 0.2V  
P-P  
CODE = FULL-SCALE  
2605 G27  
0
1
2
3
4
5
1k  
10k  
100k  
1M  
500μs/DIV  
2605 G28  
FREQUENCY (Hz)  
LOGIC VOLTAGE (V)  
2605 G29  
Output Voltage Noise,  
0.1Hz to 10Hz  
Short-Circuit Output Current  
vs VOUT (Sinking)  
Short-Circuit Output Current  
vs VOUT (Sourcing)  
0mA  
–10mA  
–20mA  
–30mA  
–40mA  
–50mA  
40mA  
30mA  
20mA  
10mA  
0mA  
V
OUT  
10μV/DIV  
0
1
2
3
4
5
6
7
8
9
10  
SECONDS  
2605 G30  
2605 G31  
0
1
2
3
4
5
0
1
2
3
4
5
V
V
= 5.5V  
= 5.6V  
1V/DIV  
2605 G32  
V
V
= 5.5V  
= 5.6V  
1V/DIV  
CC  
REF  
CC  
REF  
CODE = FULL-SCALE  
SWEPT V TO 0V  
CODE = 0  
SWEPT 0V TO V  
V
V
OUT  
CC  
OUT  
CC  
2605fa  
9
LTC2605/LTC2615/LTC2625  
PIN FUNCTIONS  
GND (Pin 1): Analog Ground.  
SDA (Pin 9): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This  
is a high impedance pin while data is shifted in. It is an  
open-drainN-channeloutputduringacknowledgment.This  
V
to V  
(Pins 2-5 and 12-15): DAC Analog Volt-  
OUT H  
OUT A  
age Output. The output range is 0V to V  
.
REF  
REF (Pin 6): Reference Voltage Input. 0V ≤ V ≤ V .  
pin requires a pull-up resistor or current source to V .  
REF  
CC  
CC  
CA2 (Pin 7): Chip Address Bit 2. Tie this pin to V , GND  
CA1 (Pin 10): Chip Address Bit 1. Tie this pin to V , GND  
CC  
CC  
2
2
or leave it floating to select an I C slave address for the  
or leave it floating to select an I C slave address for the  
part (Table 2).  
part (Table 2).  
SCL (Pin 8): Serial Clock Input Pin. Data is shifted into  
the SDA pin at the rising edges of the clock. This high  
impedance pin requires a pull-up resistor or current  
CA0 (Pin 11): Chip Address Bit 0. Tie this pin to V , GND  
CC  
2
or leave it floating to select an I C slave address for the  
part (Table 2).  
source to V .  
CC  
V
CC  
(Pin 16): Supply Voltage Input. 2.7V ≤ V ≤ 5.5V.  
CC  
BLOCK DIAGRAM  
GND  
1
16  
15  
V
V
CC  
DAC A  
DAC H  
V
2
OUT A  
OUT H  
DAC B  
DAC C  
DAC G  
DAC F  
V
V
V
OUT G  
V
OUT F  
3
4
14  
13  
OUT B  
OUT C  
DAC D  
DAC E  
V
V
5
12  
OUT D  
REF  
OUT E  
CA0  
CA1  
6
7
11  
10  
32-BIT SHIFT REGISTER  
2-WIRE INTERFACE  
CA2  
9
SDA  
SCL  
8
2605 BD01  
TIMING DIAGRAM  
SDA  
t
t
f
SU(DAT)  
t
f
t
t
r
t
t
t
r
t
BUF  
LOW  
HD(STA)  
SP  
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
t
S
S
P
S
HD(DAT)  
HIGH  
2605 F01  
ALL VOLTAGE LEVELS REFER TO V  
AND V LEVELS  
IL(MAX)  
IH(MIN)  
Figure 1  
2605fa  
10  
LTC2605/LTC2615/LTC2625  
OPERATION  
Power-On Reset  
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and V  
(Pin 6).  
is the voltage at REF  
REF  
The LTC2605/LTC2615/LTC2625 clear the outputs to  
zero-scale when power is first applied, making system  
initialization consistent and repeatable. The LTC2605-1/  
LTC2615-1/LTC2625-1setthevoltageoutputstomid-scale  
when power is first applied.  
Serial Digital Interface  
The LTC2605/LTC2615/LTC2625 communicate with a  
host using the standard 2-wire digital interface. The Tim-  
ing Diagram (Figure 1) shows the timing relationship of  
the signals on the bus. The two bus lines, SDA and SCL,  
must be high when the bus is not in use. External pull-up  
resistors or current sources are required on these lines.  
The value of these pull-up resistors is dependent on the  
Forsomeapplications,downstreamcircuitsareactivedur-  
ingDACpower-up,andmaybesensitivetononzerooutputs  
from the DAC during this time. The LTC2605/LTC2615/  
LTC2625 contain circuitry to reduce the power-on glitch:  
the analog outputs typically rise less than 10mV above  
zero-scale during power on if the power supply is ramped  
to 5V in 1ms or more. In general, the glitch amplitude  
decreases as the power supply ramp time is increased.  
See Power-On Reset Glitch in the Typical Performance  
Characteristics section.  
2
power supply and can be obtained from the I C specifica-  
2
tions. For an I C bus operating in the fast mode, an active  
pull-up will be necessary if the bus capacitance is greater  
than 200pF. The V power should not be removed from  
CC  
2
the LTC2605/LTC2615/LTC2625 when the I C bus is active  
2
to avoid loading the I C bus lines through the internal ESD  
Power Supply Sequencing  
protection diodes.  
The voltage at REF (Pin 6) should be kept within the range  
The LTC2605/LTC2615/LTC2625 are receive-only (slave)  
devices. The master can write to the LTC2605/LTC2615/  
LTC2625.TheLTC2605/LTC2615/LTC2625donotrespond  
to a read from the master.  
–0.3V ≤ V ≤ V + 0.3V (see Absolute Maximum Rat-  
REF  
CC  
ings). Particular care should be taken to observe these  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at V (Pin 16) is in transition.  
CC  
The START (S) and STOP (P) Conditions  
Transfer Function  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition. A  
START condition is generated by transitioning SDA from  
high to low while SCL is high.  
The digital-to-analog transfer function is:  
k
VOUT(IDEAL) ⎜  
=
V
N REF  
2
Table 1  
COMMAND*  
ADDRESS (n)*  
C3 C2 C1 C0  
A3 A2 A1 A0  
0
0
0
0
0
1
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Write to Input Register n  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
DAC A  
DAC B  
DAC C  
DAC D  
DAC E  
DAC F  
DAC G  
DAC H  
All DACs  
Update (Power Up) DAC Register n  
Write to Input Register n, Update (Power Up) All n  
Write to and Update (Power Up) n  
Power Down n  
No Operation  
*Address and command codes not shown are reserved and should not  
be used.  
2605fa  
11  
LTC2605/LTC2615/LTC2625  
Table 2. Slave Address Map  
OPERATION  
CA2  
GND  
GND  
GND  
CA1  
CA0 SA6 SA5 SA4 SA3 SA2 SA1 SA0  
GND  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generated by transitioning SDA from low to high while  
SCL is high. The bus is then free for communication with  
GND  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND FLOAT  
GND  
V
CC  
GND FLOAT GND  
GND FLOAT FLOAT  
GND FLOAT VCC  
2
another I C device.  
Acknowledge  
GND  
GND  
GND  
V
V
V
GND  
CC  
CC  
CC  
The Acknowledge signal is used for handshaking between  
the master and the slave. An Acknowledge (active LOW)  
generated by the slave lets the master know that the lat-  
est byte of information was received. The Acknowledge  
related clock pulse is generated by the master. The master  
releases the SDA line (HIGH) during the Acknowledge  
clock pulse. The slave-receiver must pull down the SDA  
during the Acknowledge clock pulse so that it remains a  
stable LOW during the HIGH period of this clock pulse.  
The LTC2605/LTC2615/LTC2625 respond to a write by a  
masterinthismanner. TheLTC2605/LTC2615/LTC2625do  
not acknowledge a read (it retains SDA HIGH during the  
period of the Acknowledge clock pulse).  
FLOAT  
V
CC  
FLOAT GND  
FLOAT GND FLOAT  
FLOAT GND  
GND  
V
CC  
FLOAT FLOAT GND  
FLOAT FLOAT FLOAT  
FLOAT FLOAT  
V
CC  
FLOAT  
FLOAT  
FLOAT  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
GND  
GND FLOAT  
GND  
GND  
V
CC  
Chip Address  
FLOAT GND  
FLOAT FLOAT  
The state of CA0, CA1 and CA2 decides the slave address  
of the part. The pins CA0, CA1 and CA2 can be each set to  
any one of three states: V , GND or FLOAT. This results  
in 27 selectable addresses for the part. The addresses  
corresponding to the states of CA0, CA1 and CA2 and the  
global address are shown in Table 2.  
FLOAT  
V
CC  
CC  
V
V
V
GND  
CC  
CC  
CC  
FLOAT  
V
CC  
GLOBAL ADDRESS  
In addition to the address selected by the address pins,  
the parts also respond to a global address. This address  
allows a common write to all LTC2605, LTC2615 and  
LTC2625 parts to be accomplished with one 3-byte write  
low at the 9th clock if the 7-bit slave address matches the  
address of the parts (set by CA0, CA1 and CA2) or the  
global address. The master then transmits three bytes of  
data.TheLTC2605/LTC2615/LTC2625acknowledgeseach  
byte of data by pulling the SDA line low at the 9th clock of  
eachdatabytetransmission.Afterreceivingthreecomplete  
bytesofdata,theLTC2605/LTC2615/LTC2625executesthe  
command specified in the 24-bit input word.  
2
transaction on the I C bus. The global address is a 7-bit  
hard-wired address and is not selectable by CA0, CA1 and  
CA2.Themaximumcapacitiveloadallowedontheaddress  
pins (CA0, CA1 and CA2) is 10pF.  
Write Word Protocol  
If more than three data bytes are transmitted after a valid  
7-bitslaveaddress,theLTC2605/LTC2615/LTC2625donot  
acknowledge the extra bytes of data (SDA is high during  
the 9th clock).  
The master initiates communication with the LTC2605/  
LTC2615/LTC2625withaSTARTconditionanda7-bitslave  
address followed by the Write bit (W) = 0. The LTC2605/  
LTC2615/LTC2625 acknowledges by pulling the SDA pin  
2605fa  
12  
LTC2605/LTC2615/LTC2625  
OPERATION  
WRITE WORD PROTOCOL FOR LTC2605/LTC2615/LTC2625  
S
W
A
1ST DATA BYTE  
A
2ND DATA BYTE  
INPUT WORD  
A
A
P
SLAVE ADDRESS  
3RD DATA BYTE  
INPUT WORD (LTC2605)  
A3 A2  
1ST DATA BYTE  
INPUT WORD (LTC2615)  
A3 A2  
1ST DATA BYTE  
INPUT WORD (LTC2625)  
A3 A2  
1ST DATA BYTE  
A0  
A0  
A0  
D12  
D6  
D4  
D2  
D0  
X
C3  
C1  
A1  
A1  
A1  
D15 D14 D13  
D11 D10 D9 D8  
D5 D4 D3 D2 D1  
3RD DATA BYTE  
D7  
D5  
D3  
C2  
C0  
2ND DATA BYTE  
D10  
C3  
C1  
D13 D12 D11  
D9 D8 D7 D6  
D3 D2 D1 D0  
3RD DATA BYTE  
X
C2  
C0  
2ND DATA BYTE  
D8  
X
2605 F02  
C3  
C1  
D11 D10 D9  
D7 D6 D5 D4  
D1 D0  
X
X
X
C2  
C0  
2ND DATA BYTE  
3RD DATA BYTE  
Figure 2  
The format of the three data bytes is shown in Figure 2.  
The first byte of the input word consists of the 4-bit com-  
mand and 4-bit DAC address. The next two bytes consist  
of the 16-bit data word. The 16-bit data word consists of  
the 16-, 14- or 12-bit input code, MSB to LSB, followed by  
0, 2 or 4 don’t care bits (LTC2605, LTC2615 and LTC2625  
a high impedance state, and the output pins are passively  
pulled to ground through individual 90k resistors. When  
all eight DACs are powered down, the bias generation  
circuit is also disabled. Input and DAC registers are not  
disturbed during power down.  
Any channel or combination of channels can be put into  
2
respectively). A typical I C write transaction is shown in  
power-down mode by using command 0100 in combi-  
b
Figure 3.  
nation with the appropriate DAC address, (n). The 16-bit  
data word is ignored. The supply and reference currents  
are reduced by approximately 1/8 for each DAC powered  
down; the effective resistance at REF (Pin 6) rises accord-  
ingly, becoming a high impedance input (typically >1GΩ)  
when all eight DACs are powered down.  
The command (C3-C0) and address (A3-A0) assignments  
are shown in Table 1. The first four commands in the table  
consist of write and update operations. A write operation  
loads the 16-bit data word from the 32-bit shift register  
into the input register of the selected DAC, n. An update  
operation copies the data word from the input register to  
the DAC register. Once copied into the DAC register, the  
data word becomes the active 16-, 14- or 12-bit input  
code, and is converted to an analog voltage at the DAC  
output. The update operation also powers up the selected  
DAC if it had been in power-down mode. The data path  
and registers are shown in the Block Diagram.  
Normal operation can be resumed by executing any com-  
mand which includes a DAC update, as shown in Table 1.  
The selected DAC is powered up as its voltage output is  
updated.  
There is an initial delay as the DAC powers up before it  
begins its usual settling behavior. If less than eight DACs  
are in a powered-down state prior to the updated com-  
mand, the power-up delay is 5μs. If, on the other hand,  
all eight DACs are powered down, then the bias genera-  
tion circuit is also disabled and must be restarted. In this  
Power-Down Mode  
For power-constrained applications, power-down mode  
can be used to reduce the supply current whenever less  
than eight outputs are needed. When in power down, the  
buffer amplifiers and reference inputs are disabled and  
drawessentiallyzerocurrent.TheDACoutputsareputinto  
case, the power-up delay is greater: 12μs for V = 5V,  
CC  
30μs for V = 3V.  
CC  
2605fa  
13  
LTC2605/LTC2615/LTC2625  
OPERATION  
2605fa  
14  
LTC2605/LTC2615/LTC2625  
OPERATION  
Voltage Outputs  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shielditfromnoise.Analoggroundshouldbeacontinuous  
and uninterrupted plane, except for necessary lead pads  
and vias, with signal traces on another layer.  
Each of the eight rail-to-rail amplifiers contained in these  
parts has guaranteed load regulation when sourcing or  
sinking up to 15mA at 5V (7.5mA at 3V).  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
permilliampereofforcedloadcurrentchangeisexpressed  
in LSB/mA.  
The GND pin of the part should be connected to analog  
ground. Resistance from the GND pin to system star  
ground should be as low as possible. Resistance here will  
add directly to the effective DC output impedance of the  
device (typically 0.020Ω), and will degrade DC crosstalk.  
Note that the LTC2605/LTC2615/LTC2625 are no more  
susceptible to these effects than other parts of their type;  
on the contrary, they allow layout-based performance  
improvements to shine rather than limiting attainable  
performance with excessive internal resistance.  
DC output impedance is equivalent to load regulation and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifier’s DC output  
impedance is 0.020Ω when driving a load well away from  
the rails.  
When drawing a load current from either rail, the output  
voltage headroom with respect to that rail is limited by  
the 30Ω typical channel resistance of the output devices;  
e.g., when sinking 1mA, the minimum output voltage =  
30Ω • 1mA = 30mV. See the graph Headroom at Rails vs  
Output Current in the Typical Performance Characteristics  
section.  
Rail-to-Rail Output Considerations  
Inanyrail-to-railvoltageoutputdevice,theoutputislimited  
to voltages within the supply range.  
The amplifiers are stable driving capacitive loads of up  
to 1000pF.  
Since the analog outputs of the device cannot go below  
ground, they may limit for the lowest codes as shown  
in Figure 4b. Similarly, limiting can occur near full-scale  
Board Layout  
when the REF pin is tied to V . If V = V and the DAC  
CC  
REF  
CC  
full-scale error (FSE) is positive, the output for the highest  
TheexcellentloadregulationandDC-crosstalkperformance  
of these devices is achieved in part by keeping “signal”  
andpowergroundsseparatedinternallyandbyreducing  
shared internal resistance to just 0.005Ω.  
codes limits at V as shown in Figure 4c. No full-scale  
CC  
limiting can occur if V is less than V – FSE.  
REF  
CC  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting  
can occur.  
The GND pin functions both as the node to which the refer-  
ence and output voltages are referred and as a return path  
for power currents in the device. Because of this, careful  
thought should be given to the grounding scheme and  
board layout in order to ensure rated performance.  
The PC board should have separate areas for the analog  
anddigitalsectionsofthecircuit.Thiskeepsdigitalsignals  
away from sensitive analog signals and facilitates the  
use of separate digital and analog ground planes which  
have minimal capacitive and resistive interaction with  
each other.  
2605fa  
15  
LTC2605/LTC2615/LTC2625  
OPERATION  
POSITIVE  
FSE  
V
= V  
CC  
REF  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
OUTPUT  
VOLTAGE  
INPUT CODE  
2605 F04  
(4c)  
OUTPUT  
VOLTAGE  
0
32, 768  
65, 535  
INPUT CODE  
(4a)  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(4b)  
Figure 4. Effects of Rail-to-Rail Operation on a DAC Transfer Curve. (4a) Overall Transfer Function, (4b) Effect  
of Negative Offset for Codes Near Zero-Scale, (4c) Effect of Positive Full-Scale Error for Codes Near Full-Scale  
PACKAGE DESCRIPTION  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 p.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 p.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 p .004  
(0.38 p 0.10)  
s 45o  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0o – 8o TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2605fa  
16  
LTC2605/LTC2615/LTC2625  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
11/09 Added Text to Serial Digital Interface Section  
11  
2605fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LTC2605/LTC2615/LTC2625  
TYPICAL APPLICATION  
Demonstration Circuit—LTC2428 20-Bit ADC Measures Key Performance Parameters  
ADDRESS SELECTION  
V
CC  
V
CC  
V
V
REF  
V
CC  
CC  
C1  
0.1μF  
C2  
0.1μF  
6
16  
REF  
V
CC  
11  
10  
7
2
TP3  
CA0  
CA1  
CA2  
V
V
V
A
B
C
D
E
OUT  
OUT  
OUT  
OUT  
DAC A  
3
4
TP4  
DAC B  
5
V
V
CC  
12  
13  
14  
15  
TP5  
DAC C  
V
OUT  
10k  
10k  
V
F
OUT  
9
8
TP6  
DAC D  
SDA  
SCL  
V
G
H
2
OUT  
OUT  
I C  
BUS  
V
DAC OUTPUTS  
TP7  
DAC E  
V
REF  
V
CC  
V
CC  
GND  
1
U2  
LTC2605CGN  
TP8  
DAC F  
C4  
0.1μF  
C5  
0.1μF  
TP9  
DAC G  
R5  
7.5k  
JP1  
R8  
22  
ON/OFF  
3
TP10  
DAC H  
C10  
100pF  
2
DISABLE  
ADC  
V
IN  
7
4
3
2
8
U4  
1
LT1236ACS8-5  
V
V
MUXOUT ADCIN FS  
CC CC  
SET  
2
6
V
REF  
V
V
OUT  
IN  
1
9
CH0  
5V  
TP11  
REF  
23  
R6  
7.5k  
10 CH1  
11 CH2  
12 CH3  
13 CH4  
14 CH5  
15 CH6  
17 CH7  
GND  
4
CSADC  
V
2
3
4.096V  
20  
25  
19  
21  
24  
CS  
C7  
4.7μF  
6.3V  
C6  
0.1μF  
CSMUX  
SCK  
JP2  
REF  
V
4-/8-CHANNEL  
MUX  
20-BIT  
+
SCK  
SPI  
BUS  
ADC  
CLK  
U5  
D
IN  
LT1461ACS8-4  
2
3
6
SD0  
V
CC  
V
V
OUT  
IN  
1
26  
SHDN  
GND  
5V  
TP12  
FO  
REF  
5
ZS  
SET  
V
CC  
2
3
GND GND GND GND GND GND GND  
16 18 22 27 28  
R7  
7.5k  
C9  
0.1μF  
C8 REGULATOR  
4
1μF  
16V  
JP3  
1
6
U3  
LTC2428CG  
TP13  
GND  
V
CC  
2605 TA01  
5V  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
= 0V to 4.096V  
OUT  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V  
DAC  
Programmable Speed/Power, 3.5μs/750μA, 8μs/450μA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L Single 16-Bit V  
DAC with Serial Interface in SO-8  
V
CC  
OUT  
LTC1657/LTC1657L Parrallel 5V/3V 16-Bit V  
DAC  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
LTC1660/LTC1665 Octal 10-/8-Bit V  
DAC in 16-Pin Narrow SSOP  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
LTC1821  
Parallel 16-Bit Voltage Output DAC  
Precision 16-Bit Settling in 2μs for 10V Step  
LTC2600/LTC2610/ Octal 16-/14-/12-Bit V  
LTC2620  
DACs in 16-Lead SSOP  
250μA per DAC, 2.5V to 5.5V Supply Range,  
Rail-to-Rail Output, SPI Interface  
OUT  
LTC2601/LTC2611/ Single 16-/14-/12-Bit V  
LTC2621  
DACs in 10-Lead DFN  
300μA per DAC, 2.5V to 5.5V Supply Range,  
Rail-to-Rail Output, SPI Interface  
OUT  
LTC2602/LTC2612/ Dual 16-/14-/12-Bit V  
LTC2622  
DACs in 8-Lead MSOP  
300μA per DAC, 2.5V to 5.5V Supply Range,  
Rail-to-Rail Output, SPI Interface  
OUT  
LTC2604/LTC2614/ Quad 16-/14-/12-Bit V  
LTC2624  
LTC2606/LTC2616/ Single 16-/14-/12-Bit V  
LTC2626  
DACs in 16-Lead SSOP  
250μA per DAC, 2.5V to 5.5V Supply Range,  
Rail-to-Rail Output, SPI Interface  
OUT  
2
DACs with I C Interface in 10-Lead DFN 270μA per DAC, 2.7V to 5.5V Supply Range,  
OUT  
2
Rail-to-Rail Output, I C Interface  
2605fa  
LT 1109 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2615_15

Octal 16-/14-/12-Bit Rail-to Rail DACs in 16-Lead SSOP
Linear

LTC2616

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2616CDD

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2616CDD-1

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2616CDD-1#TRPBF

LTC2616 - 14-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2616IDD

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2616IDD#PBF

LTC2616 - 14-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2616IDD#TR

LTC2616 - 14-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2616IDD#TRPBF

LTC2616 - 14-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2616IDD-1

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2616IDD-1#TR

LTC2616 - 14-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2616IDD-1#TRPBF

LTC2616 - 14-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear