LTC6652AHMS8-3.3-PBF [Linear]

Precision Low Drift Low Noise Buffered Reference; 精密,低漂移,低噪声缓冲基准
LTC6652AHMS8-3.3-PBF
型号: LTC6652AHMS8-3.3-PBF
厂家: Linear    Linear
描述:

Precision Low Drift Low Noise Buffered Reference
精密,低漂移,低噪声缓冲基准

文件: 总16页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6652  
Precision Low Drift  
Low Noise  
Buffered Reference  
FEATURES  
DESCRIPTION  
The LTC®6652 family of precision, low drift, low noise  
references is fully specified over the temperature range  
of 40°C to 125°C. High order curvature compensation  
allows these references to achieve a low drift of less than  
5ppm/°Cwithapredictabletemperaturecharacteristicand  
an output voltage accuracy of 0.05ꢀ. The performance  
over temperature should appeal to automotive, high-  
performance industrial and other high temperature  
applications.  
n
Low Drift: A Grade 5ppm/°C Max  
B Grade 10ppm/°C Max  
n
High Accuracy: A Grade 0ꢀ05ꢁ% B Grade 0ꢀ1ꢁ  
n
Low Noise: 2ꢀ1ppm (0ꢀ1Hz to 10Hz)  
p-p  
n
100ꢁ Tested at 40°C% 25°C and 125°C  
n
Sinks and Sources Current: 5mA  
n
Low Power Shutdown: <2μA Maximum  
n
Thermal Hysteresis: 105ppm for 40°C to 125°C  
Range  
n
Low Dropout: 300mV  
The LTC6652 voltage references can be powered from a  
13.2Vsupplyoraslittleas300mVabovetheoutputvoltage  
or 2.7V; whichever is higher. The LTC6652 references  
are offered in an 8-Lead MSOP package. They boast low  
noise, excellentloadregulation, sourceandsinkcapability  
and exceptional line rejection, making them a superior  
choice for demanding precision applications. A shutdown  
mode allows power consumption to be reduced when the  
reference is not needed. The optional output capacitor can  
be left off when space constraints are critical.  
n
No External Load Capacitor Required  
n
Wide Supply Range to 13.2V  
n
Available Output Voltage Options: 1.25V, 2.048V,  
2.5V, 3V, 3.3V, 4.096V, 5V  
8-Lead MSOP Package  
n
APPLICATIONS  
n
Automotive Control and Monitoring  
n
High Temperature Industrial  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
High Resolution Data Acquisition Systems  
Instrumentation and Process Control  
Precision Regulators  
Medical Equipment  
n
n
n
TYPICAL APPLICATION  
Output Voltage Temperature Drift  
0.050  
Basic Connection  
0.025  
0
V
OUT  
V
V
OUT  
LTC6652-2.5  
GND  
2.8V b V b 13.2V  
IN  
IN  
2.5V  
C
OUT  
C
IN  
SHDN  
1MF  
0.1MF  
(OPTIONAL)  
(OPTIONAL)  
6652 TA01a  
–0.025  
–0.050  
–40 –20  
0
20 40 60 80 100 125  
TEMPERATURE (°C)  
6652 TA01b  
6652fb  
1
LTC6652  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Input Voltage  
DNC  
IN  
SHDN  
GND  
1
2
3
4
8 GND*  
7 GND*  
V to GND..........................................0.3V to 13.2V  
IN  
V
SHDN to GND ............................–0.3V to (V + 0.3V)  
IN  
6 V  
OUT  
5 GND*  
Output Voltage  
V
...........................................–0.3V to (V + 0.3V)  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
= 150°C, θ = 200°C/W  
OUT  
IN  
Output Short-Circuit Duration...................... Indefinite  
Operating Temperature Range................ –40°C to 125°C  
Storage Temperature Range (Note 2) ..... –65°C to 150°C  
Lead Temperature Range (Soldering, 10 sec)  
T
JMAX  
JA  
DNC: DO NOT CONNECT  
*CONNECT THE PINS TO DEVICE GND (PIN 4)  
(Note 9)............................................................. 300°C  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
LTCVH  
LTCVH  
LTCVJ  
LTCVJ  
LTCQV  
LTCQV  
LTCVK  
LTCVK  
LTCVM  
LTCVM  
LTCVN  
LTCVN  
LTCVP  
PACKAGE DESCRIPTION  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
TEMPERATURE RANGE  
LTC6652AHMS8-1.25#PBF  
LTC6652BHMS8-1.25#PBF  
LTC6652AHMS8-2.048#PBF  
LTC6652BHMS8-2.048#PBF  
LTC6652AHMS8-2.5#PBF  
LTC6652BHMS8-2.5#PBF  
LTC6652AHMS8-3#PBF  
LTC6652BHMS8-3#PBF  
LTC6652AHMS8-3.3#PBF  
LTC6652BHMS8-3.3#PBF  
LTC6652AHMS8-4.096#PBF  
LTC6652BHMS8-4.096#PBF  
LTC6652AHMS8-5#PBF  
LTC6652BHMS8-5#PBF  
LTC6652AHMS8-1.25#TRPBF  
LTC6652BHMS8-1.25#TRPBF  
LTC6652AHMS8-2.048#TRPBF  
LTC6652BHMS8-2.048#TRPBF  
LTC6652AHMS8-2.5#TRPBF  
LTC6652BHMS8-2.5#TRPBF  
LTC6652AHMS8-3#TRPBF  
LTC6652BHMS8-3#TRPBF  
LTC6652AHMS8-3.3#TRPBF  
LTC6652BHMS8-3.3#TRPBF  
LTC6652AHMS8-4.096#TRPBF  
LTC6652BHMS8-4.096#TRPBF  
LTC6652AHMS8-5#TRPBF  
LTC6652BHMS8-5#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTCVP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
AVAILABLE OPTIONS  
OUTPUT VOLTAGE  
INITIAL ACCURACY  
TEMPERATURE COEFFICIENT  
PART NUMBER**  
1.250  
0.05ꢀ  
0.1ꢀ  
5ppm/°C  
10ppm/°C  
LTC6652AHMS8-1.25  
LTC6652BHMS8-1.25  
2.048  
2.500  
3.000  
3.300  
4.096  
5.000  
0.05ꢀ  
0.1ꢀ  
0.05ꢀ  
0.1ꢀ  
0.05ꢀ  
0.1ꢀ  
0.05ꢀ  
0.1ꢀ  
0.05ꢀ  
0.1ꢀ  
0.05ꢀ  
0.1ꢀ  
5ppm/°C  
LTC6652AHMS8-2.048  
LTC6652BHMS8-2.048  
LTC6652AHMS8-2.5  
LTC6652BHMS8-2.5  
LTC6652AHMS8-3  
LTC6652BHMS8-3  
LTC6652AHMS8-3.3  
LTC6652BHMS8-3.3  
LTC6652AHMS8-4.096  
LTC6652BHMS8-4.096  
LTC6652AHMS8-5  
LTC6652BHMS8-5  
10ppm/°C  
5ppm/°C  
10ppm/°C  
5ppm/°C  
10ppm/°C  
5ppm/°C  
10ppm/°C  
5ppm/°C  
10ppm/°C  
5ppm/°C  
10ppm/°C  
**See Order Information section for complete part number listing.  
6652fb  
2
LTC6652  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range% otherwise specifications are at TA = 25°C% VIN = VOUT + 0ꢀ5V% unless otherwise notedꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage  
LTC6652A  
LTC6652B  
–0.05  
–0.1  
0.05  
0.1  
l
l
Output Voltage Temperature Coefficient  
(Note 3)  
LTC6652A  
LTC6652B  
2
4
5
10  
ppm/°C  
ppm/°C  
Line Regulation  
V
+ 0.5V ≤ V ≤ 13.2V, SHDN = V  
IN  
2
50  
80  
ppm/V  
ppm/V  
OUT  
IN  
l
l
Load Regulation (Note 4)  
I
= 5mA, LTC6652-1.25, LTC6652-2.048,  
20  
75  
200  
ppm/mA  
ppm/mA  
SOURCE  
LTC6652-2.5, LTC6652-3, LTC6652-3.3, LTC6652-  
4.096, LTC6652-5  
I
= 1mA, LTC6652-1.25, LTC6652-2.048  
80  
50  
250  
600  
ppm/mA  
ppm/mA  
SINK  
l
l
I
= 5mA, LTC6652-2.5, LTC6652-3,  
150  
450  
ppm/mA  
ppm/mA  
SINK  
LTC6652-3.3, LTC6652-4.096, LTC6652-5  
= 5mA, V Error ≤ 0.1ꢀ  
Minimum Operating Voltage (Note 5)  
I
SOURCE  
OUT  
l
l
LTC6652-1.25, LTC6652-2.048  
LTC6652-2.5, LTC6652-3, LTC6652-3.3,  
LTC6652-4.096, LTC6652-5  
2.7  
OUT  
V
V
V
+ 0.3V  
Output Short-Circuit Current  
Short V  
Short V  
to GND  
16  
16  
mA  
mA  
OUT  
OUT  
to V  
IN  
l
l
Shutdown Pin (SHDN)  
Logic High Input Voltage  
Logic High Input Current  
2
V
μA  
0.1  
1
l
l
Logic Low Input Voltage  
Logic Low Input Current  
0.8  
1
V
μA  
0.1  
Supply Current  
No Load  
350  
μA  
μA  
l
l
560  
2
Shutdown Current  
SHDN Tied to GND  
0.1  
μA  
Output Voltage Noise (Note 6)  
0.1Hz ≤ f ≤ 10Hz  
LTC6652-1.25  
2.4  
2.1  
2.2  
2.3  
2.8  
3
ppm  
ppm  
ppm  
ppm  
ppm  
P-P  
P-P  
P-P  
P-P  
P-P  
LTC6652-2.048, LTC6652-2.5, LTC6652-3  
LTC6652-3.3  
LTC6652-4.096  
LTC6652-5  
10Hz ≤ f ≤ 1kHz  
ppm  
RMS  
Turn-On Time  
0.1ꢀ Settling, C  
= 0  
100  
60  
μs  
LOAD  
Long Term Drift of Output Voltage (Note 7)  
Hysteresis (Note 8)  
ppm/√khr  
Δ = –40°C to 125°C  
T
105  
ppm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: If the parts are stored outside of the specified temperature range,  
the output may shift due to hysteresis.  
Note 3: Temperature coefficient is measured by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 4: Load regulation is measured on a pulse basis from no load to the  
specified load current. Output changes due to die temperature change  
must be taken into account separately.  
removed to determine the actual noise of the device.  
Note 7: Long term stability typically has a logarithmic characteristic and  
therefore, changes after 1000 hours tend to be much smaller than before that  
time. Total drift in the second thousand hours is normally less than one third  
that of the first thousand hours with a continuing trend toward reduced drift  
with time. Long-term stability will also be affected by differential stresses  
between the IC and the board material created during board assembly.  
Note 8: Hysteresis in output voltage is created by package stress that differs  
depending on whether the IC was previously at a higher or lower temperature.  
Output voltage is always measured at 25°C, but the IC is cycled to the hot  
or cold temperature limit before successive measurements. Hysteresis  
is roughly proportional to the square of the temperature change. For  
instruments that are stored at well controlled temperatures (within 20 or 30  
degrees of operational temperature) it’s usually not a dominant error source.  
Note 5: Excludes load regulation errors.  
Note 6: Peak-to-peak noise is measured with a 3-pole highpass at 0.1Hz  
and 4-pole lowpass filter at 10Hz. The unit is enclosed in a still-air  
environment to eliminate thermocouple effects on the leads. The test  
time is 10 seconds. RMS noise is measured on a spectrum analyzer in  
a shielded environment where the intrinsic noise of the instrument is  
Note 9: The stated temperature is typical for soldering of the leads during  
manual rework. For detailed IR reflow recommendations, refer to the  
Applications section.  
6652fb  
3
LTC6652  
TYPICAL PERFORMANCE CHARACTERISTICS  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25% LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
1ꢀ25V Output Voltage  
Temperature Drift  
1ꢀ25V Line Regulation  
1ꢀ25V Load Regulation (Sourcing)  
1.2510  
1.2505  
1.2500  
1.2495  
1.2490  
1.2506  
1.2504  
1.2502  
1.2500  
0
–50  
3 TYPICAL PARTS  
–40oC  
125°C  
25oC  
–100  
–150  
–200  
–250  
125oC  
25°C  
1.2498  
1.2496  
1.2494  
–40°C  
10  
80  
TEMPERATURE (°C)  
–80  
–40  
0
40  
120  
160  
8
12  
14  
0
2
4
6
0.1  
1
10  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
6652 G17  
6652 G18  
6652 G19  
1ꢀ25V Low Frequency 0ꢀ1Hz to  
10Hz Transient Noise  
1ꢀ25V Output Voltage Noise  
Spectrum  
1ꢀ25V Load Regulation (Sinking)  
400  
350  
300  
250  
200  
150  
100  
50  
400  
300  
200  
100  
0
125°C  
25°C  
–40°C  
0
0.1  
1
10  
TIME (1 SECOND/DIV)  
0.01  
0.1  
1
10  
OUTPUT CURRENT (mA)  
FREQUENCY (kHz)  
6652 G22  
6652 G20  
6652 G21  
1ꢀ25 Sinking Current Without  
Output Capacitor  
1ꢀ25 Sinking Current with Output  
Capacitor  
1ꢀ25V Stability with Output  
Capacitance  
10μF  
1μF  
1mA  
0mA  
1mA  
0mA  
I
I
OUT  
OUT  
0.1μF  
10nF  
V
V
OUT  
500mV/DIV  
REGION OF  
MARGINAL  
STABILITY  
OUT  
500mV/DIV  
1nF  
100pF  
6652 G23  
6652 G24  
500μs/DIV  
500μs/DIV  
C
= 0μF  
C
= 1μF  
OUT  
OUT  
NO CAP  
–5  
–1  
0
5
LOAD CURRENT (mA)  
6652 G16  
6652fb  
4
LTC6652  
TYPICAL PERFORMANCE CHARACTERISTICS  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25% LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
2ꢀ5V Output Voltage  
Temperature Drift  
2ꢀ5V Line Regulation  
2ꢀ5V Load Regulation (Sourcing)  
0
–20  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
2.5010  
2.5005  
2.5000  
2.4995  
3 TYPICAL PARTS  
–40°C  
–40  
–60  
125°C  
25°C  
25°C  
–80  
125°C  
–100  
–120  
–140  
–160  
–180  
–200  
–40°C  
2.4990  
2.4985  
2.4980  
50  
0.1  
1
10  
–50 –25  
0
25  
75 100 125 150  
8
12  
14  
0
2
4
6
10  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
6652 G01  
6652 G03  
6652 G02  
2ꢀ5V Supply Current  
vs Input Voltage  
2ꢀ5V Shutdown Current  
vs Input Voltage  
2ꢀ5V Load Regulation (Sinking)  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
500  
400  
125°C  
25°C  
125°C  
125°C  
25°C  
200  
100  
0
–40°C  
25°C  
–40°C  
–40°C  
0
4
6
8
10  
12  
14  
0.1  
1
10  
2
0
4
6
8
10  
12  
14  
2
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
6652 G05  
6652 G04  
6652 G06  
2ꢀ5V Minimum VIN-VOUT  
Differential (Sourcing)  
2ꢀ5V Minimum VOUT-VIN  
Differential (Sinking)  
10  
10  
1
1
25°C  
0.1  
0.01  
25°C  
125°C, –40°C  
125°C  
–40°C  
0.1  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT-INPUT VOLTAGE (V)  
INPUT-OUTPUT VOLTAGE (V)  
6652 G10  
6652 G09  
6652fb  
5
LTC6652  
TYPICAL PERFORMANCE CHARACTERISTICS  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25% LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
2ꢀ5V Low Frequency 0ꢀ1Hz to  
10Hz Transient Noise  
2ꢀ5V Output Voltage Noise  
Spectrum  
600  
500  
400  
300  
200  
100  
0
TIME (1 SECOND/DIV)  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
6652 G12  
6652 G11  
Stability with Output Capacitance  
(LTC6652-2ꢀ5% LTC6652-3%  
LTC6652-3ꢀ3% LTC6652-4ꢀ906%  
LTC6652-5)  
Typical VOUT Distribution for  
LTC6652-2ꢀ5  
180  
160  
140  
120  
80  
10μF  
1μF  
1004 UNITS  
LTC6652A LIMITS  
0.1μF  
10nF  
REGION OF  
MARGINAL STABILITY  
60  
1nF  
100pF  
40  
20  
0
NO CAP  
2.4985  
2.4995  
2.5005  
2.5015  
–5  
0
5
OUTPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
6652 G15  
6652 G14  
6652fb  
6
LTC6652  
TYPICAL PERFORMANCE CHARACTERISTICS  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25% LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
5V Output Voltage  
Temperature Drift  
5V Supply Current  
vs Input Voltage  
5V Line Regulation  
5.005  
5.003  
5.000  
4.998  
4.995  
5.002  
5.001  
5.000  
4.999  
4.998  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
3 TYPICAL PARTS  
25°C  
125°C  
–40°C  
125°C  
25°C  
–40°C  
50  
0
2
4
6
8
10  
12  
14  
–50 –25  
0
25  
75 100 125 150  
0
4
6
8
10  
12  
14  
2
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
6652 G25  
6652 G26  
6652 G27  
5V Shutdown Current  
vs Input Voltage  
5V Minimum VIN to VOUT  
Differential (Sourcing)  
5V Low Frequency 0ꢀ1Hz to 10Hz  
Transient Noise  
10  
1
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
125°C  
25°C  
0.1  
0.01  
–40°C  
–40°C  
125°C  
25°C  
10  
12  
INPUT VOLTAGE (V)  
0.001  
0.01  
0.1  
1
0
4
6
8
14  
TIME (1 SECOND/DIV)  
2
INPUT-OUTPUT VOLTAGE (V)  
6652 G30  
6652 G31  
6652 G29  
5V Start-Up Response Without  
Output Capacitor  
5V Start-Up Response with Output  
Capacitor  
5V Output Voltage Noise Spectrum  
1000  
800  
600  
400  
200  
0
V
V
IN  
IN  
2V/DIV  
2V/DIV  
V
V
OUT  
2V/DIV  
OUT  
2V/DIV  
6652 G33  
6652 G34  
100μs/DIV  
100μs/DIV  
C
= 0μF  
C
= 1μF  
OUT  
OUT  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
6652 G32  
6652fb  
7
LTC6652  
TYPICAL PERFORMANCE CHARACTERISTICS  
Characteristic curves are similar for most  
LTC6652sꢀ Curves from the LTC6652-1ꢀ25% LTC6652-2ꢀ5 and the LTC6652-5 represent the extremes and typical of the voltage optionsꢀ  
Characteristic curves for other output voltages fall between these curves and can be estimated based on their outputꢀ  
Power Supply Rejection Ratio  
vs Frequency  
SHDN Input Voltage Thresholds  
Output Impedance vs Frequency  
vs VIN  
100  
0
–10  
–20  
–30  
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
OUT  
= 0μF  
C
OUT  
= 0μF  
V
TH(UP)  
10  
1
C
OUT  
= 1μF  
–40  
–50  
V
TH(DN)  
C
OUT  
= 1μF  
C
OUT  
= 10μF  
–60  
–70  
C
OUT  
= 10μF  
–80  
–90  
0.1  
–100  
8
12  
14  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
2
4
6
10  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
V
IN  
(V)  
6652 G13  
6652 G08  
6652 G07  
PIN FUNCTIONS  
DNC (Pin 1): Do Not Connect.  
GND (Pin 4): Device Ground.  
(Pin 6): Output Voltage. An output capacitor is not  
required.Forsomeapplications,acapacitorbetween0.1μF  
to 10μF can be beneficial. See the graphs in the Typical  
Performance Characteristics section for further details.  
V (Pin 2): Power Supply. The minimum supply input is  
V
OUT  
IN  
OUT  
V
+300mVor2.7V;whicheverishigher.Themaximum  
supply is 13.2V. Bypassing V with a 0.1μF capacitor to  
GND will improve PSRR.  
IN  
SHDN (Pin 3): Shutdown Input. This active low input  
GND (Pins 5%7%8): Internal function. Ground these pins.  
powers down the device to <2μA. For normal operation  
tie this pin to V .  
IN  
6652fb  
8
LTC6652  
BLOCK DIAGRAM  
V
IN  
2
+
V
OUT  
SHDN  
BANDGAP  
3
6
GND  
4
6652 BD  
APPLICATIONS INFORMATION  
Bypass and Load Capacitors  
The LTC6652 references with an output of 2.5V and above  
are guaranteed to source and sink 5mA. The 1.25V and  
2.048V versions are guaranteed to source 5mA and sink  
1mA. The test circuit for transient load step response is  
shown in Figure 1. Figures 4 and 5 show a 5mA source  
and sink load step response without a load capacitor,  
respectively.  
The LTC6652 voltage references do not require an input  
capacitor, but a 0.1μF capacitor located close to the part  
improves power supply rejection.  
The LTC6652 voltage references are stable with or without  
acapacitiveload. Forapplicationswhereanoutputcapaci-  
tor is beneficial, a value of 0.1μF to 10μF is recommended  
depending on load conditions. The Typical Performance  
Characteristics section includes a plot illustrating a region  
of marginal stability. Either no or low value capacitors for  
anyloadcurrentareacceptable. Forloadsthatsinkcurrent  
orlightloadsthatsourcecurrent,a0.1μFto1Fcapacitor  
has stable operation. For heavier loads that source current  
a 0.5μF to 10μF capacitor range is recommended.  
Start-Up  
The start-up characteristic of the LTC6652 is shown in  
Figures 8 and 9. Note that the turn-on time is affected by  
the value of the output capacitor.  
100Ω  
2, 3  
6
V
IN  
LTC6652-2.5  
3V  
C
IN  
C
The transient response for a 0.5V step on V with and  
OUT  
1μF  
IN  
0.5V  
V
GEN  
0.1μF  
without an output capacitor is shown in Figures 2 and 3,  
4, 5, 7, 8  
6652 F01  
respectively.  
Figure 1ꢀ Transient Load Test Circuit  
6652fb  
9
LTC6652  
APPLICATIONS INFORMATION  
3.5V  
5mA  
0mA  
V
IN  
I
3V  
OUT  
V
OUT  
500mV/DIV  
V
OUT  
200mV/DIV  
6652 F05  
6652 F02  
C
OUT  
= 0μF  
250μs/DIV  
C
= 0μF  
500μs/DIV  
OUT  
Figure 2ꢀ Transient Response Without Output Capacitor  
Figure 5ꢀ LTC6652-2ꢀ5 Sinking  
Current Without Output Capacitor  
0mA  
3.5V  
I
OUT  
V
IN  
–5mA  
3V  
V
OUT  
500mV/DIV  
V
OUT  
200mV/DIV  
6652 F03  
6652 F06  
C
= 1μF  
500μs/DIV  
C
OUT  
= 1μF  
250μs/DIV  
OUT  
Figure 6ꢀ LTC6652-2ꢀ5 Sourcing Current  
with Output Capacitor  
Figure 3ꢀ Transient Response with 1μF Output Capacitor  
5mA  
0mA  
I
I
OUT  
OUT  
0mA  
–5mA  
V
OUT  
V
OUT  
50mV/DIV  
200mV/DIV  
6652 F07  
6652 F04  
C
OUT  
= 1μF  
250μs/DIV  
C
= 0μF  
250μs/DIV  
OUT  
Figure 7ꢀ LTC6652-2ꢀ5 Sinking  
Current with Output Capacitor  
Figure 4ꢀ LTC6652-2ꢀ5 Sourcing  
Current Without Output Capacitor  
6652fb  
10  
LTC6652  
APPLICATIONS INFORMATION  
2.8V b V b 13.2V  
IN  
C1  
1μF  
R1  
20k  
V
IN  
2V/DIV  
V
IN  
LTC6652-2.5  
SHDN  
V
OUT  
V
OUT  
GND  
V
TO μC  
6652 F10  
OUT  
C2  
1μF  
2N7002  
1V/DIV  
Figure 10ꢀ Open-Drain Shutdown Circuit  
6652 F08  
C
= 0μF  
100μs/DIV  
OUT  
Figure 8ꢀ Start-Up Response Without Output Capacitor  
SHDN  
1V/DIV  
V
IN  
2V/DIV  
V
OUT  
1V/DIV  
V
OUT  
1V/DIV  
6652 F11  
I
= 5mA  
1ms/DIV  
LOAD  
6652 F09  
Figure 11ꢀ Shutdown Response with 5mA Load  
C
= 1μF  
100μs/DIV  
OUT  
Figure 9ꢀ Start-Up Response with 1μF Output Capacitor  
The trip thresholds on SHDN have some dependence  
on the voltage applied to V as shown in the Typical  
IN  
InFigure8,ripplemomentarilyappearsjustaftertheleading  
edge of powering on. This brief one time event is caused  
bycalibrationcircuitryduringinitialization.Whenanoutput  
capacitor is used, the ripple is virtually undetectable as  
shown in Figure 9.  
Performance Characteristics section. Be careful to avoid  
leaving SHDN at a voltage between the thresholds as  
this will likely cause an increase in supply current due to  
shoot-through current.  
Long-Term Drift  
Shutdown Mode  
Long-term drift cannot be extrapolated from acceler-  
atedhightemperaturetestingThiserroneoustechnique  
gives drift numbers that are wildly optimisticꢀ The only  
way long-term drift can be determined is to measure it  
overthetimeintervalofinterestTheLTC6652long-term  
drift data was collected on more than 100 parts that were  
solderedintoPCboardssimilartoarealworldapplication.  
The boards were then placed into a constant temperature  
ShutdownmodeisenabledbytyingSHDNlowwhichplaces  
the part in a low power state (i.e., <2μA). In shutdown  
mode, the output pin takes the value 20k • (rated output  
voltage). For example, an LTC6652-2.5 will have an output  
impedance of 20k • 2.5 = 50kΩ. For normal operation,  
SHDN should be greater than or equal to 2.0V. For use  
with a microcontroller, use a pull-up resistor to V and  
IN  
an open-drain output driver as shown in Figure 10. The  
LTC6652’s response into and out of shutdown mode is  
shown in Figure 11.  
oven with T = 35°C, their outputs were scanned regularly  
A
and measured with an 8.5 digit DVM. Long-term drift is  
shown below in Figure 12.  
6652fb  
11  
LTC6652  
APPLICATIONS INFORMATION  
80  
35  
30  
25  
20  
15  
10  
5
LTC6652-2.5 MS8 PACKAGE  
3 TYPICAL PARTS  
125°C TO 25°C  
–40°C TO 25°C  
T
= 35oC  
60  
40  
A
20  
0
–20  
–40  
0
0
300  
600  
900  
1200  
1500  
–250  
–150  
–50  
50  
150  
HOURS  
DISTRIBUTION (ppm)  
6652 F12  
6652 F13  
Figure 12ꢀ Long Term Drift  
Figure 13ꢀ Hysteresis Plot –40°C to 125°C  
Hysteresis  
IR Reflow Shift  
The hysteresis data shown in Figure 13 represents the  
worst-case data collected on parts from 40°C to 125°C.  
The output is capable of dissipating relatively high power,  
Thedifferentexpansionandcontractionratesofthemateri-  
als that make up the lead-free LTC6652 package cause the  
output voltage to shift after undergoing IR reflow. Lead-  
free reflow profiles reach over 250°C, considerably more  
than their leaded counterparts. The lead-free IR reflow  
profile used to experimentally measure output voltage  
shift in the LTC6652-2.5 is shown in Figure 14. Similar  
results can be expected using a convection reflow oven.  
In our experiment, the serialized parts were run through  
the reflow process twice. The results indicate that the  
standard deviation of the output voltage increases with a  
slight positive mean shift of 0.003ꢀ as shown in Figure  
15. While there can be up to 0.016ꢀ of output voltage  
shift, the overall drift of the LTC6652 after IR reflow does  
not vary significantly.  
i.e., for the LT6652-2.5, P = 10.7V • 5.5mA = 58.85mW.  
D
ThethermalresistanceoftheMS8packageis200°C/Wand  
this dissipation causes a 11.8°C internal rise. This could  
increase the junction temperature above 125°C and may  
cause the output to shift due to thermal hysteresis.  
PC Board Layout  
The mechanical stress of soldering a surface mount volt-  
age reference to a PC board can cause the output voltage  
to shift and temperature coefficient to change. These two  
changes are not correlated. For example, the voltage may  
shift, but the temperature coefficient may not.  
To reduce the effects of stress-related shifts, mount the  
reference near the short edge of the PC board or in a  
corner. In addition, slots can be cut into the board on two  
sides of the device.  
Power Dissipation  
Power dissipation in the LTC6652 is dependent on V ,  
IN  
load current, and package. The LTC6652 package has  
a thermal resistance, or θ , of 200°C/W. A curve that  
JA  
The capacitors should be mounted close to the package.  
illustrates allowed power dissipation vs temperature for  
The GND and V  
traces should be as short as possible  
this package is shown in Figure 16.  
OUT  
to minimize I • R drops. Excessive trace resistance directly  
impacts load regulation.  
The power dissipation of the LTC6652-2.5V as a function  
of input voltage is shown in Figure 17. The top curve  
showspowerdissipationwitha5mAloadandthebottom  
6652fb  
12  
LTC6652  
APPLICATIONS INFORMATION  
curve shows power dissipation with no load.  
rent will be slightly higher and the power consumption  
increases to just over 60mW. The power-derating curve  
in Figure 16 shows the LTC6652-2.5 can safely dissipate  
125mW at 125°C about half the maximum power con-  
sumption of the package.  
When operated within its specified limits of V = 13.2V  
IN  
andsourcing5mA,theLTC6652-2.5consumesjustunder  
60mW at room temperature. At 125°C the quiescent cur-  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
300  
380s  
T
= 260°C  
P
RAMP  
DOWN  
T
= 217°C  
L
225  
150  
75  
T
= 200°C  
S(MAX)  
t
T
= 190°C  
P
S
30s  
T = 150°C  
t
L
RAMP TO  
150°C  
130s  
40s  
120s  
4
0
0
20  
40  
60  
140  
0
2
6
8
10  
80 100 120  
MINUTES  
TEMPERATURE (°C)  
6652 F16  
6652 F14  
Figure 14ꢀ Lead-Free Reflow Profile  
Figure 16ꢀ Maximum Recommended Dissipation for LTC6652  
10  
0.06  
T
= 25°C  
A
0.05  
0.04  
0.03  
0.02  
0.01  
0
8
6
4
2
0
5mA LOAD  
NO LOAD  
–0.014 –0.006  
0.002  
0.010  
0.018  
2
4
6
8
14  
10  
12  
OUTPUT VOLTAGE SHIFT DUE TO IR REFLOW (ꢀ)  
V
IN  
(V)  
6652 F17  
6652 F15  
Figure 17ꢀ Typical Power Dissipation of the LTC6652  
Figure 15ꢀ Output Voltage Shift Due to IR Reflow  
6652fb  
13  
LTC6652  
TYPICAL APPLICATIONS  
Extended Supply Range Reference  
Extended Supply Range Reference  
6V TO 160V  
4V TO 30V  
R1  
330k  
R2  
4.7k  
ON SEMI  
R1  
MMBT5551  
V
OUT  
V
V
OUT  
LTC6652-2.5  
GND  
IN  
V
IN  
SHDN  
SHDN  
C1  
0.1μF  
BZX84C18  
C2  
OPTIONAL  
6652 TA02  
V
V
LTC6652-2.5  
GND  
OUT  
OUT  
BZX84C18  
C2  
OPTIONAL  
C1  
0.1μF  
6652 TA03  
Negative Rail Circuit  
Boosted Output Current  
+
V
r (V  
+ 1.8V)  
OUT  
R1  
2207  
C1  
1μF  
2, 3, 6  
LTC6652-2.5  
2N2905  
V
SHDN  
IN  
6652 TA06  
4, 5, 7, 8  
100Ω  
–3.5V  
V
OUT  
–2.5V  
1μF  
V
OUT  
LTC6652-2.5  
GND  
C2  
1μF  
6652 TA04  
6652fb  
14  
LTC6652  
PACKAGE DESCRIPTION  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
8
7 6 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.1016 ± 0.0508  
(.009 – .015)  
(.004 ± .002)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6652fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC6652  
TYPICAL APPLICATION  
Improved Reference Supply Rejection in a Data Converter Application  
LTC1657  
16  
D/A  
REF  
DATA  
VDAC  
V
CC  
GND  
V
IN  
R1  
50k  
V
OUT  
LTC6652  
REF  
A/D  
LTC1605  
SHDN  
V1  
16  
C1  
0.1μF  
V2  
V3  
V4  
D
OUT  
C2  
C
OUT  
10μF  
1μF  
GND  
GND  
6652 TA05  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1460  
LT1461  
LT1790  
LT6650  
LT6660  
Micropower Series References  
Micropower Series Low Dropout  
Micropower Precision Series References  
0.075ꢀ Max, 10ppm/°C Max, 20mA Output Current  
0.04ꢀ Max, 3ppm/°C Max, 50mA Output Current  
0.05ꢀ Max, 10ppm/°C Max, 60μA Supply, SOT23 Package  
0.5ꢀ Max, 5.6μA Supply, SOT23 Package  
Micropower Reference with Buffer Amplifier  
Tiny Micropower Series Reference  
0.2ꢀ Max, 20ppm/°C Max, 20mA Output Current, 2mm × 2mm DFN  
6652fb  
LT 1208 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6652AHMS8-3.3-TRPBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-4.096

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-4.096#PBF

LTC6652 - Precision Low Drift Low Noise Buffered Reference; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6652AHMS8-4.096-PBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-4.096-TRPBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-5

Precision Low Drift Low Noise Buffered Reference
Linear
Linear

LTC6652AHMS8-5-PBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652AHMS8-5-TRPBF

Precision Low Drift Low Noise Buffered Reference
Linear

LTC6652BHLS8-4.096#PBF

LTC6652 - Precision Low Drift Low Noise Buffered Reference; Package: LCC; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6652BHLS8-5#PBF

LTC6652 - Precision Low Drift Low Noise Buffered Reference; Package: LCC; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6652BHMS8-1.25

Precision Low Drift Low Noise Buffered Reference
Linear