LTC6992HDCB6-2-PBF [Linear]

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM); TimerBlox系列电压控制型脉宽调制器( PWM )
LTC6992HDCB6-2-PBF
型号: LTC6992HDCB6-2-PBF
厂家: Linear    Linear
描述:

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
TimerBlox系列电压控制型脉宽调制器( PWM )

文件: 总32页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electrical Specifications Subject to Change  
LTC6992-1/-2/-3/-4  
TimerBlox  
Voltage-Controlled Pulse  
Width Modulator (PWM)  
FEATURES  
DESCRIPTION  
n
Pulse Width Modulation (PWM) Controlled by  
The LTC®6992 is a silicon oscillator with an easy-to-use  
analog voltage-controlled pulse width modulation (PWM)  
capability. The LTC6992 is part of the TimerBlox™ family  
of versatile silicon timing devices.  
Simple 0V to 1V Analog Input  
n
Four Available Options Define Duty Cycle Limits  
Minimum Duty Cycle at 0% or 5%  
Maximum Duty Cycle at 95% or 100%  
A single resistor, R , programs the LTC6992’s inter-  
SET  
n
Frequency Range: 3.81Hz to 1MHz  
nal master oscillator frequency. The output frequency  
is determined by this master oscillator and an internal  
n
Single Resistor Programs Frequency with <2.4%  
Maximum Error  
frequency divider, N , programmable to eight settings  
DIV  
n
PWM Duty Cycle Error <4.5% Maximum  
from 1 to 16384.  
n
Frequency Modulation (VCO) Capability  
n
1MHz 50kΩ  
NDIV RSET  
2.25V to 5.5V Single Supply Operation  
fOUT  
=
,NDIV = 1,4,16 …16384  
n
115μA Supply Current at 100kHz  
n
500μs Start-Up Time  
Applyingavoltagebetween0Vand1VontheMODpinsets  
the duty cycle, according to the following formula:  
n
CMOS Output Driver Sources/Sinks 20mA  
n
–40°C to 125°C Operating Temperature Range  
n
VMOD  
0.8 • VSET  
VMOD 100mV  
1
8
Available in Low Profile (1mm) SOT-23 (ThinSOT™)  
Duty Cycle =  
and 2mm × 3mm DFN  
800mV  
The four versions differ in their minimum/maximum duty  
cycle. Note that a minimum duty cycle limit of 0% or  
maximum duty cycle limit of 100% allows oscillations to  
stop at the extreme duty cycle settings.  
APPLICATIONS  
n
LED Dimming Control  
n
PWM Servo Loops  
n
High Vibration, High Acceleration Environments  
OUTPUT DUTY CYCLE LIMITS  
PWM DUTY  
n
Portable and Battery-Powered Equipment  
DEVICE NAME  
LTC6992-1  
LTC6992-2  
LTC6992-3  
LTC6992-4  
CYCLE RANGE  
0% to 100%  
5% to 95%  
MIN  
GND  
MAX  
V
+
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
TimerBlox and ThinSOT are trademarks of Linear Technology Corporation. All other trademarks  
are the property of their respective owners.  
0% to 95%  
GND  
+
5% to 100%  
V
TYPICAL APPLICATION  
1MHz Pulse Width Modulator  
ANALOG PWM  
DUTY CYCLE  
MOD  
MOD  
GND  
SET  
OUT  
CONTROL  
(0V TO 1V)  
0.5V/DIV  
LTC6992  
+
V
+
V
C1  
0.1ꢀF  
OUT  
1V/DIV  
DIV  
6992 TA01a  
R
SET  
50k  
6992 TA01b  
2ꢀs/DIV  
69921234p  
1
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
+
Supply Voltage (V ) to GND .........…………………….6V  
Specified Temperature Range (Note 3)  
Maximum Voltage On Any Pin  
LTC6992C................................................ 0°C to 70°C  
LTC6992I .............................................–40°C to 85°C  
LTC6992H.......................................... –40°C to 125°C  
Junction Temperature .......................................... 150°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
+
.............................(GND – 0.3V) ≤ V ≤ (V + 0.3V)  
PIN  
Operating Temperature Range (Note 2)  
LTC6992C................................................ 0°C to 70°C  
LTC6992I .............................................–40°C to 85°C  
LTC6992H..........................................40°C to 125°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
6
5
4
OUT  
GND  
MOD  
V+  
DIV  
SET  
1
2
3
MOD 1  
GND 2  
SET 3  
6 OUT  
7
GND  
+
5 V  
4 DIV  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
DCB PACKAGE  
6-LEAD (2mm s 3mm) PLASTIC DFN  
T
= 150°C, θ = 230°C/W, θ = 51°C/W  
JMAX  
JA  
JC  
T
= 150°C, θ = 64°C/W, θ = 10.6°C/W  
JA JC  
EXPOSED PAD (PIN 7) IS GND, PCB CONNECTION IS OPTIONAL  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
0°C to 70°C  
LTC6992CDCB6-1#PBF  
LTC6992IDCB6-1#PBF  
LTC6992HDCB6-1#PBF  
LTC6992CS6-1#PBF  
LTC6992IS6-1#PBF  
LTC6992CDCB6-1#TRPBF  
LTC6992IDCB6-1#TRPBF  
LTC6992HDCB6-1#TRPBF  
LTC6992CS6-1#TRPBF  
LTC6992IS6-1#TRPBF  
LTC6992HS6-1#TRPBF  
LTC6992CDCB6-2#TRPBF  
LTC6992IDCB6-2#TRPBF  
LTC6992HDCB6-2#TRPBF  
LTC6992CS6-2#TRPBF  
LTC6992IS6-2#TRPBF  
LTC6992HS6-2#TRPBF  
LTC6992CDCB6-3#TRPBF  
LTC6992IDCB6-3#TRPBF  
LTC6992HDCB6-3#TRPBF  
LTC6992CS6-3#TRPBF  
LTC6992IS6-3#TRPBF  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6992HS6-1#PBF  
LTC6992CDCB6-2#PBF  
LTC6992IDCB6-2#PBF  
LTC6992HDCB6-2#PBF  
LTC6992CS6-2#PBF  
LTC6992IS6-2#PBF  
6-Lead Plastic TSOT-23  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6992HS6-2#PBF  
LTC6992CDCB6-3#PBF  
LTC6992IDCB6-3#PBF  
LTC6992HDCB6-3#PBF  
LTC6992CS6-3#PBF  
LTC6992IS6-3#PBF  
6-Lead Plastic TSOT-23  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
69921234p  
2
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6992HS6-3#PBF  
LTC6992CDCB6-4#PBF  
LTC6992IDCB6-4#PBF  
LTC6992HDCB6-4#PBF  
LTC6992CS6-4#PBF  
LTC6992IS6-4#PBF  
LTC6992HS6-4#PBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
–40°C to 125°C  
0°C to 70°C  
LTC6992HS6-3#TRPBF  
LTC6992CDCB6-4#TRPBF  
LTC6992IDCB6-4#TRPBF  
LTC6992HDCB6-4#TRPBF  
LTC6992CS6-4#TRPBF  
LTC6992IS6-4#TRPBF  
LTC6992HS6-4#TRPBF  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
XXXX  
6-Lead Plastic TSOT-23  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
6-Lead Plastic TSOT-23  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, VMOD = 0V to VSET  
DIVCODE = 0 to 15 (NDIV = 1 to 16,384), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
,
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Oscillation Frequency  
f
Output Frequency  
3.81  
1000000  
Hz  
OUT  
Frequency Accuracy (Note 4)  
3.81Hz ≤ f  
≤ 1MHz  
0.8  
1.7  
2.4  
%
%
Δf  
OUT  
OUT  
l
l
Frequency Drift Over Temperature  
Frequency Drift Over Supply  
0.005  
%/°C  
Δf /ΔT  
OUT  
+
+
l
l
V = 4.5V to 5.5V  
0.25  
0.08  
0.65  
0.18  
%/V  
%/V  
Δf /ΔV  
OUT  
+
V = 2.25V to 4.5V  
Period Jitter (Note 11)  
N
N
= 1  
= 4  
1.2  
%
DIV  
DIV  
P-P  
0.4  
0.07  
%
P-P  
%
%
RMS  
N
DIV  
= 16  
0.15  
0.022  
%
RMS  
P-P  
Long-Term Stability of Output  
Frequency (Note 9)  
TBD  
ppm/√kHz  
BW  
Frequency Modulation Bandwidth  
TBD  
TBD  
kHz  
ꢀs  
FM  
t
Frequency Change Settling Time  
(Note 10)  
t
= t /N  
MASTER OUT DIV  
S,FM  
Pulse Width Modulation  
PWM Duty Cycle Accuracy  
l
l
V
V
= 0.2 • V to 0.8 • V  
1.5  
2.0  
4.5  
4.9  
%
%
ΔD  
MOD  
MOD  
SET  
SET  
< 0.2 • V or V  
> 0.8 • V  
SET  
MOD  
SET  
MOD  
MOD  
MOD  
MOD  
l
l
l
l
D
D
Maximum Duty Cycle Limit  
Minimum Duty Cycle Limit  
LTC6992-1/LTC6992-3, POL = 0, V  
LTC6992-2/LTC6992-4, POL = 0, V  
LTC6992-1/LTC6992-4, POL = 0, V  
LTC6992-2/LTC6992-3, POL = 0, V  
= 1V  
= 1V  
= 0V  
= 0V  
100  
%
%
MAX  
90.5  
95  
99  
0
%
MIN  
1
5
9.5  
%
BW  
PWM Duty Cycle Bandwidth  
TBD  
TBD  
kHz  
ꢀs  
PWM  
t
Duty Cycle Setting Time (Note 6)  
t = t /N  
MASTER OUT DIV  
S,PWM  
69921234p  
3
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, VMOD = 0V to VSET  
DIVCODE = 0 to 15 (NDIV = 1 to 16,384), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
,
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
+
l
l
l
l
l
l
l
l
l
l
V
Operating Supply Voltage Range  
Power-On Reset Voltage  
Supply Current  
2.25  
5.5  
1.95  
450  
285  
420  
280  
390  
265  
170  
150  
V
V
+
I
R = ∞, R = 50k,  
DIV  
V = 5.5V  
365  
225  
350  
225  
325  
215  
120  
105  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
ꢀA  
S
L
N
SET  
= 1  
+
V = 2.25V  
+
R = ∞, R = 50k,  
V = 5.5V  
L
DIV  
SET  
N
= 4  
+
V = 2.25V  
+
R = ∞, R = 50k,  
V = 5.5V  
L
DIV  
SET  
N
≥ 16  
+
V = 2.25V  
+
R = ∞, R = 800k,  
V = 5.5V  
L
DIV  
SET  
N
= 1 to 16, 384  
+
V = 2.25V  
Analog Inputs  
l
l
l
V
Voltage at SET Pin  
0.97  
50  
1.00  
75  
1.03  
800  
V
ꢀV/°C  
kΩ  
SET  
ΔV /ΔT  
V
Drift Over Temperature  
SET  
SET  
R
Frequency-Setting Resistor  
MOD Pin Input Capacitance  
MOD Pin Input Current  
SET  
2.5  
pF  
l
l
10  
nA  
V
V
V
V
Voltage for Maximum Duty  
LTC6992-1/LTC6992-4, POL = 0, D = 100%  
LTC6992-2/LTC6992-3, POL = 0, D = 95%  
0.90•V  
0.86•V  
0.936•V  
SET  
V
V
MOD,HI  
MOD,LO  
DIV  
MOD  
SET  
SET  
Cycle  
l
V
Voltage for Minimum Duty  
LTC6992-1/LTC6992-3, POL = 0, D = 0%  
LTC6992-2/LTC6992-4, POL = 0, D = 5%  
0.064•V  
0
0.10•V  
0.14•V  
V
V
MOD  
SET  
SET  
SET  
Cycle  
+
l
l
DIV Pin Voltage  
V
V
+
ΔV /ΔV  
DIV Pin Valid Code Range (Note 5)  
Deviation from Ideal  
1.5  
%
DIV  
+
V
/V = (DIVCODE + 0.5)/16  
DIV  
l
DIV Pin Input Current  
10nA  
Digital Output  
l
I
Output Output Current  
20  
mA  
OUT(MAX)  
+
l
l
V
High Level Output Voltage  
V = 5.5V  
I
I
= –1mA  
5.45  
4.84  
5.48  
5.15  
V
V
OH  
OL  
OUT  
OUT  
= –16mA  
+
l
l
V = 3.3V  
I
I
= –1mA  
= –10mA  
3.24  
2.75  
3.27  
2.99  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= –1mA  
= -8mA  
2.17  
1.58  
2.21  
1.88  
V
V
OUT  
OUT  
+
l
l
V
Low Level Output Voltage  
V = 5.5V  
I
I
= 1mA  
= 16mA  
0.02  
0.26  
0.04  
0.54  
V
V
OUT  
OUT  
+
l
l
V = 3.3V  
I
I
= 1mA  
= 10mA  
0.03  
0.22  
0.05  
0.46  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= 1mA  
= 8mA  
0.03  
0.26  
0.07  
0.54  
V
V
OUT  
OUT  
69921234p  
4
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, VMOD = 0V to VSET  
,
DIVCODE = 0 to 15 (NDIV = 1 to 16,384), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
t
t
Output Rise Time (Note 8)  
V = 5.5V  
1.1  
1.7  
2.7  
ns  
ns  
ns  
r
f
+
V = 3.3V  
+
V = 2.25V  
+
Output Fall Time (Note 8)  
V = 5.5V  
1.0  
1.6  
2.4  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 7: To conform to the Logic IC Standard, current out of a pin is  
arbitrarily given a negative value.  
Note 8: Output rise and fall times are measured between the 10% and the  
90% power supply levels with 5pF output load. These specifications are  
based on characterization.  
Note 2: The LTC6992C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 9: Long term drift on silicon oscillators is primarily due to the  
movement of ions and impurities within the silicon and is tested at 30°C  
under otherwise nominal operating conditions. Long term drift is specified  
as ppm/√kHr due to the typically non-linear nature of the drift. To calculate  
drift for a set time period, translate that time into thousands of hours, take  
the square root and multiply by the typical drift number. For instance, a  
year is 8.77kHr and would yield a drift of 888ppm at 300ppm/√kHr. Drift  
without power applied to the device may be approximated as 1/10th of the  
drift with power, or 30ppm/√kHr for a 300ppm/√kHr device.  
Note 3: The LTC6992C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6992C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but it is not tested or  
QA sampled at these temperatures. The LTC6992I is guaranteed to meet  
specified performance from –40°C to 85°C. The LTC6992H is guaranteed  
to meet specified performance from –40°C to 125°C.  
Note 4: Frequency accuracy is defined as the deviation from the f  
OUT  
equation, assuming R is used to program the frequency.  
SET  
Note 10: Frequency change settling time is the amount of time required  
for the output to settle within 1% of the final frequency after a 0.5x or 2x  
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation  
of how the DIV pin voltage selects the value of DIVCODE.  
Note 6: Duty cycle setting time is the is the amount of time required for  
the output to settle within 1% of the final duty cycle after a 10% change  
change in I  
.
SET  
Note 11: Jitter is the ratio of the peak-to-peak deviation of the period to  
the mean of the period. This specification is based on characterization and  
is not 100% tested.  
in the setting ( 80mV step in V  
).  
MOD  
69921234p  
5
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
TYPICAL PERFORMANCE CHARACTERISTICS  
otherwise noted.  
Frequency Error vs Temperature  
Frequency Error vs Temperature  
Frequency Error vs Temperature  
3
2
3
2
3
GUARANTEED MAX OVER TEMPERATURE  
GUARANTEED MAX OVER TEMPERATURE  
GUARANTEED MAX OVER TEMPERATURE  
R = 800k  
SET  
2
1
R
= 200k  
R
= 50k  
SET  
SET  
3 PARTS  
3 PARTS  
3 PARTS  
1
1
0
0
0
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
GUARANTEED MIN OVER TEMPERATURE  
25 50 75 100 125  
TEMPERATURE (°C)  
GUARANTEED MIN OVER TEMPERATURE  
25 50 75 100 125  
TEMPERATURE (°C)  
GUARANTEED MIN OVER TEMPERATURE  
–50  
0
–25  
100 125  
–50  
0
–50  
0
25  
50  
75  
–25  
–25  
TEMPERATURE (°C)  
6992 G02  
6992 G01  
6992 G03  
Frequency Error vs RSET  
Frequency Drift vs Supply Voltage  
Typical VSET Distribution  
0.5  
0.4  
3
2
250  
200  
150  
100  
50  
2 LOTS  
DFN AND SOT-23  
1274 UNITS  
GUARANTEED MAX OVER TEMPERATURE  
3 PARTS  
0.3  
0.2  
1
R
= 50k  
SET  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–1  
–2  
–3  
R
= 800k  
SET  
R
= 200k  
SET  
+
REFERENCED TO V = 4.5V  
GUARANTEED MIN OVER TEMPERATURE  
0
2
4
5
6
3
800  
0.98  
0.996  
V
SET  
1.004  
(V)  
1.012  
1.02  
50  
200  
(k)  
400  
0.988  
100  
SUPPLY VOLTAGE (V)  
R
SET  
6992 G05  
6992 G04  
6992 G06  
VSET Drift vs ISET  
VSET Drift vs Supply  
VSET vs Temperature  
1.0  
0.8  
1.0  
0.8  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
3 PARTS  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+
REFERENCED TO I  
= 10ꢀA  
REFERENCED TO V = 4V  
SET  
0
10  
(ꢀA)  
15  
20  
5
6
2
4
5
100 125  
3
–50  
0
25  
50  
75  
–25  
I
SUPPLY (V)  
TEMPERATURE (°C)  
SET  
6992 G07  
6992 G08  
6992 G09  
69921234p  
6
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
TYPICAL PERFORMANCE CHARACTERISTICS  
otherwise noted.  
NDIV = 1 Duty Cycle Error vs RSET  
NDIV = 1 Duty Cycle Error vs RSET  
NDIV = 1 Duty Cycle Error vs RSET  
5
4
5
4
5
4
V
/V  
= 0.5 (50%)  
V
/V  
= 0.8 (87.5%)  
V
/V  
= 0.2 (12.5%)  
MOD SET  
MOD SET  
MOD SET  
DIVCODE = 0  
3 PARTS  
DIVCODE = 0  
3 PARTS  
DIVCODE = 0  
3 PARTS  
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
400  
800  
50  
100  
200  
(k)  
400  
800  
50  
100  
200  
(k)  
50  
100  
200  
(k)  
400  
800  
R
R
R
SET  
SET  
SET  
6992 G11  
6992 G10  
6992 G12  
NDIV > 1 Duty Cycle Error vs RSET  
NDIV > 1 Duty Cycle Error vs RSET  
NDIV > 1 Duty Cycle Error vs RSET  
5
4
5
4
5
4
V
/V  
= 0.2 (12.5%)  
V
/V  
= 0.8 (87.5%)  
V
/V  
= 0.5 (50%)  
MOD SET  
MOD SET  
MOD SET  
DIVCODE = 4  
3 PARTS  
DIVCODE = 4  
3 PARTS  
DIVCODE = 4  
3 PARTS  
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
50  
100  
200  
(k)  
400  
800  
400  
800  
50  
100  
200  
(k)  
50  
100  
200  
(k)  
400  
800  
R
R
R
SET  
SET  
SET  
6992 G13  
6992 G15  
6992 G14  
NDIV = 1 Duty Cycle Clamps  
vs RSET  
NDIV > 1 Duty Cycle Error vs RSET  
97  
96  
95  
94  
93  
92  
97  
DIVCODE = 4  
3 PARTS  
DIVCODE = 0  
3 PARTS  
96  
95  
94  
93  
92  
LTC6992-2/LTC6992-3  
= V  
V
LTC6992-2/LTC6992-3  
MOD  
SET  
V
= V  
MOD  
SET  
8
7
6
5
4
3
8
7
6
5
4
3
LTC6992-2/LTC6992-4  
= V  
LTC6992-2/LTC6992-4  
V
MOD  
SET  
V
= V  
MOD  
SET  
50  
100  
200  
(k)  
400  
800  
50  
100  
200  
400  
800  
R
R
(k)  
SET  
SET  
6992 G17  
6992 G16  
69921234p  
7
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
TYPICAL PERFORMANCE CHARACTERISTICS  
otherwise noted.  
NDIV = 1 Duty Cycle Error  
vs Temperature  
NDIV = 1 Duty Cycle Error  
vs Temperature  
NDIV = 1 Duty Cycle Error  
vs Temperature  
5
4
5
4
5
GUARANTEED MAX  
GUARANTEED MAX  
= 0.2 (12.5%)  
4
3
GUARANTEED MAX  
V
/V  
= 0.5 (50%)  
V
/V  
= 0.8 (87.5%)  
V
/V  
MOD SET  
MOD SET  
MOD SET  
3
3
DIVCODE = 0  
3 PARTS  
DIVCODE = 0  
3 PARTS  
DIVCODE = 0  
3 PARTS  
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
GUARANTEED MIN  
GUARANTEED MIN  
GUARANTEED MIN  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
–25  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6992 G19  
6992 G18  
6992 G20  
NDIV > 1 Duty Cycle Error  
vs Temperature  
NDIV > 1 Duty Cycle Error  
vs Temperature  
NDIV > 1 Duty Cycle Error  
vs Temperature  
5
5
4
5
4
4
3
GUARANTEED MAX  
GUARANTEED MAX  
GUARANTEED MAX  
V
/V  
= 0.5 (50%)  
V
/V  
= 0.2 (12.5%)  
V
/V  
= 0.8 (87.5%)  
MOD SET  
MOD SET  
MOD SET  
3
3
DIVCODE = 4  
3 PARTS  
DIVCODE = 4  
3 PARTS  
DIVCODE = 4  
3 PARTS  
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
GUARANTEED MIN  
50 75 100 125  
GUARANTEED MIN  
GUARANTEED MIN  
–50  
0
25  
75 100 125  
–25  
–50  
0
25  
50  
–25  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6992 G22  
6992 G21  
6992 G23  
NDIV = 1 Duty Cycle Clamps  
vs Temperature  
NDIV > 1 Duty Cycle Clamps  
vs Temperature  
97  
96  
95  
94  
93  
92  
97  
96  
95  
94  
93  
92  
DIVCODE = 0  
3 PARTS  
DIVCODE = 4  
3 PARTS  
LTC6992-2/LTC6992-3  
= V  
LTC6992-2/LTC6992-3  
= V  
V
MOD  
SET  
V
MOD  
SET  
8
7
6
5
4
3
8
7
6
5
4
3
LTC6992-2/LTC6992-4  
MOD  
LTC6992-2/LTC6992-4  
MOD  
V
= GND  
V
= GND  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6992 G24  
6992 G25  
69921234p  
8
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
TYPICAL PERFORMANCE CHARACTERISTICS  
otherwise noted.  
Duty Cycle Error vs DIVCODE  
Duty Cycle Error vs DIVCODE  
Duty Cycle Error vs DIVCODE  
5
4
5
4
5
V
/V  
= 0.2 (12.5%)  
V
/V  
= 0.5 (50%)  
V
/V  
= 0.8 (87.5%)  
MOD SET  
MOD SET  
MOD SET  
4
3
3 PARTS  
3 PARTS  
3 PARTS  
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
DIVCODE  
DIVCODE  
DIVCODE  
6992 G26  
6992 G27  
6992 G28  
NDIV = 1 Duty Cycle vs VMOD/ VSET  
NDIV > 1 Duty Cycle vs VMOD/ VSET  
NDIV > 1 Duty Cycle vs VMOD/ VSET  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DIVCODE = 4  
LTC6992-1/  
3 PARTS  
DIVCODE = 0  
LTC6992-1/  
3 PARTS  
LTC6992-1/LTC6992-3  
LTC6992-4  
LTC6992-4  
LTC6992-2/  
LTC6992-3  
LTC6992-2/  
LTC6992-3  
LTC6992-2/  
LTC6992-4  
LTC6992-2/  
LTC6992-4  
LTC6992-2/  
LTC6992-3  
LTC6992-2/  
LTC6992-4  
LTC6992-1/  
LTC6992-4  
DIVCODE = 11  
3 PARTS  
LTC6992-1/LTC6992-3  
LTC6992-1/LTC6992-3  
1
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
V
/V  
(V/V)  
V
/V  
(V/V)  
V
/V  
(V/V)  
MOD SET  
MOD SET  
MOD SET  
6992 G30  
6992 G29  
6992 G31  
NDIV = 1 Duty Cycle Error vs Ideal  
NDIV > 1 Duty Cycle Error vs Ideal  
NDIV > 1 Duty Cycle Error vs Ideal  
5
4
5
4
5
4
DIVCODE = 11  
3 PARTS  
DIVCODE = 4  
3 PARTS  
DIVCODE = 0  
3 PARTS  
3
3
3
PART A  
PART C  
2
2
2
PART C  
PART B  
1
1
1
PART C  
PART B  
0
0
0
PART B  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
PART A  
PART A  
0
25  
50  
75  
100  
100  
0
25  
50  
75  
100  
0
25  
50  
75  
IDEAL DUTY CYCLE (%)  
IDEAL DUTY CYCLE (%)  
IDEAL DUTY CYCLE (%)  
6992 G34  
6992 G33  
6992 G32  
69921234p  
9
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
Linearity Near 67% Duty Cycle  
TYPICAL PERFORMANCE CHARACTERISTICS  
otherwise noted.  
Linearity Near 100% Duty Cycle  
Linearity Near 95% Duty Cycle  
72  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
DIVCODE = 4  
71 3 PARTS  
DIVCODE = 4  
LTC6992-2/LTC6992-3  
3 PARTS  
DIVCODE = 4  
LTC6992-1/LTC6992-4  
3 PARTS  
70  
69  
68  
67  
66  
65  
64  
63  
62  
0.676  
0.804  
0.836  
V
0.868  
(V/V)  
0.9  
0.596  
0.612  
0.628  
/V  
0.644  
(V/V)  
0.66  
0.804  
0.836  
V
0.868  
(V/V)  
0.9  
V
/V  
/V  
MOD SET  
MOD SET  
MOD SET  
6992 G37  
6992 G36  
6992 G35  
Linearity Near 0% Duty Cycle  
Linearity Near 5% Duty Cycle  
Linearity Near 31% Duty Cycle  
36  
12  
11  
10  
9
12  
11  
10  
9
DIVCODE = 4  
35 3 PARTS  
DIVCODE = 4  
LTC6992-1/LTC6992-3  
3 PARTS  
DIVCODE = 4  
LTC6992-2/LTC6992-4  
3 PARTS  
34  
33  
32  
31  
30  
29  
28  
27  
26  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
0.388  
0.18  
0.084  
0.116  
V
0.148  
/V (V/V)  
0.18  
0.308  
0.324  
0.34  
/V  
0.356  
(V/V)  
0.372  
0.084  
0.116  
V
0.148  
(V/V)  
V
/V  
MOD SET  
MOD SET  
MOD SET  
6992 G40  
6992 G38  
6992 G39  
NDIV > 1 Duty Cycle Drift  
vs Supply  
Duty Cycle Drift vs Supply  
Supply Current vs VMOD  
0.5  
0.4  
0.5  
0.4  
400  
350  
300  
250  
200  
150  
100  
50  
DIVCODE = 4  
DIVCODE = 0  
LTC6992-2  
5% CLAMP  
0.3  
0.3  
R
= 50k, ÷1  
SET  
0.2  
0.2  
V
/V  
= 0.2  
MOD SET  
95% CLAMP  
5% CLAMP  
V
0.1  
0.1  
95% CLAMP  
R
R
= 50k, ÷16  
SET  
SET  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
= 100k, ÷4  
= 800k, ÷1  
V
/V  
= 0.5  
MOD SET  
/V  
= 0.8  
MOD SET  
V
/V  
= 0.2  
MOD SET  
V
/V  
= 0.8  
MOD SET  
R
SET  
V
/V  
= 0.5  
MOD SET  
+
+
REFERENCED TO V = 4V  
REFERENCED TO V = 4V  
0
2
3
4
5
6
2
3
4
5
6
1
0
0.2  
0.4  
V
0.6  
(V)  
0.8  
SUPPLY (V)  
SUPPLY (V)  
MOD  
6992 G42  
6992 G41  
6992 G43  
69921234p  
10  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
TYPICAL PERFORMANCE CHARACTERISTICS  
otherwise noted.  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
Jitter vs Frequency  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
LTC6992-2  
PEAK-TO-PEAK PERIOD  
DEVIATION MEASURED  
OVER 30s INTERVALS  
R
= 50k, ÷1  
SET  
5.0V, R  
= 50k, ÷1  
SET  
R
SET  
= 50k, ÷4  
5.0V, R  
= 50k, ÷16  
SET  
V
/V  
= 0.5  
MOD SET  
+
÷1, V = 5V  
R
R
= 50k, ÷16  
2.5V, R  
= 50k, ÷1  
SET  
SET  
SET  
+
÷1, V = 2.5V  
= 100k, ÷1  
= 800k, ÷1  
5.0V, R  
= 800k, ÷1  
= 800k, ÷1  
+
SET  
SET  
÷4, V = 5V  
+
R
SET  
÷4, V = 2.5V  
2.5V, R  
÷16  
÷64  
0
0
–50  
0
25  
50  
75 100 125  
2
3
4
5
6
–25  
0.01  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
FREQUENCY (kHz)  
6992 G45  
6992 G44  
6992 G46  
Supply Current vs Frequency, 5V  
Supply Current vs Frequency, 2.5V  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
+
+
V
= 5V  
V
= 2.5V  
÷4  
÷16,384  
÷4  
÷16,384  
÷1  
÷1  
0
0
0.001 0.01  
0.1  
1
10  
100 1000  
100 1000  
0.001 0.01  
0.1  
1
10  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6992 G47  
6992 G48  
Output Resistance  
vs Supply Voltage  
Rise and Fall Time  
vs Supply Voltage  
Typical ISET Current Limit vs V+  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1000  
800  
600  
400  
200  
0
C
= 5pF  
SET PIN SHORTED TO GND  
LOAD  
OUTPUT SOURCING CURRENT  
t
RISE  
t
FALL  
OUTPUT SINKING CURRENT  
0
2
3
4
5
6
2
3
4
5
6
2
3
4
5
6
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6992 G50  
6992 G51  
6992 G52  
69921234p  
11  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
V+ = 3.3V, RSET = 200k, and TA = 25°C, unless  
Typical Start-Up, POL = 1  
TYPICAL PERFORMANCE CHARACTERISTICS  
otherwise noted.  
Typical Start-Up, POL = 0  
+
+
V
V
1V/DIV  
1V/DIV  
OUT  
1V/DIV  
OUT  
1V/DIV  
500ꢀs  
500ꢀs  
6992 G53  
6992 G54  
100ꢀs/DIV  
100ꢀs/DIV  
+
+
V
= 2.5V  
V
= 2.5V  
DIVCODE = 3 (÷64)  
DIVCODE = 12 (÷64, POL = 1)  
R
V
= 50k  
R
V
= 50k  
MOD  
SET  
MOD  
SET  
= 0.3V (~25% DUTY CYCLE)  
= 0.2V (~87.5% DUTY CYCLE)  
PIN FUNCTIONS (DCB/S6)  
V (Pin1/Pin5):SupplyVoltage(2.25Vto5.5V).Thissup-  
ply must be kept free from noise and ripple. It should be  
bypassed directly to the GND pin with a 0.1μF capacitor.  
+
if I drops below approximately 500nA. A resistor con-  
SET  
nected between SET and GND is the most accurate way to  
set the frequency. For best performance, use a precision  
metal or thin film resistor of 0.5% or better tolerance and  
50ppm/°C or better temperature coefficient. For lower ac-  
curacy applications an inexpensive 1% thick film resistor  
may be used.  
DIV (Pin 2/Pin 4): Programmable Divider and Polarity  
+
Input. A V referenced A/D converter monitors the DIV  
pin voltage (V ) to determine a 4-bit result (DIVCODE).  
DIV  
+
V
DIV  
may be generated by a resistor divider between V  
and GND. Use 1% resistors to ensure an accurate result.  
The DIV pin and resistors should be shielded from the  
OUT pin or any other traces that have fast edges. Limit the  
Limit the capacitance on the SET pin to less than 10pF  
to minimize jitter and ensure stability. Capacitance less  
than 100pF maintains the stability of the feedback circuit  
capacitance on the DIV pin to less than 100pF so that V  
regulating the V voltage.  
DIV  
SET  
settles quickly. The MSB of DIVCODE (POL) determines  
if the PWM signal is inverted before driving the output.  
Setting POL = 1 results in a negative transfer function  
+
V
MOD  
GND  
SET  
OUT  
(duty cycle decreasing as V  
increases).  
LTC6992  
+
MOD  
V
+
V
SET (Pin 3/Pin 3): Frequency-Setting Input. The voltage  
on the SET pin (V ) is regulated to 1V above GND. The  
C1  
0.1ꢀF  
R1  
R2  
SET  
DIV  
amount of current sourced from the SET pin (I ) pro-  
SET  
6992 PF  
R
SET  
grams the master oscillator frequency. The I  
current  
SET  
range is 1.25μA to 20μA. The output oscillation will stop  
69921234p  
12  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
PIN FUNCTIONS (DCB/S6)  
MOD (Pin 4/Pin 1): Pulse-Width Modulation Input. The  
GND(Pin5/Pin2):Ground.Tietoalowinductanceground  
voltageontheMODpincontrolstheoutputdutycycle. The  
plane for best performance.  
linear control range is between 0.1•V  
and 0.9•V  
SET  
SET  
OUT (Pin 6/Pin 6): Oscillator Output. The OUT pin swings  
(approximately100mVto900mV).Beyondthoselimitsthe  
output will either clamp at 5% or 95%, or stop oscillating  
(0% or 100% duty cycle), depending on the version.  
+
fromGNDtoV withanoutputresistanceofapproximately  
30Ω. The duty cycle is determined by the voltage on the  
MOD pin. When driving an LED or other low-impedance  
load a series output resistor should be used to limit  
source/sink current to 20mA.  
BLOCK DIAGRAM (S6 Package Pin Numbers Shown)  
+
V
5
R1  
POL  
DIV  
4-BIT A/D  
CONVERTER  
DIGITAL  
FILTER  
4
R2  
OUTPUT  
POLARITY  
MASTER OSCILLATOR  
PULSE WIDTH MODULATOR  
I
SET  
MCLK  
PROGRAMMABLE DIVIDER  
÷1, 4, 16, 64, 256, 1024, 4096, 16384  
f
= 1MHz • 50kΩ •  
OSC  
V
V
– 0.1•V  
MOD(LIM) SET  
t
SET  
ON  
DUTY CYCLE =  
0.8•V  
OUT  
SET  
6
t
OUT  
DISABLE OUTPUT  
UNTIL SETTLED  
HALT OSCILLATOR  
IF I < 500nA  
SET  
t
ON  
D =  
V
MOD(LIM)  
t
OFF  
POR  
VOLTAGE LIMITER  
+
V
+
REF  
V
= 1V  
SET  
1V  
V
MOD  
1
3
2
6992 BD  
SET  
GND  
MOD  
I
SET  
R
SET  
69921234p  
13  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
OPERATION  
The LTC6992 is built around a master oscillator with a  
DIVCODE  
1MHz maximum frequency. The oscillator is controlled  
+
The DIV pin connects to an internal, V referenced 4-bit  
by the SET pin current (I ) and voltage (V ), with a  
SET  
SET  
A/D converter that monitors the DIV pin voltage (V ) to  
DIV  
1MHz • 50k conversion factor that is accurate to 0.8%  
determine the DIVCODE value. DIVCODE programs two  
under typical conditions.  
settings on the LTC6992:  
ISET  
VSET  
1
fMASTER  
=
=1MHz • 50k •  
1. DIVCODE determines the output frequency divider  
tMASTER  
setting, N  
.
DIV  
A feedback loop maintains V at 1V 30mV, leaving I  
2. DIVCODE determines the output polarity, via the POL  
bit.  
SET  
SET  
as the primary means of controlling the output frequency.  
The simplest way to generate I is to connect a resistor  
+
SET  
V
DIV  
may be generated by a resistor divider between V  
(R ) between SET and GND, such that I = V /R .  
SET  
SET  
SET SET  
and GND as shown in Figure 1.  
The master oscillator equation reduces to:  
1
1MHz 50k  
RSET  
fMASTER  
=
=
2.25V TO 5.5V  
tMASTER  
+
V
LTC6992  
R1  
R2  
From this equation it is clear that V drift will not affect  
SET  
theoutputfrequencywhenusingasingleprogramresistor  
(R ). Error sources are limited to R tolerance and the  
DIV  
SET  
SET  
inherent frequency accuracy Δf  
of the LTC6992.  
GND  
OUT  
6992 F01  
R
may range from 50k to 800k (equivalent to I  
SET  
SET  
between 1.25μA and 20μA).  
Figure 1. Simple Technique for Setting DIVCODE  
The LTC6992 includes a programmable frequency divider  
which can further divide the frequency by 1, 4, 16, 64,  
256, 1024, 4096 or 16384 before driving the OUT pin.  
The divider ratio N is set by a resistor divider attached  
DIV  
to the DIV pin.  
ISET  
VSET  
1
tOUT  
1MHz 50k  
NDIV  
fOUT  
=
=
With R in place of V /I the equation reduces to:  
SET  
SET SET  
1
1MHz 50k  
fOUT  
=
=
tOUT NDIV RSET  
69921234p  
14  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
OPERATION  
Table 1. DIVCODE Programming  
+
DIVCODE  
POL  
0
N
RECOMMENDED f  
R1 (kΩ)  
Open  
976  
R2 (kΩ)  
Short  
102  
V
/V  
DIV  
DIV  
OUT  
0
1
1
62.5kHz to 1MHz  
15.63kHz to 250kHz  
3.906kHz to 62.5kHz  
976.6Hz to 15.63kHz  
244.1Hz to 3.906kHz  
61.04Hz to 976.6Hz  
15.26Hz to 244.1Hz  
3.815Hz to 61.04Hz  
3.815Hz to 61.04Hz  
15.26Hz to 244.1Hz  
61.04Hz to 976.6Hz  
244.1Hz to 3.906kHz  
976.6Hz to 15.63kHz  
3.906kHz to 62.5kHz  
15.63kHz to 250kHz  
62.5kHz to 1MHz  
≤0.03125 0.015  
0.09375 0.015  
0.15625 0.015  
0.21875 0.015  
0.28125 0.015  
0.34375 0.015  
0.40625 0.015  
0.46875 0.015  
0.53125 0.015  
0.59375 0.015  
0.65625 0.015  
0.71875 0.015  
0.78125 0.015  
0.84375 0.015  
0.90625 0.015  
≥0.96875 0.015  
0
4
2
0
16  
64  
976  
182  
3
0
1000  
1000  
1000  
1000  
1000  
887  
280  
4
0
256  
1024  
4096  
16384  
16384  
4096  
1024  
256  
64  
392  
5
0
523  
6
0
681  
7
0
887  
8
1
1000  
1000  
1000  
1000  
1000  
976  
9
1
681  
10  
11  
12  
13  
14  
15  
1
523  
1
392  
1
280  
1
16  
182  
1
4
102  
976  
1
1
Short  
Open  
Table 1 offers recommended 1% resistor values that ac-  
curatelyproducethecorrectvoltagedivisionaswellasthe  
column in Table 1 shows the ideal ratio of V  
to the  
DIV  
supply voltage, which can also be calculated as:  
correspondingN andPOLvaluesfortherecommended  
DIV  
VDIV  
V+  
DIVCODE + 0.5  
=
1.5ꢀ  
resistor pairs. Other values may be used as long as:  
16  
+
1. The V /V ratio is accurate to 1.5% (including resis-  
DIV  
Forexample,ifthesupplyis3.3VandthedesiredDIVCODE  
tor tolerances and temperature effects)  
is 4, V = 0.281 • 3.3V = 928mV 50mV.  
DIV  
2. The driving impedance (R1||R2) does not exceed  
500kΩ.  
Figure2illustratestheinformationinTable1,showingthat  
N
DIV  
is symmetric around the DIVCODE midpoint.  
If the voltage is generated by other means (i.e. the output  
+
of a DAC) it must track the V supply voltage. The last  
POL BIT = 0  
1000  
POL BIT = 1  
15  
0
100  
1
14  
13  
2
10  
3
12  
11  
1
0.1  
4
10  
5
9
6
7
8
0.01  
0.001  
+
+
0V  
0.5•V  
V
INCREASING V  
DIV  
6992 F02  
Figure 2. Frequency Range and POL Bit vs DIVCODE  
69921234p  
15  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
OPERATION  
Pulse Width (Duty Cycle) Modulation  
Output Polarity (POL Bit)  
The MOD pin is a high impedance analog input providing  
direct control of the output duty cycle. The duty cycle  
is proportional to the voltage applied to the MOD pin,  
The duty cycle equation describes a proportional transfer  
function, where duty cycle increases as V  
increases.  
MOD  
The LTC6992 includes a POL bit (determined by the  
DIVCODE as described earlier) that inverts the output  
signal. This makes the duty cycle gain negative, reducing  
V
.
MOD  
VMOD  
0.8 • VSET  
1
8
Duty Cycle = D =  
duty cycle as V  
increases.  
MOD  
POL = 0  
VMOD  
1
8
Dꢀ  
The PWM duty cycle accuracy ΔD specifies that the above  
equation is valid to within 4.5% for V between 0.2 •  
0.8 • VSET  
D•t  
OUT  
MOD  
V
SET  
and 0.8 • V (12.5% to 87.5% duty cycle).  
SET  
OUT  
Since V  
= 1V 30mV, the duty cycle equation may be  
SET  
t
OUT  
approximated by the following equation.  
POL = 1  
OUT  
VMOD 100mV  
Duty Cycle = D ≅  
¥
´
VMOD  
1
8
D1ꢁ  
¦
µ
D•t  
0.8 • V  
§
OUT  
SET  
800mV  
The V  
control range is approximately 0.1V to 0.9V.  
MOD  
+
Driving V  
beyond that range (towards GND or V ) will  
MOD  
6992 F03  
t
OUT  
have no further affect on the duty cycle.  
Duty Cycle Limits  
Figure 3. POL Bit Functionality  
The only difference between the four versions of the  
LTC6992 is the limits, or clamps, placed on the output  
duty cycle. The LTC6992-1 generates output duty cycles  
ranging from 0% to 100%, meaning the output can stop  
+
oscillating and rest at GND or V .  
The LTC6992-2 will never stop oscillating, regardless of  
the V  
level. Internal clamping circuits limit its duty  
MOD  
cycle to a 5% to 95% range (1% to 99% guaranteed).  
Therefore, its V control range is 0.14 • V to 0.86 •  
MOD  
SET  
V
(approximately 0.14V to 0.86V).  
SET  
The LTC6992-3 and LTC6992-4 complete the family by  
providing one-sided clamping. The LTC6992-3 allows  
0% to 95% duty cycle, and the LTC6992-4 allows 5% to  
100% duty cycle.  
69921234p  
16  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
OPERATION  
Table 2. Duty Cycle Ranges  
DUTY CYCLE RANGE vs V  
POL = 1 forces a simple logic inversion, so it changes the  
dutycyclerangeoftheLTC6992-3(makingit100%to5%)  
and LTC6992-4 (making it 95% to 0%). These transfer  
functions are detailed in Figure 4.  
= 0V 1V  
MOD  
PART NUMBER  
LTC6992-1  
LTC6992-2  
LTC6992-3  
LTC6992-4  
POL = 0  
POL = 1  
0% to 100%  
5% to 95%  
0% to 95%  
5% to 100%  
100% to 0%  
95% to 5%  
100% to 5%  
95% to 0%  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
/V  
= 0.1  
MOD SET  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
/V  
= 0.14  
MOD SET  
POL = 0  
POL = 1  
POL = 0  
POL = 1  
V
/V  
= 0.86  
MOD SET  
V
/V  
= 0.9  
MOD SET  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
/V (V/V)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
/V (V/V)  
1
V
V
MOD SET  
MOD SET  
6992 F04a  
6992 F04b  
LTC6992-1  
LTC6992-2  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
/V  
= 0.14  
V
/V  
= 0.1  
MOD SET  
MOD SET  
POL = 0  
POL = 1  
POL = 0  
POL = 1  
V
/V  
= 0.9  
V
/V  
= 0.86  
MOD SET  
MOD SET  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
/V (V/V)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
/V (V/V)  
1
V
V
MOD SET  
MOD SET  
6992 F02d  
6992 F02c  
LTC6992-3  
LTC6992-4  
Figure 4. PWM Transfer Functions for All LTC6992 Family Parts  
69921234p  
17  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
OPERATION  
Changing DIVCODE After Start-Up  
Start-Up Time  
Following start-up, the A/D converter will continue  
When power is first applied to the LTC6992 the power-on  
monitoring V for changes. Changes to DIVCODE will  
reset (POR) circuit will initiate the start-up time, t  
.
DIV  
START  
be recognized slowly, as the LTC6992 places a priority on  
eliminating any “wandering” in the DIVCODE. The typical  
delay depends on the difference between the old and  
new DIVCODE settings and is proportional to the master  
oscillator period.  
The OUT pin is held low during this time. The typical value  
for t ranges from 0.5ms to 8ms depending on the  
START  
master oscillator frequency (independent of N ):  
DIV  
t
= 500 • t  
MASTER  
START(TYP)  
The output will begin oscillating after t . If POL = 0  
START  
t
= 16 • (ΔDIVCODE + 6) • t  
MASTER  
DIVCODE  
the first pulse has the correct width. If POL = 1 (DIVCODE  
≥ 8), the first pulse width can be shorter or longer than  
expected, depending on the duty cycle setting, and will  
A change in DIVCODE will not be recognized until it is  
stable, and will not pass through intermediate codes.  
AdigitalfilterisusedtoguaranteetheDIVCODEhassettled  
to a new value before making changes to the output. Then  
the output will make a clean (glitchless) transition to the  
new divider setting.  
never be less than 25% of t  
.
OUT  
Duringstart-up,theDIVpinA/Dconvertermustdetermine  
the correct DIVCODE before the output is enabled. The  
start-up time may increase if the supply or DIV pin volt-  
ages are not stable. For this reason, it is recommended to  
minimize the capacitance on the DIV pin so it will properly  
+
track V . Less than 100pF will not affect performance.  
+
V
DIV  
STABLE V  
DIV  
t
DIVCODE  
t
START  
OUT  
6992 F06  
1ST PULSE WIDTH MAY BE INACCURATE  
Figure 5. DIVCODE Change from 5 to 2  
Figure 6. Start-Up Timing Diagram  
69921234p  
18  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
APPLICATIONS INFORMATION  
Basic Operation  
With POL already chosen, this completes the selection of  
DIVCODE. Use Table 1 to select the proper resistor divider  
The simplest and most accurate method to program the  
+
or V /V ratio to apply to the DIV pin.  
DIV  
LTC6992 is to use a single resistor, R , between the  
SET  
SET and GND pins. The design procedure is a four step  
Step 4: Calculate and Select R  
SET  
process. After choosing the POL bit setting and proper  
The final step is to calculate the correct value for R  
using the following equation.  
LTC6992 version, select the N value and then calculate  
SET  
DIV  
the value for the R resistor.  
SET  
1MHz • 50k  
NDIV • fOUT  
Step 1: Selecting the POL Bit Setting  
RSET  
=
(1b)  
Most applications will use POL = 0, resulting in a positive  
transferfunction.However,someapplicationsmayrequirea  
negativetransferfunction,whereincreasingV  
Select the standard resistor value closest to the calculated  
value.  
reduces  
MOD  
the output duty cycle. For example, if the LTC6992 is used  
in a feedback loop, POL = 1 may be required to achieve  
negative feedback.  
Example:DesignaPWMcircuitthatsatisfiesthefollowing  
requirements:  
• f  
= 20kHz  
OUT  
Step 2: Selecting the LTC6992 Version  
• Positive V  
to duty cycle response  
MOD  
The difference between the LTC6992 versions is observed  
at the endpoints of the duty cycle control range. Applica-  
tions that require the output never stop oscillating should  
use the LTC6992-2. If it is better to allow the output to  
• Output can reach 100% duty cycle, but not 0%  
• Minimum power consumption  
Step 1: Selecting the POL Bit Setting  
+
rest at GND or V (0% or 100% duty cycle, respectively),  
select the LTC6992-1.  
For positive transfer function (duty cycle increases with  
V
), choose POL = 0.  
MOD  
The LTC6992-3 and LTC6992-4 clamp the duty cycle at  
only one end of the control range, allowing the output to  
stop oscillating at the other extreme. If POL = 1 the clamp  
will swap from low duty cycle to high, or vice-versa. Refer  
to Table 2 and Figure 4 for assistance in selecting the  
proper version.  
Step 2: Selecting the LTC6992 Version  
To limit the minimum duty cycle, but allow the maximum  
duty cycle to reach 100%, choose LTC6992-4. (Note that  
if POL = 1 the LTC6992-3 would be the correct choice.)  
Step 3: Selecting the N Frequency Divider Value  
Step 3: Selecting the N Frequency Divider Value  
DIV  
DIV  
Choose an N  
value that meets the requirements of  
As explained earlier, the voltage on the DIV pin sets the  
DIVCODE which determines both the POL bit and the  
DIV  
Equation (1a).  
N
value. For a given output frequency, N should be  
DIV  
DIV  
3.125 ≤ N ≤ 50  
DIV  
selected to be within the following range.  
Potential settings for N include 4 and 16. N = 4 is  
DIV  
DIV  
62.5kHz  
fOUT  
1MHz  
fOUT  
the best choice, as it minimizes supply current by us-  
ing a large R resistor. POL = 0 and N = 4 requires  
NDIV  
(1a)  
SET  
DIV  
DIVCODE = 1. Using Table 1, choose the R1 and R2 values  
to program DIVCODE = 1.  
To minimize supply current, choose the lowest N value  
DIV  
(generallyrecommended).Forfasterstart-upordecreased  
jitter,chooseahigherN setting.Alternatively,useTable1  
DIV  
as a guide to select the best N value for the given ap-  
DIV  
plication.  
69921234p  
19  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
APPLICATIONS INFORMATION  
Some applications can eliminate ΔV  
sensitivity by  
Step 4: Select R  
SET  
SET  
making V  
proportional to V . For example, Figure 9  
MOD  
SET  
Calculate the correct value for R using Equation (1b).  
SET  
shows a simple circuit for generating an arbitrary duty  
1MHz • 50k  
4•20kHz  
cycle. The equation for duty cycle does not depend on  
RSET  
=
= 625k  
V
SET  
at all.  
Since 625k is not available as a standard 1% resistor,  
substitute 619k if a 0.97% frequency shift is acceptable.  
Otherwise, select a parallel or series pair of resistors such  
as 309k and 316k to attain a more precise resistance.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ΔV  
= –30mV  
SET  
ΔV  
= 0mV  
SET  
The completed design is shown in Figure 7.  
ΔV  
= 30mV  
SET  
V
MOD  
MOD  
GND  
SET  
OUT  
LTC6992-4  
2.25V TO 5.5V  
+
V
R1  
976k  
0
0.2  
0.4  
0.6  
(V)  
0.8  
1
V
MOD  
6992 F08  
DIVCODE = 1  
DIV  
R2  
102k  
6992 F07  
Figure 8. Duty Cycle Variation Due to ΔVSET  
R
SET  
625k  
Figure 7. 20kHz PWM Oscillator  
MOD  
GND  
SET  
OUT  
LTC6992-X  
2.25V TO 5.5V  
R1  
+
V
Duty Cycle Sensitivity to ΔV  
SET  
The output duty cycle is proportional to the ratio of V  
/
MOD  
DIV  
V
. Since V  
can vary up to 30mV from 1V it can  
SET  
SET  
6992 F09  
R2  
R
R
SET1  
SET2  
effectively gain or attenuate V  
, as shown below when  
MOD  
RSET2  
RSET1 RSET2  
5
4
1
8
Dꢀ  
ΔV is added to the equation.  
SET  
VMOD  
0.8 • VSET + ΔVSET  
1
8
D=  
(
)
Figure 9. Fixed-Frequency, Arbitrary Duty Cycle Oscillator  
The simplifying assumption of ΔV = 0V creates the po-  
SET  
I
Extremes (Master Oscillator Frequency Extremes)  
tential for additional duty cycle error, which increases with  
SET  
V
MOD  
, reaching a maximum of 3.4% if ΔV = –30mV.  
SET  
PushingI outsideoftherecommended1.25μAto20μA  
SET  
VMOD ΔVSET  
ΔVSET  
VSET  
1
8
rangeforcesthemasteroscillatortooperateoutsideofthe  
ΔD≅  
≅ − D  
+
ideal  
62.5kHz to 1MHz range in which it is most accurate.  
800mV VSET  
The oscillator will still function with reduced accuracy  
Figure8demonstratestheworst-caseimpactofthisvaria-  
for I < 1.25ꢀA. At approximately 500nA, the oscillator  
SET  
tion (if V is at its 0.97V or 1.03V limits).  
SET  
output will be frozen in its current state. The output could  
halt in a high or low state. This avoids introducing short  
pulses while frequency modulating a very low frequency  
output.  
This error is in addition to the inherent PWM duty cycle  
accuracy spec ΔD ( 4.5%), so care should be taken if ac-  
curacy at high duty cycles (V  
near 0.9V) is critical.  
MOD  
69921234p  
20  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
APPLICATIONS INFORMATION  
At the other extreme, it is not recommended to operate  
the master oscillator beyond 2MHz because the accuracy  
of the DIV pin ADC will suffer.  
(TBD • t  
) to settle to within 1% of the final value.  
MASTER  
An example is shown in Figure 11.  
Frequency Modulation and Settling Time  
Pulse Width Modulation Bandwidth and Settling Time  
In addition to pulse-width modulation, the LTC6992 can  
be frequency modulated by varying I . The LTC6992  
will respond to changes in I  
of TBD • f  
TheLTC6992willrespondtochangesinV  
uptoa3dB  
MOD  
SET  
bandwidth of TBD (see Figure 10). This makes it easy to  
stabilize a feedback loop around the LTC6992, since it  
does not introduce a low frequency pole.  
up to a –3dB bandwidth  
SET  
(see Figure 12).  
OUT  
Following a 2x or 0.5x step change in I , the output  
SET  
Duty cycle settling time depends on the master oscillator  
frequency takes approximately TBD master clock cycles  
frequency. Following a 100mV step change in V  
, the  
(TBD • t  
) to settle to within 1% of the final value.  
MOD  
MASTER  
duty cycle takes approximately TBD master clock cycles  
An example is shown in Figure 13.  
PLACEHOLDER  
PLACEHOLDER  
Figure 10. PWM Frequency Response  
Figure 12. Frequency Modulation Bandwidth  
PLACEHOLDER  
PLACEHOLDER  
Figure 11. PWM Settling Time  
Figure 13. Frequency Change Settling Time  
69921234p  
21  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
APPLICATIONS INFORMATION  
Power Supply Current  
+
1. Connect the bypass capacitor, C1, directly to the V and  
GND pins using a low inductance path. The connection  
from C1 to the V pin is easily done directly on the top  
The power supply current varies with frequency, supply  
voltage and output loading. It can be estimated under any  
condition using the following equation:  
+
layer. For the DFN package, C1’s connection to GND is  
also simply done on the top layer. For the TSOT-23, OUT  
can be routed through the C1 pads to allow a good C1  
GND connection. If the PCB design rules do not allow  
that,C1’sGNDconnectioncanbeaccomplishedthrough  
multiple vias to the ground plane. Multiple vias for both  
the GND pin connection to the ground plane and the  
C1 connection to the ground plane are recommended  
to minimize the inductance. Capacitor C1 should be a  
0.1μF ceramic capacitor.  
If NDIV = 1 (DIVCODE = 0 or 15):  
IS(TYP) V+ • fOUT • 39pF +C  
(
)
LOAD  
V+  
V+  
L+  
+
+ 2.2ISET + 85µA  
320kΩ 2RLOAD  
If NDIV > 1 (DIVCODE = 1 or 14):  
fOUT  
IS(TYP) V+ •  
27pF + V+ • fOUT • 27pF +C  
(
)
LOAD  
2. Place all passive components on the top side of the  
board. This minimizes trace inductance.  
NDIV  
V+  
V+  
L+  
+
+ 2.6 •ISET + 90µA  
3. Place R  
as close as possible to the SET pin and  
SET  
320kΩ 2RLOAD  
make a direct, short connection. The SET pin is a  
current summing node and currents injected into this  
pin directly modulate the operating frequency. Having  
a short connection minimizes the exposure to signal  
pickup.  
SUPPLY BYPASSING AND PCB LAYOUT GUIDELINES  
The LTC6992 is a 2.4% accurate silicon oscillator when  
used in the appropriate manner. The part is simple to use  
and by following a few rules, the expected performance  
is easily achieved. The most important use issues involve  
adequate supply bypassing and proper PCB layout.  
4. Connect R directly to the GND pin. Using a long path  
SET  
or vias to the ground plane will not have a significant  
affect on accuracy, but the direct, short connection is  
recommended and easy to apply.  
Figure14showsexamplePCBlayoutsforboththeTSOT-23  
and DFN packages using 0603 sized passive components.  
The layouts assume a two layer board with a ground plane  
layer beneath and around the LTC6992. These layouts are  
a guide and need not be followed exactly.  
5. Use a ground trace to shield the SET pin. This provides  
another layer of protection from radiated signals.  
6. Place R1 and R2 close to the DIV pin. A direct, short  
connection to the DIV pin minimizes the external signal  
coupling.  
69921234p  
22  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
APPLICATIONS INFORMATION  
MOD  
GND  
SET  
OUT  
LTC6992  
+
+
V
V
C1  
0.1ꢀF  
R1  
R2  
DIV  
R
SET  
+
+
V
+
V
C1  
R1  
C1  
V
OUT  
GND  
MOD  
MOD  
GND  
SET  
OUT  
+
DIV  
SET  
V
R2  
DIV  
R1  
R
SET  
R
SET  
R2  
DFN PACKAGE  
TSOT-23 PACKAGE  
6992 F14  
Figure 14. Supply Bypassing and PCB Layout  
Constant On-Time Modulator  
TYPICAL APPLICATIONS  
V
MOD  
OUT  
C1  
MOD  
GND  
SET  
OUT  
R
R
M2  
M1  
V
LTC6992-1  
R
*
CC  
IN  
1.05k  
9.31k  
11.8k  
V
CTRL  
V
IN  
+
V
R1  
182k  
DIVCODE = 2  
(÷16, POL = 1)  
0V TO 2V  
R
44.2k  
SET  
0.1ꢀF  
V
SET  
DIV  
R2  
6992 TA02  
976k  
*OPTIONAL RESISTOR ADJUSTS FOR DESIRED V RANGE.  
IN  
RSET  
50k  
RM2  
RM1+RM2  
IF  
0.9 THEN tON = NDIV • 1.125μs •  
AS V INCREASES, t  
INCREASES AND DUTY CYCLE  
OUT  
IN  
DECREASES (BECAUSE POL = 1) TO MAINTAIN A CONSTANT t  
.
ON  
FOR CONSTANT OFF-TIME, JUST CHANGE DIVCODE SO POL = 0.  
69921234p  
23  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
TYPICAL APPLICATIONS  
Digitally Controlled Duty Cycle with Internal VREF Reference Variation Eliminated  
MOD  
GND  
SET  
OUT  
+
LTC6992-X  
V
+
V
+
C1  
0.1ꢀF  
V
R1  
R2  
+
DIV  
1/2  
LTC6078  
6992 TA03  
R
SET  
+
V
V
REF  
CC  
D
IN  
LTC1659  
V
OUT  
ꢀP  
CLK  
CS/LD  
GND  
Programming NDIV Using an 8-Bit DAC  
ANALOG PWM  
DUTY CYCLE CONTROL  
(0V TO 1V)  
DIVCODE DAC CODE  
MOD  
GND  
SET  
OUT  
0
1
0
24  
LTC6992-X  
2
40  
2.25V TO 5.5V  
+
V
3
56  
C1  
0.1ꢀF  
C2  
0.1ꢀF  
4
72  
5
88  
6
104  
120  
136  
152  
168  
184  
200  
216  
232  
≥255  
DIV  
7
8
9
R
SET  
V
CC  
SDI  
10  
11  
12  
13  
14  
15  
V
LTC2630-LZ8 SCK  
ꢀP  
OUT  
CS/LD  
GND  
6992 TA04  
69921234p  
24  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
TYPICAL APPLICATIONS  
Changing Between Two Frequencies  
ANALOG PWM  
DUTY CYCLE CONTROL  
(0V TO 1V)  
ANALOG PWM  
DUTY CYCLE CONTROL  
(0V TO 1V)  
MOD  
GND  
SET  
OUT  
MOD  
GND  
SET  
OUT  
LTC6992-X  
LTC6992-X  
+
+
+
+
V
V
V
V
+
V
R1  
R2  
R1  
R2  
f
MAX  
R
VCO  
DIV  
DIV  
f
MIN  
+
R
R
R
SET1  
V
SET  
SET2  
f
MIN  
‘HC04  
f
MAX  
2N7002  
‘HC04  
6992 TA05  
NOTES  
NOTES  
WHILE THIS CIRCUIT IS SIMPLER THAN THE CIRCUIT TO THE RIGHT,  
1. WHEN THE NMOSFET IS OFF, THE FREQUENCY IS SET BY R  
= R  
SET1  
= R  
SET1  
.
SET  
SET  
ITS FREQUENCY ACCURACY IS WORSE DUE TO THE EFFECT OF  
2. WHEN THE NMOSFET IS ON, THE FREQUENCY IS SET BY R  
|| R  
.
SET2  
+
+
V
SUPPLY VARIATION FROM SYSTEM TO SYSTEM AND OVER TEMPERATURE.  
3. V SUPPLY VARIATION IS NOT A FACTOR AS THE SWITCHING RESISTOR IS  
EITHER FLOATING OR CONNECTED TO GROUND.  
Simple Diode Temperature Sensor  
R8  
84.5k  
5V  
R6  
5V  
R7  
16.9k  
+10mV/C  
5V  
45.3k  
R9  
+
365ꢁ  
MOC207M  
D3  
MOD  
GND  
SET  
OUT  
D1  
1N458  
LT6003  
Q1  
LTC6992-2  
+
V
5V  
R4  
1000k  
OUTPUT  
C1  
1ꢀF  
R11  
422ꢁ  
DIV  
R5  
186k  
6992 TA06  
R1  
130k  
R2  
N
= 16  
50k  
DIV  
f = 10kHz  
ADJUST FOR 50% DUT CYCLE AT 25°C  
R3  
130k  
PWM OUTPUT FOR ISOLATED MEASUREMENT  
+1% DUTY CYCLE CHANGE PER DEGREE C  
–10°C TO 65°C RANGE WITH OPTO-ISOLATOR (DC: 15% TO 95%)  
69921234p  
25  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
TYPICAL APPLICATIONS  
Motor Speed/Direction Control for Full H-Bridge (Locked Anti-Phase Drive)  
V
S
12V  
A1  
A2  
2.6kHz, 5% TO 95% PWM  
5% DC = CLOCKWISE  
50% DC = STOPPED  
CW CURRENT  
FLOW  
95% DC = COUNTER CLOCKWISE  
MOTOR  
INPUT 0V TO 1V  
MOD  
GND  
SET  
OUT  
LTC6992-2  
+
+
V
V
R1  
1000k  
POWER H-BRIDGE  
HIGH = SWITCH ON  
DIV  
R3  
300k  
R2  
280k  
6992 TA07  
Motor Speed/Direction Control for Full H-Bridge (Sign/Magnitude Drive)  
V
S
12V  
A4  
A5  
2.6kHz, 5% TO 95% PWM  
5% DC = SLOW  
95% DC = FAST  
CW CURRENT  
FLOW  
MOTOR  
INPUT 0V TO 1V  
MOD  
GND  
SET  
OUT  
LTC6992-2  
+
+
V
V
R4  
POWER H-BRIDGE  
HIGH = SWITCH ON  
1000k  
DIV  
R3  
300k  
R5  
280k  
A3  
DIRECTION  
H = CCW, L = CW  
6992 TA08  
69921234p  
26  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
TYPICAL APPLICATIONS  
Ratiometric Sensor to Pulse Width, Non-Inverting Response  
R6  
9.09k  
V
S
C2  
0.22ꢀF  
C1  
0.15ꢀF  
R4  
90.9k  
R5  
10M  
2.5V TO 5.5V  
K = 1  
+
R3  
OUTPUT  
DUTY CYCLE = K • 100%  
10k  
MOD  
OUT  
R
SENSOR  
LT1490  
LTC6992-1  
K• V  
K = 0  
S
+
GND  
SET  
V
V
S
R1  
1000k  
DIV  
R2  
186k  
6992 TA09  
R
SET  
316k  
N
OUT  
= 16  
DIV  
= 10kHz  
f
Ratiometric Sensor to Pulse Width, Inverting Response  
R6  
9.09k  
C2  
0.22ꢀF  
R6  
90.9k  
2.5V TO 5.5V  
V
S
C1  
0.15ꢀF  
V
S
R3  
100k  
K = 1  
R
SENSOR  
K = 0  
K • V  
S
+
OUTPUT  
R4  
10k  
MOD  
GND  
SET  
OUT  
DUTY CYCLE = (1–K) • 100%  
LT1490  
LTC6992-1  
V
S
+
R5  
10k  
V
V
S
R1  
1000k  
DIV  
R2  
186k  
6992 TA10  
R
SET  
316k  
N
OUT  
= 16  
DIV  
= 10kHz  
f
69921234p  
27  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
TYPICAL APPLICATIONS  
Ratio Control Servo Pulse Generator  
R6  
9.09k  
C2  
0.22ꢀF  
C1  
1ꢀF  
R6  
90.9k  
2.5V TO 5.5V  
V
S
V
S
R5  
130k  
+
OUTPUT  
MOD  
GND  
SET  
OUT  
1ms TO 2ms PULSE EVERY 16ms  
LT1490  
LTC6992-1  
R6  
8.66k  
+
V
V
S
R1  
2ms  
SERVO  
CONTROL  
POT  
1000k  
DIV  
10k  
R2  
681k  
1ms  
6992 TA11  
R
SET  
316k  
N
OUT  
= 4096  
= 62.5kHz, 16ms PERIOD  
DIV  
f
Direct Voltage Controlled PWM Dimming 0 to 15000 Cd/m2 Intensity  
R3  
90.9ꢁ  
V
MOD  
GND  
SET  
OUT  
DIMMING  
LTC6992-1  
D1  
+
5V  
V
HIGH INTENSITY LED  
SSL-LX5093XUWC  
C1  
R1  
1M  
0.1ꢀF  
DIV  
R2  
280k  
6992 TA12  
R
SET  
105k  
f = 7.5kHz  
= 64  
N
DIV  
69921234p  
28  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
TYPICAL APPLICATIONS  
Wide Range LED Dimming (0 to 85000 Cd/m2 Brightness)  
R2  
7.5k  
5V  
V
FAST  
FAST PWM  
R1  
10k  
5V  
+
CONTROLS 6000 TO 85000  
2
Cd/m BRIGHTNESS  
MOD  
OUT  
+
LT6004  
LT6004  
LTC6992-4  
+
GND  
SET  
V
R4  
7.5k  
R3  
5V  
3.3V  
3.3V  
5V  
PV  
10k  
C4  
R
DIV1  
0.1ꢀF  
1M  
V
REF  
DIV  
IN  
IN  
R
DIV2  
+
LED  
R
280k  
SET1  
61.9k  
5–100%  
= 64  
A1  
D1  
D2  
N
DIV  
LT3518UF  
f = 12.6kHz  
PWM  
V
DIMMING  
0V TO 1.65V  
SLOW PWM  
CONTROLS 0 TO 6000  
2
Cd/m BRIGHTNESS  
V
SLOW  
LUMILEDS LXHL-BW02  
MOD  
OUT  
LTC6992-1  
+
GND  
SET  
V
5V  
C1  
R
DIV3  
0.1ꢀF  
1M  
DIV  
R
DIV4  
R
681k  
SET2  
0–100%  
124k  
6992 TA13  
N
= 4096  
DIV  
f
= 100kHz  
OUT  
69921234p  
29  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
PACKAGE DESCRIPTION  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715 Rev A)  
0.70 0.05  
1.65 0.05  
(2 SIDES)  
3.55 0.05  
2.15 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
1.35 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
2.00 0.10  
(2 SIDES)  
0.40 0.10  
R = 0.05  
TYP  
4
6
3.00 0.10 1.65 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1 NOTCH  
R0.20 OR 0.25  
× 45° CHAMFER  
(DCB6) DFN 0405  
3
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
1.35 0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
69921234p  
30  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636 Rev B)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
69921234p  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
31  
LTC6992-1/LTC6992-2/  
LTC6992-3/LTC6992-4  
TYPICAL APPLICATION  
LED Driver with 5000:1 Dimming Range  
L1  
6.8ꢀH  
D1  
V
IN  
5V TO 16V  
C1  
0.22ꢀF  
R1  
3.92M  
SHDN  
V
IN  
SW  
FB  
R2  
124k  
LT3517  
ANALOG PWM  
DUTY CYCLE  
CONTROL  
300mA  
PWM  
TGEN  
MOD  
GND  
SET  
OUT  
ISP  
LTC6992-1  
5V  
C1  
2.2ꢀF  
(0V TO 1V)  
R
SENSE  
V
REF  
+
330mΩ  
C2  
4.7ꢀF  
V
CTRL  
SYNC  
ISN  
TG  
1M  
DIV  
V
C
R
T
SS GND  
102k  
681k  
C4  
0.1pF  
C3  
0.1pF  
R
6.04k  
2MHz  
T
6992 TA14  
C1: KEMET C0806C225K4RAC  
C2: KEMET C1206C475K3RAC  
C3, C4: MURATA GRM21BR71H104KA01B  
C5: MURATA GRM21BR71H224KA01B  
D1: DIODE DFL5160  
L1: TOKO B992A5-6RBN  
LEDS: LUXEON I (WHITE)  
M1: ZETEX ZXMP6A13FTA  
RELATED PARTS  
PART NUMBER  
LTC1799  
DESCRIPTION  
COMMENTS  
Wide Frequency Range  
Low Power, Wide Frequency Range  
Micropower, I = 35ꢀA at 400kHz  
1MHz to 33MHz ThinSOT Silicon Oscillator  
1MHz to 20MHz ThinSOT Silicon Oscillator  
LTC6900  
LTC6906/LTC6907 10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator  
SUPPLY  
LTC6990  
TimerBlox, Voltage Controlled Oscillator  
TimerBlox, Very Low Frequency Clock with Reset  
TimerBlox, Monostable Pulse Generator  
Frequency from 488Hz to 1MHz, No Caps, 2% Accurate  
LTC6991  
Cycle Time from 2ms to 9.5 Hours, No Caps, 2% Accurate  
Resistor Set Pulse Width from 1ꢀs to 2ms, No Caps, 2% Accurate  
Resistor Set Pulse Width from 1ꢀs to 2ms, No Caps, 2% Accurate  
Resistor Set Delay from 1ꢀs to 2ms, No Caps, 2% Accurate  
LTC6993-1  
LTC6993-2  
LTC6994-1  
LTC6994-2  
TimerBlox, Retriggerable Monostable Pulse Generator  
TimerBlox, Delay Block, First Edge Only Delayed  
TimerBlox, Delay Block/Debouncer, Both Edges Delayed  
Resistor Set Delay from 1ꢀs to 2ms, No Capacitors Required,  
2% Accurate  
69921234p  
LT 0510 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC6992HDCB6-2-TRPBF

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992HDCB6-3#TRPBF

IC SWITCHING CONTROLLER, PDSO6, 2 X 3 MM, LEAD FREE, PLASTIC, MO-229TBD, DFN-6, Switching Regulator or Controller
Linear

LTC6992HDCB6-3-PBF

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992HDCB6-3-TRPBF

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992HDCB6-4#TRPBF

IC SWITCHING CONTROLLER, PDSO6, 2 X 3 MM, LEAD FREE, PLASTIC, MO-229TBD, DFN-6, Switching Regulator or Controller
Linear

LTC6992HDCB6-4-PBF

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992HDCB6-4-TRPBF

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992HS6-1#PBF

LTC6992 - TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM); Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6992HS6-1#TRMPBF

LTC6992 - TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM); Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6992HS6-1#TRPBF

LTC6992 - TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM); Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6992HS6-1-PBF

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear

LTC6992HS6-1-TRPBF

TimerBlox Voltage-Controlled Pulse Width Modulator (PWM)
Linear