LTC6993CS6-2#TRPBF [Linear]

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C;
LTC6993CS6-2#TRPBF
型号: LTC6993CS6-2#TRPBF
厂家: Linear    Linear
描述:

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: SOT; Pins: 6; Temperature Range: 0°C to 70°C

时钟 光电二极管 逻辑集成电路
文件: 总28页 (文件大小:418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
TimerBlox: Monostable  
Pulse Generator (One Shot)  
FeaTures  
DescripTion  
n
Pulse Width Range: 1µs to 33.6 Seconds  
The LTC®6993 is a monostable multivibrator (also known  
as a “one-shot” pulse generator) with a programmable  
pulse width of 1µs to 33.6 seconds. The LTC6993 is part  
oftheTimerBlox® familyofversatilesilicontimingdevices.  
n
Configured with 1 to 3 Resistors  
n
Pulse Width Max Error:  
n
<2.3% for Pulse Width > 512µs  
n
<3.4% for Pulse Width of 8µs to 512µs  
A single resistor, R , programs an internal master os-  
SET  
n
<4.9% for Pulse Width of 1µs to 8µs  
cillator frequency, setting the LTC6993’s time base. The  
n
Four LTC6993 Options Available:  
output pulse width is determined by this master oscillator  
n
Rising-Edge or Falling-Edge Trigger  
Retriggerable or Non-Retriggerable  
and an internal clock divider, N , programmable to eight  
DIV  
n
21  
settings from 1 to 2 .  
n
Configurable for Positive or Negative Output Pulse  
Fast Recovery Time  
n
n
n
n
n
n
n
NDIV RSET  
tOUT  
=
1µs, NDIV = 1, 8, 64,...,221  
2.25V to 5.5V Single Supply Operation  
70µA Supply Current at 10µs Pulse Width  
500µs Start-Up Time  
CMOS Output Driver Sources/Sinks 20mA  
–55°C to 125°C Operating Temperature Range  
Available in Low Profile (1mm) SOT-23 (ThinSOT™)  
and 2mm × 3mm DFN  
50kΩ  
The output pulse is initiated by a transition on the trigger  
input(TRIG).Eachpartcanbeconfiguredtogenerateposi-  
tive or negative output pulses. The LTC6993 is available  
in four versions to provide different trigger signal polarity  
and retrigger capability.  
DEVICE  
INPUT POLARITY  
Rising-Edge  
Rising-Edge  
Falling-Edge  
Falling-Edge  
RETRIGGER  
LTC6993-1  
LTC6993-2  
LTC6993-3  
LTC6993-4  
No  
Yes  
No  
applicaTions  
n
Watchdog Timer  
n
Frequency Discriminators  
Yes  
n
Missing Pulse Detection  
Envelope Detection  
High Vibration, High Acceleration Environments  
Portable and Battery-Powered Equipment  
The LTC6993 also offers the ability to dynamically adjust  
thewidthoftheoutputpulseviaaseparatecontrolvoltage.  
n
n
n
For easy configuration of the LTC6993, download the  
TimerBlox Designer tool at www.linear.com/timerblox.  
L, LT, LTC, LTM, Linear Technology, TimerBlox and the Linear logo are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
Typical applicaTion  
Envelope Detector  
80kHz CARRIER  
TRIG  
SIGNAL  
MODULATED  
CARRIER  
TRIG  
GND  
SET  
OUT  
2V/DIV  
ENVELOPE  
LTC6993-2  
3.3V  
+
V
16µs  
0.1µF  
OUT  
2V/DIV  
DIV  
R
SET  
69931234 TA01a  
800k  
69931234 TA01b  
50µs/DIV  
69931234fc  
1
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
absoluTe MaxiMuM raTings (Note 1)  
+
Supply Voltage (V ) to GND ........................................6V  
Specified Temperature Range (Note 3)  
Maximum Voltage on Any Pin  
LTC6993C................................................ 0°C to 70°C  
LTC6993I.............................................–40°C to 85°C  
LTC6993H.......................................... –40°C to 125°C  
LTC6993MP....................................... –55°C to 125°C  
Junction Temperature ........................................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
+
..................................(GND – 0.3V) ≤ V ≤ (V + 0.3V)  
PIN  
Operating Temperature Range (Note 2)  
LTC6993C............................................–40°C to 85°C  
LTC6993I.............................................–40°C to 85°C  
LTC6993H.......................................... –40°C to 125°C  
LTC6993MP....................................... –55°C to 125°C  
S6 Package.......................................................300°C  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
+
6
5
4
OUT  
GND  
TRIG  
V
1
2
3
TRIG 1  
GND 2  
SET 3  
6 OUT  
7
DIV  
SET  
+
5 V  
4 DIV  
DCB PACKAGE  
6-LEAD (2mm × 3mm) PLASTIC DFN  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
T
= 150°C, θ = 64°C/W, θ = 10.6°C/W  
T
JMAX  
= 150°C, θ = 192°C/W, θ = 51°C/W  
JMAX  
JA  
JC  
JA  
JC  
EXPOSED PAD (PIN 7) CONNECTED TO GND,  
PCB CONNECTION OPTIONAL  
orDer inForMaTion  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
6-Lead (2mm × 3mm) Plastic DFN  
SPECIFIED TEMPERATURE RANGE  
LTC6993CDCB-1#TRMPBF LTC6993CDCB-1#TRPBF LDXH  
LTC6993IDCB-1#TRMPBF LTC6993IDCB-1#TRPBF LDXH  
LTC6993HDCB-1#TRMPBF LTC6993HDCB-1#TRPBF LDXH  
LTC6993CDCB-2#TRMPBF LTC6993CDCB-2#TRPBF LDXK  
LTC6993IDCB-2#TRMPBF LTC6993IDCB-2#TRPBF LDXK  
LTC6993HDCB-2#TRMPBF LTC6993HDCB-2#TRPBF LDXK  
LTC6993CDCB-3#TRMPBF LTC6993CDCB-3#TRPBF LFMJ  
LTC6993IDCB-3#TRMPBF LTC6993IDCB-3#TRPBF LFMJ  
LTC6993HDCB-3#TRMPBF LTC6993HDCB-3#TRPBF LFMJ  
LTC6993CDCB-4#TRMPBF LTC6993CDCB-4#TRPBF LFMM  
LTC6993IDCB-4#TRMPBF LTC6993IDCB-4#TRPBF LFMM  
LTC6993HDCB-4#TRMPBF LTC6993HDCB-4#TRPBF LFMM  
0°C to 70°C  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead (2mm × 3mm) Plastic DFN  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6993CS6-1#TRMPBF LTC6993CS6-1#TRPBF  
LTC6993IS6-1#TRMPBF LTC6993IS6-1#TRPBF  
LTDXG  
LTDXG  
LTDXG  
6-Lead Plastic TSOT-23  
–40°C to 85°C  
–40°C to 125°C  
LTC6993HS6-1#TRMPBF LTC6993HS6-1#TRPBF  
6-Lead Plastic TSOT-23  
69931234fc  
2
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
orDer inForMaTion  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC6993CS6-2#TRMPBF LTC6993CS6-2#TRPBF  
LTC6993IS6-2#TRMPBF LTC6993IS6-2#TRPBF  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTDXJ  
LTDXJ  
LTDXJ  
LTFMH  
LTFMH  
LTFMH  
LTFMK  
LTFMK  
LTFMK  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6993HS6-2#TRMPBF LTC6993HS6-2#TRPBF  
LTC6993CS6-3#TRMPBF LTC6993CS6-3#TRPBF  
LTC6993IS6-3#TRMPBF  
LTC6993IS6-3#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC6993HS6-3#TRMPBF LTC6993HS6-3#TRPBF  
LTC6993CS6-4#TRMPBF LTC6993CS6-4#TRPBF  
LTC6993IS6-4#TRMPBF  
LTC6993IS6-4#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
LTC6993HS6-4#TRMPBF LTC6993HS6-4#TRPBF  
LTC6993MPS6-1#TRMPBF LTC6993MPS6-1#TRPBF LTDXG  
LTC6993MPS6-2#TRMPBF LTC6993MPS6-2#TRPBF LTDXJ  
LTC6993MPS6-3#TRMPBF LTC6993MPS6-3#TRPBF LTFMH  
LTC6993MPS6-4#TRMPBF LTC6993MPS6-4#TRPBF LTFMK  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, TRIG = 0V, DIVCODE = 0 to 15  
(NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
Output Pulse Width  
Pulse Width Accuracy (Note 4)  
1µ  
33.55  
sec  
OUT  
t  
N
≥ 512  
1.7  
2.4  
3.6  
4.0  
2.3  
3.0  
%
%
OUT  
DIV  
l
l
l
l
8 ≤ N ≤ 64  
3.4  
4.4  
%
%
DIV  
N
= 1 (LTC6993-1 or LTC6993-2)  
= 1 (LTC6993-3 or LTC6993-4)  
4.9  
6.0  
%
%
DIV  
DIV  
N
5.3  
6.4  
%
%
l
l
t /T  
OUT  
Pulse Width Drift Over Temperature  
Pulse Width Change With Supply  
N
N
≥ 512  
≤ 64  
0.006  
0.008  
%/°C  
%/°C  
DIV  
DIV  
+
+
l
l
N
≥ 512  
V = 4.5V to 5.5V  
–0.6  
–0.4  
–0.2  
–0.1  
%
%
DIV  
V = 2.25V to 4.5V  
+
+
l
l
l
8 ≤ N ≤ 64  
V = 4.5V to 5.5V  
–0.9  
–0.7  
–1.1  
–0.2  
–0.2  
–0.1  
%
%
%
DIV  
V = 2.7V to 4.5V  
0.4  
0.9  
+
V = 2.25V to 2.7V  
69931234fc  
3
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, TRIG = 0V, DIVCODE = 0 to 15  
(NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = 5k, CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
Pulse Width Jitter (Note 10)  
N
DIV  
= 1  
V = 5.5V  
0.85  
0.45  
%
P-P  
%
P-P  
V = 2.25V  
N
DIV  
N
DIV  
N
DIV  
N
DIV  
= 8  
0.20  
0.05  
0.20  
0.03  
%
%
%
%
P-P  
P-P  
P-P  
= 64  
= 512  
= 4096  
P-P  
t
Pulse Width Change Settling Time (Note 9)  
t
= t /N  
OUT DIV  
6 t  
µs  
S
MASTER  
MASTER  
Power Supply  
+
l
l
V
Operating Supply Voltage Range  
2.25  
5.5  
V
V
Power-On Reset Voltage  
Supply Current (Idle)  
1.95  
+
+
l
l
I
R = ∞, R = 50k, N ≤ 64  
V = 5.5V  
165  
125  
200  
160  
µA  
µA  
S(IDLE)  
L
SET  
DIV  
V = 2.25V  
+
+
l
l
R = ∞, R = 50k, N ≥ 512 V = 5.5V  
135  
105  
175  
140  
µA  
µA  
L
SET  
DIV  
V = 2.25V  
+
+
l
l
R = ∞, R = 800k, N ≤ 64 V = 5.5V  
70  
60  
110  
95  
µA  
µA  
L
SET  
DIV  
V = 2.25V  
+
+
l
l
R = ∞, R = 800k, N ≥ 512 V = 5.5V  
65  
55  
100  
90  
µA  
µA  
L
SET  
DIV  
V = 2.25V  
Analog Inputs  
Voltage at SET Pin  
Drift Over Temperature  
l
l
l
l
l
V
0.97  
1.00  
75  
1.03  
800  
V
SET  
V /T  
V
µV/°C  
kΩ  
V
SET  
SET  
R
Frequency-Setting Resistor  
DIV Pin Voltage  
50  
0
SET  
DIV  
+
V
V
+
V /V DIV Pin Valid Code Range (Note 5)  
Deviation from Ideal  
DIV  
1.5  
%
DIV  
+
V
/V = (DIVCODE + 0.5)/16  
l
DIV Pin Input Current  
Digital I/O  
10  
nA  
TRIG Pin Input Capacitance  
TRIG Pin Input Current  
2.5  
20  
pF  
nA  
V
+
TRIG = 0V to V  
(Note 6)  
10  
+
l
l
V
V
High Level TRIG Pin Input Voltage  
Low Level TRIG Pin Input Voltage  
Output Current  
0.7 V  
IH  
+
(Note 6)  
+
0.3 V  
V
IL  
I
V = 2.7V to 5.5V  
mA  
OUT(MAX)  
+
l
l
V
High Level Output Voltage (Note 7)  
V = 5.5V  
I
I
= –1mA  
= –16mA  
5.45  
4.84  
5.48  
5.15  
V
V
OH  
OUT  
OUT  
+
l
l
V = 3.3V  
I
I
= –1mA  
= –10mA  
3.24  
2.75  
3.27  
2.99  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= –1mA  
= –8mA  
2.17  
1.58  
2.21  
1.88  
V
V
OUT  
OUT  
+
l
l
V
Low Level Output Voltage (Note 7)  
V = 5.5V  
I
I
= 1mA  
= 16mA  
0.02  
0.26  
0.04  
0.54  
V
V
OL  
OUT  
OUT  
+
l
l
V = 3.3V  
I
I
= 1mA  
= 10mA  
0.03  
0.22  
0.05  
0.46  
V
V
OUT  
OUT  
+
l
l
V = 2.25V  
I
I
= 1mA  
= 8mA  
0.03  
0.26  
0.07  
0.54  
V
V
OUT  
OUT  
69931234fc  
4
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. Test conditions are V+ = 2.25V to 5.5V, TRIG = 0V, DIVCODE = 0 to 15  
(NDIV = 1 to 221), RSET = 50k to 800k, RLOAD = , CLOAD = 5pF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
t
Trigger Propagation Delay  
V = 5.5V  
11  
17  
28  
ns  
ns  
ns  
PD  
+
V = 3.3V  
+
V = 2.25V  
+
t
t
t
Minimum Recognized TRIG Pulse Width  
Recovery Time (LTC6993-1/LTC6993-3)  
V = 3.3V  
5
ns  
ns  
WIDTH  
ARM  
–4  
+
Time Between Trigger Signals  
(LTC6993-2/LTC6993-4)  
N
DIV  
N
DIV  
= 1  
> 1  
V = 3.3V  
10  
50  
ns  
ns  
RETRIG  
+
V = 3.3V  
+
t
t
Output Rise Time (Note 8)  
V = 5.5V  
1.1  
1.7  
2.7  
ns  
ns  
ns  
r
f
+
V = 3.3V  
+
V = 2.25V  
+
Output Fall Time (Note 8)  
V = 5.5V  
1.0  
1.6  
2.4  
ns  
ns  
ns  
+
V = 3.3V  
+
V = 2.25V  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC6993C is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 6: The TRIG pin has hysteresis to accommodate slow rising or falling  
signals. The threshold voltages are proportional to V . Typical values can  
be estimated at any supply voltage using:  
+
+
V
V
≈ 0.55 V + 185mV and  
TRIG(RISING)  
+
≈ 0.48 V – 155mV  
TRIG(FALLING)  
Note 7: To conform to the Logic IC Standard, current out of a pin is  
Note 3: The LTC6993C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC6993C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but it is not tested or  
QA sampled at these temperatures. The LTC6993I is guaranteed to meet  
specified performance from –40°C to 85°C. The LTC6993H is guaranteed  
to meet specified performance from –40°C to 125°C. The LTC6993MP is  
guaranteed to meet specified performance from –55°C to 125°C.  
arbitrarily given a negative value.  
Note 8: Output rise and fall times are measured between the 10% and the  
90% power supply levels with 5pF output load. These specifications are  
based on characterization.  
Note 9: Settling time is the amount of time required for the output to settle  
within 1% of the final pulse width after a 0.5× or 2× change in I  
Note 10: Jitter is the ratio of the deviation of the output pulse width to the  
mean of the pulse width. This specification is based on characterization  
and is not 100% tested.  
.
SET  
Note 4: Pulse width accuracy is defined as the deviation from the t  
OUT  
equation, assuming R is used to program the pulse width.  
SET  
Note 5: See Operation section, Table 1 and Figure 2 for a full explanation  
of how the DIV pin voltage selects the value of DIVCODE.  
69931234fc  
5
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k and TA = 25°C unless otherwise noted.  
tOUT Drift vs Temperature  
(NDIV ≤ 64)  
tOUT Drift vs Temperature  
(NDIV ≤ 64)  
t
OUT Drift vs Temperature  
(NDIV ≤ 64)  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
R
SET  
= 800k  
R
SET  
= 50k  
R
SET  
= 200k  
3 PARTS  
3 PARTS  
3 PARTS  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
69931234 G03  
69931234 G01  
69931234 G02  
tOUT Drift vs Temperature  
(NDIV ≥ 512)  
tOUT Drift vs Temperature  
(NDIV ≥ 512)  
tOUT Drift vs Temperature  
(NDIV ≥ 512)  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
R
SET  
= 800k  
R
SET  
= 200k  
R
SET  
= 50k  
3 PARTS  
3 PARTS  
3 PARTS  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
69931234 G06  
69931234 G05  
69931234 G04  
tOUT Drift vs Supply Voltage  
(NDIV = 1, Rising Edge)  
tOUT Drift vs Supply Voltage  
(NDIV = 1, Falling Edge)  
tOUT Drift vs Supply Voltage  
(NDIV > 1)  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
+
LTC6993-1/LTC6993-2  
DIVCODE = 0  
REFERENCED TO V = 4V  
LTC6993-3/LTC6993-4  
REFERENCED TO V = 4V  
DIVCODE = 0  
+
+
REFERENCED TO V = 4V  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
R
R
R
= 50k  
= 200k  
= 800k  
R
R
R
= 50k  
= 200k  
= 800k  
R
SET  
R
SET  
R
SET  
= 50k, N = 8  
DIV  
SET  
SET  
SET  
SET  
SET  
SET  
= 50k TO 800k, N ≥ 512  
DIV  
= 800k, N = 8  
DIV  
2
3
4
5
6
2
3
4
5
6
2
3
4
5
6
SUPPLY (V)  
SUPPLY (V)  
SUPPLY (V)  
69931234 G07  
69931234 G08  
69931234 G09  
69931234fc  
6
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k and TA = 25°C unless otherwise noted.  
t
OUT Error vs RSET  
tOUT Error vs RSET  
(8 ≤ NDIV ≤ 64)  
tOUT Error vs RSET  
(NDIV ≥ 512)  
(NDIV = 1, Rising Edge)  
5
4
5
5
4
3 PARTS  
3 PARTS  
LTC6993-1/LTC6993-2  
DIVCODE = 0  
3 PARTS  
4
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
50  
100  
200  
(kΩ)  
400  
800  
50  
100  
200  
(kΩ)  
400  
800  
50  
100  
200  
(kΩ)  
400  
800  
R
R
SET  
R
SET  
SET  
69931234 G11  
69931234 G12  
69931234 G10  
tOUT Error vs RSET  
tOUT Error vs DIVCODE  
(Rising Edge)  
tOUT Error vs DIVCODE  
(Falling Edge)  
(NDIV = 1, Falling Edge)  
5
4
5
4
5
4
LTC6993-3/LTC6993-4  
DIVCODE = 0  
3 PARTS  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
R
= 50k  
R
= 50k  
SET  
SET  
3 PARTS  
3 PARTS  
3
3
3
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
50  
100  
200  
(kΩ)  
400  
800  
R
DIVCODE  
DIVCODE  
SET  
69931234 G13  
69931234 G14  
69931234 G15  
VSET Drift vs ISET  
VSET Drift vs Supply Voltage  
VSET vs Temperature  
1.0  
0.8  
1.0  
0.8  
1.020  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
0.980  
3 PARTS  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
+
REFERENCED TO I  
= 10µA  
REFERENCED TO V = 4V  
SET  
0
10  
(µA)  
15  
20  
2
4
5
6
5
3
–50  
0
25  
50  
75 100 125  
–25  
I
SUPPLY (V)  
TEMPERATURE (°C)  
SET  
69931234 G16  
69931234 G17  
69931234 G18  
69931234fc  
7
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k and TA = 25°C unless otherwise noted.  
Typical VSET Distribution  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
250  
200  
150  
100  
50  
300  
250  
250  
200  
150  
100  
50  
2 LOTS  
DFN AND SOT-23  
1274 UNITS  
“ACTIVE” = 50% TIMING DUTY CYCLE  
“ACTIVE” = 50% TIMING DUTY CYCLE  
R
SET  
= 50k, ÷1, ACTIVE  
R
= 50k  
SET  
÷1, ACTIVE  
200  
150  
R
= 50k  
SET  
R
= 50k, ÷1, IDLE  
SET  
÷1, IDLE  
R
SET  
= 100k, ÷8, ACTIVE  
R
SET  
= 100k, ÷8, ACTIVE  
100  
50  
0
R
SET  
= 100k, ÷8, IDLE  
R
= 100k, ÷8, IDLE  
SET  
R
SET  
= 800k, ÷512  
R
SET  
= 800k, ÷512  
C
R
= 5pF  
= ∞  
C
= 5pF  
= ∞  
LOAD  
LOAD  
LOAD  
R
LOAD  
0
0
0.98  
0.996  
V
1.004  
(V)  
1.012  
1.02  
0.988  
2
3
4
5
6
–50 –25  
0
25  
50  
75 100 125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SET  
69931234 G19  
69931234 G20  
69931234 G21  
Supply Current  
vs TRIG Pin Voltage  
Supply Current vs tOUT (5V)  
Supply Current vs tOUT (2.5V)  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
ACTIVE CURRENT MEASURED  
WITH TRIGGER PERIOD = 2 • t  
(50% DUTY CYCLE)  
ACTIVE CURRENT MEASURED  
WITH TRIGGER PERIOD = 2 • t  
(50% DUTY CYCLE)  
OUT  
OUT  
5V  
5V  
TRIG FALLING  
TRIG RISING  
÷1  
÷8  
÷64  
3.3V  
TRIG RISING  
3.3V  
TRIG FALLING  
÷1  
÷512  
÷8  
÷64  
÷512  
+
+
V
C
R
= 5V  
V
C
R
= 2.5V  
C
R
= 5pF  
= ∞  
LOAD  
LOAD  
= 5pF  
=  
= 5pF  
=  
LOAD  
LOAD  
LOAD  
ACTIVE  
IDLE  
LOAD  
ACTIVE  
IDLE  
0
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.001  
0.01  
0.1  
1
(ms)  
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
+
V
/V (V/V)  
t
t
(ms)  
TRIG  
OUT  
OUT  
69931234 G23  
69931234 G24  
69931234 G22  
TRIG Threshold Voltage  
vs Supply Voltage  
Typical ISET Current Limit vs V+  
Peak-to-Peak Jitter vs tOUT  
1000  
800  
600  
400  
200  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.9  
0.8  
0.7  
PEAK-TO-PEAK t  
VARIATION  
MEASURED OVER  
30s INTERVALS  
SET PIN SHORTED TO GND  
OUT  
÷1, 5.5V  
POSITIVE GOING  
0.6  
0.5  
NEGATIVE GOING  
÷1, 2.25V  
0.4  
0.3  
0.2  
0.1  
0
÷8, 5.5V  
÷512  
÷8, 2.25V  
0.01  
÷64  
÷4096  
2
3
4
5
6
2
3
4
5
6
0.001  
0.1  
1
10  
100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
t
(ms)  
OUT  
69931234 G27  
69931234 G25  
69931234 G26  
69931234fc  
8
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
Typical perForMance characTerisTics  
V+ = 3.3V, RSET = 200k and TA = 25°C unless otherwise noted.  
Output Resistance vs Supply  
Trigger Propagation Delay (tPD  
)
Rise and Fall Time  
vs Supply Voltage  
Voltage  
vs Supply Voltage  
50  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
30  
25  
C
= 5pF  
C
= 5pF  
LOAD  
LOAD  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
15  
OUTPUT SOURCING CURRENT  
t
RISE  
t
FALL  
10  
5
OUTPUT SINKING CURRENT  
0
0
2
3
4
5
6
2
3
4
5
6
2
3
4
5
6
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
69931234 G30  
6990 G29  
69931234 G28  
69931234fc  
9
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
pin FuncTions (DCB/S6)  
V (Pin 1/Pin 5): Supply Voltage (2.25V to 5.5V). This  
supply should be kept free from noise and ripple. It should  
bebypasseddirectlytotheGNDpinwitha0.1µFcapacitor.  
+
toleranceand50ppm/°Corbettertemperaturecoefficient.  
For lower accuracy applications an inexpensive 1% thick  
film resistor may be used.  
Limit the capacitance on the SET pin to less than 10pF  
to minimize jitter and ensure stability. Capacitance less  
than 100pF maintains the stability of the feedback circuit  
DIV (Pin 2/Pin 4): Programmable Divider and Polarity  
Input. The DIV pin voltage (V ) is internally converted  
DIV  
into a 4-bit result (DIVCODE). V may be generated by  
DIV  
+
regulating the V voltage.  
a resistor divider between V and GND. Use 1% resistors  
SET  
to ensure an accurate result. The DIV pin and resistors  
should be shielded from the OUT pin or any other traces  
that have fast edges. Limit the capacitance on the DIV pin  
TRIG (Pin 4/Pin 1): Trigger Input. Depending on the ver-  
sion, a rising or falling edge on TRIG will initiate the output  
pulse. LTC6993-1 and LTC6993-2 are rising-edge sensi-  
tive.LTC6993-3andLTC6993-4arefalling-edgesensitive.  
to less than 100pF so that V settles quickly. The MSB of  
DIV  
DIVCODE (POL) determines the polarity of the OUT pins.  
When POL = 0 the output produces a positive pulse. When  
POL = 1 the output produces a negative pulse.  
TheLTC6993-2andLTC6993-4areretriggerable,allowing  
thepulsewidthtobeextendedbyadditionaltriggersignals  
that occur while the output is active. The LTC6993-1/  
LTC6993-3 will ignore additional trigger inputs until the  
output pulse has terminated.  
SET (Pin 3/Pin 3): Pulse Width Setting Input. The voltage  
on the SET pin (V ) is regulated to 1V above GND. The  
SET  
amount of current sourced from the SET pin (I ) pro-  
SET  
GND(Pin5/Pin2):Ground.Tietoalowinductanceground  
plane for best performance.  
grams the master oscillator frequency. The I  
current  
SET  
range is 1.25µA to 20µA. The output pulse will continue  
indefinitely if I drops below approximately 500nA,  
OUT (Pin 6/Pin 6): Output. The OUT pin swings from  
SET  
+
and will terminate when I  
increases again. A resistor  
GND to V with an output resistance of approximately  
SET  
connected between SET and GND is the most accurate  
way to set the pulse width. For best performance, use  
a precision metal or thin film resistor of 0.5% or better  
30Ω. When driving an LED or other low impedance load  
a series output resistor should be used to limit source/  
sink current to 20mA.  
+
V
TRIG  
OUT  
LTC6993  
+
V
+
GND  
SET  
V
C1  
0.1µF  
R1  
R2  
DIV  
69931234 PF  
R
SET  
69931234fc  
10  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
block DiagraM (S6 package pin numbers shown)  
5
+
V
R1  
POL  
DIV  
4-BIT A/D  
DIGITAL  
FILTER  
4
1
CONVERTER  
R2  
TRIGGER/  
TRIG  
RETRIGGER  
LOGIC  
S
OUTPUT  
POLARITY  
OUT  
Q
6
MASTER OSCILLATOR  
1µs  
50kΩ  
V
I
SET  
SET  
PROGRAMMABLE DIVIDER  
t
=
t
OUT  
MASTER  
MCLK  
R
÷1, 8, 64, 512, 4096,  
15 18 21  
2
, 2 , 2  
POR  
HALT OSCILLATOR  
IF I  
< 500nA  
SET  
I
SET  
+
+
1V  
V
= 1V  
SET  
SET  
3
GND  
2
69931234 BD  
I
SET  
R
SET  
69931234fc  
11  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
operaTion  
The LTC6993 is built around a master oscillator with a 1µs  
DIVCODE  
minimum period. The oscillator is controlled by the SET  
+
TheDIVpinconnectstoaninternal,V referenced4-bitA/D  
converter that determines the DIVCODE value. DIVCODE  
programs two settings on the LTC6993:  
pin current (I ) and voltage (V ), with a 1µs/50kΩ  
SET  
SET  
conversion factor that is accurate to 1.7% under typical  
conditions.  
1. DIVCODE determines the frequency divider setting,  
1µs VSET  
50kΩ ISET  
N
DIV  
.
tMASTER  
=
2. DIVCODE determines the polarity of OUT pin, via the  
POL bit.  
A feedback loop maintains V  
at 1V 30mV, leaving  
SET  
+
I
as the primary means of controlling the pulse width.  
SET  
V
may be generated by a resistor divider between V  
DIV  
The simplest way to generate I is to connect a resistor  
SET  
and GND as shown in Figure 1.  
(R ) between SET and GND, such that I = V /R .  
The master oscillator equation reduces to:  
SET  
SET  
SET SET  
2.25V TO 5.5V  
+
V
RSET  
50kΩ  
R1  
R2  
LTC6993  
tMASTER = 1µs •  
DIV  
From this equation, it is clear that V drift will not affect  
SET  
GND  
the pulse width when using a single program resistor  
69931234 F01  
(R ). Error sources are limited to R  
tolerance and  
SET  
SET  
the inherent pulse width accuracy t  
of the LTC6993.  
Figure 1. Simple Technique for Setting DIVCODE  
OUT  
R
may range from 50k to 800k (equivalent to I  
SET  
SET  
Table 1 offers recommended 1% resistor values that ac-  
curatelyproducethecorrectvoltagedivisionaswellasthe  
between 1.25µA and 20µA).  
A trigger signal (rising or falling edge on TRIG pin) latches  
theoutputtotheactivestate,beginningtheoutputpulse.At  
the same time, the master oscillator is enabled to time the  
durationoftheoutputpulse. Whenthedesiredpulsewidth  
is reached, the master oscillator resets the output latch.  
correspondingN andPOLvaluesfortherecommended  
DIV  
resistor pairs. Other values may be used as long as:  
+
1. The V /V ratio is accurate to 1.5% (including resis-  
DIV  
tor tolerances and temperature effects).  
2. Thedrivingimpedance(R1||R2)doesnotexceed500kΩ.  
If the voltage is generated by other means (i.e., the output  
The LTC6993 also includes a programmable frequency  
divider which can further divide the frequency by 1, 8, 64,  
15 18  
21  
+
512, 4096, 2 , 2 or 2 . This extends the pulse width  
of a DAC) it must track the V supply voltage. The last  
duration by those same factors. The divider ratio N is  
column in Table 1 shows the ideal ratio of V  
to the  
DIV  
DIV  
set by a resistor divider attached to the DIV pin.  
supply voltage, which can also be calculated as:  
NDIV VSET  
50kΩ ISET  
VDIV DIVCODE+0.5  
tOUT  
=
1µs  
=
±1.5%  
V+  
16  
Forexample,ifthesupplyis3.3VandthedesiredDIVCODE  
With R in place of V /I the equation reduces to:  
SET  
SET SET  
is 4, V = 0.281 3.3V = 928mV 50mV.  
DIV  
NDIV RSET  
50kΩ  
tOUT  
=
1µs  
Figure 2 illustrates the information in Table 1, showing  
that N is symmetric around the DIVCODE midpoint.  
DIV  
69931234fc  
12  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
operaTion  
Table 1. DIVCODE Programming  
+
DIVCODE  
POL  
0
N
Recommended t  
1µs to 16µs  
R1 (k)  
Open  
976  
R2 (k)  
Short  
102  
V
DIV  
/V  
DIV  
OUT  
0
1
1
≤ 0.03125 0.015  
0.09375 0.015  
0.15625 0.015  
0.21875 0.015  
0.28125 0.015  
0.34375 0.015  
0.40625 0.015  
0.46875 0.015  
0.53125 0.015  
0.59375 0.015  
0.65625 0.015  
0.71875 0.015  
0.78125 0.015  
0.84375 0.015  
0.90625 0.015  
≥ 0.96875 0.015  
0
8
8µs to 128µs  
2
0
64  
512  
64µs to 1.024ms  
512µs to 8.192ms  
4.096ms to 65.54ms  
32.77ms to 524.3ms  
262.1ms to 4.194sec  
2.097sec to 33.55sec  
2.097sec to 33.55sec  
262.1ms to 4.194sec  
32.77ms to 524.3ms  
4.096ms to 65.54ms  
512µs to 8.192ms  
64µs to 1.024ms  
976  
182  
3
0
1000  
1000  
1000  
1000  
1000  
887  
280  
4
0
4,096  
32,768  
262,144  
2,097,152  
2,097,152  
262,144  
32,768  
4,096  
512  
392  
5
0
523  
6
0
681  
7
0
887  
8
1
1000  
1000  
1000  
1000  
1000  
976  
9
1
681  
10  
11  
12  
13  
14  
15  
1
523  
1
392  
1
280  
1
64  
182  
1
8
8µs to 128µs  
102  
976  
1
1
1µs to 16µs  
Short  
Open  
POL BIT = 0  
POL BIT = 1  
10000  
1000  
100  
10  
7
8
6
9
5
10  
11  
4
12  
3
1
2
13  
0.1  
1
14  
0.01  
0.001  
0
15  
+
+
0V  
0.5V  
V
INCREASING V  
DIV  
69931234 F02  
Figure 2. Pulse Width Range and POL Bit vs DIVCODE  
69931234fc  
13  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
operaTion  
Monostable Multivibrator (One Shot)  
Negative Trigger Versions  
The LTC6993 is a monostable multivibrator. A trigger  
signal on the TRIG input will force the output to the active  
(unstable) state for a programmable duration. This type  
of circuit is commonly referred to as a one-shot pulse  
generator.  
Inadditiontotheretriggeroption, theLTC6993familyalso  
includesnegativeinput(falling-edge)versions.Thesefour  
combinations are detailed in Table 2.  
Table 2. Retrigger and Input Polarity Options  
DEVICE  
INPUT POLARITY  
Rising-Edge  
Rising-Edge  
Falling-Edge  
Falling-Edge  
RETRIGGER  
LTC6993-1  
LTC6993-2  
LTC6993-3  
LTC6993-4  
No  
Yes  
No  
Figures 3 details the basic operation. A rising edge on  
the TRIG pin initiates the output pulse. The pulse width  
(t ) is determined by the N setting and by the resis-  
OUT  
DIV  
Yes  
tor (R ) connected to the SET pin. Subsequent rising  
SET  
edges on TRIG have no affect until the completion of the  
Output Polarity (POL Bit)  
one shot and for a short rearming time (t ) thereafter.  
ARM  
Each variety of LTC6993 also offers the ability to invert  
the output, producing negative pulses. This option is  
To ensure proper operation, positive and negative TRIG  
pulses should be at least t wide.  
WIDTH  
programmed, along with N , by the choice of DIVCODE.  
DIV  
The LTC6993-2 and LTC6993-4 allow the output pulse to  
be “retriggered”. As shown in Figure 4, the output pulse  
(TheprevioussectiondescribeshowtoprogramDIVCODE  
using the DIV pin).  
will stay high until t  
after the last rising-edge on TRIG.  
OUT  
Successive trigger signals can extend the pulse width in-  
definitely. Consecutive trigger signals must be separated  
by t  
to be recognized.  
RETRIG  
t
WIDTH  
TRIG  
OUT  
t
PD  
t
PD  
t
ARM  
69931234 F03  
t
t
OUT  
t
OUT  
OUT  
Figure 3. Non-Retriggering Timing Diagram (LTC6993-1, POL = 0)  
t
t
WIDTH  
RETRIG  
TRIG  
OUT  
t
PD  
t
PD  
t
PD  
t
PD  
69931234 F04  
t
t
t
OUT  
OUT  
OUT  
Figure 4. Retriggering Timing Diagram (LTC6993-2, POL = 0)  
69931234fc  
14  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
operaTion  
Changing DIVCODE After Start-Up  
Start-Up Time  
When power is first applied, the power-on reset (POR)  
circuit will initiate the start-up time, t . The OUT pin  
Following start-up, the A/D converter will continue  
monitoring V for changes. Changes to DIVCODE will  
DIV  
START  
be recognized slowly, as the LTC6993 places a priority on  
eliminating any “wandering” in the DIVCODE. The typical  
delay depends on the difference between the old and  
new DIVCODE settings and is proportional to the master  
oscillator period.  
is held low during this time. The typical value for t  
START  
ranges from 0.5ms to 8ms depending on the master oscil-  
lator frequency (independent of N ):  
DIV  
t
= 500 t  
MASTER  
START(TYP)  
During start-up, the DIV pin A/D converter must deter-  
mine the correct DIVCODE before an output pulse can be  
generated. The start-up time may increase if the supply  
or DIV pin voltages are not stable. For this reason, it is  
recommended to minimize the capacitance on the DIV  
t
= 16 (DIVCODE + 6) t  
MASTER  
DIVCODE  
A change in DIVCODE will not be recognized until it is  
stable, and will not pass through intermediate codes. A  
digital filter is used to guarantee the DIVCODE has settled  
to a new value before making changes to the output. How-  
ever, if the output pulse is active during the transition, the  
pulse width can take on a value between the two settings.  
+
pin so it will properly track V . Less than 100pF will not  
extend the start-up time.  
TheDIVCODEsettingisrecognizedattheendofthestartup  
up. If POL = 1, the output will transition high. Otherwise  
(if POL = 0) OUT simply remains low. At this point, the  
LTC6993 is ready to respond to rising/falling edges on  
the TRIG input.  
DIV  
500mV/DIV  
512µs  
TRIG  
2V/DIV  
4µs  
OUT  
2V/DIV  
+
V
256µs  
200µs/DIV  
69931234 F05a  
LTC6993-1  
+
V
R
= 3.3V  
= 200k  
SET  
TRIG  
t
Figure 5a. DIVCODE Change from 0 to 2  
START  
POL = 0  
(TRIG IGNORED)  
OUT  
POL = 1  
69931234 F06  
DIV  
t
OUT  
500mV/DIV  
512µs  
TRIG  
2V/DIV  
Figure 6. Start-Up Timing Diagram  
4µs  
OUT  
2V/DIV  
256µs  
69931234 F05b  
LTC6993-1  
200µs/DIV  
+
V
R
= 3.3V  
= 200k  
SET  
Figure 5b. DIVCODE Change from 2 to 0  
69931234fc  
15  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
applicaTions inForMaTion  
Basic Operation  
Step 4: Calculate and Select R  
.
SET  
The simplest and most accurate method to program  
The final step is to calculate the correct value for R  
using the following equation:  
SET  
the LTC6993 is to use a single resistor, R , between  
SET  
the SET and GND pins. The design procedure is a four  
step process. Alternatively, Linear Technology offers the  
easy-to-use TimerBlox Designer tool to quickly design  
any LTC6993 based circuit. Download the free TimerBlox  
Designer software at www.linear.com/timerblox.  
50k tOUT  
1µs NDIV  
RSET  
=
(2)  
Select the standard resistor value closest to the calculated  
value.  
Step 1: Select the POL Bit Setting.  
Example: Design a one-shot circuit that satisfies the fol-  
lowing requirements:  
The LTC6993 can generate positive or negative output  
pulses, depending on the setting of the POL bit. The POL  
bit is the DIVCODE MSB, so any DIVCODE ≥ 8 has POL = 1  
and produces active-low pulses.  
t  
OUT  
= 100µs  
Negative Output Pulse  
Rising-Edge Trigger Input  
Retriggerable Input  
Step 2: Select LTC6993 Version.  
Minimum power consumption  
Two input-related choices dictate the proper LTC6993 for  
a given application:  
Step 1: Select the POL Bit Setting.  
Is TRIG a rising or falling-edge input?  
Should retriggering be allowed?  
For inverted (negative) output pulse, choose POL = 1.  
Step 2: Select the LTC6993 Version.  
Use Table 2 to select a particular variety of LTC6993.  
A rising-edge retriggerable input requires the LTC6993-2.  
Step 3: Select the N Frequency Divider Value.  
DIV  
Step 3: Select the N Frequency Divider Value.  
DIV  
As explained earlier, the voltage on the DIV pin sets the  
Choose an N  
value that meets the requirements of  
DIVCODE which determines both the POL bit and the N  
DIV  
DIV  
Equation (1), using t  
= 100µs:  
value. For a given output pulse width (t ), N should  
OUT  
OUT  
DIV  
be selected to be within the following range:  
6.25 ≤ N ≤ 100  
DIV  
tOUT  
16µs  
tOUT  
1µs  
Potential settings for N include 8 and 64. N = 8 is  
NDIV  
DIV  
DIV  
(1)  
the best choice, as it minimizes supply current by us-  
ing a large R resistor. POL = 1 and N = 8 requires  
SET  
DIV  
To minimize supply current, choose the lowest N value.  
DIV  
DIVCODE = 14. Using Table 1, choose R1 = 102k and  
R2 = 976k values to program DIVCODE = 14.  
However,insomecasesahighervalueforN willprovide  
DIV  
better accuracy (see Electrical Characteristics).  
Step 4: Select R  
.
SET  
Table 1 can also be used to select the appropriate N  
DIV  
values for the desired t  
.
OUT  
Calculate the correct value for R using Equation (2):  
SET  
With POL already chosen, this completes the selection of  
50k 100µs  
RSET  
=
= 625k  
DIVCODE. Use Table 1 to select the proper resistor divider  
1µs  
8
+
or V /V ratio to apply to the DIV pin.  
DIV  
69931234fc  
16  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
applicaTions inForMaTion  
Since 625k is not available as a standard 1% resistor,  
TRIG  
GND  
SET  
OUT  
substitute 619k if a –0.97% shift in t  
is acceptable.  
OUT  
+
LTC6993  
V
Otherwise, select a parallel or series pair of resistors such  
as 309k and 316k to attain a more precise resistance.  
+
V
C1  
0.1µF  
R1  
R
MOD  
The completed design is shown in Figure 7.  
V
DIV  
CTRL  
R
SET  
R2  
69931234 F08  
TRIG  
GND  
SET  
OUT  
LTC6993-2  
2.25V TO 5.5V  
Figure 8. Voltage-Controlled Pulse Width  
+
V
0.1µF  
R1  
102k  
Digital Pulse Width Control  
DIVCODE = 14  
DIV  
R
SET  
R2  
976k  
The control voltage can be generated by a DAC (digital-to-  
analog converter), resulting in a digitally-controlled pulse  
width. Many DACs allow for the use of an external refer-  
625k  
69931234 F07  
Figure 7. 100µs Negative Pulse Generator  
ence. If such a DAC is used to provide the V  
voltage,  
CTRL  
the V dependency can be eliminated by buffering V  
SET  
SET  
Voltage-Controlled Pulse Width  
and using it as the DAC’s reference voltage, as shown in  
With one additional resistor, the LTC6993 output pulse  
widthcanbemanipulatedbyanexternalvoltage.Asshown  
Figure 9. The DAC’s output voltage now tracks any V  
SET  
variation and eliminates it as an error source. The SET pin  
cannot be tied directly to the reference input of the DAC  
because the current drawn by the DAC’s REF input would  
affect the pulse width.  
in Figure 8, voltage V  
sources/sinks a current through  
CTRL  
R
to vary the I  
current, which in turn modulates  
MOD  
SET  
the pulse width as described in Equation (3).  
NDIV RMOD  
50kΩ  
1µs  
tOUT  
=
(3)  
RMOD VCTRL  
1+  
RSET  
VSET  
TRIG  
GND  
SET  
OUT  
+
LTC6993  
V
+
+
V
V
0.1µF  
C1  
R1  
0.1µF  
DIV  
+
1/2  
LTC6078  
R2  
+
V
69931234 F09  
0.1µF  
N
• R  
50kΩ  
1µs  
DIV  
MOD  
t
=
OUT  
R
R
D
4096  
MOD  
IN  
1+  
V
REF  
CC  
SET  
D
IN  
D
IN  
= 0 TO 4095  
R
MOD  
V
OUT  
CLK  
µP  
LTC1659  
CS/LD  
R
SET  
GND  
Figure 9. Digitally Controlled Pulse Width  
69931234fc  
17  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
applicaTions inForMaTion  
I
Extremes (Master Oscillator Frequency Extremes)  
Coupling Error  
SET  
When operating with I  
outside of the recommended  
The current sourced by the SET pin is used to bias the in-  
ternalmasteroscillator.TheLTC6993respondstochanges  
SET  
1.25µA to 20µA range, the master oscillator operates  
outside of the 62.5kHz to 1MHz range in which it is most  
accurate.  
in I  
almost immediately, which provides excellent  
SET  
settling time. However, this fast response also makes the  
SET pin sensitive to coupling from digital signals, such  
as the TRIG input.  
The oscillator will still function with reduced accuracy for  
I
< 1.25µA. At approximately 500nA, the oscillator will  
SET  
stop. Under this condition, the output pulse can still be  
Even an excellent layout will allow some coupling between  
initiated, but will not terminate until I  
the master oscillator starts again.  
increases and  
TRIG and SET. Additional error is included in the speci-  
SET  
fied accuracy for N = 1 to account for this. Figure 11  
DIV  
shows that ÷1 supply variation is dependent on coupling  
from rising or falling trigger inputs and, to a lesser extent,  
output polarity.  
At the other extreme, it is not recommended to operate  
the master oscillator beyond 2MHz because the accuracy  
of the DIV pin ADC will suffer.  
A very poor layout can actually degrade performance  
further. The PCB layout should avoid routing SET next to  
TRIG (or any other fast-edge, wide-swing signal).  
Settling Time  
Following a 2× or 0.5× step change in I , the output  
pulse width takes approximately six master clock cycles  
SET  
(6 t  
) to settle to within 1% of the final value. An  
1.0  
0.8  
MASTER  
exampleisshowninFigure10,usingthecircuitinFigure 8.  
0.6  
LTC6993-1  
POL = 1  
0.4  
0.2  
LTC6993-1  
POL = 0  
V
CTRL  
2V/DIV  
0
TRIG  
5V/DIV  
OUT  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
LTC6993-3  
POL = 0  
5V/DIV  
LTC6993-3  
POL = 1  
PULSE WIDTH  
2µs/DIV  
R
N
= 50k  
= 1  
SET  
DIV  
69931234 F10  
LTC6993-1  
20µs/DIV  
2
3
4
5
6
+
V
= 3.3V  
SUPPLY (V)  
DIVCODE = 0  
R
R
t
= 200k  
MOD  
= 3µs AND 6µs  
69931234 F11  
SET  
= 464k  
Figure 11. tOUT Drift vs Supply Voltage  
OUT  
Figure 10. Typical Settling Time  
69931234fc  
18  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
applicaTions inForMaTion  
Power Supply Current  
250  
+
V
= 3.3V  
DUTY CYCLE = f • t  
IN OUT  
The Electrical Characteristics table specifies the supply  
current while the part is idle (waiting to be triggered).  
200  
150  
100  
50  
÷1, R  
= 50k  
SET  
÷8, R  
= 50k  
SET  
I
varies with the programmed t  
and the supply  
S(IDLE)  
OUT  
voltage. Once triggered, the instantaneous supply current  
increases to I while the timing circuit is active.  
÷1, R  
÷1, R  
= 100k  
= 800k  
SET  
SET  
S(ACTIVE)  
I
= I  
+ I  
S(IDLE) S(ACTIVE)  
S(ACTIVE)  
C
= 5pF  
The average increase in supply current I  
pends on the output duty cycle (or negative duty cycle,  
if POL = 1), since that represents the percentage of time  
de-  
LOAD  
LOAD  
S(ACTIVE)  
R
= ∞  
0
IDLE  
20  
40  
60  
80  
100  
DUTY CYCLE (%)  
that the circuit is active. I  
and I  
can be  
69931234 F12  
S(IDLE)  
S(ACTIVE)  
estimated using the equations in Table 2.  
Figure 12. IS(ACTIVE) vs Output Duty Cycle  
Figure 12 shows how the supply current increases from  
I
as the input frequency increases. The increase is  
S(IDLE)  
smaller at higher N settings.  
DIV  
Table 2. Typical Supply Current  
CONDITION  
TYPICAL I  
TYPICAL ∆I  
*
S(IDLE)  
S(ACTIVE)  
V+ N 7pF+4pF  
V+  
500kΩ  
Duty Cycle  
tOUT  
V+ •  
N 5pF +18pF +CLO  
(
DIV  
(
)
DIV  
N
DIV  
≤ 64  
+
+2.2 ISET +50  
tOUT  
V+ NDIV 7pF  
V+  
500kΩ  
Duty Cycle  
tOUT  
V+ •  
CLOA  
N
DIV  
≥ 512  
+
+1.8 ISET +50  
tOUT  
*Ignoring resistive loads (assumes R  
= )  
LOAD  
69931234fc  
19  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
applicaTions inForMaTion  
Supply Bypassing and PCB Layout Guidelines  
C1 connection to the ground plane are recommended  
to minimize the inductance. Capacitor C1 should be a  
0.1µF ceramic capacitor.  
TheLTC6993isanaccuratemonostablemultivibratorwhen  
used in the appropriate manner. The part is simple to use  
and by following a few rules, the expected performance  
is easily achieved. Adequate supply bypassing and proper  
PCB layout are important to ensure this.  
2. Place all passive components on the top side of the  
board. This minimizes trace inductance.  
3. Place R  
as close as possible to the SET pin and  
SET  
Figure13showsexamplePCBlayoutsforboththeSOT-23  
andDCBpackagesusing0603sizedpassivecomponents.  
The layouts assume a two layer board with a ground plane  
layer beneath and around the LTC6993. These layouts are  
a guide and need not be followed exactly.  
make a direct, short connection. The SET pin is a cur-  
rent summing node and currents injected into this pin  
directlymodulatetheoutputpulsewidth.Havingashort  
connection minimizes the exposure to signal pickup.  
4. Connect R directly to the GND pin. Using a long path  
SET  
+
1. Connect the bypass capacitor, C1, directly to the V and  
or vias to the ground plane will not have a significant  
affect on accuracy, but a direct, short connection is  
recommended and easy to apply.  
GND pins using a low inductance path. The connection  
+
from C1 to the V pin is easily done directly on the top  
layer. For the DCB package, C1’s connection to GND is  
also simply done on the top layer. For the SOT-23, OUT  
can be routed through the C1 pads to allow a good C1  
GND connection. If the PCB design rules do not allow  
that,C1’sGNDconnectioncanbeaccomplishedthrough  
multiple vias to the ground plane. Multiple vias for both  
the GND pin connection to the ground plane and the  
5. Use a ground trace to shield the SET pin. This provides  
another layer of protection from radiated signals.  
6. Place R1 and R2 close to the DIV pin. A direct, short  
connection to the DIV pin minimizes the external signal  
coupling.  
TRIG  
GND  
SET  
OUT  
LTC6993  
+
+
V
V
C1  
0.1µF  
R1  
R2  
DIV  
R
SET  
+
+
V
+
C1  
V
R1  
C1  
V
OUT  
GND  
TRIG  
TRIG  
OUT  
+
DIV  
SET  
GND  
SET  
V
R2  
DIV  
R1  
R
SET  
R
SET  
R2  
69931234 F13  
DCB PACKAGE  
TSOT-23 PACKAGE  
Figure 13. Supply Bypassing and PCB Layout  
69931234fc  
20  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
Typical applicaTions  
Missing Pulse Detector  
25kHz INPUT  
64µs  
TRIG  
GND  
SET  
OUT  
TRIG  
LTC6993-2  
3.3V  
2V/DIV  
0.1µF  
+
V
R1  
102k  
OUT  
2V/DIV  
DIV  
R
SET  
R2  
402k  
DIVCODE = 14  
(N = 8, POL = 1)  
69931234 TA02b  
976k  
50µs/DIV  
DIV  
69931234 TA02a  
Use retriggerable one shot with output inverted. Output remains low as long as retrigger occurs within t  
= 64µs.  
OUT  
1.5ms Radio Control Servo Reference Pulse Generator  
5V  
20ms  
FRAME RATE  
GENERATOR  
1.5ms  
REFERENCE  
PULSE  
R7  
10k  
20ms PERIOD  
RESET = OPEN  
RUN = GND (CLOSED)  
RST  
GND  
SET  
OUT  
TRIG  
OUT  
1.5ms PULSE  
C2  
LTC6991  
LTC6993-1  
5V  
5V  
+
+
V
GND  
SET  
V
C1  
0.01µF  
R4  
976k  
R1  
0.01µF  
1M  
DIV  
DIV  
R8  
143k  
R3  
121k  
R5  
102k  
R2  
280k  
R6  
10k  
69931234 TA03  
1.5ms CAL TRIM  
Pulse Delay Generator  
100µs  
DELAY  
GENERATOR  
10µs  
OUTPUT PULSE  
GENERATOR  
PULSE IN  
TRIG  
GND  
SET  
OUT  
TRIG  
GND  
SET  
OUT  
OUT  
LTC6993-1  
LTC6993-1  
5V  
5V  
+
+
V
V
C1  
0.01µF  
C2  
0.1µF  
R4  
182k  
R1  
976k  
DIV  
DIV  
R6  
78.7k  
R3  
61.9k  
R5  
976k  
R2  
102k  
10µs PULSE IN  
100µs DELAY  
10µs PULSE OUT  
69931234fc  
21  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
Typical applicaTions  
RC Servo Pulse Generator Controlled Retrigger Lockout Time Interval  
1.5ms  
PULSE  
GENERATOR  
R9  
10k  
TRIG  
OUT  
PULSE OUT  
TRIGGER  
LTC6993-1  
5V  
+
GND  
SET  
V
C2  
0.1µF  
R1  
1M  
M1  
2N7002  
DIV  
TRIGGER PULSE IN  
R3  
R2  
280k  
147k  
1.5ms PULSE OUT  
20ms  
RETRIGGER  
LOCKOUT INTERVAL  
20ms RETRIGGER LOCKOUT  
RETRIGGER LOCKOUT TIME  
OUT  
TRIG  
GND  
SET  
R5  
100k  
LTC6993-1  
+
5V  
V
0.1µF  
R6  
1M  
DIV  
R4  
243k  
R7  
392k  
69931234 TA05  
Staircase Generator with Reset  
R8  
4.99k  
R7  
10k  
PULSE FREQUENCY-TO-VOLTAGE CONVERTER  
5V  
0.1µF  
5V  
0.1µF  
STAIRCASE  
OUT  
D1  
1N4148  
U3  
LT1490  
R11  
2k  
V
OUT  
+
U2  
R10  
10k  
LT1490  
C1  
1µF  
+
PULSES IN  
R6  
20k  
R9  
100k  
U4  
2N7002  
RESET  
RESET  
RETRIGGERABLE  
STAIRCASE RESET  
PULSE GENERATOR  
RAMP  
STAIRCASE RESET  
TRIG  
GND  
SET  
OUT  
STAIRCASE OUT  
PULSES IN  
C2  
0.1µF  
RESETS AFTER 1.5ms IF NO PULSES APPLIED  
LTC6993-2  
5V  
+
69931234 TA06  
V
R1  
280k  
DIV  
R3  
147k  
R2  
1M  
69931234fc  
22  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
Typical applicaTions  
Pulse Stretcher  
5V  
R4  
4.99k  
VOLTAGE VARIABLE  
OUTPUT PULSE WIDTH  
R1  
10k  
U2  
Q4  
2N2219A  
LT1009  
2.5V  
PULSE OUT  
STRETCHED  
PULSE OUT  
TRIG  
GND  
SET  
OUT  
LTC6993-3  
5V  
0.1µF  
+
5V  
V
C4  
0.1µF  
R14  
976k  
R16  
140k  
Q1  
2N2907  
Q2  
2N2907  
U4  
LT1638  
DIV  
RAMP  
Q3  
R15  
102k  
+
R13  
113k  
R6  
C1  
10k 2200pF  
2N2219A  
R7  
10k  
RAMP VOLTAGE PROPORTIONAL  
TO INPUT PULSE WIDTH  
PULSE IN  
TRIG  
GND  
SET  
OUT  
500µs RAMP RESET TIMER  
1µs TO 10µs INPUT  
PULSE WIDTH  
LTC6993-1  
5V  
+
V
C2  
0.1µF  
R2  
182k  
DIV  
R3  
392k  
R5  
976k  
69931234 TA07  
69931234fc  
23  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
Typical applicaTions  
On-Time Programmable Pulsed Solenoid Driver  
Safety Time-Out Relay Driver  
24V  
12V  
TIMED (5s) TURN-OFF AFTER  
L
LOSS OF INPUT PULSES  
100mA  
C
1
5 SECONDS ON  
RUN  
D1  
D1  
SOLENOID  
NO  
1N4004  
1N4148  
DANFOSS 042 N024D  
TYPE AK024D  
RESET  
OUT  
TRIGGER IN  
OFF  
R4  
2k  
R4  
10k  
COTO 1022 RELAY  
9001-12-01  
Q1  
2N2219A  
Q1  
2N2219A  
TRIGGER  
TRIG  
OUT  
ENABLE PULSES  
TRIG  
GND  
SET  
LTC6993-1  
LTC6993-2  
5V  
5V  
+
+
GND  
V
V
C2  
0.1µF  
C2  
R1  
1M  
R1  
1M  
0.1µF  
SET  
DIV  
DIV  
R3  
118k  
R3  
118k  
R2  
887k  
R2  
887k  
69931234 TA08  
69931234 TA09  
69931234fc  
24  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
package DescripTion  
Please refer to http://www.linear.com/product/LTC6993#packaging for the most recent package drawings.  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715 Rev A)  
0.70 0.05  
ꢀ.65 0.05  
3.55 0.05  
(2 SIDES)  
2.ꢀ5 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
ꢀ.35 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.ꢀꢀ5  
2.00 0.ꢀ0  
(2 SIDES)  
0.40 0.ꢀ0  
TYP  
R = 0.05  
TYP  
4
6
3.00 0.ꢀ0 ꢀ.65 0.ꢀ0  
(2 SIDES)  
(2 SIDES)  
PIN ꢀ BAR  
TOP MARK  
(SEE NOTE 6)  
PIN ꢀ NOTCH  
R0.20 OR 0.25  
× 45° CHAMFER  
(DCB6) DFN 0405  
3
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
ꢀ.35 0.ꢀ0  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
69931234fc  
25  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
package DescripTion  
Please refer to http://www.linear.com/product/LTC6993#packaging for the most recent package drawings.  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
69931234fc  
26  
For more information www.linear.com/LTC6993-1  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
1 to 3  
A
7/11  
Revised Description section  
Added text to Basic Operation paragraph in Applications Information section  
Added MP-grade  
15  
B
C
1/12  
1, 2, 3, 5  
11/15 Web Links Added  
Conditions for VOH Specification from V = 5.5V, I  
All  
+
+
= –16mA, changed to V = 3.3V, I  
= –10mA  
OUT  
4
6
OUT  
Correction to graph “t  
vs Supply Voltage (N –1, Rising Edge)”. Curves were offset low, and corrected upward.  
DIV  
OUT  
Correction to circuit “Safety Time-Out Relay Driver”, R4 changed from 15k to 10k.  
23  
69931234fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
27  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC6993-1/LTC6993-2  
LTC6993-3/LTC6993-4  
Typical applicaTion  
Consecutive Test Sequencer  
START  
TEST  
2s TO 30s  
DELAY  
DELAY  
5V  
TEST 1  
TEST 2  
5V  
TEST 3  
SEQUENCE  
TRIG OUT  
TRIG OUT  
TRIG OUT  
LTC6993-3  
TRIG OUT  
LTC6994-1  
+
LTC6993-1  
+
LTC6993-3  
+
0.1µF  
0.1µF  
5V  
5V  
5V  
30s  
+
GND  
SET  
V
GND  
SET  
V
GND  
SET  
V
GND  
SET  
V
R9  
274k  
R10  
25k  
DELAY  
ADJUST  
0.1µF  
0.1µF  
R2  
1000k  
R5  
DIV  
DIV  
DIV  
DIV  
1000k  
2s  
R1  
63.4k  
R3  
887k  
R6  
191k  
R7  
191k  
R8  
191k  
R4  
681k  
69931234 TA10  
SHARED DIV PIN BIASING FOR EQUAL ONE-SHOT TIMERS  
START  
TEST 1  
DELAY  
TEST 2  
TEST 3  
ONE SECOND DURATION SEQUENTIAL TEST PULSES  
AFTER AN ADJUSTABLE DELAY TIME  
relaTeD parTs  
PART NUMBER  
LTC1799  
DESCRIPTION  
COMMENTS  
1MHz to 33MHz ThinSOT Silicon Oscillator  
1MHz to 20MHz ThinSOT Silicon Oscillator  
Wide Frequency Range  
Low Power, Wide Frequency Range  
LTC6900  
LTC6906/LTC6907 10kHz to 1MHz or 40kHz ThinSOT Silicon Oscillator  
Micropower, I  
= 35µA at 400kHz  
SUPPLY  
LTC6930  
LTC6990  
LTC6991  
LTC6992  
LTC6994  
Fixed Frequency Oscillator, 32.768kHz to 8.192MHz  
TimerBlox: Voltage-Controlled Silicon Oscillator  
TimerBlox: Resettable Low Frequency Oscillator  
0.09% Accuracy, 110µs Start-Up Time, 105µA at 32kHz  
Fixed-Frequency or Voltage-Controlled Operation  
Clock Periods up to 9.5 hours  
TimerBlox: Voltage-Controlled Pulse Width Modulator (PWM)  
TimerBlox: Delay Block/Debouncer  
Simple PWM with Wide Frequency Range  
Delay Rising Edge, Falling Edge or Both Edges  
69931234fc  
LT 1115 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
LINEAR TECHNOLOGY CORPORATION 2010  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC6993-1  

相关型号:

LTC6993CS6-3#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: SOT; Pins: 6; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC6993HDCB-1#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6993HS6-1#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6993IDCB-1#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6993IDCB-1#TRPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6993IDCB-3#PBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6993IDCB-3#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6993IDCB-3#TRPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6993IS6-1#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6993IS6-2#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6993IS6-4#TRMPBF

LTC6993 - TimerBlox: Monostable Pulse Generator (One Shot); Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6994

TimerBlox: Long Timer, Low Frequency Oscillator
Linear