V60MLA1210N [LITTELFUSE]

Surface Mount Multilayer Varistors (MLVs); 表面贴装多层压敏电阻( MLV的)
V60MLA1210N
型号: V60MLA1210N
厂家: LITTELFUSE    LITTELFUSE
描述:

Surface Mount Multilayer Varistors (MLVs)
表面贴装多层压敏电阻( MLV的)

电阻器 压敏电阻 非线性电阻器
文件: 总8页 (文件大小:432K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
tꢀ  
                                                                                                     
*OIFSFOUꢀCJꢁEJSFDUJPOBMꢀ  
clamping  
tꢀ "&$ꢀꢁꢀ2ꢂꢃꢃꢀDPNQMJBOU  
tꢀ  
                                                                                                     
3BUFEꢀGPSꢀTVSHFꢀ  
Varistor Products  
Surface Mount Multilayer Varistors (MLVs) > MLA Series  
RoHS  
MLA Varistor Series  
Description  
The MLA Series (also known as "ML" series) family of  
transient voltage surge suppression devices is based on  
the Littelfuse Multilayer fabrication technology. These  
components are designed to suppress a variety of  
transient events, including those specified in IEC 61000-4-2  
or other standards used for Electromagnetic Compliance  
(EMC). The MLA Series is typically applied to protect  
integrated circuits and other components at the circuit  
board level.  
The wide operating voltage and energy range make the  
MLA Series suitable for numerous applications on power  
supply, control and signal lines.  
SizeTable  
The MLA Series is manufactured from semiconducting  
ceramics, and is supplied in a leadless, surface mount  
package. The MLA Series is compatible with modern  
reflow and wave soldering procedures.  
Metric  
1005  
1608  
2012  
ꢇꢂꢊꢆ  
ꢇꢂꢂꢈ  
EIA  
0402  
ꢃꢆꢃꢇ  
0805  
1206  
1210  
It can operate over a wider temperature range than Zener  
diodes, and has a much smaller footprint than plastic-  
housed components.  
Littelfuse Inc. manufactures other multilayer series  
products. See the MLE Series data sheet for ESD  
applications, MHS Series data sheet for high-speed ESD  
applications, the MLN Series for multiline protection and  
Applications  
tꢀ 4VQQSFTTJPOꢀPGꢀJOEVDUJWFꢀ  
switching or other  
tꢀ 6TFEꢀUPꢀIFMQꢀBDIJFWFꢀ  
the AUML Series for automotive applications.  
electromagnetic  
compliance of  
end products  
transient events such as  
EFT and surge voltage at  
the circuit board level  
Features  
tꢀ 3FQMBDFꢀMBSHFSꢀTVSGBDFꢀ  
mountTVS Zeners in  
many applications  
current (8 x 20μs)  
tꢀ &4%ꢀQSPUFDUJPOꢀGPSꢀ*&$ꢀ  
61000-4-2, MIL-STD-  
tꢀ RoHS compliant  
tꢀ 3BUFEꢀGPSꢀFOFSHZꢀ  
tꢀ -FBEMFTTꢀꢃꢄꢃꢂꢅꢀꢃꢆꢃꢇꢅꢀ  
0805, 1206 and  
ꢋꢋꢇDꢀNFUIPEꢀꢇꢃꢊꢈꢌ ꢅꢀ  
and other industry  
specifications (see also  
the MLE or MLN Series)  
(10 x 1000μs)  
1210 chip sizes  
tꢀ .VMUJMBZFSꢀDFSBNJDꢀ  
tꢀ /PꢀQMBTUJDꢀPSꢀFQPYZꢀ  
packaging assures  
better than UL94V-0  
flammability rating  
construction technology  
tꢀ 1SPWJEFTꢀPOꢁCPBSEꢀ  
transient voltage  
protection for ICS  
and transistors  
tꢀ ꢁꢈꢈ¡$ꢀUPꢀꢉꢊꢂꢈ¡$ꢀ  
operating temp. range  
tꢀ 0QFSBUJOHꢀWPMUBHFꢀSBOHFꢀ  
tꢀ 4UBOEBSEꢀMPXꢀDBQBDJUBODFꢀ  
V
M(DC) = 5.5V to 120V  
types available  
Absolute Maximum Ratings  
For ratings of individual members of a series, see device ratings and specifications table.  
Continuous  
ML Series  
Units  
Steady State Applied Voltage:  
DC Voltage Range (VM(DC)  
AC Voltage Range (VM(AC)RMS  
Transient:  
Non-Repetitive Surge Current, 8/20μs Waveform, (ITM  
Non-Repetitive Surge Energy, 10/1000μs Waveform, (WTM  
0QFSBUJOHꢀ"NCJFOU5FNQFSBUVSFꢀ3BOHFꢀꢎ5A)  
)
ꢇꢌꢈꢀUPꢀꢊꢂꢃ  
ꢂꢌꢈꢀUPꢀꢊꢃꢍ  
V
V
)
)
4 to 500  
A
J
ºC  
ºC  
)
0.02 to 2.5  
ꢁꢈꢈꢀUPꢀꢉꢊꢂꢈ  
ꢁꢈꢈꢀUPꢀꢉꢊꢈꢃ  
StorageTemperature Range (TSTG  
)
Temperature Coefficient (DV) of Clamping Voltage (VC) at  
Specified Test Current  
<0.01  
%/º C  
©2010 Littelfuse, Inc.  
MLAVaristor Series  
Specifications are subject to change without notice.  
Please refer to www.littelfuse.com/series/ML.html of MLA.html for current information.  
Revision: November 10, 2010  
Varistor Products  
Surface Mount Multilayer Varistors (MLVs) > MLA Series  
Device Ratings and Specifications  
Maximum Ratings (125º C)  
Maximum Non- Maximum Non- Maximum Clamping Nominal Voltage  
Specifications (25ºC)  
Typical  
Maximum  
Continuous  
repetitive Surge repetitive Surge Voltage at 1A (or as at 1mA DCTest Capacitance  
Working Voltage Current (8/20μs) Energy (10/1000μs)  
Noted) (8/20μs)  
Current  
at f = 1MHz  
Part Number  
VN(DC)  
Min  
(V)  
ꢇꢌꢍ  
ꢇꢌꢍ  
ꢇꢌꢍ  
ꢇꢌꢍ  
ꢌ ꢊ  
15.9  
ꢌꢊ  
ꢌꢊ  
ꢌꢊ  
ꢌꢊ  
ꢌꢊ  
VN(DC)  
Max  
(V)  
ꢌꢃ  
ꢌꢃ  
ꢌꢃ  
VM(DC)  
VM(AC)  
ITM  
WTM  
VC  
C
(V)  
ꢇꢌꢈ  
ꢇꢌꢈ  
ꢇꢌꢈ  
ꢇꢌꢈ  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
9.0  
9.0  
9.0  
9.0  
9.0  
12.0  
14.0  
14.0  
14.0  
14.0  
14.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
26.0  
26.0  
26.0  
26.0  
26.0  
ꢇꢃꢌꢃ  
ꢇꢃꢌꢃ  
ꢇꢃꢌꢃ  
ꢇꢃꢌꢃ  
ꢇꢇꢌꢃ  
42.0  
48.0  
48.0  
48.0  
56.0  
60.0  
68.0  
85.0  
120.0  
(V)  
2.5  
2.5  
2.5  
2.5  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
6.5  
6.5  
6.5  
6.5  
6.5  
(A)  
ꢇꢃ  
120  
40  
100  
20  
20  
ꢇꢃ  
ꢇꢃ  
120  
40  
150  
20  
4
ꢇꢃ  
ꢇꢃ  
40  
40  
20  
ꢇꢃ  
120  
40  
150  
20  
ꢇꢃ  
120  
40  
150  
500  
ꢇꢃ  
100  
40  
150  
ꢇꢃꢃ  
ꢇꢃ  
(J)  
(V)  
ꢊꢇꢌꢃ  
ꢊꢇꢌꢃ  
ꢊꢇꢌꢃ  
ꢊꢇꢌꢃ  
21.0  
ꢇꢏꢌꢃ  
ꢊ ꢌꢈ  
ꢊ ꢌꢈ  
ꢊ ꢌꢈ  
ꢊ ꢌꢈ  
ꢊ ꢌꢈ  
ꢇꢃꢌꢃ  
ꢇꢈꢌꢃ  
25.5  
25.5  
25.5  
29.0  
ꢇꢏꢌꢃ  
ꢇꢄꢌꢈ  
ꢇꢂꢌꢃ  
ꢇꢂꢌꢃ  
ꢇꢂꢌꢃ  
50.0  
50.0  
(pF)  
ꢊꢂꢍꢃ  
ꢂꢈꢇꢃ  
ꢊꢇꢋꢃ  
6000  
220  
ꢍꢃ  
500  
450  
1840  
400  
ꢇꢈꢃꢃ  
120  
ꢇꢇ  
490  
ꢇꢆꢃ  
520  
410  
ꢍꢃ  
180  
560  
ꢇꢂꢃ  
1400  
40  
120  
520  
290  
ꢊꢂꢍꢃ  
1440  
110  
220  
140  
600  
1040  
90  
7ꢇꢌꢈ.-"ꢃꢆꢃꢇ/5  
7ꢇꢌꢈ.-"ꢃꢋꢃꢈ/  
7ꢇꢌꢈ.-"ꢃꢋꢃꢈ-/  
7ꢇꢌꢈ.-"ꢊꢂꢃꢆ/  
V5.5MLA0402N  
V5.5MLA0402LN  
7ꢈꢌꢈ.-"ꢃꢆꢃꢇ/5  
7ꢈꢌꢈ.-"ꢃꢆꢃꢇ-/4  
V5.5MLA0805N  
V5.5MLA0805LN  
V5.5MLA1206N  
V9MLA0402N  
0.100  
ꢃꢌꢇꢃꢃ  
0.100  
ꢃꢌꢇꢃꢃ  
0.050  
0.050  
0.100  
0.100  
ꢃꢌꢇꢃꢃ  
0.100  
0.400  
0.050  
0.020  
0.100  
0.100  
0.100  
0.100  
0.050  
0.100  
ꢃꢌꢇꢃꢃ  
0.100  
0.400  
0.050  
0.100  
ꢃꢌꢇꢃꢃ  
0.100  
0.400  
2.500  
0.100  
ꢃꢌꢇꢃꢃ  
0.100  
0.600  
1.200  
0.100  
0.100  
1.200  
0.900  
0.800  
0.800  
0.900  
1.200  
0.900  
1.000  
1.500  
1.000  
2.500  
2.000  
ꢌꢃ  
10.8  
21.5  
ꢏꢌꢇ  
ꢏꢌꢇ  
ꢏꢌꢇ  
ꢏꢌꢇ  
ꢏꢌꢇ  
11.0  
11.0  
11.0  
11.0  
11.0  
14.0  
15.9  
15.9  
15.9  
15.9  
15.9  
22.0  
22.0  
22.0  
22.0  
22.0  
22.0  
ꢃ  
29.5  
29.5  
29.5  
29.5  
ꢇ ꢌꢃ  
ꢇ ꢌꢃ  
ꢇꢈꢌꢃ  
ꢇꢈꢌꢃ  
ꢇꢋꢌꢃ  
46.0  
54.5  
54.5  
54.5  
61.0  
ꢆ ꢌꢃ  
ꢍꢆꢌꢃ  
95.0  
ꢊꢇꢈꢌꢃ  
16.0  
16.0  
16.0  
16.0  
16.0  
18.5  
21.5  
21.5  
ꢂꢃꢌꢇ  
ꢂꢃꢌꢇ  
ꢂꢃꢌꢇ  
28.0  
28.0  
28.0  
28.0  
28.0  
28.0  
ꢇꢋꢌꢃ  
ꢇꢋꢌꢈ  
ꢇꢋꢌꢈ  
ꢇꢋꢌꢈ  
ꢇꢋꢌꢈ  
46.0  
46.0  
ꢄꢇꢌꢃ  
ꢄꢇꢌꢃ  
49.0  
60.0  
66.5  
66.5  
66.5  
ꢍ ꢌꢃ  
ꢋꢇꢌꢃ  
90.0  
115.0  
165.0  
V9MLA0402LN  
7ꢏ.-"ꢃꢆꢃꢇ/5  
7ꢏ.-"ꢃꢆꢃꢇ-/4  
V9MLA0805LN  
V12MLA0805LN  
V14MLA0402N  
7ꢊꢄ.-"ꢃꢆꢃꢇ/  
V14MLA0805N  
V14MLA0805LN  
V14MLA1206N  
V18MLA0402N  
7ꢊꢋ.-"ꢃꢆꢃꢇ/  
V18MLA0805N  
V18MLA0805LN  
V18MLA1206N  
V18MLA1210N  
7ꢂꢆ.-"ꢃꢆꢃꢇ/  
V26MLA0805N  
V26MLA0805LN  
V26MLA1206N  
V26MLA1210N  
7ꢇꢃ.-"ꢃꢆꢃꢇ/  
7ꢇꢃ.-"ꢃꢋꢃꢈ-/  
7ꢇꢃ.-"ꢊꢂꢊꢃ/  
7ꢇꢃ.-"ꢊꢂꢊꢃ-/  
7ꢇꢇ.-"ꢊꢂꢃꢆ/  
V42MLA1206N  
V48MLA1206N  
V48MLA1210N  
V48MLA1210LN  
V56MLA1206N  
V60MLA1210N  
V68MLA1206N  
V85MLA1210N  
V120MLA1210N  
/05&4ꢐꢀ  
9.0  
10.0  
10.0  
10.0  
10.0  
10.0  
14.0  
14.0  
14.0  
14.0  
14.0  
14.0  
20.0  
20.0  
20.0  
20.0  
20.0  
25.0  
25.0  
25.0  
25.0  
26.0  
ꢇꢃꢌꢃ  
40.0  
40.0  
40.0  
40.0  
50.0  
50.0  
ꢆ ꢌꢃ  
ꢊꢃ ꢌꢃ  
44.0  
44.0  
44.0  
44.0 at 2.5  
60.0  
60.0  
60.0  
60.0  
60.0 at 2.5  
ꢌꢃ  
ꢇꢃ  
ꢍꢂꢌꢃ  
90  
280  
220  
180  
180  
180  
250  
220  
180  
250  
180  
250  
125  
68.0 at 2.5  
68.0 at 2.5  
ꢍꢈꢌꢃ  
1820  
ꢊꢍꢆꢃ  
500  
425  
ꢇꢈꢃ  
520  
500  
180  
440  
100  
260  
80  
92.0  
100  
105.0 at 2.5  
105.0 at 2.5  
120.0  
ꢊꢇꢃꢌꢃꢀBUꢀꢂꢌꢈ  
140.0  
180.0 at 2.5  
260.0 at 2.5  
1
2
'L' suffix is a low capacitance and energy version; Contact your Littelfuse sales representative for custom capacitance requirements  
Typical leakage at 25ºC<25μA, maximum leakage 100μA at VM(DC); for 0402 size, typical leakage <5μA, maximum leakage <20μA at VM(DC)  
ꢇꢀ "WFSBHFꢀQPXFSꢀEJTTJQBUJPOꢀPGꢀUSBOTJFOUTꢀGPSꢀꢃꢄꢃꢂꢅꢀꢃꢆꢃꢇꢅꢀꢃꢋꢃꢈꢅꢀꢊꢂꢃꢆꢀBOEꢀꢊꢂꢊꢃꢀTJ[FTꢀOPUꢀUPꢀFYDFFEꢀꢃꢌꢃꢇ8ꢅꢀꢃꢌꢃꢈ8ꢅꢀꢃꢌꢊ8ꢅꢀꢃꢌꢊ8ꢀBOEꢀꢃꢌꢊꢈ8ꢀSFTQFDUJWFMZ  
ꢄꢀ *UFNꢀJTꢀBWBJMBCMFꢀBTꢀh3hꢀQBDLJOHꢀPQUJPOꢀPOMZꢌꢀ"MMꢀꢃꢄꢃꢂꢀTJ[FꢀJUFNTꢀBWBJMBCMFꢀBTꢀh3hꢀQBDLBHJOHꢀPQUJPOꢀPOMZꢌꢀ4FFꢀ1BDLBHJOHꢀTFDUJPOꢀGPSꢀBEEJUJPOBMꢀJOGPSNBUJPOꢌ  
ꢈꢀ *UFNꢀJTꢀBWBJMBCMFꢀJOꢀh)hꢅh5hBOEꢀh"hꢀQBDLJOHꢀPQUJPOꢀPOMZꢌꢀ"MMꢀꢃꢋꢃꢈꢅꢀꢊꢂꢃꢆꢀBOEꢀꢊꢂꢊꢃꢀQBSUTꢀDPNFꢀBTꢀh)hꢅh5hBOEꢀh"hꢀQBDLJOHꢀPQUJPOꢀPOMZꢌꢀ4FFꢀ1BDLBHJOHꢀTFDUJPOꢀGPSꢀBEEJUJPOBMꢀJOGPSNBUJPOꢌꢀ  
©2010 Littelfuse, Inc.  
Specifications are subject to change without notice.  
Please refer to www.littelfuse.com/series/ML.html or MLA.html for current information.  
MLAVaristor Series  
Revision: November 10, 2010  
Varistor Products  
Surface Mount Multilayer Varistors (MLVs) > MLA Series  
Peak Current and Energy Derating Curve  
Peak Pulse CurrentTest Waveform for ClampingVoltage  
When transients occur in rapid succession, the average  
power dissipation is the energy (watt-seconds) per pulse  
times the number of pulses per second. The power so  
developed must be within the specifications shown  
on the Device Ratings and SpecificationsTable for the  
TQFDJmDꢀEFWJDFꢌꢀ'PSꢀBQQMJDBUJPOTꢀFYDFFEJOHꢀꢊꢂꢈ¡$ꢀBNCJFOUꢀ  
temperature, the peak surge current and energy ratings  
must be derated as shown below.  
100  
50  
0
T
O
TIME  
1
T
1
Figure 2  
T
2
100  
80  
01ꢀꢑꢀ7JSUVBMꢀ0SJHJOꢀPGꢀ8BWF  
5ꢀꢀꢑ5JNFꢀGSPNꢀꢊꢃꢒꢀUPꢀꢏꢃꢒꢀPGꢀ1FBL  
T1 = RiseTime = 1.25 xT  
60  
40  
T2 = DecayTime  
20  
0
Example - For an 8/20 μTꢀ$VSSFOUꢀ8BWFGPSNꢐ  
8μs =T1 = RiseTime  
-55  
50 60  
70  
80  
90 100 110 120 130 140 150  
o
20μs =T2 = DecayTime  
AMBIENTTEMPERATURE ( C)  
Figure 1  
LimitV-I Characteristic forV5.5MLA0402 toV18MLA0402  
LimitV-I Characteristic forV9MLA0402L  
100  
100  
10  
10  
V18MLA0402  
V14MLA0402  
V9MLA0402  
V5.5MLA0402  
V9MLA0402L  
V5.5MLA0402L  
1
1μA  
1
10μA  
100μA  
1mA  
10mA  
1A  
10A  
100A  
1μA  
10μA  
100μA  
1mA  
10mA  
1A  
10A  
100A  
Current (A)  
Figure 3  
Figure 4  
Current (A)  
LimitV-I Characteristic forV3.5MLA0603 toV30MLA0603  
LimitV-I Characteristic forV3.5MLA0805L toV30MLA0805L  
1000  
1000  
V30MLA0805L  
V26MLA0805L  
V18MLA0805L  
V30MLA0603  
V26MLA0603  
V18MLA0603  
V14MLA0805L  
100  
100  
V14MLA0603  
10  
10  
V12MLA0805L  
V9MLA0603, V9MLA0603L  
V9MLA0805L  
V5.5MLA0603, V5.5MLA0603L  
V3.5MLA0603  
V5.5MLA0805L  
V3.5MLA0805L  
1
1
10μA  
100μA  
1mA  
10mA  
100mA  
1A  
10A  
100A  
10μA  
100μA  
1mA  
10mA  
Current (A)  
100mA  
1A  
10A  
100A  
Current (A)  
Figure 5  
Figure 6  
©2010 Littelfuse, Inc.  
Specifications are subject to change without notice.  
Please refer to www.littelfuse.com/series/ML.html of MLA.html for current information.  
MLAVaristor Series  
Revision: November 10, 2010  
Varistor Products  
Surface Mount Multilayer Varistors (MLVs) > MLA Series  
LimitV-I Characteristic forV3.5MLA0805 toV26MLA0805  
LimitV-I Characteristic forV3.5MLA1206 toV68MLA1206  
1000  
100  
10  
1000  
100  
V68MLA1206  
V56MLA1206  
V42MLA1206  
V33MLA1206  
V26MLA1206  
V18MLA1206  
V14MLA1206  
V5.5MLA1206  
V3.5MLA1206  
V26MLA0805  
10  
V18MLA0805  
V14MLA0805  
V5.5MLA0805  
V3.5MLA0805  
1
10μA  
100μA  
1mA  
10mA  
100mA  
1A  
10A  
100A 1000A  
Current (A)  
Figure 7  
1
10μA  
100μA  
1mA  
10mA  
100mA  
1A  
10A  
100A  
1000A  
Current (A)  
Figure 8  
LimitV-I Characteristic forV18MLA1210 toV120MLA1210  
1000  
MAXIMUM CLAMPING VOLTAGE  
MAXIMUM LEAKAGE  
100  
V120MLA1210  
10  
V85MLA1210  
V60MLA1210  
V48MLA1210, V48MLA1210L  
V30MLA1210, V30MLA1210L  
V26MLA1210  
V18MLA1210  
1
10μA  
100μA  
1mA  
10mA  
100mA  
1A  
10A  
100A  
1000A  
CURRENT (A)  
Figure 9  
©2010 Littelfuse, Inc.  
Specifications are subject to change without notice.  
Please refer to www.littelfuse.com/series/ML.html or MLA.html for current information.  
MLAVaristor Series  
Revision: November 10, 2010  
Varistor Products  
Surface Mount Multilayer Varistors (MLVs) > MLA Series  
Device Characteristics  
ClampingVoltage OverTemperature (VC at 10A)  
At low current levels, the V-I curve of the multilayer  
transient voltage suppressor approaches a linear (ohmic)  
relationship and shows a temperature dependent effect.  
At or below the maximum working voltage, the suppressor  
is in a high resistance modex (approaching 106Ω at its  
maximum rated working voltage). Leakage currents at  
maximum rated voltage are below 100μA, typically 25μA;  
for 0402 size below 20μA, typically 5μA.  
100  
V26MLA1206  
V5.5MLA1206  
TypicalTemperature Dependance of the Haracteristic  
Curve in the Leakage Region  
100%  
10  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
o
TEMPERATURE ( C)  
Figure 11  
Energy Absorption/Peak Current Capability  
Energy dissipated within the MLA Series is calculated  
by multiplying the clamping voltage, transient current  
and transient duration. An important advantage of the  
multilayer is its interdigitated electrode construction within  
the mass of dielectric material. This results in excellent  
current distribution and the peak temperature per energy  
absorbed is very low. The matrix of semiconducting grains  
combine to absorb and distribute transient energy (heat)  
(see Speed of Response). This dramatically reduces peak  
temperature; thermal stresses and enhances device  
reliability.  
o
o
o
o
o
C
25 50 75  
-8 -7  
100 125  
10%  
1E  
-9  
-6  
-5  
-4  
-3  
-2  
1E  
1E  
1E  
1E  
1E  
1E  
1E  
SUPPRESSOR CURRENT (A  
DC  
)
Figure 10  
Speed of Response  
The Multilayer Suppressor is a leadless device. Its  
response time is not limited by the parasitic lead  
inductances found in other surface mount packages.  
The response time of the ZN0ꢀEJFMFDUSJDꢀNBUFSJBMꢀJTꢀMFTTꢀ  
than 1ns and the MLA can clamp very fast dV/dT events  
such as ESD. Additionally, in "real world" applications,  
the associated circuit wiring is often the greatest  
factor effecting speed of response. Therefore, transient  
suppressor placement within a circuit can be considered  
important in certain instances.  
As a measure of the device capability in energy and peak  
current handling, the V26MLA1206A part was tested with  
multiple pulses at its peak current rating (150A, 8/20μs). At  
the end of the test,10,000 pulses later, the device voltage  
characteristics are still well within specification.  
3FQFUJUJWFꢀ1VMTFꢀ$BQBCJMJUZ  
Multilayer Internal Construction  
100  
PEAK CURRENT = 150A  
8/20 s DURATION, 30s BETWEEN PULSES  
FIRED CERAMIC  
DIELECTRIC  
V26MLA1206  
METAL  
ELECTRODES  
METAL END  
TERMINATION  
10  
DEPLETION  
REGION  
0
2000  
4000  
6000  
8000  
10000  
12000  
NUMBER OF PULSES  
Figure 13  
DEPLETION  
REGION  
Figure 12  
GRAINS  
©2010 Littelfuse, Inc.  
Specifications are subject to change without notice.  
Please refer to www.littelfuse.com/series/ML.html of MLA.html for current information.  
MLAVaristor Series  
Revision: November 10, 2010  
Varistor Products  
Surface Mount Multilayer Varistors (MLVs) > MLA Series  
Lead (Pb) Soldering Recommendations  
The principal techniques used for the soldering of  
components in surface mount technology are IR Re-flow  
and Wave soldering. Typical profiles are shown on the right.  
Reflow Solder Profile  
250  
200  
150  
100  
The recommended solder for the MLA suppressor is  
Bꢀꢆꢂꢓꢇꢆꢓꢂꢀꢎ4Oꢓ1Cꢓ"Hꢔꢅꢀꢆꢃꢓꢄꢃꢀꢎ4Oꢓ1CꢔꢀPSꢀꢆꢇꢓꢇꢍꢀꢎ4Oꢓ1Cꢔꢌꢀ  
Littelfuse also recommends an RMA solder flux.  
MAXIMUM TEMPERATURE  
230°C  
40-80  
SECONDS  
ABOVE 183°C  
Wave soldering is the most strenuous of the processes.  
To avoid the possibility of generating stresses due to  
thermal shock, a preheat stage in the soldering process  
is recommended, and the peak temperature of the solder  
process should be rigidly controlled.  
RAMP RATE  
<2°C/s  
PREHEAT DWELL  
PREHEAT ZONE  
50  
When using a reflow process, care should be taken to  
ensure that the MLA chip is not subjected to a thermal  
gradient steeper than 4 degrees per second; the ideal  
gradient being 2 degrees per second. During the soldering  
process, preheating to within 100 degrees of the solder's  
peak temperature is essential to minimize thermal shock.  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Figure 14  
TIME (MINUTES)  
Wave Solder Profile  
0ODFꢀUIFꢀTPMEFSJOHꢀQSPDFTTꢀIBTꢀCFFOꢀDPNQMFUFEꢅꢀJUꢀJTꢀ  
still necessary to ensure that any further thermal shocks  
BSFꢀBWPJEFEꢌꢀ0OFꢀQPTTJCMFꢀDBVTFꢀPGꢀUIFSNBMꢀTIPDLꢀJTꢀIPUꢀ  
printed circuit boards being removed from the solder  
process and subjected to cleaning solvents at room  
temperature. The boards must be allowed to cool gradually  
to less than 50º C before cleaning.  
300  
250  
200  
150  
100  
MAXIMUMWAVE 260°C  
SECOND PREHEAT  
FIRST PREHEAT  
50  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Figure 15  
TIME (MINUTES)  
Lead–free (Pb-free) Soldering Recommendations  
Littelfuse offers the Nickel BarrierTermination option (see  
ꢕ/ꢕꢀTVGmYꢀJOꢀ1BSUꢀ/VNCFSJOHꢀ4ZTUFNꢀGPSꢀPSEFSJOHꢔꢀGPSꢀUIFꢀ  
optimum Lead–free solder performance, consisting of a  
MatteTin outer surface plated on Nickel underlayer, plated  
on Silver base metal.  
Lead–free Re-flow Solder Profile  
300  
MAXIMUM TEMPERATURE 260˚C,  
TIME WITHIN 5˚C OF PEAK  
20 SECONDS MAXIMUM  
250  
200  
150  
100  
50  
5IFꢀQSFGFSSFEꢀTPMEFSꢀJTꢀꢏꢆꢌꢈꢓꢇꢌꢃꢓꢃꢌꢈꢀꢎ4O"H$VꢔꢀXJUIꢀBOꢀ3."ꢀ  
flux, but there is a wide selection of pastes and fluxes  
available with which the Nickel Barrier parts should be  
compatible.  
RAMP RATE  
<3˚C/s  
60 - 150 SEC  
> 217˚C  
PREHEAT ZONE  
The reflow profile must be constrained by the maximums  
JOꢀUIFꢀ-FBEoGSFFꢀ3FnPXꢀ1SPmMFꢌꢀ'PSꢀ-FBEoGSFFꢀXBWFꢀ  
TPMEFSJOHꢅꢀUIFꢀ8BWFꢀ4PMEFSꢀ1SPmMFꢀTUJMMꢀBQQMJFTꢌ  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
/PUFꢐꢀUIFꢀ-FBEoGSFFꢀQBTUFꢅꢀnVYꢀBOEꢀQSPmMFꢀXFSFꢀVTFEꢀGPSꢀ  
evaluation purposes by Littelfuse, based upon industry  
standards and practices. There are multiple choices of all  
three available, it is advised that the customer explores the  
optimum combination for their process as processes vary  
considerably from site to site.  
Figure 16  
TIME (MINUTES)  
©2010 Littelfuse, Inc.  
Specifications are subject to change without notice.  
Please refer to www.littelfuse.com/series/ML.html or MLA.html for current information.  
MLAVaristor Series  
Revision: November 10, 2010  
Varistor Products  
Surface Mount Multilayer Varistors (MLVs) > MLA Series  
Product Dimensions (mm)  
1"%ꢀ-":065ꢀ%*.&/4*0/4  
$)*1ꢀ-":065ꢀ%*.&/4*0/4  
C
E
B
NOTE  
D
L
W
A
/05&ꢀꢐꢀ"WPJEꢀNFUBMꢀSVOTꢀJOꢀUIJTꢀBSFBꢅꢀQBSUTꢀOPUꢀSFDPNNFOEFEꢀGPSꢀVTFꢀJOꢀBQQMJDBUJPOTꢀVTJOHꢀ  
Silver (Ag) epoxy paste.  
1210 Size  
IN  
1206 Size  
IN  
0805 Size  
IN  
0603 Size  
IN  
0402 Size  
IN  
Dimension  
MM  
4.06  
2.54  
1.02  
ꢂꢌꢋꢍ  
MM  
4.06  
1.65  
1.02  
1.80  
MM  
ꢇꢌꢃꢈ  
ꢂꢍ  
1.02  
1.10  
MM  
2.54  
ꢃꢌꢍꢆ  
0.89  
1.00  
MM  
ꢍꢃ  
0.51  
0.61  
0.60  
A
0.160  
0.100  
0.040  
ꢃꢌꢊꢇ  
0.160  
0.065  
0.040  
ꢃꢌꢃꢍꢊ  
0.120  
0.050  
0.040  
ꢃꢌꢃꢄꢇ  
0.100  
ꢃꢌꢃꢇꢃ  
ꢃꢌꢃꢇꢈ  
0.040  
ꢃꢌꢃꢆꢍ  
0.020  
0.024  
0.024  
B
C
D (max.)  
0.020  
0.50  
0.020  
0.50  
ꢃꢌꢃꢂꢃꢀꢁꢓꢉꢀ  
ꢃꢌꢈꢃꢀꢁꢓꢉꢀ  
0.015  
0.4  
0.010  
0.25  
E
L
ꢁꢓꢉꢃꢌꢃꢊꢃ  
ꢁꢓꢉꢃꢌꢂꢈ  
ꢁꢓꢉꢃꢌꢃꢊꢃ  
ꢁꢓꢉꢃꢌꢂꢈ  
0.010  
0.25  
ꢁꢓꢉꢃꢌꢃꢃꢋ  
ꢁꢓꢉꢃꢌꢂꢃ  
ꢁꢓꢉꢃꢌꢃꢃꢆ  
ꢁꢓꢉꢃꢌꢊꢈ  
0.125  
ꢁꢓꢉꢃꢌꢃꢊꢂ  
ꢇꢌꢂꢃꢀ  
ꢁꢓꢉꢃꢌꢇꢃ  
0.125  
ꢁꢓꢉꢃꢌꢃꢊꢂ  
ꢇꢌꢂꢃꢀ  
ꢁꢓꢉꢃꢌꢇꢃ  
ꢃꢌꢃꢍꢏꢀ  
ꢁꢓꢉꢃꢌꢃꢃꢋ  
2.01  
ꢁꢓꢉꢃꢌꢂꢃ  
ꢃꢌꢃꢆꢇꢀ  
ꢁꢓꢉꢃꢌꢃꢃꢆ  
1.6  
ꢁꢓꢉꢃꢌꢊꢈ  
ꢃꢌꢃꢇꢏꢀ  
ꢁꢓꢉꢃꢌꢃꢃꢄ  
1.00  
ꢁꢓꢉꢃꢌꢊꢃ  
0.100  
ꢁꢓꢉꢃꢌꢃꢊꢂ  
2.54  
ꢁꢓꢉꢃꢌꢇꢃ  
0.060  
ꢁꢓꢉꢃꢌꢃꢊ  
1.60  
ꢁꢓꢉꢃꢌꢂꢋ  
0.049  
ꢁꢓꢉꢃꢌꢃꢃꢋ  
1.25  
ꢁꢓꢉꢃꢌꢂꢃ  
ꢃꢌꢃꢇꢂꢀ  
ꢁꢓꢉꢃꢌꢃꢆꢃ  
0.8  
ꢁꢓꢉꢃꢌꢊꢈ  
0.020  
ꢁꢓꢉꢃꢌꢃꢃꢄ  
0.50  
ꢁꢓꢉꢃꢌꢊꢃ  
W
Part Numbering System  
V 18 MLA1206 X X X  
PACKING OPTIONS (see Packaging table for quantities)  
T: 13in (330mm) Diameter Reel, Plastic Carrier Tape  
H: 7in (178mm) Diameter Reel, Plastic Carrier Tape  
R: 7in (178mm) Diameter Reel, Paper Carrier Tape  
A: Bulk Pack  
DEVICE FAMILY  
Littelfuse TVSS Device  
MAXIMUM DC  
WORKING VOLTAGE  
END TERMINATION OPTION  
No Letter: Standard  
N: Nickel Barrier Option  
MULTILAYER SERIES  
DESIGNATOR  
(Matte Tin outer surface, plated on Nickel underlayer  
plated on silver base metal)  
DEVICE SIZE:  
0201 = .024 inch x .012 inch (0.6 mm x 0.3 mm)  
0402 = .04 inch x .02 inch (1.0 mm x 0.5 mm)  
0603 = .063 inch x .031 inch (1.6 mm x 0.8 mm)  
0805 = .08 inch x .08 inch (2.0 mm x 1.25 mm)  
1206 = .126 inch x .063 inch (3.2 mm x 1.6 mm)  
1210 = .126 inch x .1 inch (3.2 mm x 2.5 mm)  
CAPACITANCE OPTION  
No Letter: Standard  
L: Low Capacitance Version  
ꢖ/05&4ꢐ  
1 V120MLA1210 standard shipping quantities are 1000 pieces per reel for the "H" option and 4000 pieces per reel for "T" option.  
ꢂꢀ7ꢇꢌꢈꢀ.-"ꢃꢆꢃꢇꢅꢀ7ꢈꢌꢈ.-"ꢃꢆꢃꢇꢀBOEꢀ7ꢏ.-"ꢃꢆꢃꢇꢀPOMZꢀBWBJMBCMFꢀJOꢀꢕ)ꢅꢕꢀꢕ5ꢕꢀBOEꢀꢕ"ꢕꢀQBDLJOHꢀPQUJPOTꢌ  
Packaging*  
Quantity  
Device Size  
13” Inch Reel  
("T" Option)  
7” Inch Reel  
("H" Option)  
7” Inch Reel  
("R" Option)  
Bulk Pack  
("A" Option)  
1210  
1206  
0805  
ꢃꢆꢃꢇ  
0402  
8,000  
10,000  
10,000  
10,000  
N/A  
2,000  
2,500  
2,500  
2,500  
N/A  
N/A  
N/A  
N/A  
4,000  
10,000  
2,000  
2,500  
2,500  
2,500  
N/A  
ꢖꢎ1BDLBHJOHꢔꢀ*UꢀJTꢀSFDPNNFOEFEꢀUIBUꢀQBSUTꢀCFꢀLFQUꢀJOꢀUIFꢀTFBMFEꢀCBHꢀQSPWJEFEꢀBOEꢀUIBUꢀQBSUTꢀCFꢀVTFEꢀBTꢀTPPOꢀBTꢀQPTTJCMFꢀXIFOꢀSFNPWFEꢀGSPNꢀCBHTꢌ  
©2010 Littelfuse, Inc.  
Specifications are subject to change without notice.  
Please refer to www.littelfuse.com/series/ML.html of MLA.html for current information.  
MLAVaristor Series  
Revision: November 10, 2010  
Varistor Products  
Surface Mount Multilayer Varistors (MLVs) > MLA Series  
Tape and Reel Specifications  
PRODUCT  
IDENTIFYING  
LABEL  
D
P
0
0
For T and H Pack Options: PLASTIC CARRIER TAPE  
For R Pack Options: EMBOSSED PAPER CARRIER TAPE  
P
2
E
F
W
K
0
B
0
EMBOSSMENT  
TOP TAPE  
178mm  
OR 330mm  
DIA. REEL  
8mm  
NOMINAL  
P
A
0
1
t
D
1
1
Dimensions in Millimeters  
0402 Size 0603, 0805, 1206 & 1210 Sizes  
Symbol  
Description  
A0  
B0  
K0  
W
F
Width of Cavity  
Length of Cavity  
Depth of Cavity  
Width ofTape  
Dependent on Chip Size to Minimize Rotation.  
Dependent on Chip Size to Minimize Rotation.  
Dependent on Chip Size to Minimize Rotation.  
ꢋꢀꢁꢓꢉꢃꢌꢂꢀ  
ꢇꢌꢈꢀꢁꢓꢉꢃꢌꢃꢈꢀꢀ  
ꢍꢈꢀꢁꢓꢉꢃꢌꢊꢀꢀ  
ꢂꢁꢓꢉꢃꢌꢃꢈ  
ꢋꢀꢁꢓꢉꢃꢌꢇꢀ  
ꢇꢌꢈꢀꢁꢓꢉꢃꢌꢃꢈꢀꢀ  
ꢍꢈꢀꢁꢓꢉꢃꢌꢊꢀꢀ  
ꢄꢀꢁꢓꢉꢃꢌꢊꢀ  
Distance Between Drive Hole Centers and Cavity Centers  
Distance Between Drive Hole Centers andTape Edge  
Distance Between Cavity Centers  
E
P1  
P2  
P0  
D0  
D1  
T1  
Axial Drive Distance Between Drive Hole Centers & Cavity Centers  
Axial Drive Distance Between Drive Hole Centers  
Drive Hole Diameter  
ꢂꢀꢁꢓꢉꢃꢌꢊꢀꢀ  
ꢄꢀꢁꢓꢉꢃꢌꢊꢀ  
ꢂꢀꢁꢓꢉꢃꢌꢊꢀꢀ  
ꢄꢀꢁꢓꢉꢃꢌꢊꢀ  
ꢈꢈꢀꢁꢓꢉꢃꢌꢃꢈ  
N/A  
ꢈꢈꢀꢁꢓꢉꢃꢌꢃꢈ  
ꢃꢈꢀꢁꢓꢉꢃꢌꢃꢈꢀꢀ  
0.1 Max  
%JBNFUFSꢀPGꢀ$BWJUZꢀ1JFSDJOH  
TopTapeThickness  
0.1 Max  
/05&4ꢐ  
tꢀ$POGPSNTꢀUPꢀ&*"ꢁꢄꢋꢊꢁꢊꢅꢀ3FWJTJPOꢀ"  
tꢀ$BOꢀCFꢀTVQQMJFEꢀUPꢀ*&$ꢀQVCMJDBUJPOꢀꢂꢋꢆꢁꢇ  
©2010 Littelfuse, Inc.  
Specifications are subject to change without notice.  
Please refer to www.littelfuse.com/series/ML.html or MLA.html for current information.  
MLAVaristor Series  
Revision: November 10, 2010  

相关型号:

V60MLA1210NA

RESISTOR, VOLTAGE DEPENDENT
RENESAS

V60MLA1210NH

Varistor, 60V, 1.5J, Surface Mount, CHIP, 1210, ROHS COMPLIANT
LITTELFUSE

V60MLA1210NT

RESISTOR, VOLTAGE DEPENDENT
RENESAS

V60MLA1210T

RESISTOR, VOLTAGE DEPENDENT
RENESAS

V60MLA1210T

Varistor, 60V, 1.5J, Surface Mount, CHIP, 1210, LEAD FREE
LITTELFUSE

V60MLA1210WA

RESISTOR, VOLTAGE DEPENDENT, 60V, 1.5J, SURFACE MOUNT, CHIP, 1210, LEAD FREE
LITTELFUSE

V60MLA1210WH

RESISTOR, VOLTAGE DEPENDENT
RENESAS

V60MLA1210WT

RESISTOR, VOLTAGE DEPENDENT, 60V, 1.5J, SURFACE MOUNT, CHIP, 1210, LEAD FREE
LITTELFUSE

V60MLA1210WT

RESISTOR, VOLTAGE DEPENDENT
RENESAS

V61-14.80M

Clamping force: 8.0kN / Disc diameter: 48mm / Height: 14mm / Min. creeping distance: 11mm
INFINEON

V61-14.80N

Clamping force: 8.0kN / Disc diameter: 48mm / Height: 14mm / Min. creeping distance: 11mm
INFINEON

V61-200

8 PIN DIP VCXO
CONNOR-WINFIE