L2340QC20G [LOGIC]

Coordinate Transform Processor, CMOS, PQFP120, ROHS COMPLIANT, PLASTIC, QFP-120;
L2340QC20G
型号: L2340QC20G
厂家: LOGIC DEVICES INCORPORATED    LOGIC DEVICES INCORPORATED
描述:

Coordinate Transform Processor, CMOS, PQFP120, ROHS COMPLIANT, PLASTIC, QFP-120

外围集成电路
文件: 总11页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L2340  
Digital Synthesizer  
DEVICES INCORPORATED  
FEATURES  
DESCRIPTION  
The L2340 is a digital synthesizer that selects the numeric format. A valid  
Digital Waveform Synthesis at  
50 MHz  
performs waveform synthesis, modu-  
lation, and demodulation.  
transformed result is seen at the  
output after 22 clock cycles and will  
continue upon every clock cycle  
thereafter.  
24-Bit Polar Phase Angle Accuracy  
User-selectableWaveformSynthesis,  
Frequency Modulation, or Phase  
Modulation.  
The L2340 automatically generates  
quadrature matched pairs of 16-bit  
sine and cosine waves in DAC-  
15-bit amplitude and 32-bit phase data  
Amplitude Input for Amplitude  
compatible 16-bit offset binary format are input into the L2340 to produce an  
with15-bit amplitude and 32-bit phase output of 16-bit rectangular data. The  
Modulation and Gain Adjustment.  
inputs.  
user may select the data format to  
either 16-bit offset binary or 15-bit  
unsigned magnitude format. High  
accuracy phase increment values with  
minimal accumulation error is accom-  
plished by use of a 32-bit phase  
accumulator.  
Replaces TRW/Raytheon/Fairchild  
TMC2340A  
Output waveforms can be phase or  
frequency modulated. Digital output  
frequencies are restricted to the  
Nyquist limit.  
120-pin PQFP (RoHS compliant)  
Functional Description  
The phase accumulator structure  
supports frequency or phase modula-  
tion and is selected by ENP1-0 and  
accumulator controls FM and PM.  
The L2340 converts Polar (Phase and  
Magnitude) data into Rectangular  
(Cartesian) coordinates. The user  
L2340 BLOCK DIAGRAM  
ENA  
15  
AM14-0  
OEI  
2
ENP1-0  
16  
16  
32  
I
15-0  
PH31-0  
Digital  
Synthesizer  
OEQ  
FM  
PM  
Q
15-0  
OBIQ  
CLK  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
1
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
Outputs  
L2340 FUNCTIONAL BLOCK DIAGRAM  
I15-0 — x-coordinate Data Output  
AM14-0  
ENA  
PH31-0  
ENP1-0  
2
FM  
PM  
I15-0 is the 16-bit Cartesian x-coordi-  
nate Data output port. When OEI is  
HIGH, I15-0 is forced into the high-  
impedance state. I15 is forced HIGH if  
OBIQ is LOW.  
15  
32  
32  
M
C
AM  
Q15-0 — y-coordinate Data Output  
Q15-0 is the 16-bit Cartesian y-coordi-  
nate Data output port. When OEQ is  
HIGH, Q15-0 is forced into the high-  
impedance state. Q15 is forced HIGH  
if OBIQ is LOW.  
32  
PM  
FM  
32  
32  
24  
24  
Controls  
15  
15  
ENA — Amplitude Modulation Data  
Input Enable  
When ENA is HIGH, AM is latched  
into the input register on the rising  
edge of clock. When ENA is LOW, the  
value stored in the register is un-  
changed.  
*TRANSFORM  
PROCESSOR  
OBIQ  
16  
16  
16  
16  
ENP1-0 — Phase Modulation Data Input  
Control  
OEI  
OEQ  
ENP1-0 is the 2-bit Phase Modulation  
Data Input Control that determines  
one of the four modes shown in Table  
1. ‘M’ is the Modulation Register and  
‘C’ is the Carrier Register as shown in  
the Functional Block Diagram.  
I
15-0  
Q
15-0  
*REQUIRES 18 CYCLES TO COMPLETE AND IS FULLY PIPELINED  
SIGNAL DEFINITIONS  
Power  
Inputs  
AM14-0 — Amplitude Modulation Data  
Input  
TABLE 1. REGISTER OPERATION  
Vcc and GND  
ENP1-0 Configuration  
AM14-0 is the 15-bit Amplitude  
Modulation Data input port. AM14-0  
is latched on the rising edge of CLK.  
+5V power supply. All pins must be  
connected.  
0 0  
0 1  
1 0  
1 1  
No registers enabled, current data held  
M register input enabled, C data held  
C register input enabled, M data held  
M register = 0, C register input enabled  
Clock  
PH31-0 — Phase Angle Data Input  
CLK — Master Clock  
PH31-0 is the 32-bit Phase Angle Data  
input port. Input phase accumulators  
are loaded through this port into  
registers enabled by ENP1-0. PH31-0 is  
latched on the rising edge of CLK.  
The rising edge of CLK strobes all  
enabled registers.  
TABLE 2. ACCUMULATOR CONTROL  
FM PM Configuration  
0
0
1
1
0
1
0
1
No accumulation (normal operation)  
PM accumulator path enabled  
FM accumulator path enabled  
Logical OR of PM and FM (Nonsensical)  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
2
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
FM, PM — Frequency Modulation,  
Phase Modulation Control  
OBIQ — Data Input/Output Format  
Select  
OEQ — y-coordinate Data Output  
Enable  
FM and PM is the 2-bit Frequency  
Modulation/Phase Modulation  
Control that determines one of the  
four modes shown in Table 2. When  
full-scale is exceeded, the accumulator  
will roll over correctly allowing  
continuous phase accumulation  
through 2π radians.  
When OBIQ is HIGH, offset binary  
format is selected. When OBIQ is  
LOW, unsigned format is selected.  
When OEQ is LOW, Q15-0 is enabled  
for data output. When OEQ is HIGH,  
Q15-0 is placed in a high-impedance  
state.  
OEI — x-coordinate Data Output  
Enable  
When OEI is LOW, I15-0 is enabled for  
data output. When OEI is HIGH, I15-0  
is placed in a high-impedance state.  
FIGURE 1A. INPUT FORMATS  
AM  
PH  
(RTP = 0)  
Integer Unsigned Magnitude  
14 13 12  
214 213 212  
Fract. Unsigned Mag./Two's Comp.  
2
1
0
31 30 29  
*±20 2–1 2–2  
2
1
0
22 21 20  
2–29 2–30 2–31  
*±20 denotes two's complement sign or highest magnitude bit. Since phase angles are modulo 2π  
and phase accumulator is modulo 232, this bit may be regarded as ±π  
.
FIGURE 1B. OUTPUT FORMATS  
I
Q
Integer Unsigned Magnitude (OBIQ = 0)  
14 13 12  
214 213 212  
2
1
0
14 13 12  
214 213 212  
2
1
0
22 21 20  
22 21 20  
Offset Binary (OBIQ = 1)  
15 14 13  
NS 214 213  
2
1
0
15 14 13  
NS 214 213  
2
1
0
22 21 20  
22 21 20  
NS denotes negative sign. (i.e. '1' negates the number)  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
3
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
Circle Test  
error will introduce noise when  
performing waveform sythesis,  
modulation, and demodulation.  
The minimum theoretical angle  
resolution that could be produced is  
0.00175° when x = 7FFFH and y = 1H.  
A 16-bit internal processor can  
produce a minimum angle resolu-  
tion of only 0.00549° and will not be  
able to properly calculate the  
theoretical minimum angle resolu-  
tion. On the other hand, a 24-bit  
internal processor can produce a  
minimum angle resolution of  
When performing a coordinate  
transformation, inaccuracies are  
introduced by a combination of  
quantization and approximation  
Data values for Figure 2 and Figure  
3 are shown in Table 3. By looking  
errors. The accuracy of a coordinate at these values, we observe the step  
transformer is dependent on the  
word length used for the input  
variables, the word length used for  
internal calculations, as well as the  
number of iterations or steps per-  
formed. Truncation errors are due  
to the finite word length and ap-  
proximation errors are due to the  
finite number of iterations. For  
example, in the case of performing a  
polar-to-rectangular transformation,  
the accuracy of the rotation will be  
determined by how closely the input  
rotation angle was approximated by  
the summation of sub-rotation  
angles.  
resolution on a 16-bit internal  
processor is not 1 unit in the x and  
y. In most cases, the minimum step  
resolution is 2 units in the x and y.  
On the other hand, step resolution  
on a 24-bit internal processor is 1  
unit in the x and y thus resulting in  
greater accuracy.  
0.00002° and could therefore prop-  
erly calculate the theoretical mini-  
mum angle resolution.  
FIGURE 2. CIRCLE TEST RESULT NEAR 45°(16-BIT INTERNAL PROCES-  
SOR)  
23200  
23190  
23180  
23170  
23160  
23150  
23140  
In this study, we compare how  
accurately a coordinate transformer  
with a 16-bit internal processor  
versus a 24-bit internal processor  
can calculate all the coordinates of a  
circle. By setting the radius to  
7FFFH, θ is incremented using the  
accumulator of the L2340 in steps of  
0000 4000H until all the points of a  
full circle are calculated into rectan-  
gular coordinates.  
Y
23140 23150 23160 23170 23180 23190 23200  
X
The resulting rectangular coordi-  
nates were plotted and graphed. A  
graphical representation of the  
resulting vectors for both 16-bit and  
24-bit internal processors are com-  
pared at 45°. Theoretically, a  
perfect circle is the desired output  
but when the resulting vectors from  
a coordinate transformer with 16-bit  
internal processor are graphed and  
displayed as shown in Figure 2, we  
see significant errors due to the  
inherent properties of a digital  
synthesizer. In comparison, the 24-  
bit internal processor proves to be  
significantly more accurate than a  
16-bit internal processor due to  
minimization of truncation errors.  
In many applications, this margin of  
FIGURE 3. CIRCLE TEST RESULT NEAR 45°(24-BIT INTERNAL PROCES-  
SOR)  
23200  
23190  
23180  
23170  
23160  
23150  
23140  
Y
23140 23150 23160 23170 23180 23190 23200  
X
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
4
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
TABLE 3. RESULTANT DATA VALUES OF CIRCLE TEST NEAR 45°  
16-bit Internal Processor  
24-bit Internal Processor  
x
x (HEX)  
5AA1  
5A9F  
5A9F  
5A9F  
5A9F  
5A9D  
5A9D  
5A9D  
5A9D  
5A9B  
5A9B  
5A9B  
5A9B  
5A98  
5A98  
5A98  
5A98  
5A96  
5A96  
5A96  
5A96  
5A93  
5A93  
5A93  
5A93  
5A91  
5A91  
5A91  
5A91  
5A8F  
y
y (HEX)  
5A63  
5A65  
5A65  
5A65  
5A65  
5A67  
5A67  
5A67  
5A67  
5A69  
5A69  
5A69  
5A69  
5A6C  
5A6C  
5A6C  
5A6C  
5A6E  
5A6E  
5A6E  
5A6E  
5A70  
5A70  
5A70  
5A70  
5A72  
5A72  
5A72  
5A72  
5A74  
x
x (HEX)  
5A9F  
5A9E  
5A9E  
5A9D  
5A9D  
5A9C  
5A9C  
5A9B  
5A9A  
5A9A  
5A9A  
5A99  
5A98  
5A97  
5A97  
5A97  
5A96  
5A95  
5A95  
5A95  
5A94  
5A93  
5A92  
5A92  
5A92  
5A91  
5A90  
5A90  
5A90  
5A8F  
y
y (HEX)  
5A64  
5A65  
5A65  
5A66  
5A66  
5A67  
5A67  
5A68  
5A69  
5A69  
5A69  
5A6A  
5A6B  
5A6C  
5A6C  
5A6C  
5A6D  
5A6E  
5A6E  
5A6E  
5A6F  
5A70  
5A71  
5A71  
5A71  
5A72  
5A73  
5A73  
5A73  
5A74  
23201  
23199  
23199  
23199  
23199  
23197  
23197  
23197  
23197  
23195  
23195  
23195  
23195  
23192  
23192  
23192  
23192  
23190  
23190  
23190  
23190  
23187  
23187  
23187  
23187  
23185  
23185  
23185  
23185  
23183  
23139  
23141  
23141  
23141  
23141  
23143  
23143  
23143  
23143  
23145  
23145  
23145  
23145  
23148  
03148  
23148  
23148  
23150  
23150  
23150  
23150  
23152  
23152  
23152  
23152  
23154  
23154  
23154  
23154  
23156  
23199  
23198  
23198  
23197  
23197  
23196  
23196  
23195  
23194  
23194  
23194  
23193  
23192  
23191  
23191  
23191  
23190  
23189  
23189  
23189  
23188  
23187  
23186  
23186  
23186  
23185  
23184  
23184  
23184  
23183  
23140  
23141  
23141  
23142  
23142  
23143  
23143  
23144  
23145  
23145  
23145  
23146  
23147  
23148  
23148  
23148  
23149  
23150  
23150  
23150  
23151  
23152  
23153  
23153  
23153  
23154  
23155  
23155  
23155  
23156  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
5
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
MAXIMUM RATINGS Above which useful life may be impaired (Notes 1, 2, 3, 8)  
Storage temperature ........................................................................................................... –65°C to +150°C  
Operating ambient temperature........................................................................................... –55°C to +125°C  
VCC supply voltage with respect to ground ............................................................................ –0.5 V to +7.0 V  
Input signal with respect to ground ............................................................................... –0.5 V to VCC + 0.5 V  
Signal applied to high impedance output ...................................................................... –0.5 V to VCC + 0.5 V  
Output current into low outputs............................................................................................................. 25 mA  
Latchup current ............................................................................................................................... > 400 mA  
OPERATING CONDITIONS To meet specified electrical and switching characteristics  
Mode  
Temperature Range (Ambient)  
0°C to +70°C  
Supply Voltage  
4.75 V VCC 5.25 V  
4.50 V VCC 5.50 V  
Active Operation, Commercial  
Active Operation, Military  
–55°C to +125°C  
ELECTRICAL CHARACTERISTICS Over Operating Conditions (Note 4)  
Symbol Parameter  
Test Condition  
Min  
Typ  
Max Unit  
VOH  
VOL  
VIH  
Output High Voltage  
VCC = Min., IOH = –2.0 mA  
VCC = Min., IOL = 4.0 mA  
2.4  
V
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
Input Current  
0.4  
VCC  
0.8  
V
V
2.0  
0.0  
VIL  
(Note 3)  
V
IIX  
Ground VIN VCC (Note 12)  
Ground VOUT VCC (Note 12)  
(Notes 5, 6)  
±10  
±10  
µA  
µA  
IOZ  
Output Leakage Current  
VCC Current, Dynamic  
VCC Current, Quiescent  
Input Capacitance  
Output Capacitance  
ICC1  
ICC2  
CIN  
COUT  
95 mA  
(Note 7)  
5
10  
10  
mA  
pF  
pF  
TA = 25°C, f = 1 MHz  
TA = 25°C, f = 1 MHz  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
6
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
SWITCHING CHARACTERISTICS  
COMMERCIAL OPERATING RANGE (0°C to +70°C) Notes 9, 10 (ns)  
L2340–  
*
50  
*
25  
20  
Symbol Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
tCYC  
tPWL  
Cycle Time  
50  
25  
20  
Clock Pulse Width Low  
10  
8
8
7
7
0
7
6
6
1
tPWH Clock Pulse Width High  
tS  
Input Setup Time  
12  
1
tH  
Input Hold Time  
tD  
Output Delay  
22  
13  
13  
18  
13  
13  
16  
13  
13  
tENA  
tDIS  
Three-State Output Enable Delay (Note 11)  
Three-State Output Disable Delay (Note 11)  
MILITARY OPERATING RANGE (–55°C to +125°C) Notes 9, 10 (ns)  
L2340–  
*
50  
*
25  
*
20  
Symbol Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
tCYC  
tPWL  
Cycle Time  
50  
25  
20  
Clock Pulse Width Low  
11  
8
9
7
7
2
7
6
6
1
tPWH Clock Pulse Width High  
tS  
Input Setup Time  
13  
2
tH  
Input Hold Time  
tD  
Output Delay  
25  
15  
15  
20  
14  
14  
18  
13  
13  
tENA  
tDIS  
Three-State Output Enable Delay (Note 11)  
Three-State Output Disable Delay (Note 11)  
*DISCONTINUED SPEED  
GRADE  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
7
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
SWITCHING WAVEFORMS:  
NO ACCUMULATION  
0
1
2
3
22  
23  
24  
CLK  
t
H
t
PWL  
tS  
tPWH  
OBIQ  
tCYC  
00  
EN  
A
00  
EN  
B
00  
EN  
C
FM, PM  
ENA  
ENP1-0  
AM14-0  
PH31-0  
tD  
I15-0  
f(A)  
f(B)  
Q
15-0  
SWITCHING WAVEFORMS:  
PHASE MODULATION  
0
1
2
3
4
22  
23  
24  
25  
CLK  
OBIQ  
00  
01  
01  
01  
01  
FM, PM  
ENA  
R
AM14-0  
10  
01  
I
01  
J
01  
K
01  
L
ENP1-0  
C
PH31-0  
I15-0  
C + I  
2C + J  
3C + K  
4C + L  
Q
15-0  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
8
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
NOTES  
1. Maximum Ratings indicate stress 9. AC specifications are tested with  
11. For the tENA test, the transition is  
specifications only. Functional oper- input transition times less than 3 ns, measured to the 1.5 V crossing point  
ation of these products at values be- output reference levels of 1.5 V (except  
yond those indicated in the Operating  
with datasheet loads. For the tDIS test,  
the transition is measured to the  
tDIS test), and input levels of nominally  
Conditions table is not implied. Expo- 0 to 3.0 V. Output loading may be a ±200mV level from the measured  
sure to maximum rating conditions for resistive divider which provides for steady-state output voltage with  
extended periods may affect reliability.  
±10mA loads. The balancing volt-  
age, VTH, is set at 3.5 V for Z-to-0  
specified IOH and IOL at an output  
voltage of VOH min and VOL max  
2. The products described by this spec-  
ification include internal circuitry de-  
signedto protect the chipfrom damag-  
ing substrate injection currents and ac-  
cumulations of static charge. Never-  
theless, conventional precautions  
should be observed during storage,  
handling, and use of these circuits in This device has high-speed outputs ca-  
order to avoid exposure to excessive pable of large instantaneous current  
respectively. Alternatively, a diode and 0-to-Z tests, and set at 0 V for Z-  
bridge with upper and lower current to-1 and 1-to-Z tests.  
sources of IOH and IOL respectively,  
12. These parameters are only tested at  
and a balancing voltage of 1.5 V may be  
the high temperature extreme, which is  
used. Parasitic capacitance is 30 pF  
the worst case for leakage current.  
minimum, and may be distributed.  
FIGURE A. OUTPUT LOADING CIRCUIT  
electrical stress values.  
pulses and fast turn-on/turn-off times.  
Asaresult, caremustbeexercisedinthe  
testing of this device. The following  
measures are recommended:  
S1  
DUT  
3. This device provides hard clamping  
of transient undershoot and overshoot.  
Input levels below ground or above  
VCC will be clamped beginning at –  
I
OL  
V
TH  
CL  
I
OH  
a. A 0.1 µF ceramic capacitor should be  
0.6 V and VCC + 0.6 V. The device can installed between VCC and Ground  
withstand indefinite operation with in- leads as close to the Device Under Test  
puts in the range of –0.5 V to +7.0 V. (DUT) as possible. Similar capacitors  
FIGURE B. THRESHOLD LEVELS  
t
ENA  
tDIS  
Device operation will not be adversely  
affected, however, input current levels and the tester common, and device  
should be installed between device VCC  
OE  
0
1.5 V  
1.5 V  
will be well in excess of 100 mA.  
ground and tester common.  
Z
Z
3.5V Vth  
1.5 V  
1.5 V  
V
OL*  
0.2 V  
0.2 V  
0
1
Z
Z
4. Actual test conditions may vary  
b. Ground and VCC supply planes  
from those designated but operation is must be brought directly to the DUT  
guaranteed as specified. socket or contactor fingers.  
V
OH*  
1
0V Vth  
VOL*  
Measured VOL with IOH = –10mA and IOL = 10mA  
V
OH* Measured VOH with IOH = –10mA and IOL = 10mA  
5. Supplycurrentforagivenapplication c. Input voltages should be adjusted to  
can be accurately approximated by:  
compensateforinductivegroundand VCC  
noise to maintain required DUT input  
levels relative to the DUT ground pin.  
2
NCV F  
4
where  
10. Each parameter is shown as a min-  
imum or maximum value. Input re-  
quirements are specified from the point  
of view of the external system driving  
the chip. Setup time, for example, is  
specified as a minimum since the exter-  
nal system must supply at least that  
much time to meet the worst-case re-  
quirementsofallparts. Responsesfrom  
the internal circuitry are specified from  
the point of view of the device. Output  
delay, for example, is specified as a  
maximumsinceworst-caseoperationof  
anydevicealwaysprovidesdatawithin  
that time.  
N = total number of device outputs  
C = capacitive load per output  
V = supply voltage  
F = clock frequency  
6. Tested with all outputs changing ev-  
ery cycle and no load, at a 20 MHz clock  
rate.  
7. Tested with all inputs within 0.1 V of  
VCC or Ground, no load.  
8. These parameters are guaranteed  
but not 100% tested.  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
9
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
ORDERING INFORMATION  
120-pin  
V
Q
Q
GND  
Q
Q
Q
CC  
1
2
3
4
5
6
7
8
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
I
I
10  
11  
4
3
GND  
I
I
I
V
I
GND  
OEI  
V
GND  
AM14  
AM13  
GND  
AM12  
AM11  
AM10  
AM  
AM  
AM  
AM  
12  
13  
14  
2
1
0
CC  
VCC  
15  
OEQ  
GND  
GND  
CLK  
GND  
OBIQ  
ENP  
GND  
ENP  
PM  
FM  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CC  
0
Top  
View  
1
9
8
7
6
V
CC  
PH  
0
1
2
3
4
5
6
PH  
PH  
PH  
PH  
PH  
PH  
GND  
PH  
PH  
GND  
AM  
AM  
AM  
GND  
AM  
5
4
3
2
7
AM  
V
1
8
CC  
Plastic Quad Flatpack  
(Q1)  
Speed  
0°C to +70°C — COMMERCIAL SCREENING  
20 ns  
L2340QC20, L2340QC20G  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
10  
L2340  
DEVICES INCORPORATED  
Digital Synthesizer  
ORDERING INFORMATION  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
120-pin  
A
B
C
D
E
F
Q
5
3
1
Q
7
4
2
0
Q
8
6
Q
10  
Q
12  
11  
Q
Q
14  
Q
15  
I
I
0
1
I
I
2
3
I
I
4
5
I
I
6
7
I
I
8
9
I
I
I
I
10  
12  
13  
15  
Q
Q
Q
Q
Q
Q
Q
9
Q
13 GND  
VCC GND GND  
V
CC GND  
V
CC GND GND  
VCC  
I
I
11  
14  
OEQ  
GND  
GND  
KEY  
GND GND  
V
CC  
V
CC GND OEI  
CC GND AM14  
Top View  
OBIQ GND CLK  
V
Through Package  
G
H
J
ENP  
1
ENP  
FM  
0
GND  
GND AM12 AM13  
(i.e., Component Side Pinout)  
PM  
VCC  
AM  
9
AM10 AM11  
PH  
PH  
PH  
PH  
PH  
0
PH  
PH  
PH  
PH  
1
PH  
3
GND AM  
7
5
3
1
AM  
AM  
AM  
AM  
8
6
4
2
0
K
L
2
4
GND  
GND  
GND AM  
5
6
8
7
9
VCC YPI14  
V
CC GND  
V
CC PH27 PH31  
VCC AM  
M
N
PH11 PH13 PH16 PH18 PH20 PH23 PH25 PH28 ENA AM  
PH10 PH12 PH15 PH17 PH19 PH21 PH22 PH24 PH26 PH29 PH30 AM  
Discontinued Package  
Ceramic Pin Grid Array  
(G4)  
Speed  
0°C to +70°C — COMMERCIAL SCREENING  
–55°C to +125°C — COMMERCIAL SCREENING  
–55°C to +125°C — MIL-STD-883 COMPLIANT  
Special Arithmetic Functions  
08/16/2000–LDS.2340-E  
11  

相关型号:

L2340QC25

Parallel-Input Frequency Synthesizer
ETC

L2340QC50

Parallel-Input Frequency Synthesizer
ETC

L2347-01

Infrared LED, 890nm
HAMAMATSU

L235-0.25M

LVDS Output Clock Oscillator, 25MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC PACKAGE-6
CONNOR-WINFIE

L235-025.0M

LVDS Output Clock Oscillator, 25MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC PACKAGE-6
CONNOR-WINFIE

L235-155.52

5.0x7.0mm Surface Mount LVDS Clock Oscillator Series
CONNOR-WINFIE

L235-155.52M

LVDS Output Clock Oscillator, 155.52MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC PACKAGE-6
CONNOR-WINFIE

L235-2280AHLxByAC0

Turnkey solution on a flexible substrate with optimized performance and uniform light distribution
LUMILEDS

L235-2280AMLF5WAD0

Turnkey solution on a flexible substrate with optimized performance and uniform light distribution
LUMILEDS

L235-2280AULM5JAI0

Turnkey solution on a flexible substrate with optimized performance and uniform light distribution
LUMILEDS

L235-260.000M

Oscillator
CONNOR-WINFIE

L235-260.00M

LVDS Output Clock Oscillator, 260MHz Nom, ROHS COMPLIANT, HERMETIC SEALED, CERAMIC PACKAGE-6
CONNOR-WINFIE