1402 [Linear]

Serial 12-Bit, 2.2Msps Sampling ADC with Shutdown; 串行12位, 2.2Msps采样ADC ,带有关断
1402
型号: 1402
厂家: Linear    Linear
描述:

Serial 12-Bit, 2.2Msps Sampling ADC with Shutdown
串行12位, 2.2Msps采样ADC ,带有关断

文件: 总24页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1402  
Serial 12-Bit, 2.2Msps  
Sampling ADC with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LTC®1402 is a 12-bit, 2.2Msps sampling A/D con-  
verter. This high performance device includes a high dy-  
namic range sample-and-hold and a precision reference.  
It operates from a single 5V supply or dual ±5V supplies  
and draws only 90mW from 5V.  
Sample Rate: 2.2Msps  
72dB S/(N + D) and –89dB THD at Nyquist  
Power Dissipation: 90mW (Typ)  
80MHz Full Power Bandwidth Sampling  
No Missing Codes over Temperature  
Available in 16-Pin Narrow SSOP Package  
The versatile differential input offers a unipolar range of  
4.096V and a bipolar range of ±2.048V for dual supply  
systems where high performance op amps perform best,  
eliminating the need for special translation circuitry.  
Single Supply 5V or ±5V Operation  
Nap Mode with Instant Wake-Up: 15mW  
Sleep Mode: 10µW  
True Differential Inputs Reject Common Mode Noise  
The high common mode rejection allows users to elimi-  
nategroundloopsandcommonmodenoisebymeasuring  
signals differentially from the source.  
Input Range (1mV/LSB): 0V to 4.096V or ±2.048V  
Internal Reference Can Be Overdriven Externally  
3-Wire Interface to DSPs and Processors (SPI and  
MICROWIRETM Compatible)  
U
Outstanding AC performance includes 72dB S/(N + D) and  
–93dB SFDR at the Nyquist input frequency of 1.1MHz  
with dual ±5V supplies and –84dB SFDR with a single 5V  
supply.  
APPLICATIO S  
Telecommunications  
The LTC1402 has two power saving modes: Nap and  
Sleep. Nap mode consumes only 15mW of power and can  
wake up and convert immediately. In Sleep mode, it  
typically consumes 10µW of power. Upon power-up from  
Sleep mode, a reference ready (REFRDY) signal is avail-  
able in the serial data word to indicate that the reference  
has settled and the chip is ready to convert.  
High Speed Data and Signal Acquisition  
Digitally Multiplexed Data Acquisition Systems  
Digital Radio Receivers  
Spectrum Analysis  
Low Power and Battery-Operated Systems  
Handheld or Portable Instruments  
Imaging Systems  
The 3-wire serial port allows compact and efficient data  
transfer to a wide range of microprocessors, microcon-  
trollers and DSPs. A digital output driver power supply pin  
allows direct connection to 3V or lower logic.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
MICROWIRE is a trademark of National Semiconductor Corp.  
W
BLOCK DIAGRA  
5V  
3V OR 5V  
5 Harmonic THD, 2nd, 3rd and SFDR  
vs Input Frequency (Unipolar)  
1
AV  
DD  
12 DV  
11 OV  
DD  
DD  
10µF  
0
THD  
SFDR  
–10  
3
+
A
IN  
–20  
–30  
2ND  
3RD  
SAMPLE-  
10  
OUTPUT  
BUFFER  
12-BIT ADC  
D
OUT  
AND-HOLD  
f
= 2.22MHz  
4
5
SAMPLE  
–40  
A
IN  
–50  
4.096V  
V
–60  
REF  
10µF  
64k  
64k  
–70  
+
–80  
8
BIP/UNI  
CONV  
SCK  
–90  
16  
15  
7
2.048  
REFERENCE  
TIMING  
LOGIC  
–100  
–110  
–120  
GAIN  
LTC1402  
1402 TA01  
14  
10µF  
–5V OR 0V  
V
SS  
2
AGND1  
6
AGND2  
13 DGND  
9 OGND  
4
5
6
7
10  
10  
10  
10  
INPUT FREQUENCY (Hz)  
1401 G05  
1
LTC1402  
U
W U  
W W  
U W  
PACKAGE/ORDER INFORMATION  
ABSOLUTE MAXIMUM RATINGS  
AVDD = DVDD = OVDD = VDD (Notes 1, 2)  
Supply Voltage (VDD)................................................. 6V  
Negative Supply Voltage (VSS) ............................... 6V  
Total Supply Voltage (VDD to VSS) .......................... 12V  
Analog Input Voltage  
(Note 3) .......................... (VSS – 0.3V) to (VDD + 0.3V)  
Digital Input Voltage  
(Note 4) .......................... (VSS – 0.3V) to (VDD + 0.3V)  
Digital Output Voltage......... (VSS – 0.3V) to (VDD + 0.3V)  
Power Dissipation.............................................. 250mW  
Operation Temperature Range  
LTC1402C ............................................... 0°C to 70°C  
LTC1402I............................................ 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
AV  
1
2
3
4
5
6
7
8
16 CONV  
15 SCK  
DD  
AGND1  
+
LTC1402CGN  
LTC1402IGN  
A
IN  
14  
13  
12  
11  
10  
9
V
SS  
A
DGND  
IN  
V
DV  
DD  
REF  
AGND2  
GAIN  
0V  
DD  
GN PART MARKING  
D
OUT  
BIP/UNI  
OGND  
1402  
1402I  
GN PACKAGE  
16-LEAD NARROW PLASTIC SSOP  
TJMAX = 125°C, θJA = 150°C/ W  
Consult factory for Military grade parts.  
U
CONVERTER CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. With internal reference (Note 5).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity  
Offset Error  
12  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
±0.35  
±0.25  
±2  
±1  
±1  
LSB  
LSB  
LSB  
LSB  
±10  
±15  
Full-Scale Error  
±10  
Full-Scale Tempco  
Internal Reference (Note 6)  
External Reference  
±15  
±1  
ppm/°C  
ppm/°C  
U
U
A ALOG I PUT  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Analog Differential Input Range (Notes 3, 11)  
Bipolar Mode with BIP/UNI High  
±2.048  
V
IN  
4.75V V 5.25V  
DD  
5.25V V –4.75V  
SS  
Unipolar Mode with BIP/UNI Low  
0 to 4.096  
V
4.75V V 5.25V  
DD  
5.25V V 0V  
SS  
V
Analog Common Mode + Differential  
Input Range (Note 12)  
Dual ±5V Supply  
Single 5V Supply  
–2.5 to 5  
0 to 5  
V
V
CM  
I
Analog Input Leakage Current  
1
µA  
pF  
ns  
ns  
ps  
IN  
C
Analog Input Capacitance  
10  
IN  
t
t
t
Sample-and-Hold Acquisition Time  
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
Analog Input Common Mode Rejection Ratio  
(Note 9)  
57  
ACQ  
AP  
2.6  
1
JITTER  
CMRR  
f
f
= 1MHz, V = 2V to 2V  
= 100MHz, V = 2V to 2V  
62  
24  
dB  
dB  
IN  
IN  
IN  
IN  
2
LTC1402  
U W  
DYNAMIC ACCURACY  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. Bipolar mode with ± 5V supplies and unipolar mode with 5V supply. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
S/(N + D)  
Signal-to-Noise Plus  
Distortion Ratio  
100kHz Input Signal  
1.1MHz Input Signal  
72.5  
72.0  
dB  
dB  
69  
THD  
SFDR  
IMD  
Total Harmonic  
Distortion  
100kHz First 5 Harmonics, Bipolar Mode  
1.1MHz First 5 Harmonics, Bipolar Mode  
100kHz First 5 Harmonics, Unipolar Mode  
1.1MHz First 5 Harmonics, Unipolar Mode  
–89  
–89  
–87  
–82  
dB  
dB  
dB  
dB  
–74.5  
Spurious Free  
Dynamic Range  
100kHz Input Signal, Bipolar Mode  
1.1MHz Input Signal, Bipolar Mode  
100kHz Input Signal, Unipolar Mode  
1.1MHz Input Signal, Unipolar Mode  
–93  
–93  
–93  
–84  
dB  
dB  
dB  
dB  
+
Intermodulation  
Distortion  
±1V 1.25MHz into A , 1.2MHz into A Bipolar Mode  
–84  
–84  
dB  
dB  
IN  
IN  
+
1.5V to 3.5V 1.25MHz into A , 1.2MHz into A Unipolar Mode  
IN  
IN  
Code-to-Code  
V
REF  
= 4.096V, 1LSB = 1mV  
0.18  
LSB  
RMS  
Transition Noise  
Full Power Bandwidth  
V
IN  
= 4V , D  
= 2828LSB (Note 18)  
82  
MHz  
P-P OUT  
P-P  
Full Linear Bandwidth S/(N + D) 68dB Bipolar Mode  
5.0  
3.5  
MHz  
MHz  
Unipolar Mode  
U U  
U
The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
INTERNAL REFERENCE CHARACTERISTICS  
PARAMETER CONDITIONS  
= 0  
MIN  
TYP  
4.096  
15  
MAX  
UNITS  
V
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
Settling Time  
I
OUT  
REF  
REF  
REF  
REF  
REF  
ppm/°C  
LSB/V  
AV = 4.75V to 5.25V, V = 4.096V  
DD  
1
REF  
Load Current = 0.5mA  
2
2
ms  
U
U
The denotes the specifications which apply over the  
DIGITAL I PUTS A D DIGITAL OUTPUTS  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
Digital Input Capacitance  
High Level Output Voltage  
V
V
V
= 5.25V  
= 4.75V  
= 0V to V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.8  
I
±10  
µA  
pF  
IN  
DD  
C
V
5
IN  
OV = 4.75V, I  
OV = 4.75V, I  
OV = 3V, I  
= 10µA  
= 200µA  
= 200µA  
4.7  
V
V
V
OH  
DD  
OUT  
OUT  
4
2.5  
DD  
2.9  
DD  
OUT  
V
Low Level Output Voltage  
V
V
= 4.75V, I  
= 4.75V, I  
= 160µA  
= 1.6mA  
0.05  
0.10  
V
V
OL  
DD  
DD  
OUT  
OUT  
0.4  
I
Hi-Z Output Leakage D  
V
= 0V to V  
DD  
±10  
µA  
OZ  
OUT  
OUT  
C
Hi-Z Output Capacitance D  
15  
pF  
OZ  
OUT  
I
Output Short-Circuit Source Current  
V
V
= 0V, OV = 5V  
40  
15  
mA  
mA  
SOURCE  
OUT  
OUT  
DD  
= 0V, OV = 3V  
DD  
I
Output Short-Circuit Sink Current  
V
= OV = 5V  
40  
mA  
SINK  
OUT  
DD  
3
LTC1402  
POWER REQUIRE E TS  
W U  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.75  
TYP  
MAX  
5.25  
0
UNITS  
V
DD  
V
SS  
Positive Supply Voltage  
Negative Supply Voltage  
Positive Supply Current  
V
V
5.25  
I
Active Mode  
Nap Mode  
Sleep Mode  
18  
3
2
30  
5
10  
mA  
mA  
µA  
DD  
I
Negative Supply Current  
Power Dissipation  
Active, Sleep or Nap Modes with SCK Off  
2
µA  
SS  
PD  
Active Mode with SCK in Fixed State (Hi or Lo)  
90  
150  
mW  
W U  
TI I G CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency (Conversion Rate)  
Minimum Sampling Period (Conversion + Acquisiton Period)  
Minimum Clock Period  
2.2  
MHz  
SAMPLE(MAX)  
455  
ns  
THROUGHPUT  
28  
57  
10000  
ns  
SCK  
CONV  
0
Conversion Time  
(Note 9)  
14  
SCK cycles  
14th SCLKto CONVInterval  
(Notes 9, 10, 16)  
(Note 9)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
Minimum Positive or Negative SCK Pulse Width  
CONV to SCK Setup Time  
3.8  
7.3  
6
1
(Notes 9, 13)  
(Note 9)  
12  
2
SCK After CONV  
0
48  
4
3
Minimum Positive or Negative CONV Pulse Width  
SCKto Sample Mode  
(Note 9)  
3.5  
9
5
14  
5
4
(Note 9)  
5
CONV to Hold Mode  
(Notes 9, 14)  
(Note 9)  
3.4  
6
Minimum Delay Between Conversions  
Minimum Delay from SCKto Valid Bits 0 Through 11  
Minimum Delay from SCK to Valid REFREADY  
7
(Notes 9, 15)  
(Notes 9, 15)  
(Notes 9, 15)  
(Notes 9, 15)  
(Notes 9, 17)  
(Notes 9, 17)  
9
15  
11.4  
7
12  
20  
16  
8
8a  
9
SCK to Hi-Z at D  
OUT  
Previous D  
Bit Remains Valid After SCK  
OUT  
10  
11  
12  
REFREADY Bit Delay After Sleep-to-Wake Transition  
Settling Time After Sleep-to-Wake Transition  
10  
2
V
REF  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 6: Linearity, offset and full-scale specifications apply for a single-  
+
ended A input with A grounded and using the internal reference in  
IN IN  
bipolar mode with ±5V supplies.  
Note 2: All voltage values are with respect to ground with DGND, AGND1  
and AGND2 wired together.  
Note 3: When these pins are taken below V or above V , they will be  
Note 7: Integral linearity is defined as the deviation of a code from the  
straight line passing through the actual endpoints of a transfer curve. The  
deviation is measured from the center of quantization band.  
SS  
DD  
clamped by internal diodes. This product can handle input currents greater  
than 100mA below V or greater than V without latchup.  
Note 8: Bipolar offset is the offset measured from 0.5LSB when the input  
SS  
DD  
flickers between 1000 0000 0000 and 0111 1111 1111.  
Note 4: When these pins are taken below V , they will be clamped by  
SS  
internal diodes. This product can handle input currents greater than  
Note 9: Guaranteed by design, not subject to test.  
Note 10: Recommended operating conditions.  
100mA below V or greater than V . These pins are not clamped to V .  
SS  
DD  
DD  
Note 5: V = 5V, f  
specifications and V = 5V for bipolar specifications.  
= 2.2MHz, V = 0V for unipolar mode  
SS  
DD  
SAMPLE  
Note 11: The analog input range is defined as the voltage difference  
+
SS  
between A and A . The bipolar ±2.048V input range could be used  
IN  
IN  
with a single 5V supply if the absolute voltages of the inputs remain within  
the single 5V supply voltage.  
4
LTC1402  
ELECTRICAL CHARACTERISTICS  
+
Note 12: The absolute voltage at A and A must be within this range.  
Note 16: The time period for acquiring the input signal is started by the  
IN  
IN  
14th rising clock and it is ended by the rising edge of convert.  
Note 17: The internal reference settles in 2ms after it wakes up from Sleep  
mode with one or more cycles at SCK and a 10µF capacitive load. The  
Note 13: If less than 7.3ns is allowed, the output data will appear one  
clock cycle later. It is best for CONV to rise half a clock before SCK, when  
running the clock at rated speed.  
Sleep mode resets the REFREADY bit in the D  
REFREADY bit goes high again 10ms after the V has stopped slewing in  
wake up. This ensures valid REFREADY bit operation even with higher load  
sequence. The  
REF  
Note 14: Not the same as aperture delay. Aperture delay is smaller (2.6ns)  
because the 0.8ns delay through the sample-and-hold is subtracted from  
the CONV to Hold mode delay.  
Note 15: The rising edge of SCK is guaranteed to catch the data coming  
out into a storage latch.  
OUT  
capacitances at V  
.
REF  
Note 18: The full power bandwidth is the frequency where the output code  
swing drops to 2828LSBs with a 4V input sine wave.  
P-P  
U W  
(Bipolar Mode Plots Run with Dual ±5V Supplies.  
TYPICAL PERFOR A CE CHARACTERISTICS  
Unipolar Mode Plots Run with a Single 5V Supply. VDD = 5V, VSS = 5V for Bipolar, VDD = 5V, VSS = 0V for Unipolar), TA = 25°C.  
5 Harmonic THD, 2nd, 3rd and  
SFDR vs Input Frequency  
(Bipolar)  
ENOBs and SINAD  
vs Input Frequency (Bipolar)  
SNR vs Input Frequency (Bipolar)  
12  
11  
10  
9
74  
68  
62  
56  
50  
44  
38  
32  
26  
20  
14  
8
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–2  
–8  
THD  
SFDR  
2ND  
3RD  
f
= 2.22MHz  
SAMPLE  
–14  
–20  
–26  
–32  
–38  
–44  
–50  
–56  
–62  
–68  
–74  
f
= 2.22MHz  
SAMPLE  
8
7
6
5
4
3
2
1
f
= 2.22MHz  
SAMPLE  
0
10  
2
4
5
6
7
4
5
6
7
4
5
6
7
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
1401 G01  
1401 G02  
1401 G03  
5 Harmonic THD, 2nd, 3rd and  
SFDR vs Input Frequency  
(Unipolar)  
ENOBs and SINAD  
vs Input Frequency (Unipolar)  
SNR vs Input Frequency (Unipolar)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–2  
–8  
12  
11  
10  
9
74  
68  
62  
56  
50  
44  
38  
32  
26  
20  
14  
8
THD  
SFDR  
2ND  
3RD  
f
= 2.22MHz  
SAMPLE  
–14  
–20  
–26  
–32  
–38  
–44  
–50  
–56  
–62  
–68  
–74  
f
= 2.22MHz  
SAMPLE  
8
7
6
5
4
3
2
1
f
= 2.22MHz  
SAMPLE  
0
2
4
5
6
7
4
5
6
7
4
5
6
7
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
INPUT FREQUENCY (Hz)  
1401 G05  
1401 G06  
1401 G04  
5
LTC1402  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
(Bipolar Mode Plots Run with Dual ±5V Supplies.  
Unipolar Mode Plots Run with a Single 5V Supply. VDD = 5V, VSS = 5V for Bipolar, VDD = 5V, VSS = 0V for Unipolar), TA = 25°C.  
Sine Wave Spectrum Plot  
(Bipolar) ±5V Supply  
Sine Wave Spectrum Plot  
(Bipolar) Dual ±5V Supply  
IMD Spectrum Plot (Bipolar)  
10  
0
10  
0
10  
0
f
f
f
= 2352941.18Hz  
SAMPLE  
SINEA  
SINEB  
+
= 1250000Hz ±1V INTO A  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
= 1199449Hz ±1V INTO A  
IMD = 83.9dB  
IN  
2048 SAMPLES  
2f – f  
A
B
B
2f + f  
A
0
0.55  
1.11  
0
0.55  
FREQUENCY (MHz)  
1.11  
0
0.59  
FREQUENCY (MHz)  
1.18  
FREQUENCY (MHz)  
1402 G09  
1402 G11  
1402 G10  
Sine Wave Spectrum Plot  
(Unipolar) 5V Supply  
Sine Wave Spectrum Plot  
(Unipolar) 5V Supply  
IMD Spectrum Plot (Unipolar)  
10  
0
10  
0
10  
0
f
f
= 2222222.22Hz  
f
= 2352941.18Hz  
SAMPLE  
SAMPLE  
SINE  
+
= 1131727.43Hz  
f
= 1250000Hz INTO A  
1.5V TO 3.5V  
,
,
SINEA  
IN  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
2048 SAMPLES  
f
= 1199449Hz INTO A  
1.5V TO 3.5V  
SINEB  
IMD = 84.1dB  
2048 SAMPLES  
3f  
B
5TH  
f
A
– 2f  
B
0
0
0.55  
1.11  
0.55  
1.11  
0
0.59  
FREQUENCY (MHz)  
1.18  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
1402 G08  
1402 G12  
1402 G13  
4VP-P Power Bandwidth and  
100mVP-P Small-Signal  
Bandwidth  
PSRR vs Frequency  
Load Regulation for VREF  
5
0
4.100  
4.090  
4.080  
4070  
0
V
V
V
CC  
SS  
DD  
–10  
20  
30  
40  
50  
60  
–70  
80  
100mV  
P-P  
DGND  
–3  
–5  
4V  
P-P  
–10  
–15  
20  
25  
.4.060  
4.050  
4.040  
0
0.4  
0.8  
1.2  
1.6  
2.0  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
LOAD CURRENT (mA)  
1402 F07  
1402 G18  
1402 G20  
6
LTC1402  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Bipolar Mode Plots Run with Dual ±5V Supplies.  
Unipolar Mode Plots Run with a Single 5V Supply. VDD = 5V, VSS = 5V for Bipolar, VDD = 5V, VSS = 0V for Unipolar), TA = 25°C.  
Differential Nonlinearity  
vs Output Code (Bipolar)  
Positive Power Supply Rejection  
for VREF  
Integral Nonlinearity  
vs Output Code (Bipolar)  
4.095  
4.090  
4.085  
4.080  
4.075  
4.070  
4.065  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
f
= 2.2MHz  
SAMPLE  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
4.5  
4.75  
5.0  
5.25  
(V)  
5.5  
5.75  
6.0  
2048 2560  
CODE  
2048 2560  
CODE  
0
512 1024 1536  
3072 3584 4096  
0
512 1024 1536  
3072 3584 4096  
V
DD  
1402 G21  
1402 G15  
1402 G14  
Differential Nonlinearity  
vs Output Code (Unipolar)  
Integral Nonlinearity  
vs Output Code (Unipolar)  
Negative Power Supply Rejection  
for VREF  
4.095  
4.090  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
4.085  
4.080  
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
4.075  
4.070  
4.065  
–5  
–4  
–3  
–2  
(V)  
–1  
0
2048 2560  
CODE  
2048 2560  
CODE  
0
512 1024 1536  
3072 3584 4096  
0
512 1024 1536  
3072 3584 4096  
V
SS  
1402 G19  
1402 G17  
1402 G16  
U
U
U
PIN FUNCTIONS  
AVDD (Pin 1): 5V Analog Power Supply. Bypass to AGND1 AIN(Pin4):NegativeAnalogSignalInput.Canbegrounded  
and solid analog ground plane with 10µF ceramic (or 10µF or driven differentially with AIN+. Identical to AIN+, except  
tantalum in parallel with 0.1µF ceramic).  
that it inverts the input signal. (Note 3)  
AGND1(Pin2):AnalogGround. Tietosolidanalogground VREF (Pin 5): 4.096V Reference Voltage Output. Bypass to  
plane. The analog ground plane should be solid and have AGND1 and solid analog ground plane with 10µF ceramic  
no cuts near the LTC1402.  
(or 10µF tantalum in parallel with 0.1µF ceramic).  
AIN+ (Pin 3): Positive Analog Signal Input. 0V to 4.096V in AGND2 (Pin 6): Analog Ground Return for the Reference  
unipolar mode and ±2.048V in bipolar mode when AINis and Internal CDAC. AGND2 could be overdriven externally  
grounded. Both of these ranges operate fully differentially above ground. Tie to solid analog ground plane.  
with respect to AIN. (Note 3)  
7
LTC1402  
U
U
U
PIN FUNCTIONS  
GAIN (Pin 7): Tie to AGND2 to set the reference voltage to  
4.096VortietoVREF tosetthereferencevoltageto2.048V.  
(Note 4)  
DGND (Pin 13): Digital Ground for Internal Logic. Tie to  
solid analog ground plane.  
VSS (Pin 14): Negative Supply Voltage. Bypass to solid  
analog ground plane with 10µF ceramic (or 10µF tantalum  
in parallel with 0.1µF ceramic) or tie directly to the solid  
analog ground plane for single supply use. Must be set  
more negative than either AIN+ or AIN . Set to 0V or 5V.  
BIP/UNI (Pin 8): Tie to logic low to set the input range to  
unipolar mode or tie to logic high to set the input range to  
bipolar mode. (Note 4)  
OGND (Pin 9): Output Ground for the Output Driver. This  
pincanbetiedtothedigitalgroundofthesystem. Allother  
ground pins should be tied to the analog ground plane.  
SCK (Pin 15): External Clock. Advances the conversion  
process and sequences the output data at DOUT on the  
risingedge.Respondsto5Vor3VCMOSandtoTTLlevels.  
(Note 4). One or more pulses wake from Nap or Sleep.  
DOUT (Pin 10): Three-State Data Output. (Note 3) Each  
output data word represents the analog input at the start  
of the previous conversion.  
CONV (Pin 16): Holds the input analog signal and starts  
the conversion on the rising edge. Responds to 5V or 3V  
CMOS and to TTL levels. (Note 4). Two pulses with SCK in  
fixed high or fixed low state start Nap Mode. Four pulses  
with SCK in fixed high or fixed low state start Sleep mode.  
OVDD (Pin 11):Output Data Driver Power. Tie to VDD when  
driving 5V logic. Tie to 3V when driving 3V logic.  
DVDD (Pin 12): Digital Power for Internal Logic. Bypass to  
DGNDwith10µFceramic(or10µFtantaluminparallelwith  
0.1µF ceramic).  
W
BLOCK DIAGRA  
C
C
SAMPLE  
SAMPLE  
3
4
+
A
A
IN  
IN  
1
AV  
DD  
12  
14  
DV  
DD  
V
SS  
ZEROING SWITCHES  
2.048V REF  
+
+
REF AMP  
COMP  
12-BIT CAPACITIVE DAC  
64k  
64k  
7
5
GAIN  
8
BIP/UNI  
V
REF  
10  
SUCCESSIVE APPROXIMATION  
REGISTER  
OUTPUT  
DRIVER  
6
D
OUT  
AGND2  
AGND1  
DGND  
2
11  
9
OV  
DD  
13  
INTERNAL  
CLOCK  
CONTROL LOGIC  
OGND  
1402 BD  
16  
15  
SCK  
CONV  
8
LTC1402  
W U  
W
TI I G DIAGRA S  
t
2
t
7
t
3
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
16  
1
2
14  
SCK  
t
t
t
5
4
CONV  
t
6
0
INTERNAL  
S/H STATUS  
SAMPLE  
HOLD  
SAMPLE  
HOLD  
t
t
8
8a  
D
REPRESENTS THE ANALOG INPUT FROM THE PREVIOUS CONVERSION  
OUT  
Hi-Z  
Hi-Z  
D
OUT  
REF D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
REF  
REFRDY BIT + 12-BIT DATA WORD  
t
CONV  
t
1402 TD01  
THROUGHPUT  
Nap Mode and Sleep Mode Waveforms  
SCK  
t
1
t
1
CONV  
NAP  
SLEEP  
t
12  
V
REF  
t
11  
REFRDY  
1402 TD02  
NOTE: NAP AND SLEEP ARE INTERNAL SIGNALS. REFRDY APPEARS AS A BIT IN THE D  
WORD.  
OUT  
SCK to DOUT Delay  
SCK  
SCK  
V
V
IH  
IH  
t
10  
8
t
t
9
V
V
90%  
10%  
OH  
OL  
D
D
OUT  
OUT  
1402 TD03  
9
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
DRIVING THE ANALOG INPUT  
second requirement is that the closed-loop bandwidth  
must be greater than 40MHz to ensure adequate small-  
signal settling for full throughput rate. If slower op amps  
are used, more time for settling can be provided by  
increasing the time between conversions. The best choice  
for an op amp to drive the LTC1402 will depend on the  
application. Generally, applications fall into two catego-  
ries: AC applications where dynamic specifications are  
most critical, and time domain applications where DC  
accuracy and settling time are most critical. The following  
list is a summary of the op amps that are suitable for  
driving the LTC1402. More detailed information is avail-  
able in the Linear Technology Databooks and on the  
LinearViewTM CD-ROM.  
LT®1206: 60MHz Current Feedback Amplifier with Shut-  
down Pin (Amplifier Draws 200µA While in Shutdown).  
±5V to ±15V supplies. Distortion is 80dB to 1MHz  
(2VP-P into 30). Good for AC applications. Dual avail-  
able with shutdown as LT1207. Output swings to within  
2VBE of the supply rails.  
The differential analog inputs of the LTC1402 are easy to  
drive.Theinputsmaybedrivendifferentiallyorasasingle-  
ended input (i.e., the AINinput is grounded). The AIN+ and  
AINinputsaresampledatthesameinstant.Anyunwanted  
signalthatiscommontobothinputswillbereducedbythe  
common mode rejection of the sample-and-hold circuit.  
The inputs draw only one small current spike while charg-  
ing the sample-and-hold capacitors at the end of conver-  
sion. During conversion, the analog inputs draw only a  
small leakage current. If the source impedance of the  
driving circuit is low, then the LTC1402 inputs can be  
driven directly. As source impedance increases, so will  
acquisition time (see Figure 1). For minimum acquisition  
time with high source impedance, a buffer amplifier must  
be used. The only requirement is that the amplifier driving  
the analog input(s) must settle after the small current  
spikebeforethenextconversionstarts(settlingtimemust  
be 50ns for full throughput rate).  
1500  
1400  
1300  
LT1223: 100MHz Video Current Feedback Amplifier. 6mA  
supply current. ±5V to ±15V supplies. Low distortion at  
frequencies above 400kHz. Low noise. Good for AC appli-  
cations.  
±5V  
1200  
1100  
1000  
900  
800  
700  
5V  
LT1227:140MHzVideoCurrentFeedbackAmplifier.10mA  
supply current; has shutdown pin (draws 120µA while in  
shutdown). ±5V to ±15V supplies. Lowest distortion  
(92dB)atfrequenciesabove400kHz. Lownoise. Bestfor  
AC applications.  
600  
500  
400  
300  
200  
100  
0
10  
100  
1k  
10k  
100k  
SOURCE RESISTANCE ()  
LT1229/LT1230: Dual and Quad 100MHz Current Feed-  
back Amplifiers. ±2V to ±15V supplies. Low noise. Good  
AC specifications, 6mA supply current each amplifier.  
1402 F01  
Figure 1. Acquisition Time vs Source Resistance  
in Bipolar and Unipolar Modes  
LT1360: 50MHz Voltage Feedback Amplifier. 3.8mA sup-  
ply current. ±5V to ±15V supplies. Good AC and DC  
specifications. 70ns settling to 0.5LSB.  
CHOOSING AN INPUT AMPLIFIER  
Choosing an input amplifier is easy if a few requirements  
are taken into consideration. First, to limit the magnitude  
of the voltage spike seen by the amplifier from charging  
the sampling capacitor, choose an amplifier that has a low  
output impedance (<100) at the closed-loop bandwidth  
frequency. For example, if an amplifier is used in a gain of  
1 and has a unity-gain bandwidth of 50MHz, then the  
output impedance at 50MHz must be less than 100. The  
LT1363: 70MHz, 1000V/µs Op Amps. 6.3mA supply cur-  
rent. Good AC and DC specifications. 60ns settling to  
0.5LSB.  
LT1364/LT1365: Dual and Quad 70MHz, 1000V/µs Op  
Amps. 6.3mA supply current per amplifier. 60ns settling  
to 0.5LSB.  
LinearView is a trademark of Linear Technology Corporation.  
10  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
51  
LT1630: Dual 30MHz Rail-to-Rail Voltage FB Amplifier.  
2.7V to ±15V supplies. Very high AVOL, 500µV offset and  
520ns settling to 0.5LSB for a 4V swing. THD and noise  
are 93dB to 40kHz and below 1LSB to 320kHz (AV = 1,  
2VP-P into1k,VS =5V),makingthepartexcellentforAC  
applications (to 1/3 Nyquist) where rail-to-rail perfor-  
mance is desired. Quad version is available as LT1631.  
3
ANALOG  
INPUT  
+
A
A
IN  
68pF  
4
2
5
IN  
AGND1  
LTC1402  
V
REF  
10µF  
6
7
AGND2  
GAIN  
LT1632: Dual 45MHz Rail-to-Rail Voltage FB Amplifier.  
2.7V to ±15V supplies. Very high AVOL, 1.5mV offset and  
400ns settling to 0.5LSB for a 4V swing. It is suitable for  
applications with a single 5V supply. THD and noise are  
93dB to 40kHz and below 1LSB to 800kHz (AV = 1,  
2VP-P into1k,VS =5V),makingthepartexcellentforAC  
applications where rail-to-rail performance is desired.  
Quad version is available as LT1633.  
1402 F02  
Figure 2. RC Input Filter  
less susceptible to both problems. When high amplitude  
unwantedsignalsarecloseinfrequencytothedesiredsignal  
frequency,amultiplepolefilterisrequired.Figure3shows  
asimpleimplementationusinganLTC1560-1,afifth order  
elliptic continuous-time 1MHz filter.  
LT1813: Dual 100MHz 750V/µs 3mA Voltage Feedback  
Amplifier. 5V to ±5V supplies. Distortion is 86dB to  
100kHzand77dBto1MHzwith±5Vsupplies(2VP-P into  
500). Excellent part for fast AC applications with  
±5V supplies.  
3
1
2
3
8
7
6
+
A
A
IN  
4
2
5
V
IN  
IN  
LTC1560-1  
INPUT FILTERING AND SOURCE IMPEDANCE  
AGND1  
LTC1402  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1402 noise and distortion. The small-signal band-  
width of the sample-and-hold circuit is 80MHz. Any noise  
ordistortionproductsthatarepresentattheanaloginputs  
will be summed over this entire bandwidth. Noisy input  
circuitry should be filtered prior to the analog inputs to  
minimize noise. A simple 1-pole RC filter is sufficient for  
many applications. For example, Figure 2 shows a 68pF  
capacitor from AIN+ to ground and a 51source resistor  
to limit the input bandwidth to 47MHz. The 68pF capacitor  
also acts as a charge reservoir for the input sample-and-  
hold and isolates the ADC input from sampling glitch-  
sensitive circuitry.  
4
5
V
REF  
–5V  
5V  
10µF  
6
7
0.1µF  
0.1µF  
AGND2  
GAIN  
1402 F03  
Figure 3. 1MHz Fifth Order Elliptic Lowpass Filter  
BIPOLAR AND UNIPOLAR INPUT RANGES  
The ±2V bipolar input range of the LTC1402 is optimized  
for low noise and low distortion. Most op amps also  
perform best over this same range, allowing direct cou-  
pling to the analog inputs and eliminating the need for  
special translation circuitry. The inputs of the LTC1402  
may also be driven fully differential in bipolar mode with  
a single supply. Each input should not swing more than  
2VP-P individuallytogetthebestperformancefromsingle  
supply amplifiers.  
Highqualitycapacitorsandresistorsshouldbeusedsince  
thesecomponentscanadddistortion.NPOandsilvermica  
type dielectric capacitors have excellent linearity.  
Carbon surface mount resistors can generate distortion  
from self heating and from damage that may occur during  
soldering. Metal film surface mount resistors are much  
The 0V to 4V range is ideal for single ended input use with  
single supply applications.  
11  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
INTERNAL REFERENCE  
ADC can then be adjusted to match the peak input signal,  
maximizing the signal-to-noise ratio. The filtering of the  
internal LTC1402 reference amplifier will limit the band-  
width and settling time of this circuit. A settling time of  
5ms should be allowed after a reference adjustment.  
The LTC1402 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference that is factory  
trimmedto2.048V.Itisconnectedinternallytoareference  
amplifier, see Figure 4. The reference amplifier amplifies  
the voltage at the VREF pin by 2 to create the required  
internal reference voltage of 4.096V. This provides buffer-  
ing for the high speed capacitive DAC. The reference  
amplifier output VREF, (Pin 5) must be bypassed with a  
capacitor to ground. The reference amplifier is stable with  
capacitors of 1µF or greater. For the best noise perfor-  
mance, a 10µF ceramic or a 10µF tantalum in parallel with  
a 0.1µF ceramic is recommended.  
DIFFERENTIAL INPUTS  
The LTC1402 has a unique differential sample-and-hold  
circuit that allows inputs from –2.5V to 5V. The ADC will  
always convert the difference of AIN+ – AIN independent  
of the common mode voltage. The common mode rejec-  
tion holds up at extremely high frequencies, see Figure 7.  
The only requirement is that both inputs not exceed  
2.5V or 5V. Integral nonlinearity errors (INL) and differ-  
ential nonlinearity errors (DNL) are independent of the  
common mode voltage. However, the bipolar zero error  
(BZE) will vary. The change in BZE is typically less than  
0.1% of the common mode voltage. Figure 5b shows the  
use of bipolar mode with single 5V supply.  
The VREF pin can be driven with an external reference as  
shown in Figure 5a. The GAIN pin (Pin 7) is tied to the  
positive supply to disable the internal reference buffer.  
A DAC may also be used to drive VREF as shown in  
Figure 6. This is useful in applications where the peak  
input signal amplitude may vary. The input span of the  
5V  
3
4
5
6
7
V
IN  
2.5V ±2.048V  
+
LTC1402  
A
A
V
IN  
2.048V  
BANGAP  
+
REFERENCE  
V
IN  
5
V
REF  
4.096V  
2.5V  
REFERENCE  
IN  
AMP  
LT1019-2.5  
10µF  
LTC1402  
8
5V  
BIP  
REF  
10µF  
64k  
10µF  
64k  
14  
GAIN  
7
6
AGND2  
GAIN  
V
SS  
AGND2  
1402 F04  
1402 F04a  
Figure 4. LTC1402 Reference Circuit  
Figure 5b. Bipolar Mode with Single Supply  
5V  
3
+
3
+
A
A
IN  
IN  
ANALOG INPUT  
ANALOG INPUT  
V
IN  
4
4
A
A
IN  
IN  
LT1019-2.5  
V
LTC1402  
LTC1402  
5
5
6
7
V
LTC1451  
V
OUT  
REF  
REF  
10µF  
10µF  
6
7
AGND2  
GAIN  
AGND2  
GAIN  
5V  
5V  
1402 F04a  
1402 F06  
Figure 6. Driving VREF with a 12 Bit, VOUT DAC  
Figure 5a. Using the LT1019-2.5 as an External Reference  
12  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
0
all the internal references. When AGND2 (Pin 6) is tied to  
the external ground plane, it sources 2.7mA ±30% typi-  
cally; approximately 2mA are sourced through an internal  
equivalent 2k resistance tied to the VREF (Pin 5) at 4.096V  
and the remaining 0.7mA supply the internal reference  
ground. The VREF (Pin 5) equivalent input resistance is the  
same 2k tied to AGND2 (Pin 6). When you bus a common  
reference voltage to several LTC1402 ADCs, you need to  
keep PC board track resistance low to avoid reference  
voltage attenuation at each ADC. For example, 0.5of  
track resistance to Pins 5 or 6 causes 0.025% of reference  
voltage and input range reduction. Figure 8 shows op-  
tional buffer amplifiers at each ADC to eliminate resistive  
voltagedropsfromthecommonexternalreferencetoeach  
ADC. Figure 8 shows 10µF bypass capacitors tied to the  
common analog ground plane, at VREF (Pin 5) and AGND2  
(Pin 6), wired closely to each ADC to eliminate crosstalk of  
internalADC glitchcurrentsfromoneADCtoanother. The  
10µF bypass capacitors are recommended whether you  
drive Pins 5 and 6 with amplifiers, or with copper traces  
–10  
20  
30  
40  
50  
60  
–70  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
1402 F07  
Figure 7. CMRR vs Input Frequency  
INPUT SPAN VERSUS REFERENCE VOLTAGE  
The differential input range has a voltage span that equals  
the difference between the voltage at the reference buffer  
output VREF at Pin 5, and the voltage at the reference  
ground AGND2 at Pin 6. The external reference voltage  
may have any value between 2V and 5V. The internal ADC  
is referenced to these two points. If you use an external  
reference, tie the GAIN (Pin 7) to AVDD (Pin 1) to disable  
the internal reference, and connect the external reference  
between VREF (Pin 5) and AGND2 (Pin 6).  
3
2
5
6
7
+
A
A
V
IN  
ANALOG  
INPUTS  
1/2 LT1368CS8  
5V  
IN  
6
8
If you cut the reference voltage in half by halving the gain  
of the reference buffer with the GAIN (Pin 7) tied to VREF  
(Pin 5), the input span also cuts in half. In bipolar mode,  
the differential input range changes from ±2.048V to  
±1.024V, when the reference is cut in half. In unipolar  
mode, the differential input range changes from 0V-  
4.096V to 0V-2.048V, for the same reference cut in half.  
Note that in both unipolar and bipolar modes, the input  
range pivots around 0V with changing reference voltage.  
AGND2 (Pin 6) has no direct effect on the ADC offset  
voltage, it only affects input voltage span. Any external  
offsetting voltages must be applied through the AIN+ and  
AINinputs, as shown in Figure 10b.  
+
7
LTC1402  
5
REF  
10µF  
1/2 LT1368CS8  
2
AGND2  
GAIN  
+
1
3
4
10µF  
–5V  
5V  
4.096V  
3
2
5
6
7
+
A
A
V
IN  
5V  
ANALOG  
INPUTS  
1/2 LT1368CS8  
5V  
10k  
1k  
IN  
6
8
+
7
LTC1402  
5
0.1µF  
10µF  
REF  
1/2 LT1368CS8  
SEVERAL LTC1402 ADCs MAY SHARE ONE  
EXTERNAL REFERENCE  
2
AGND2  
GAIN  
+
1
3
LT1634AI-4.096  
10µF  
4
Figure 8 shows how several ADCs can share a single  
common external reference. The VREF (Pin 5) and AGND2  
(Pin 6) of several LTC1402 ADCs can be tied together to  
share the same external reference in a data acquisition  
system. Tie GAIN (Pin 7) to AVDD at each ADC to disable  
–5V  
1402 F08  
5V  
Figure 8. Several LTC1402 ADCs Can Share a Single  
External Reference  
13  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
more than 0.25 inch long to the common reference. You  
may also choose to tie AGND2 (Pin 6) directly to a solid  
analog ground plane and eliminate all the 10µF capacitors  
at this pin. The external reference source needs to have  
enough output drive current for the 2kload at each ADC.  
Adjustment in Unipolar Mode with Pin 8 Held Low  
The code transitions occur midway between successive  
integer LSB values (i.e., FS + 0.5LSB, FS + 1.5LSB,  
FS + 2.5LSB,...FS – 2.5LSB, FS – 1.5LSB). The output at  
DOUT is binary with 1LSB = FS/4096 = 4.096V/4096 =  
1.0mV. In applications where absolute accuracy is impor-  
tant, offset and full-scale errors can be adjusted to zero.  
Offset error must be adjusted before full-scale error. In  
Figure 10b, zero offset is achieved by adjusting the offset  
FULL-SCALE AND OFFSET ADJUSTMENT  
Figure 9 shows the ideal input/output characteristics for  
the LTC1402 in bipolar mode and unipolar mode. Figure  
10a shows the components required for full-scale error  
adjustment. Figure 10b includes the components for off-  
set and full-scale adjustment.  
applied to the AIN input. For zero offset error apply  
0.5mV (i.e., 0.5LSB) to AIN+ and adjust the offset at the  
AINinput using R8 until the output code flickers between  
R1  
LTC1402  
+
51Ω  
3
4
A
A
011...111  
011...110  
011...101  
111...111  
111...110  
111...101  
IN  
IN  
ANALOG INPUT  
0V TO 4.096V  
OR ±2.048V  
R2  
39k  
R3  
51Ω  
S/H  
2.048V  
BANGAP  
REFERENCE  
5
V
REF  
REFERENCE  
AMP  
R4  
470k  
10µF  
64k  
64k  
100...010  
100...001  
100...000  
000...010  
000...001  
000...000  
7
6
GAIN  
R5  
500Ω  
AGND2  
(FS – 1LSB)  
FS – 1LSB  
INPUT VOLTAGE (V)  
1402 F010a  
1402 F09  
Figure 9. LTC1402 Transfer Characteristic  
Figure 10a. Full-Scale Adjustment Circuit with  
±10LSB Range  
Adjustment in Bipolar Mode with Pin 8 Held High  
5V  
The code transitions occur midway between successive  
integerLSBvalues(i.e., FS+0.5LSB, FS+1.5LSB, FS  
+2.5LSB,...FS2.5LSB, FS1.5LSB). TheoutputatDOUT  
is two’s complement binary with 1LSB = FS – (FS)/4096  
= 4.096V/4096 = 1.0mV. In applications where absolute  
accuracy is important, offset and full-scale errors can be  
adjusted to zero. Offset error must be adjusted before full-  
scale error. In Figure 10b, zero offset is achieved by  
R6  
R1  
LTC1402  
+
24k  
51Ω  
3
4
A
A
IN  
IN  
ANALOG INPUT  
0V TO 4.096V  
OR ±2.048V  
R2  
24k  
R3  
51Ω  
S/H  
5V  
R7  
7.5k  
2.048V  
BANGAP  
REFERENCE  
OFFSET  
ADJ  
R8  
10k  
5
V
REF  
REFERENCE  
AMP  
R4  
470k  
adjusting the offset applied to the AIN input. For zero  
10µF  
64k  
64k  
+
offset error, apply 0.5mV (i.e., 0.5LSB) to AIN and  
adjust the offset at the AINinput using R8 until the output  
code flickers between 0000 0000 0000 and 1111 1111  
1111. For full-scale adjustment in Figures 10a and 10b,  
7
6
GAIN  
FULL-SCALE  
R5  
ADJ 500Ω  
AGND2  
1402 F010b  
+
apply an input voltage of 2.0465V (FS – 1.5LSB) to AIN  
Figure 10b. Offset and Full-Scale Adjustment  
Circuits with ±10LSB Range  
and adjust R5 until the output code flickers between 0111  
1111 1110 and 0111 1111 1111.  
14  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
0000 0000 0000 and 0000 0000 0001. For full-scale ad-  
justment in Figures 10a and 10b, apply an input voltage of  
The LTC1402 has differential inputs to minimize noise  
coupling. Common mode noise on the AIN+ and AINleads  
will be rejected by the input CMRR. The AINinput can be  
usedasagroundsensefortheAIN+ input;theLTC1402will  
hold and convert the difference voltage between AIN+ and  
AIN. The leads to AIN+ (Pin 3) and AIN(Pin 4) should be  
kept as short as possible. In applications where this is not  
possible, the AIN+ and AINtraces should be run side-by-  
side to cancel noise coupling.  
+
2.0465V (FS – 1.5LSBs) to AIN and adjust R5 until the  
output code flickers between 1111 1111 1110 and 1111  
1111 1111.  
BOARD LAYOUT AND BYPASSING  
Wire wrap boards are not recommended for high resolu-  
tion and/or high speed A/D converters. To obtain the best  
performance from the LTC1402, a printed circuit board  
with ground plane is required. Layout for the printed  
circuit board should ensure that digital and analog signal  
linesareseparatedasmuchaspossible. Inparticular, care  
should be taken not to run any digital track alongside an  
analog signal track.  
SUPPLY BYPASSING  
High quality, low series resistance 10µF ceramic bypass  
capacitors should be used at the VDD and VREF pins.  
Surface mount ceramic capacitors such as Murata  
GRM235Y5V106Z016 provide excellent bypassing in a  
small board space. Alternatively, 10µF tantalum capaci-  
tors in parallel with 0.1µF ceramic capacitors can be used.  
Bypass capacitors must be located as close to the pins as  
possible. The traces connecting the pins and the bypass  
capacitorsmustbekeptshortandshouldbemadeaswide  
as possible.  
An analog ground plane separate from the logic system  
ground should be established under and around the ADC.  
Pin 2 (AGND1), Pin 6 (AGND2), Pin 13 (DGND) and all  
other analog grounds should be connected directly to an  
analog ground plane. Pin 9 (OGND) should be connected  
near Pin13 (DGND), where the analog ground plane ties to  
the logic system ground. The VREF bypass capacitor and  
the DVDD bypass capacitor should also be connected to  
this analog ground plane, see Figure 11. No other digital  
groundsshouldbeconnectedtothisanaloggroundplane.  
Low impedance analog and digital power supply common  
returnsareessentialtolownoiseoperationoftheADCand  
the foil width for these tracks should be as wide as  
possible. The traces connecting the pins and bypass  
capacitorsmustbekeptshortandshouldbemadeaswide  
as possible.  
POWER-DOWN MODES  
Upon power-up, the LTC1402 is initialized to the active  
stateandisreadyforconversion. TheNapandSleepMode  
waveforms showthepower-downmodesfortheLTC1402.  
TheSCKandCONVinputscontrolthepower-downmodes  
(see Timing Diagrams). Two rising edges at CONV, with-  
out any intervening rising edges at SCK, put the LTC1402  
in Nap mode and the power drain drops from 90mW to  
12  
3V TO 5V  
OV  
D
DD  
10  
3
+
DIGITAL  
SYSTEM  
LTC1402  
AGND1  
A
OUT  
OGND  
9
IN  
A
V
AGND2  
6
V
AV  
DV DGND  
DD  
IN  
REF  
DD  
1
SS  
SYSTEM  
GROUND  
ANALOG  
INPUT  
CIRCUITRY  
4
+
5
14  
10µF  
2
12  
10µF  
13  
1402 F11  
10µF  
ANALOG GROUND PLANE  
Figure 11. Power Supply Grounding Practice  
15  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
15mW. The internal reference remains powered in Nap  
mode. One or more rising edges at SCK wake up the  
LTC1402 for service very quickly, and CONV can start an  
accurateconversionwithinaclockcycle.Fourrisingedges  
at CONV, without any intervening rising edges at SCK, put  
the LTC1402 in Sleep mode and the power drain drops  
from 90mW to 10µW. One or more rising edges at SCK  
wake up theLTC1402foroperation. The internalreference  
(VREF) takes 2ms to slew and settle with a 10µF load, and  
the REFREADY bit in the DOUT stream takes an additional  
10mstogohighafterthereferenceoutputPin5(VREF)has  
finished slewing. Note that, using sleep mode more fre-  
quently than every 2ms, compromises the settled accu-  
racy of the internal reference. Figure 12 shows the power  
consumption versus the conversion rate. Note that, for  
slower conversion rates, the Nap and Sleep modes can be  
used for substantial reductions in power consumption.  
CONV at Pin 16  
The rising edge of CONV starts a conversion but subse-  
quent rising edges at CONV, during the following 14 SCK  
cycles of conversion, are ignored by the LTC1402. The  
duty cycle of CONV can be arbitrarily chosen to be used as  
a frame sync signal for the processor serial port. A simple  
approach to generate CONV is to create a pulse that is one  
SCK wide to drive the LTC1402 and then buffer this signal  
withtheappropriatenumberofinverterstodrivetheframe  
sync input of the processor serial port. It is good practice  
todrivetheLTC1402CONVinputfirsttoavoiddigitalnoise  
interferenceduringthesample-to-holdtransitiontriggered  
by CONV at the start of conversion. Another point to con-  
sider is the level of jitter in the CONV signal if the input  
signals have fast transients or sinewaves. Some proces-  
sors can be programmed to generate a convenient frame  
sync pulse at their serial port, but often this signal is de-  
rived from a jittery processor phase locked loop clock  
multiplier. Thisistrueevenifalowjittercrystalclockisthe  
reference for the processor clock multiplier.  
100  
V
CURRENT  
DD  
DUAL ±5V  
V
CURRENT  
DD  
SINGLE 5V  
10  
1
SCK at Pin 15  
V
CURRENT  
DD  
The rising edge of SCK advances the conversion process  
and also udpates each bit in the DOUT data stream. After  
CONV rises, the second rising edge of SCK sends out the  
REFREADY bit. Subsequent edges send out the 12 data  
bits, with the MSB sent first. A simple approach is to  
generate SCK to drive the LTC1402 and then buffer this  
signalwiththeappropriatenumberofinverterstodrivethe  
serial clock input of the processor serial port. The rising  
edge of SCK is guaranteed to coincide with stable data at  
DOUT. It is good practice to drive the LTC1402 SCK input  
first to avoid digital noise interference during the internal  
bit comparison decision by the internal high speed com-  
parator. Unlike the CONV input, the SCK input is not  
sensitive to jitter because the input signal is already  
sampled and held constant.  
NAP MODE  
V
CURRENT  
DD  
SLEEP MODE  
0.1  
V
CURRENT  
SINGLE 5V  
SS  
V
CURRENT  
0.01  
SS  
DUAL ±5V  
0.001  
0.01  
0.1  
1
10  
SAMPLE RATE (MHz)  
1402 F12  
Figure 12. Power Consumption vs Sample Rate  
in Normal Mode, Nap Mode and Sleep Mode  
DIGITAL INTERFACE  
The LTC1402 has a 3-wire SPI (Serial Protocol Interface)  
interface. The SCK and CONV inputs and DOUT output  
implementthisinterface.TheSCKandCONVinputsareTTL  
compatibleandalsoacceptswingsfrom3Vor5Vlogic.The  
amplitude of DOUT can easily produce 5V logic or 3V logic  
swings by tying the independent output supply OVDD  
(Pin11) tothesamesupplyassystemlogic. Adetailedde-  
scription of the three serial port signals follows.  
DOUT at Pin 10  
Upon power-up, the DOUT output is automatically reset to  
thehighimpedancestate.TheDOUT outputremainsinhigh  
impedance until a new conversion is started. DOUT sends  
out13bitsintheoutputdatastreamafterthesecondrising  
edge of SCK after the start of conversion with the rising  
16  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
edge of CONV. Please note the delay specification from speed crystal (i.e., 10MHz) to generated a fast, but jittery,  
SCK to a valid DOUT. DOUT is always guaranteed to be valid phaselockedloopsystemclock(i.e., 40MHz). Thejitter, in  
by the next rising edge of SCK.  
these PLL-generated high speed clocks, can be several  
nanoseconds. Note that if you choose to use the frame  
syncsignalgeneratedbytheDSPport,thissignalwillhave  
the same jitter of the DSP’s master clock.  
DIGITAL JITTER AT CONV (PIN 16)  
Inhighspeedapplications,wherehighamplitudesinewaves  
above 100kHz are sampled, the CONV signal must have as  
little jitter as possible (10ps or less). The square wave  
SERIAL TO PARALLEL CONVERSION  
output of a common crystal clock module usually meets YoucantakeadvantageoftheserialinterfaceoftheLTC1402  
thisrequirementeasily.ThechallengeistogenerateaCONV in a parallel data system to minimize bus wiring conges-  
signalfromthiscrystalclockwithoutjittercorruptionfrom tion in the PC board layout. Figure 13 shows an example  
other digital circuits in the system. A clock divider and any of this interface. It is best to send the SCK and CONV  
gates in the signal path from the crystal clock to the CONV signalstotheLTC1402,andthenbusthemtogetheracross  
input should not share the same integrated circuit with the board to avoid excessive time skew among the three  
other parts of the system. As shown in the interface circuit signals. It is usually not necessary to buffer DOUT, if the PC  
examples, theLTC1402’sSCKandCONVinputsshouldbe track is not too long. Buffering SCK and CONV prevents  
driven first with digital buffers used to drive the serial port jitter from corrupting these signals. The relative phase  
interface. Also note that the master clock in the DSP may between SCK and CONV affects the position of the parallel  
already be corrupted with jitter, even if it comes directly word at the output of the 74HC595. The position of the  
from the DSP crystal. Another problem with high speed outputwordinFigure13assumes16clocksbetweeneach  
processor clocks is that they often use a low cost, low CONV rising edge, and the CONV pulse is one clock wide.  
5V  
11  
OV  
DD  
10  
74ACT04  
SRCLR  
16  
15  
12  
11  
14  
13  
15  
1
CONV  
LTC1402  
SCK  
RCK  
QA  
QB  
QC  
QD  
QE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
2
SRCK  
3
74HC595  
SER  
10  
9
4
D
OUT  
5
QF  
OGND  
6
G
QG  
QH  
QH′  
7
9
CONV  
CLK  
10  
SRCLR  
RCK  
12  
11  
14  
13  
15  
1
QA  
QB  
QC  
QD  
QE  
D7  
D8  
2
SRCK  
D9  
3
74HC595  
SER  
D10  
D11  
REFRDY  
3-WIRE SERIAL  
INTERFACE LINK  
4
5
QF  
6
G
QG  
QH  
QH′  
7
9
1402 F13  
Figure 13. Serial to Parallel Interface  
17  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
HARDWARE INTERFACE TO TMS320C54x  
edge clock. Buffers near the LTC1402 may be added to  
drive long tracks to the DSP to prevent corruption of the  
signal to LTC1402. This configuration is adequate to  
traverseatypicalsystemboard,but sourceresistorsatthe  
buffer outputs, and termination resistors at the DSP may  
be needed to match the characteristic impedance of very  
long transmission lines. If you need to terminate the DOUT  
transmission line, buffer it first with one or two 74ACxx  
gates. The TTL threshold inputs of the DSP port respond  
properly to the 2.5V swing of the terminated transmission  
lines.TheOVDD supplyoutputdriversupplyvoltagecanbe  
driven directly from the DSP.  
The LTC1402 is a serial output ADC whose interface has  
been designed for high speed buffered serial ports in fast  
digital signal processors (DSPs). Figure 14 shows an  
example of this interface using a TMS320C54X.  
The buffered serial port in the TMS320C54x has direct  
accesstoa2kBsegmentofmemory. TheADC’sserialdata  
can be collected in two alternating 1kB segments, in real  
time, at the full 2.2Msps conversion rate of the LTC1402.  
TheDSPassemblycodesetsframesyncmodeattheBFSR  
pin to accept an external positive going pulse, and the  
serial clock at the BCLKR pin to accept an external positive  
5V  
11  
OV  
DD  
V
CC  
16  
15  
CONV  
LTC1402  
SCK  
BFSR  
TMS320C54x  
BCLKR  
REF  
B11 B10  
10  
9
D
BDR  
OUT  
OGND  
CONV  
CLK  
3-WIRE SERIAL  
INTERFACELINK  
1402 F14  
Figure 14. DSP Serial Interface to TMS320C54x  
18  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
; ***************************************************************************  
; Files: BSP2KB.ASM ->  
; 2kbyte collection into DSKPlus TMS320C542 with Serial Port interface to LTC1402  
; first element at 1024, last element at 1023, two middle elements at 2047 and 0000  
; bipolar mode  
; ***************************************************************************  
.width 160  
.length 110  
.title “sineb0 BSP in auto buffer mode”  
.mmregs  
.setsect “.text”, 0x500,0  
.setsect “vectors”, 0x180,0  
.setsect “buffer”, 0x800,0  
;Set address of executable  
;Set address of incoming 1402 data  
;Set address of BSP buffer for clearing  
.setsect “result”, 0x1800,0 ;Set address of result for clearing  
.text  
;.text marks start of code  
start:  
;Make sure /PWRDWN is low at J1-9 to turn off AC01 adc  
tim=#0fh  
prd=#0fh  
tcr = #10h  
tspc = #0h  
; stop timer  
; stop TDM serial port to AC01  
pmst = #01a0h ; set up iptr. Processor Mode STatus register  
sp = #0700h  
dp = #0  
; init stack pointer.  
; data page  
ar2 = #1800h ; pointer to computed receive buffer.  
ar3 = #0800h ; pointer to Buffered Serial Port receive buffer  
ar4 = #0h  
; reset record counter  
call sineinit  
sinepeek:  
call sineinit  
; Double clutch the initialization to insure a proper  
; insert debugger break here to view results  
; reset. The external frame sync must occur 2.5 clocks  
; or more after the port comes out of reset.  
wait goto wait  
————————Buffered Receive Interrupt Routine —————————  
breceive:  
ifr = #10h  
;
; clear interrupt flags  
TC = bitf(@BSPCE,#4000h)  
if (NTC) goto bufull  
bspce = #(2023h + 08000h)  
return_enable  
; check which half (bspce(bit14)) of buffer  
; if this still the first half get next half  
; turn on halt for second half (bspce(bit15))  
;
———————mask and shift input data after 2k buffer is full——-  
bufull:  
b = *ar3+ << -2  
; load acc b with BSP buffer and shift right 2  
b = #00FFFh & b  
b = #00800h ^ b  
*ar2+ = data(#0bh)  
; mask out the REF bit and the 3 other tristate bits  
; invert BIPOLAR MSB. Comment this line in UNIPOLAR mode  
; store B to out buffer and advance AR2 pointer  
TC = (@ar2 == #02000h) ; output buffer is 2k starting at 1800h  
if (TC) goto start  
goto bufull  
; restart if out buffer is at 1fffh  
;
—————————dummy bsend return————————————  
bsend return_enable  
;this is a dummy return to define bsend  
;in vector table below  
;
——————————— end ISR ——————————————  
;initialize buffered serial port  
**********************************************************************  
*
*
*
BSP initialization code for the ‘C54x DSKplus  
for use with 1402 in standard mode  
BSPC and SPC are the same in the ‘C542  
*
*
*
**********************************************************************  
ON  
.set 1  
OFF  
YES  
NO  
.set !ON  
.set 1  
.set !YES  
.set 2  
BIT_8  
BIT_10 .set 1  
BIT_12 .set 3  
BIT_16 .set 0  
GO  
.set 0x80  
**********************************************************************  
19  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
* This is an example of how to initialize the Buffered Serial Port (BSP).  
* The BSP is initialized to require an external CLK and FSX for  
* operation. The data format is 16-bits, burst mode, with autobuffering  
* enabled.  
*
*
*****************************************************************************************************  
*Timing at BSP pins in DSKPLUS TMS320c542 board with inverters at BCLKR and BFSR.  
*
*BFSR Pin JP1-20 ~\___/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\___/~~~~~~~~~~*  
*BCLKR Pin JP1-14 _/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/  
*BDR Pin JP1-26 -_—_—<REF-B11-B10-B09-B08-B07-B06-B05-B04-B03-B02-B01-B00>—_—_—<REF-B11-  
*CLKIN Pin JP5-09 ~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~  
*
*A 2 place right shift is needed to right justify the input data.  
*The REF bit is also be masked in this example  
*
*
*
*
*
*
*****************************************************************************************************  
*
Loopback  
Format  
IntSync  
.set NO  
.set BIT_16  
.set NO  
;(digital looback mode?)  
DLB bit  
FO bit  
TXM bit  
MCM bit  
;(Data format? 16,12,10,8)  
;(internal Frame syncs generated?)  
;(internal clks generated?)  
IntCLK  
.set NO  
BurstMode  
CLKDIV  
PCM_Mode  
FS_polarity  
CLK_polarity .set YES  
Frame_ignore .set !YES  
XMTautobuf .set NO  
.set YES  
;(if BurstMode=NO, then Continuous) FSM bit  
;(3=default value, 1/4 CLOCKOUT)  
;(Turn on PCM mode?)  
;(change polarity)YES=^^^\_/^^^, NO=___/^\___  
;(change polarity)for BCLKR YES=_/^, NO=~\_  
;(inverted !YES -ignores frame)  
;(transmit autobuffering)  
.set  
3
.set NO  
.set NO  
RCVautobuf  
XMThalt  
RCVhalt  
XMTbufAddr .set 0x800  
XMTbufSize .set 0x000  
RCVbufAddr .set 0x800  
.set YES  
.set NO  
.set NO  
;(receive autobuffering)  
;(transmit buff halt if XMT buff is full)  
;(receive buff halt if RCV buff is full)  
;(address of transmit buffer)  
;(length of transmit buffer)  
;(address of receive buffer)  
RCVbufSize  
.set 0x800  
;(length of receive buffer)works up to 800  
*
*
*
**********************************************************************  
.eval ((Loopback >> 1)|((Format & 2)<<1)|(BurstMode <<3)|(IntCLK <<4)|(IntSync <<5)) ,SPCval  
.eval ((CLKDIV)|(FS_polarity <<5)|(CLK_polarity<<6)|((Format & 1)<<7)|(Frame_ignore<<8)|(PCM_Mode<<9)), SPCEval  
.eval (SPCEval|(XMTautobuf<<10)|(XMThalt<<12)|(RCVautobuf<<13)|(RCVhalt<<15)), SPCEval  
sineinit:  
bspc = #SPCval  
ifr = #10h  
; places buffered serial port in reset  
; clear interrupt flags  
imr = #210h  
intm = 0  
; Enable HPINT,enable BRINT0  
; all unmasked interrupts are enabled.  
; programs BSPCE and ABU  
; initializes transmit buffer start address  
; initializes transmit buffer size  
; initializes receive buffer start address  
; initializes receive buffer size  
; bring buffered serial port out of reset  
;for transmit and receive because GO=0xC0  
;clear a chunk at the end to mark the end  
bspce = #SPCEval  
axr = #XMTbufAddr  
bkx = #XMTbufSize  
arr = #RCVbufAddr  
bkr = #RCVbufSize  
bspc = #(SPCval | GO)  
return  
.space 16*32  
;======================================================================  
;
; VECTORS  
;
;======================================================================  
.sect “vectors”  
;The vectors start here  
;get BSP vectors  
; ***************************************************************************  
;
;
;
Vector Table for the ‘C54x DSKplus  
BSP vectors and Debugger vectors  
TDM vectors just return  
; ***************************************************************************  
20  
LTC1402  
U
W U U  
APPLICATIONS INFORMATION  
; The vectors in this table can be configured for processing external and  
; internal software interrupts. The DSKplus debugger uses four interrupt  
; vectors. These are RESET, TRAP2, INT2, and HPIINT.  
;
;
* DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER *  
; All other vector locations are free to use. When programming always be sure  
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and  
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the  
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.  
;
;
;
.mmregs  
reset goto #80h  
;00; RESET * DO NOT MODIFY IF USING DEBUGGER *  
;04; non-maskable external interrupt  
nop  
nop  
nmi return_enable  
nop  
nop  
nop  
trap2 goto #88h  
;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *  
nop  
nop  
.space 52*16  
int0 return_enable  
;0C-3F: vectors for software interrupts 18-30  
;40; external interrupt int0  
nop  
nop  
nop  
int1 return_enable  
;44; external interrupt int1  
;48; external interrupt int2  
;4C; internal timer interrupt  
;50; BSP receive interrupt  
;54; BSP transmit interrupt  
;58; TDM receive interrupt  
nop  
nop  
nop  
int2 return_enable  
nop  
nop  
nop  
tint  
return_enable  
nop  
nop  
nop  
brint goto breceive  
nop  
nop  
nop  
bxint goto bsend  
nop  
nop  
nop  
trint return_enable  
nop  
nop  
nop  
txint return_enable  
nop  
;5C; TDM transmit interrupt  
;60; external interrupt int3  
nop  
int3 return_enable  
nop  
nop  
nop  
hpiint dgoto #0e4h  
nop  
;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *  
nop  
.space 24*16  
.sect “buffer”  
.space 16*0x800  
.sect “result”  
.space 16*0x800  
.end  
;68-7F; reserved area  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
21  
LTC1402  
U
TYPICAL APPLICATION  
Using Quad Cable Drivers/Receivers in Remote  
unshielded cable. Using these devices, the LTC1402’s  
serial data can be transmitted up to 100 feet without data  
corruption. Because the SCK, CONV and DOUT signals  
originate at the LTC1402, they arrive at the serial port with  
similar delays and remain synchronized. When the data is  
received at the serial port of the DSP or other controller,  
the port must be programmed to respond to the appropri-  
ate SCK and CONV edges. It is also necessary to check  
where the 12-bit output DATA resides in the 16-bit data  
frame. The TMS320C54x serial port READ instructions  
canshiftthe12-bitdatatothepreferredpositionwithinthe  
16-bit data frame.  
LTC1402 Applications  
In some applications, the host controller or main proces-  
sor may be located some distance from the sensor, the  
signal conditioning circuitry, and the ADC. In these appli-  
cations, maintaining serial data integrity over long cable  
distances can be a challenge. The circuit in Figure 15  
showsonewaytoconveytheLTC1402’shigh-speedserial  
data over a long distance. The circuit uses the LTC1688  
quad cable driver and an LTC1520 quad cable receiver to  
transmit/receive the LTC1402’s high-speed 35.2Mbps  
serial data to the DSPs serial port over category-5  
5V  
5V  
DV  
DD  
10µF  
11  
16  
15  
10  
9
16  
0V  
DD  
16  
2
1
2
V
DD  
3
4
1
3
5
+
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
100Ω  
BFSR  
A
CONV  
SCK  
IN  
3
TMS320C54x  
BCLKR  
SIGNAL  
6
6
7
9
A
D
OUT  
IN  
7
5
OGND  
LTC1402  
10  
10  
11  
BDR  
GND  
9
8
4
11  
8
CATEGORY-5  
UNSHIELDED CABLE  
UP TO 100 FEET  
REMEE PART NO.  
5A244UTPM30BU  
CONV  
2.2Msps  
4
15  
12  
14  
14  
15  
13  
CLK  
13  
35.2MHz  
PIN 4 = ENA  
PIN12 = ENB  
LTC1688  
QUAD DRIVER  
LTC1520  
QUAD RECEIVER  
Figure 15. The LTC1402 3-Wire Serial Port Sends Data Over 100 Feet of Category-5  
Twisted Pair with the LTC1688/LTC1520 Quad Driver/Receiver Pairs  
22  
LTC1402  
U
PACKAGE DESCRIPTION  
Dimensions in inches (millimeters) unless otherwise noted.  
GN Package  
16-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.189 – 0.196*  
(4.801 – 4.978)  
0.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
0.015 ± 0.004  
(0.38 ± 0.10)  
× 45°  
0.053 – 0.068  
(1.351 – 1.727)  
0.004 – 0.0098  
(0.102 – 0.249)  
0.007 – 0.0098  
(0.178 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.0250  
(0.635)  
BSC  
0.008 – 0.012  
(0.203 – 0.305)  
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
GN16 (SSOP) 1098  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LTC1402  
RELATED PARTS  
PART NUMBER  
RESOLUTION  
SPEED  
COMMENTS  
16-Bit  
LTC1604  
LTC1605  
LTC1606  
LTC1608  
14-Bit  
16  
16  
16  
16  
333ksps  
100ksps  
250ksps  
500ksps  
±2.5V Input Range, ±5V Supply  
±10V Input Range, Single 5V Supply  
±10V Input Range, Pin-Compatible with LTC1605  
±2.5V Input Range, Pin-Compatible with LTC1604  
LTC1414  
LTC1419  
LTC1416  
LTC1418  
12-Bit  
14  
14  
14  
14  
2.2Msps  
800ksps  
400ksps  
200ksps  
175mW, 80dB SINAD and 95dB SFDR  
150mW, 81.5dB SINAD and 95dB SFDR  
75mW, Low Power with Excellent AC Specs  
15mW, Single 5V, Serial/Parallel I/O  
LTC1412  
LTC1410  
LTC1415  
LTC1409  
LTC1404  
LTC1400  
PART NUMBER  
References  
LT1019-2.5  
LT1460-2.5  
LT1461-2.5  
DACs  
12  
3Msps  
1.25Msps  
1.25Msps  
800ksps  
600ksps  
400ksps  
150mW, 72dB SINAD and 82dB SFDR  
150mW, 71.5dB SINAD and 84dB THD  
55mW, Single 5V Supply  
12  
12  
12  
80mW, 71.5dB SINAD and 84dB THD  
High Speed Serial I/O in SO-8 Package  
High Speed Serial I/O in SO-8 Package  
COMMENTS  
12  
12  
DESCRIPTION  
Precision Band Gap Voltage Reference  
Micropower Series Voltage Reference  
Precision Voltage Reference  
3ppm/°C Drift, 0.5% Max Initial Accuracy  
0.075% Initial Accuracy, 10ppm/°C Max Drift  
3ppm/°C Drift, 0.05% Max Initial Accuracy  
LTC1451  
LTC1452  
LTC1456  
12-Bit V  
12-Bit V  
12-Bit V  
DAC  
SO-8 Package, 12-Bit Monotonic Overtemperature  
SO-8 Package, 2.7V to 5.5V Operation  
OUT  
OUT  
OUT  
Multiplying DAC  
DAC  
0.5LSB DNL, SO-8 Package, Internal Reference  
1402f LT/TP 0800 4K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
LINEAR TECHNOLOGY CORPORATION 1999  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

1402-3

MICRO PINS
ETC

1402018

Modular Terminal Block, 2 Row(s), 1 Deck(s), ROHS COMPLIANT
PHOENIX

1402113

CONN HOOD TOP ENTRY SZB16
PHOENIX

1402137

Circular Connector
PHOENIX

1402176

Circular Connector
PHOENIX

14021B/BEAJC

Shift Register, 8-Bit, CMOS, CDIP16,
MOTOROLA

14022-100-HT20Q

Fixed Resistor, Wire Wound, 3W, 10ohm, 140V, 3% +/-Tol, 20ppm/Cel,
RCD

14022-110-GB20Q

Fixed Resistor, Wire Wound, 3W, 11ohm, 140V, 2% +/-Tol, 20ppm/Cel,
RCD

14022-113-HTQ

Fixed Resistor, Wire Wound, 3W, 11000ohm, 140V, 3% +/-Tol,
RCD

14022-150-JTQ

Fixed Resistor, Wire Wound, 3W, 15ohm, 140V, 5% +/-Tol,
RCD

14022-151-HT

Fixed Resistor, Wire Wound, 3W, 150ohm, 140V, 3% +/-Tol,
RCD

14022-160-HB20W

Fixed Resistor, Wire Wound, 3W, 16ohm, 140V, 3% +/-Tol, 20ppm/Cel,
RCD