1654I [Linear]

Dual 14-Bit Rail-to-Rail DAC in 16-Lead SSOP Package; 双通道14位轨至轨DAC,采用16引脚SSOP封装
1654I
型号: 1654I
厂家: Linear    Linear
描述:

Dual 14-Bit Rail-to-Rail DAC in 16-Lead SSOP Package
双通道14位轨至轨DAC,采用16引脚SSOP封装

文件: 总16页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1654  
Dual 14-Bit Rail-to-Rail DAC  
in 16-Lead SSOP Package  
U
FEATURES  
DESCRIPTIO  
The LTC®1654 is a dual, rail-to-rail voltage output, 14-bit  
digital-to-analog converter (DAC). It is available in a  
16-leadnarrowSSOPpackage,makingitthesmallestdual  
14-bit DAC available. It includes output buffer amplifiers  
and a flexible serial interface.  
14-Bit Monotonic Over Temperature  
Individually Programmable Speed/Power:  
3µs Settling Time at 930µA  
8.5µs Settling Time at 540µA  
3V to 5V Single Supply Operation  
Maximum Update Rate: 0.9MHz  
Buffered True Rail-to-Rail Voltage Outputs  
The LTC1654 has REFHI pins for each DAC that can be  
driven up to VCC. The output will swing from 0V to VCC in  
a gain of 1 configuration or VCC/2 in a gain of 1/2 configu-  
ration. It operates from a single 2.7V to 5.5V supply.  
User Selectable Gain  
Power-On Reset and Clear Function  
Schmitt Trigger On Clock Input Allows Direct  
The LTC1654 has two programmable speeds: a FAST and  
SLOW mode with ±1LSB settling times of 3µs or 8.5µs  
respectively and supply currents of 930µA and 540µA in  
the two modes. The LTC1654 also has shutdown capabil-  
ity, power-on reset and a clear function to 0V.  
Optocoupler Interface  
Smallest Dual 14-Bit DAC: 16-Lead Narrow  
SSOP Package  
U
APPLICATIO S  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 5396245.  
Digital Calibration  
Industrial Process Control  
Automatic Test Equipment  
Offset/Gain Adjustment  
Multiplying DAC  
W
BLOCK DIAGRA  
CS/LD  
REFHI B  
CONTROL  
LOGIC  
SCK  
INPUT  
LATCH  
DAC  
REGISTER  
DAC B  
SDI  
+
V
OUT B  
32-BIT  
SHIFT  
REGISTER  
X /X  
B
1
1/2  
REFHI A  
INPUT  
LATCH  
DAC  
REGISTER  
DAC A  
+
V
OUT A  
SDO  
POWER-ON  
RESET  
CLR  
X /X  
1
A
1/2  
1654 BD  
REFLO B  
REFLO A  
1654fb  
1
LTC1654  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
VCC to GND .............................................. 0.5V to 7.5V  
TTL Input Voltage, REFHI,  
REFLO, X1/X1/2 ........................................ 0.5V to 7.5V  
VOUT, SDO .................................. 0.5V to (VCC + 0.5V)  
Operating Temperature Range  
LTC1654C ............................................. 0°C to 70°C  
LTC1654I ........................................ 40°C to 85°C  
Maximum Junction Temperature .......................... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
TOP VIEW  
ORDER PART  
NUMBER  
X /X  
B
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
1
1/2  
CC  
CLR  
SCK  
SDI  
OUT B  
LTC1654CGN  
LTC1654IGN  
REFHI B  
REFLO B  
AGND  
CS/LD  
DGND  
SDO  
REFLO A  
REFHI A  
GN PART MARKING  
X /X  
1
A
V
1/2  
OUT A  
1654  
1654I  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 110°C/W  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The  
denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at T = 25°C. Unless otherwise noted, V = 2.7V to 5.5V, V  
REFHI B = 4.096V (V = 5V), REFHI A, REFHI B = 2.048V (V = 2.7V), REFLO = 0V, X /X = 0V.  
, V  
unloaded, REFHI A,  
A
CC  
OUT A OUT B  
CC  
CC  
1
1/2  
SYMBOL PARAMETER  
DAC  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
n
Resolution  
14  
14  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
DNL  
INL  
Differential Nonlinearity  
Integral Nonlinearity  
Zero Scale Error  
Guaranteed Monotonic (Note 2)  
Integral Nonlinearity (Note 2)  
±0.3  
±1.2  
±1  
±4  
6.5  
9.0  
ZSE  
0°C T 70°C  
0
mV  
mV  
A
40°C T 85°C  
A
V
V
Offset Error  
0°C T 70°C (Note 3)  
±6.5  
±9.0  
mV  
mV  
OS  
OS  
A
40°C T 85°C (Note 3)  
A
TC  
Offset Error Tempco  
Gain Error  
± 15  
µV/°C  
LSB  
±24  
Gain Error Drift  
5
ppm/°C  
Power Supply  
V
Positive Supply Voltage  
For Specified Performance  
2.7  
5.5  
V
CC  
I
Supply Current (SLOW/FAST)  
2.7V V 5.5V (Note 5) SLOW  
540  
930  
350  
680  
3
850  
1400  
500  
1000  
10  
µA  
µA  
µA  
µA  
µA  
CC  
CC  
2.7V V 5.5V (Note 5) FAST  
CC  
2.7V V 3.3V (Note 5) SLOW  
CC  
2.7V V 3.3V (Note 5) FAST  
CC  
In Shutdown (Note 5)  
Op Amp DC Performance  
Short-Circuit Current Low  
V
V
Shorted to GND  
70  
80  
40  
120  
120  
200  
2.5  
mA  
mA  
OUT  
OUT  
Short-Circuit Current High  
Output Impedance to GND  
Power Supply Rejection  
Shorted to V  
CC  
Input Code = 0  
mV/V  
PSR  
REFHIA, REFHIB = 4.096V (V = 5V ±10%)  
CC  
CC  
REFHIA, REFHIB = 2.048V (V = 3V ±10%)  
Input Code = 16383  
1654fb  
2
LTC1654  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating tempera-  
ture range, otherwise specifications are at T = 25°C. Unless otherwise noted, V = 2.7V to 5.5V, V  
, V  
unloaded, REFHI A,  
A
CC  
OUT A OUT B  
REFHI B = 4.096V (V = 5V), REFHI A, REFHI B = 2.048V (V = 2.7V), REFLO = 0V, X /X = 0V.  
CC  
SYMBOL PARAMETER  
AC Performance  
CC  
1
1/2  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Voltage Output Slew Rate  
(Note 8) SLOW  
(Note 8) FAST  
0.20  
1.25  
0.9  
3.8  
V/µs  
V/µs  
Voltage Output Settling Time  
(Note 4) to ±1LSB, SLOW  
(Note 4) to ±1LSB, FAST  
8.5  
3.0  
µs  
µs  
Digital Feedthrough  
(Note 7)  
1
nV•s  
nV•s  
Midscale Glitch Impulse  
Output Noise Voltage Density  
DAC Switch Between 8000 and 7FFF  
20  
at 10kHz, SLOW  
at 10kHz, FAST  
170  
150  
nV/Hz  
nV/Hz  
Digital I/O  
V
V
V
V
V
V
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
V
V
V
V
V
V
V
V
V
= 5V  
2.4  
V
V
IH  
IL  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
IN  
= 5V  
0.8  
0.4  
0.8  
= 5V, I  
= 5V, I  
= 3V  
= 1mA, D  
Only  
V
V
– 0.4  
CC  
V
OH  
OL  
IH  
OUT  
OUT  
OUT  
= 1mA, D  
Only  
V
OUT  
OUT  
2.4  
– 0.4  
V
= 3V  
V
IL  
= 3V, I  
= 3V, I  
= 1mA, D  
Only  
Only  
V
OH  
OL  
LEAK  
OUT  
CC  
= 1mA, D  
0.4  
± 10  
10  
V
OUT  
OUT  
I
= GND to V  
µA  
pF  
CC  
C
Digital Input Capacitance  
(Note 6)  
IN  
Reference Input  
Reference Input Resistance  
REFHI to REFLO  
(Note 6)  
30  
0
60  
kΩ  
V
Reference Input Range  
Reference Input Current  
V
CC  
In Shutdown  
1
µA  
Switching Characteristics (V = 4.5V to 5.5V)  
CC  
t
t
t
t
t
t
t
t
t
t
SDI Valid to SCK Setup  
SDI Valid to SCK Hold  
SCK High Time  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
2
15  
15  
15  
10  
10  
5
3
SCK Low Time  
4
CS/LD Pulse Width  
LSB SCK to CS/LD  
CS/LD Low to SCK  
SD0 Output Delay  
SCK Low to CS/LD Low  
CLR Pulse Width  
5
6
7
C
= 100pF  
LOAD  
100  
8
(Note 6)  
(Note 6)  
10  
30  
9
10  
Switching Characteristics (V = 2.7V to 5.5V)  
CC  
t
t
t
t
t
t
t
SDI Valid to SCK Setup  
SDI Valid to SCK Hold  
SCK High Time  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
3
4
5
6
7
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
(Note 6)  
20  
20  
20  
15  
15  
SCK Low Time  
CS/LD Pulse Width  
LSB SCK to CS/LD  
CS/LD Low to SCK  
1654fb  
3
LTC1654  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating  
, V unloaded,  
temperature range, otherwise specifications are at T = 25°C. Unless otherwise noted, V = 2.7V to 5.5V, V  
A
CC  
OUT A OUT B  
REFHI A, REFHI B = 4.096V (V = 5V), REFHI A, REFHI B = 2.048V (V = 2.7V), REFLO = 0V, X /X = 0V.  
CC  
CC  
1
1/2  
SYMBOL PARAMETER  
Switching Characteristics (V = 2.7V to 5.5V)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CC  
t
t
t
SDO Output Delay  
SCK Low to CS/LD Low  
CLR Pulse Width  
C
= 100pF  
5
150  
ns  
ns  
ns  
8
LOAD  
(Note 6)  
(Note 6)  
15  
45  
9
10  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: DAC switched between code 2 k and code 16383. See  
L
Applications Information (page 11) for definition of low code k .  
L
Note 2: Nonlinearity is defined from low code k to code 16383. See  
Note 5: Digital inputs at 0V or V  
.
CC  
L
Applications Information (page 11).  
Note 6: Guaranteed by design.  
Note 3: Offset error is measured at low code k . See Applications  
Information (page 11).  
L
Note 7: CS/LD = 0, V  
Note 8: 100pF load capacitor.  
= 4.096V and data is being clocked in.  
OUT  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Integral Nonlinearity (INL)  
vs Input Code  
Differential Nonlinearity (DNL)  
vs Input Code  
Offset vs Temperature  
2.0  
1.5  
2.0  
1.5  
2.50  
1.25  
0
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–1.25  
–2.50  
8192  
8192  
0
16383  
0
16383  
5
35  
–55  
–25  
65  
95  
125  
INPUT CODE  
INPUT CODE  
TEMPERATURE (°C)  
1654 G02  
1654 G01  
1654 G03  
Minimum Output Voltage  
vs Load Current (Output Sinking)  
Minimum Supply Headroom vs  
Load Current (Output Sourcing)  
Gain Error vs Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5.0  
2.5  
CODE: ALL 1s  
REFHI  
CODE: ALL ZEROS  
V
= 4.096V  
T
= 25°C  
T
= 125°C  
A
A
0
T
= 25°C  
A
T
A
= 125°C  
T
= –55°C  
A
–2.5  
–5.0  
T
A
= –55°C  
0
5
10  
15  
5
35  
–55  
–25  
65  
95  
125  
0
10  
15  
5
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT SINK CURRENT (mA)  
1645 G06  
1654 G04  
1645 G05  
1654fb  
4
LTC1654  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current  
vs Logic Input Voltage  
Large-Signal Settling—Fast Mode  
Large-Signal Settling—Slow Mode  
3.0  
1.5  
0
VOUT  
VOUT  
1V/DIV  
1V/DIV  
CS/LD  
2V/DIV  
CS/LD  
2V/DIV  
0
1
2
3
4
5
TIME (2µs/DIV)  
1654 G08  
TIME (2µs/DIV)  
1654 G09  
LOGIC INPUT VOLTAGE (V)  
1654 G07  
Midscale Glitch—Fast Mode  
Midscale Glitch—Slow Mode  
V
OUT  
Glitch at Power-Up  
VCC  
0.5V/DIV  
VOUT  
10mV/DIV  
VOUT  
10mV/DIV  
CS/LD  
2V/DIV  
CS/LD  
2V/DIV  
VOUT  
50mV/DIV  
TIME (50ms/DIV)  
1654 G12  
TIME (1µs/DIV)  
1654 G11  
TIME (1µs/DIV)  
1654 G10  
1654fb  
5
LTC1654  
U
U
U
PI FU CTIO S  
CS/LD (Pin 5): The TTL Level Input for the Serial Interface  
Enable and Load Control. When CS/LD is low, the SCK  
signal is enabled, so the data can be clocked in. When  
CS/LD is pulled high, the control/address bits are  
decoded.  
X1/X1/2 B, X1/X1/2 A (Pins 1, 8): The Gain of 1 or Gain of  
1/2 Pin. When this pin is tied to VOUT, the output range will  
be REFLO to (REFLO + REFHI)/2 (0V to REFHI/2 when  
REFLO = 0V). When this pin is tied to REFLO, the output  
range will be REFLO to REFHI (0V to REFHI when REFLO  
= 0V). These pins should not be left floating.  
DGND/AGND (Pins 6, 12): Digital and Analog Grounds.  
CLR (Pin 2): The Asynchronous Clear Input.  
SDO (Pin 7): The output of the shift register that becomes  
valid on the rising edge of the serial clock.  
SCK (Pin 3): The TTL Level Input for the Serial Interface  
Clock.  
VOUT A/B (Pins 9, 15): The Buffered DAC Outputs.  
SDI (Pin 4): The TTL Level Input for the Serial Interface  
Data. Data on the SDI pin is latched into the shift register  
on the rising edge of the serial clock. The LTC1654 allows  
either a 24-bit or 32-bit word. When a 24-bit word is used,  
the first 8 bits are control and address followed by 16 data  
bits. The last two of the 16 data bits are don’t cares. When  
a 32-bit word (required for daisy-chain operation) is used,  
thefirst8-bitsaredon’tcaresandthefollowing24-bitsare  
as above.  
REFHIA/B(Pins10, 14):TheReferenceHighInputsofthe  
LTC1654. There is a gain of 1 from this pin to the output  
in a gain of 1 configuration. In a gain of 1/2 configuration,  
there is a gain of 1/2 from this pin to VOUT  
.
REFLOA/B(Pins11, 13):TheReferenceLowInputsofthe  
LTC1654. These inputs can swing up to VCC – 1.5V.  
VCC (Pin16):ThePositiveSupplyInput.2.7VVCC 5.5V.  
Requires a 0.1µF bypass capacitor to ground.  
W U  
W
TI I G DIAGRA S  
t
t
6
2
t
t
t
t
7
1
4
3
SCK  
SDI  
t
9
X
X
C3 B0  
X
X
t
5
CS/LD  
SDO  
t
8
X
X
X
C3  
X
X
CURRENT WORD  
1654 TD01  
(PREVIOUS  
WORD)  
1654fb  
6
LTC1654  
W U  
W
TI I G DIAGRA S  
1654fb  
7
LTC1654  
U
OPERATIO  
Serial Interface  
Three examples are given to illustrate the DAC’s opera-  
tion:  
The data on the SDI input is loaded into the shift register  
on the rising edge of SCK. The MSB is loaded first. The 1. Load and update DAC A in FAST mode. Leave DAC B  
ClockisdisabledinternallywhenCS/LDishigh. Note:SCK  
must be low before CS/LD is pulled low to avoid an extra  
internal clock pulse.  
unchanged. Perform the following sequence for the  
control, address and DATA bits:  
Step 1: Set DAC A in FAST mode  
If no daisy-chaining is required, the input word can be  
24-bitwide, asshowninthetimingdiagrams. The8MSBs,  
which are loaded first, are the control and address bits  
followed by a 16-bit data word. The last two LSBs in the  
data word are don’t cares. The input word can be a stream  
of three 8-bit wide segments as shown in the “24-Bit  
Update” timing diagram.  
CS/LD clock in 0101 0000 XXXXXXXX XXXXXXXX;  
CS/LD  
Step 2: Load and update DAC A with DATA  
CS/LD  
clock in 0011 0000 + DATA; CS/LD  
2. Load and update DAC A in SLOW mode. Power down  
DAC B. Perform the following sequence for the con-  
trol, address and DATA bits:  
If daisy-chaining is required or if the input needs to be  
written in two 16-bit wide segments, then the input word  
can be 32 bits wide and the top 8 bits (MSBs) are don’t  
cares.Theremaining24bitsarecontrol/addressanddata.  
This is also shown in the timing diagrams. The buffered  
output of the internal 32-bit shift register is available on  
the SDO pin, which swings from GND to VCC.  
Step 1: Set DAC A in SLOW mode  
CS/LD  
clock in 0110 0000 XXXXXXXX  
XXXXXXXX;  
CS/LD  
Step 2: Load and update DAC A with DATA  
Multiple LTC1654s may be daisy-chained together by  
connecting the SDO pin to the SDI pin of the next IC. The  
SCK and CS/LD signals remain common to all ICs in the  
daisy-chain. The serial data is clocked to all of the chips,  
then the CS/LD signal is pulled high to update all DACs  
simultaneously.  
CS/LD  
clock in 0011 0000 + DATA; CS/LD  
Step 3: Power down DAC B  
CS/LD  
clock in 0100 0001 XXXXXXXX  
XXXXXXXX;  
CS/LD  
Table 1 shows the truth table for the control/address bits.  
When the supplies are first applied, the LTC1654 uses  
SLOW mode, the outputs are set at 0V, and zeros are  
loaded into the 32-bit input shift register. About 300ns  
after power-up, the outputs are released from 0V (AGND)  
and will go to the voltage on the REFLO pin.  
3. PowerdownbothDACsatthesametime.Performthe  
following sequence for the control, address and DATA  
bits:  
Step 1: Power down both DACs simultaneously  
CS/LD  
clock in 0100 1111 XXXXXXXX  
When CLR goes active, zeros are loaded into the input and  
DAC latch and the outputs are forced to AGND. After CLR  
is forced high, the ouputs will go to the voltage on the  
REFLO pin.  
XXXXXXXX;  
CS/LD  
1654fb  
8
LTC1654  
U
OPERATIO  
Voltage Output  
The total supply current is 930µA in the FAST mode and  
540µA in the SLOW mode. The output noise voltage  
density at 10kHz is 170nV/Hz in SLOW mode and  
150nV/Hz in FAST mode.  
The LTC1654 comes complete with rail-to-rail voltage  
output buffer amplifiers. These amplifiers will swing to  
withinafewmillivoltsofeithersupplyrailwhenunloaded  
and to within a 450mV of either supply rail when sinking  
or sourcing 5mA.  
Power Down  
EachDACcanalsobeindependentlypowereddowntoless  
than 5µA/DAC of supply current. The reference pin also  
goesintoahighimpedancestatewhentheDACispowered  
down and the reference current will drop to below 0.1µA.  
The amplifiers’ output stage is also three-stated but the  
VOUT pins still have the internal gain-setting resistors  
connectedtothemresultinginaneffectiveresistancefrom  
VOUT to REFLO. This resistance is typically 90k when the  
X1/X1/2 pin is tied to VOUT and 36k when X1/X1/2 is tied to  
REFLO. Because of this resistance, VOUT will go to VREFLO  
when the DAC is powered down and VOUT is unloaded.  
TherearetwoGAINconfigurationmodesfortheLTC1654:  
a) GAIN of 1: (X1/X1/2 tied to REFLO)  
VOUT = (VREFHI – VREFLO)(CODE/16384) + VREFLO  
b) GAIN of 1/2: (X1/X1/2 tied to VOUT  
)
VOUT =(1/2)(VREFHI VREFLO)(CODE/16384)+VREFLO  
The LTC 1654 has two SPEED modes: A FAST mode and  
a SLOW mode. When operating in the FAST mode, the  
output amplifiers will settle in 3µs (typ) to 14 bits on a 4V  
outputswing.IntheSLOWmode,theywillsettlein8.5µs.  
1654fb  
9
LTC1654  
U
OPERATIO  
Table 1.  
ADDRESS (n)  
CONTROL  
A3 A2 A1 A0  
C3 C2 C1 C0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DAC A  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
Load Input Register n  
DAC B  
Update (Power-Up) DAC Register n  
Load Input Register n, Update (Power-Up) All  
Load and Update n  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Both DACs  
Power Down n  
Fast n (Speed States are Maintained Even If DAC is  
Put in Power-Down Mode)  
0
1
1
0
Slow n (Default State is Slow When Supplies are  
Powered Up)  
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
No Operation  
INPUT WORD  
CONTROL  
ADDRESS  
DATA (14 + 2 DON'T CARE LSBs)  
D6  
A3 A2  
A0  
D12  
C3  
C1  
A1  
D13  
D11 D10 D9 D8  
D5 D4 D3 D2 D1  
D0  
X
X
1654 TABLE  
D7  
C2  
C0  
1654fb  
10  
LTC1654  
W U U  
APPLICATIO S I FOR ATIO  
U
The offset, gain error and linearity of the LTC1654 are  
defined and tested in output ranges that avoid limiting.  
The low code kL used in these measurements is defined as  
the code which gives a nominal output of 32mV above  
ground; see Table 2.  
Rail-to-Rail Output Considerations  
Rail-to-rail DACs take full advantage of the supply range  
available to them, but cannot produce output voltages  
above VCC or below ground. See Figure 2a.  
If REFLO is tied to GND, the output for the lowest codes  
may limit at 0V, as shown in Figure 2b. Similarly, limiting  
can occur near full scale if the REFHI pin is tied to VCC, as  
shown in Figure 2c.  
POSITIVE  
V
REF  
= V  
CC  
FSE  
OUTPUT  
VOLTAGE  
INPUT CODE  
(c)  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
0
8192  
16383  
INPUT CODE  
(a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
1654 F02  
Figure 2. Effects of Rail-to-Rail Operation On a DAC Transfer Curve: (a) Overall Transfer Function, (b) Effect of Negative  
Offset for Codes Near Zero Scale, (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When V = V  
REF  
CC  
Table 2. Low Code k  
L
V , V  
REFHI  
4.096 2.048  
1
128  
256  
512  
1/2 256  
Note: V  
= O  
REFLO  
1654fb  
11  
LTC1654  
U U  
DEFI ITIO S  
Resolution (n): Resolution is defined as the number of  
digital input bits (n). It is also the number of DAC output  
states(2n)thatdividethefull-scalerange.Resolutiondoes  
not imply linearity.  
Least Significant Bit (LSB): One LSB is the ideal voltage  
difference between two successive codes.  
LSB = (VFS – VOS)/(2n – 1) = (VFS – VOS)/16383  
Nominal LSBs:  
Full-Scale Voltage (VFS): This is the output of the DAC  
when all bits are set to 1.  
LTC1654 LSB = 4.09575V/16383 = 250µV  
Voltage Offset Error (VOS): Normally, DAC offset is the  
voltageattheoutputwhentheDACisloadedwithallzeros.  
The DAC can have a true negative offset, but because the  
partisoperatedfromasinglesupply, theoutputcannotgo  
below 0V. If the offset is negative, the output will remain  
near 0V resulting in the transfer curve shown in Figure 3.  
Zero-Scale Error (ZSE): The output voltage when the  
DAC is loaded with all zeros. Since this is a single supply  
part, this value cannot be less than 0V.  
Integral Nonlinearity (INL): End-point INL is the maxi-  
mum deviation from a straight line passing through the  
end points of the DAC transfer curve. Because the part  
operates from a single supply and the output cannot go  
below zero, the linearity is measured between low code  
kL and full scale. The INL error at a given input code is  
calculated as follows:  
OUTPUT  
VOLTAGE  
INL = [VOUT – VOS – (VFS – VOS)(code/16383)]/LSB  
VOUT = The output voltage of the DAC measured at the  
given input code  
0V  
NEGATIVE  
OFFSET  
DAC CODE  
1654 F01  
Figure 3. Effect of Negative Offset  
Differential Nonlinearity (DNL): DNL is the difference  
between the measured change and the ideal one LSB  
change between any two adjacent codes. The DNL error  
between any two codes is calculated as follows:  
Therefore,theoffsetofthepartismeasuredatlowcodekL:  
(kL)(V )  
FS  
VOUT(kL)–  
DNL = (VOUT – LSB)/LSB  
VOUT = The measured voltage difference between  
two adjacent codes  
2n – 1  
VOS  
=
kL  
n
1–  
2 – 1  
DigitalFeedthrough: Theglitchthatappearsattheanalog  
outputcausedbyACcouplingfromthedigitalinputswhen  
they change state. The area of the glitch is specified in  
nV • s.  
1654fb  
12  
LTC1654  
U
TYPICAL APPLICATIO S  
ThiscircuitshowshowtouseanLTC1654andanLT®1077  
to make a wide bipolar output swing 14-bit DAC with an  
offset that can be digitally programmed. VOUTA, which can  
be set by loading the appropriate code for DAC A, sets the  
offset. As this value changes, the transfer curve for the  
output moves up and down as illustrated in the graph  
below.  
A Wide Swing, Bipolar Output 14-Bit DAC with Digitally Controlled Offset  
5V  
0.1µF  
LTC1654  
B
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
X /X  
1
V
1/2  
CC  
CLR  
SCK  
SDI  
V
OUT B  
49.9k  
1%  
15V  
LT1077  
–15V  
REFHI B  
REFLO B  
AGND  
µP  
+
V
OUT  
OUTB  
CS/LD  
DGND  
SDO  
100k  
1%  
2 (V  
– V  
)
OUTA  
REFLO A  
REFHI A  
X /X  
1
A
V
OUT A  
1/2  
1654 TA02  
49.9k  
1%  
100k  
1%  
10  
5
V
0V  
OUTA  
V
2.5V  
OUTA  
0
CODE  
16383  
V
OUTA  
5V  
–5  
–10  
1654 TA03  
1654fb  
13  
LTC1654  
U
TYPICAL APPLICATIO S  
Dual 14-Bit Voltage Output DAC  
2.7V TO 5.5V  
0.1µF  
LTC1654  
B
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
X /X  
1
V
1/2  
CC  
OUTPUT B: 0V TO V  
CLR  
SCK  
SDI  
V
OUT B  
CC  
REFHI B  
REFLO B  
AGND  
µP  
CS/LD  
DGND  
SDO  
REFLO A  
REFHI A  
9
OUTPUT A: 0V TO V  
X /X  
1
A
V
OUT A  
CC  
1/2  
1654 TA01  
1654fb  
14  
LTC1654  
U
PACKAGE DESCRIPTION  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165  
±
.0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
×
45°  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0°  
– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
(0.203 – 0.305)  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
GN16 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
1654fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1654  
U
TYPICAL APPLICATIO  
A Wide Swing, Bipolar Output 14-Bit DAC with Digitally Controlled Offset  
5V  
0.1µF  
LTC1654  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
X /X  
1
B
V
1/2  
CC  
CLR  
SCK  
SDI  
V
OUT B  
49.9k  
1%  
15V  
LT1077  
–15V  
REFHI B  
REFLO B  
AGND  
µP  
+
V
OUT  
2 (V  
CS/LD  
DGND  
SDO  
100k  
1%  
– V  
)
OUTA  
OUTB  
REFLO A  
REFHI A  
X /X  
1
A
V
OUT A  
1/2  
1654 TA02  
49.9k  
1%  
100k  
1%  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1257  
Single 12-Bit V  
Reference Can Be Overdriven Up to 12V, i.e., FS  
DAC, Full Scale: 2.048V, V : 4.75V to 15.75V,  
5V to 15V Single Supply, Complete V  
SO-8 Package  
DAC in  
OUT  
OUT  
CC  
= 12V  
MAX  
LTC1446/LTC1446L Dual 12-Bit V  
DACs in SO-8 Package  
LTC1446: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
OUT  
CC  
OUT  
LTC1446L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1448  
Dual 12-Bit V  
DAC, V : 2.7V to 5.5V  
Output Swings from GND to REF. REF Input  
Can Be Tied to V  
CC  
CC  
LTC1450/LTC1450L Single 12-Bit V  
DACs with Parallel Interface  
LTC1450: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1450L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1451  
LTC1452  
LTC1453  
Single Rail-to-Rail 12-Bit DAC, Full Scale: 4.095V, V : 4.5V to 5.5V,  
Internal 2.048V Reference Brought Out to Pin  
5V, Low Power Complete V  
DAC in SO-8 Package  
CC  
OUT  
Single Rail-to-Rail 12-Bit V  
Multiplying DAC, V : 2.7V to 5.5V  
Low Power, Multiplying V  
DAC with Rail-to-Rail  
OUT  
OUT  
CC  
Buffer Amplifier in SO-8 Package  
Single Rail-to-Rail 12-Bit V  
DAC, Full Scale: 2.5V, V : 2.7V to 5.5V  
3V, Low Power, Complete V DAC in SO-8 Package  
OUT  
CC  
OUT  
LTC1454/LTC1454L Dual 12-Bit V  
DACs in SO-16 Package with Added Functionality  
LTC1454: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1454L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1456  
Single Rail-to-Rail Output 12-Bit DAC with Clear Pin,  
Full Scale: 4.095V, V : 4.5V to 5.5V  
Low Power, Complete V  
Package with Clear Pin  
DAC in SO-8  
OUT  
CC  
LTC1458/LTC1458L Quad 12 Bit Rail-to-Rail Output DACs with Added Functionality  
LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1658  
LTC1659  
14-Bit Rail-to-Rail Micropower DAC in MSOP, V : 2.7V to 5.5V  
Output Swings from GND to REF. REF Input  
Can Be Tied to V  
CC  
CC  
Single Rail-to-Rail 12-Bit V  
DAC in 8-Pin MSOP, V : 2.7V to 5.5V  
Low Power, Multiplying V  
DAC in MS8 Package.  
OUT  
OUT  
CC  
Output Swings from GND to REF. REF Input Can Be  
Tied to V  
CC  
References  
LT1460  
Micropower Precision Reference  
Precision Voltage Reference  
Low Cost, 10ppm Drift  
LT1461  
Ultralow Drift 3ppm/°C, Initial Accuracy: 0.04%  
Low Drift 10ppm/°C, Initial Accuracy: 0.05%  
LT1634  
Micropower Precision Reference  
1654fb  
LT/LT 0705 REV B • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2000  

相关型号:

1655

16-Bit Rail-to-Rail Micropower DACs in
Linear

1655-2

SWAGE/FORCE FIT STANDOFFS
ETC

1655001

Interconnection Device, ROHS COMPLIANT
PHOENIX

1655027

Interconnection Device, ROHS COMPLIANT
PHOENIX

1655098

D Subminiature Connector, 15 Contact(s), Male, Solder Terminal, ROHS COMPLIANT
PHOENIX

1655108

D Subminiature Connector, 15 Contact(s), Female, Solder Terminal, Socket, ROHS COMPLIANT
PHOENIX

1655111

D Subminiature Connector, 15 Contact(s), Male, Solder Terminal, ROHS COMPLIANT
PHOENIX

1655124

D Subminiature Connector, 15 Contact(s), Female, Crimp Terminal, Socket, ROHS COMPLIANT
PHOENIX

1655137

D Subminiature Connector, 15 Contact(s), Male, Crimp Terminal, ROHS COMPLIANT
PHOENIX

1655140

D Subminiature Connector, 26 Contact(s), Female, Solder Terminal, Socket, ROHS COMPLIANT
PHOENIX

1655153

D Subminiature Connector, 26 Contact(s), Male, Solder Terminal, ROHS COMPLIANT
PHOENIX

1655166

D Subminiature Connector, 26 Contact(s), Female, Solder Terminal, Socket, ROHS COMPLIANT
PHOENIX