750312872 [Linear]

Isolated No Opto-Coupler Flyback Controller; 无隔离光电耦合器反激式控制器
750312872
型号: 750312872
厂家: Linear    Linear
描述:

Isolated No Opto-Coupler Flyback Controller
无隔离光电耦合器反激式控制器

光电 控制器
文件: 总20页 (文件大小:257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3798  
Isolated No Opto-Coupler  
Flyback Controller  
with Active PFC  
FEATURES  
DESCRIPTION  
ꢀhe L®3798 is a constant-voltage/constant-current iso-  
lated flyback controller that combines active power factor  
correction (PFC) with no opto-coupler required for output  
voltage feedback into a single-stage converter. A L3798  
baseddesigncanachieveapowerfactorofgreaterthan0.97  
by actively modulating the input current, allowing compli-  
ance with most Harmonic Current Emission requirements.  
n
Isolated PFC Flyback with Minimum Number of  
External Components  
n
V and V  
Limited Only by External Components  
IN  
OUT  
n
n
n
n
n
n
n
Active Power Factor Correction  
Low Harmonic Distortion  
No Opto-Coupler Required  
Constant-Current and Constant-Voltage Regulation  
Accurate Regulated Voltage and Current (±±5 ꢀypical)  
Energy Star Compliant (<0.±W No Load Operation)  
ꢀhermally Enhanced 16-lead MSOP Package  
ꢀhe L3798 is well suited for a wide variety of off-line  
applications. ꢀhe input range can be scaled up or down,  
depending mainly on the choice of external components.  
Efficiencies higher than 865 can be achieved with output  
powerlevelsupto100W.Inaddition,theL3798caneasily  
be designed into high DC input applications.  
APPLICATIONS  
n
Offline ±W to 100W+ Applications  
n
High DC V Isolated Applications  
IN  
L, Lꢀ, LC, LM, Linear ꢀechnology and the Linear logo are registered trademarks of Linear  
ꢀechnology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including ±438499 and 7471±22.  
n
Offline Bus Converter (12V, 24V or 48V Outputs)  
TYPICAL APPLICATION  
Universal Input 24W PFC Bus Converter  
VOUT vs IOUT  
24.±0  
90V  
ꢀO 26±V  
AC  
24.2±  
499k  
499k  
100k  
100k  
D2  
20Ω  
24.00  
23.7±  
23.±0  
4:1:1  
0.1μF  
4.7pF  
10μF  
2k  
D3  
VAC = 90V  
VAC = 120V  
VAC = 220V  
VAC = 265V  
D4  
90.9k  
4.99k  
V
DCM  
FB  
IN  
24V  
1A  
1M  
V
IN_SENSE  
EN/UVLO  
Z1  
0
0.2  
0.4  
0.6  
(A)  
0.8  
1
±60μF  
× 2  
22pF  
9±.3k  
100k  
I
OUꢀ  
D1  
L3798  
3798 ꢀA01b  
V
REF  
20Ω  
Z2  
40.2k  
16.±k  
CꢀRL3  
CꢀRL2  
GAꢀE  
SENSE  
INꢀV  
CC  
CꢀRL1  
OVP  
0.0±Ω  
4.7μF  
2.2nF  
GND  
221k  
+
VC  
COMP COMP  
0.1μF  
2.2μF  
3798 ꢀA01a  
3798f  
1
LT3798  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
EN/UVLO...................................................................30V  
IN  
1
2
3
4
5
6
7
8
V
IN_SENSE  
CTRL1  
CTRL2  
CTRL3  
16  
15  
14  
13  
12  
11  
10  
9
SENSE  
GATE  
V ............................................................................42V  
V
17  
GND  
INꢀV ......................................................................12V  
INTV  
CC  
EN/UVLO  
REF  
CC  
OVP  
CꢀRL1, CꢀRL2, CꢀRL3................................................4V  
VC  
V
IN  
+
COMP  
COMP  
DCM  
FB  
+
FB, V , COMP ........................................................3V  
REF  
VC, OVP, COMP .........................................................4V  
MSE PACKAGE  
16-LEAD PLASTIC MSOP  
SENSE......................................................................0.4V  
θ
JA  
= ±0°C/W, θ = 10°C/W  
JC  
EXPOSED PAD (PIN 17) IS GND, MUSꢀ BE SOLDERED ꢀO PCB  
V
.................................................................1mA  
IN_SENSE  
DCM.......................................................................±3mA  
Operating ꢀemperature Range (Note 2)  
Lꢀ3798E/Lꢀ3798I................................... –40°C to 12±°C  
Storage ꢀemperature Range .................. –6±°C to 1±0°C  
ORDER INFORMATION  
LEAD FREE FINISH  
L3798EMSE#PBF  
L3798IMSE#PBF  
TAPE AND REEL  
PART MARKING*  
3798  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
L3798EMSE#ꢀRPBF  
L3798IMSE#ꢀRPBF  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
–40°C to 12±°C  
–40°C to 12±°C  
3798  
Consult LC Marketing for parts specified with wider operating temperature ranges. *ꢀhe temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 18V, INTVCC = 11V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
10  
TYP  
MAX  
38  
UNITS  
Input Voltage Range  
V
V
IN  
Quiescent Current  
V
V
= 0.2V  
= 1.±V, Not Switching  
4±  
60  
70  
70  
μA  
μA  
EN/UVLO  
EN/UVLO  
V
IN  
V
IN  
V
IN  
Quiescent Current, INꢀV Overdriven  
V
= 11V  
60  
40  
8
μA  
V
CC  
INꢀVCC  
Shunt Regulator Voltage  
I = 1mA  
Shunt Regulator Current Limit  
mA  
INꢀV Quiescent Current  
V
V
= 0.2V  
= 1.±V, Not Switching  
12.±  
1.8  
1±.±  
2.2  
17.±  
2.7  
μA  
mA  
CC  
EN/UVLO  
EN/UVLO  
l
EN/UVLO Pin ꢀhreshold  
EN/UVLO Pin Voltage Rising  
EN/UVLO=1V  
1.21  
8
1.2±  
10  
1.29  
12  
V
μA  
μA  
EN/UVLO Pin Hysteresis Current  
V
V
ꢀhreshold  
ꢀurn Off  
27  
IN_SENSE  
l
l
Voltage  
0 μA Load  
200μA Load  
1.97  
1.9±  
2.0  
1.98  
2.03  
2.03  
V
V
REF  
CꢀRL1/CꢀRL2/CꢀRL3 Pin Bias Current  
CꢀLR1/CꢀRL2/CꢀRL3 = 1V  
±30  
nA  
3798f  
2
LT3798  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 18V, INTVCC = 11V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
102  
14  
MAX  
UNITS  
mV  
SENSE Current Limit ꢀhreshold  
Minimum SENSE Current Limit ꢀhreshold  
Minimum SENSE Current Limit ꢀhreshold  
SENSE Input Bias Current  
V
V
V
= 1±0μA  
= 34μA  
= 21μA  
96  
107  
IN_SENSE  
IN_SENSE  
IN_SENSE  
mV  
4
mV  
Current Out of Pin, SENSE = 0V  
1±  
μA  
l
FB Voltage  
1.22  
4.0±  
1.2±  
0.01  
4.2±  
180  
170  
100  
±0  
1.28  
0.03  
4.4  
V
FB voltage Line Regulation  
FB Pin Bias Current  
10V < V < 3±V  
5/V  
μA  
IN  
(Note 3), FB = 1V  
FB Error Amplifier Voltage Gain  
FB Error Amplifier ransconductance  
Current Error Amplifier Voltage Gain  
Current Error Amplifier ransconductance  
Current Loop Voltage Gain  
ΔV /ΔV , CꢀRL1=1V, CꢀRL2=2V, CꢀRL3=2V  
V/V  
VC  
FB  
ΔI = ±μA  
ΔV +/ΔV  
UMHOS  
V/V  
–, CꢀRL1 = 1V, CꢀRL2 = 2V, CꢀRL3 = 2V  
COMP  
COMP  
ΔI = ±μA  
ΔV /ΔV  
UMHOS  
V/V  
+
,1000pF Cap from COMP to COMP  
SENSE  
21  
CꢀRL  
DCM Current ꢀurn-On ꢀhreshold  
Maximum Oscillator Frequency  
Minimum Oscillator Frequency  
Minimum Oscillator Frequency  
Backup Oscillator Frequency  
Linear Regulator  
Current Out of Pin  
80  
μA  
+
COMP = 0.9±V, V  
= 1±0μA  
1±0  
4
kHz  
IN_SENSE  
+
COMP = 0V, V <V  
kHz  
FB  
OVP  
OVP  
+
COMP = 0V, V >V  
0.±  
20  
kHz  
FB  
kHz  
INꢀV Regulation Voltage  
No Load  
9.8  
10  
±00  
2±  
10.4  
900  
V
mV  
mA  
mA  
CC  
Dropout (V -INꢀV  
)
CC  
I = –10mA, V = 10V  
INꢀVCC IN  
IN  
Current Limit  
Current Limit  
Gate Driver  
Below Undervoltage ꢀhreshold  
Above Undervoltage ꢀhreshold  
12  
80  
120  
t GAꢀE Driver Output Rise ꢀime  
C = 3300pF, 105 to 905  
18  
18  
ns  
ns  
V
r
L
t GAꢀE Driver Output Fall ꢀime  
f
C = 3300pF, 905 to 105  
L
GAꢀE Output Low (V  
)
0.01  
OL  
GAꢀE Output High (V  
)
OH  
INꢀV  
-
CC  
V
±0mV  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
12±°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. ꢀhe  
3798I is guaranteed to meet specified performance from –40°C to 12±°C  
operating junction temperature range.  
Note 2: ꢀhe L3798E is guaranteed to meet specified performance from  
Note 3: Current flows out of the FB pin.  
0°C to 12±°C junction temperature. Specification over the –40°C and  
3798f  
3
LT3798  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
EN/UVLO Threshold  
vs Temperature  
EN/UVLO Hysteresis Current  
vs Temperature  
VIN IQ vs Temperature  
1.3  
1.28  
1.26  
1.24  
1.22  
1.2  
12  
11.±  
11  
100  
90  
80  
70  
60  
±0  
40  
30  
20  
10  
0
V
IN  
= 24V  
V
IN  
= 12V  
RISING  
FALLING  
10.±  
10  
–±0  
0
2± ±0 7± 100 12± 1±0  
–±0  
0
2± ±0 7± 100 12± 1±0  
–±0  
–2±  
0
2± ±0 7± 100 12± 1±0  
–2±  
–2±  
ꢀEMPERAꢀURE (°C)  
ꢀEMPERAꢀURE (°C)  
ꢀEMPERAꢀURE (°C)  
3798 G01  
3798 G02  
3798 G03  
SENSE Current Limit Threshold  
vs Temperature  
VREF vs Temperature  
VREF vs VIN  
2.100  
2.07±  
2.0±0  
2.02±  
2.000  
1.97±  
1.9±0  
1.92±  
1.900  
2.0±  
2.04  
2.03  
2.02  
2.01  
2
120  
100  
80  
60  
40  
20  
0
MAX I  
LIM  
V
= 24V WIꢀH NO LOAD  
NO LOAD  
IN  
1.99  
1.98  
1.97  
1.96  
1.9±  
200μA LOAD  
V
= 24V WIꢀH 200μA LOAD  
IN  
MIN I  
MIN I  
V
= 34μA  
= 21μA  
LIM IN_SENSE  
V
LIM IN_SENSE  
40  
–±0  
–2±  
0
2± ±0 7± 100 12±  
ꢀEMPERAꢀURE (°C)  
1±0  
–±0  
0
2± ±0 7± 100 12± 1±0  
10  
20  
2±  
(V)  
–2±  
1±  
30  
3±  
ꢀEMPERAꢀURE (°C)  
V
IN  
3798 G0±  
3798 G0±  
3798 G06  
Maximum Oscillator Frequency  
vs Temperature  
Minimum Oscillator Frequency  
vs Temperature  
Backup Oscillator Frequency  
vs Temperature  
220  
19±  
170  
14±  
120  
±
4
3
2
1
0
2±  
20  
1±  
10  
±
V
< V  
OVP  
FB  
V
> V  
FB  
OVP  
0
0
–±0  
0
2± ±0 7± 100  
ꢀEMPERAꢀURE (°C)  
1±0  
12±  
–2±  
±0  
1±0  
–±0  
0
2± ±0 7±  
1±0  
100 12±  
–±0  
2±  
7± 100 12±  
–2±  
–2±  
ꢀEMPERAꢀURE (°C)  
ꢀEMPERAꢀURE (°C)  
3798 G06a  
3799 G07  
3798 G07a  
3798f  
4
LT3798  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
INTVCC vs Temperature  
INTVCC vs VIN  
VIN Shunt Voltage vs Temperature  
10.±  
10.2±  
10  
10.2  
10  
42  
41.±  
41  
I
= 1mA  
NO LOAD  
10mA LOAD  
25mA LOAD  
SHUNꢀ  
9.8  
9.6  
9.4  
9.2  
9
40.±  
40  
9.7±  
9.±  
39.±  
39  
20  
V
2±  
(V)  
30  
3±  
40  
±0  
ꢀEMPERAꢀURE (°C)  
–±0  
0
2± ±0 7± 100  
1±0  
±
10  
1±  
–±0  
–2±  
0
2±  
7± 100 12±  
1±0  
–2±  
12±  
ꢀEMPERAꢀURE (°C)  
IN  
3798 G09  
3798 G08  
3798 G10  
Maximum Shunt Current  
vs Temperature  
Leakage Inductance Blanking Time  
vs SENSE Current Limit Threshold  
VOUT vs Temperature  
10  
9
2
1.8  
1.6  
1.4  
1.2  
1
2±  
24.±  
24  
PAGE 17 SCHEMAꢀIC:  
UNIVERSAL  
8
VAC = 120V  
7
0.8  
0.6  
0.4  
0.2  
0
VAC = 220V  
23.±  
23  
6
±
–±0  
0
2± ±0 7± 100 12± 1±0  
0
40  
60  
80  
120  
–2±  
20  
100  
–±0  
2± ±0  
1±0  
0
7± 100 12±  
–2±  
ꢀEMPERAꢀURE (°C)  
SENSE CURRENꢀ LIMIꢀ ꢀHRESHOLD (mV)  
ꢀEMPERAꢀURE (°C)  
3798 G11  
3798 G012a  
3798 G12  
Output Voltage  
vs Input Voltage  
Output Current  
vs Input Voltage  
24.6  
1.10  
1.0±  
1.00  
0.9±  
0.90  
PAGE 17 SCHEMAꢀIC:  
UNIVERSAL  
PAGE 17 SCHEMAꢀIC:  
UNIVERSAL  
24.4  
24.2  
24  
V
= 22V  
OUꢀ  
23.8  
23.6  
90  
170 190 210 230 2±0 270  
90 110 130 1±0 170 190 210 230  
270  
2±0  
110 130 1±0  
V
(VAC)  
V
(VAC)  
IN  
IN  
3798 G13  
3798 G14  
3798f  
5
LT3798  
TA = 25°C, unless otherwise noted.  
Efficiency vs Input Voltage  
TYPICAL PERFORMANCE CHARACTERISTICS  
Power Factor vs Input Voltage  
100  
1.00  
PAGE 17 SCHEMAꢀIC:  
UNIVERSAL  
0.99  
0.98  
0.97  
0.96  
0.9±  
0.94  
0.93  
0.92  
90  
80  
70  
PAGE 17 SCHEMAꢀIC:  
UNIVERSAL  
0.91  
0.90  
60  
90 110 130 1±0 170 190 210 230 2±0 270  
90  
1±0 170 190 210 230 2±0 270  
110 130  
V
(VAC)  
V
(VAC)  
IN  
IN  
3798 G16  
3798 G1±  
PIN FUNCTIONS  
CTRL1, CTRL2, CTRL3 (Pin 1, Pin 2, Pin 3): Current  
Output Adjustment Pins. ꢀhese pins control the output  
current. ꢀhe lowest value out of the three CꢀRL inputs is  
compared to negative input of the operational amplifier.  
FB (Pin 9): Voltage Loop Feedback Pin. FB is used to  
regulate the output voltage by sampling the third wind-  
ing. If the converter is used in current mode, the FB pin  
will normally be at a voltage level lower than 1.2±V, and  
will reach the steady state of 1.2±V if it detects an open  
output condition.  
V
(Pin 4): Voltage Reference Output Pin. ꢀypically 2V.  
REF  
ꢀhis pin drives a resistor divider for the CꢀRL pin, either  
foranalogdimmingorfortemperaturelimit/compensation  
of output load. Can supply up to 200μA.  
DCM(Pin10):DiscontinuousConductionModeDetection  
Pin. Connect a capacitor and resistor in series with this  
pin to the third winding.  
OVP (Pin 5): Overvoltage Protection. ꢀhis pin accepts a  
DC voltage to compare to the sample and hold’s voltage  
output information. When output voltage information is  
above the OVP, the part divides the minimum switching  
frequency by 8, around ±00Hz. ꢀhis protects devices con-  
nected to the output. ꢀhis also allows the part to operate  
with very little power consumption with no load to meet  
energy star requirements.  
V (Pin 11): Input Voltage. ꢀhis pin supplies current to  
IN  
the internal start-up circuitry and to the INꢀV LDO. ꢀhis  
CC  
pin must be locally bypassed with a capacitor. A 42V shunt  
regulator is internally connected to this pin.  
EN/UVLO(Pin12):Enable/UndervoltageLockout.Aresis-  
tor divider connected to V is tied to this pin to program  
IN  
the minimum input voltage at which the L3798 will turn  
on. When below 1.2±V, the part will draw 60μA with most  
of the internal circuitry disabled and a 10μA hysteresis  
current will be pulled out of the EN/UVLO pin. When above  
1.2±V, the part will be enabled and begin to switch and the  
10μA hysteresis current is turned off.  
VC (Pin 6): Compensation Pin for Internal Error Amplifier.  
ConnectaseriesRCfromthispintogroundtocompensate  
theswitchingregulator. A100pFcapacitorinparallelhelps  
eliminate noise.  
+
COMP , COMP (Pin 7, Pin 8): Compensation Pins for  
InternalErrorAmplifier.Connectacapacitorbetweenthese  
two pins to compensate the internal feedback loop.  
INTV (Pin 13): Regulated Supply for Internal Loads  
CC  
and GAꢀE Driver. Supplied from V and regulates to 10V  
IN  
(typical). INꢀV must be bypassed with a 4.7μF capacitor  
CC  
placed close to the pin.  
3798f  
6
LT3798  
PIN FUNCTIONS  
GATE(Pin14):N-ChannelFEGateDriverOutput.Switches  
V
(Pin 16): Line Voltage Sense Pin. ꢀhe pin is  
IN_SENSE  
betweenINꢀV andGND.DriventoGNDduringshutdown  
used for sensing the AC line voltage to perform power  
factor correction. Connect a resistor in series with the  
line voltage to this pin. If no PFC is needed, connect this  
CC  
state and stays high during low voltage states.  
SENSE (Pin 15): ꢀhe Current Sense Input for the Control  
pin to INꢀV with a 2±k resistor.  
CC  
Loop. Kelvinconnectthispintothepositiveterminalofthe  
switch current sense resistor, R  
, in the source of the  
GND (Exposed Pad Pin 17): Ground. ꢀhe exposed pad  
of the package provides both electrical contact to ground  
and good thermal contact to the printed circuit board.  
ꢀhe exposed pad must be soldered to the circuit board  
for proper operation.  
SENSE  
NFE. he negative terminal of the current sense resistor  
should be connected to the GND plane close to the IC.  
BLOCK DIAGRAM  
V
RECꢀIFIED  
D2  
R3  
t
R13  
R14  
R1  
D1  
C2  
R4  
R±  
ꢀ1  
L1C  
+
V
OUꢀ  
C1  
C3  
L1A  
L1B  
C7  
R1±  
V
OUꢀ  
N:1  
DCM  
EN/UVLO  
V
V
IN  
IN_SENSE  
SꢀARꢀUP  
INꢀERNAL REG  
1.22V  
+
A7  
INꢀV  
CC  
+
ONE  
SHOꢀ  
R7  
C±  
A2  
CURRENꢀ  
COMPARAꢀOR  
+
600mV  
R11  
V
REF  
R8  
+
A1  
S&H  
OVP  
+
GAꢀE  
S
S
R
A9  
Q
A3  
FB  
COMP  
R9  
MASꢀER  
LAꢀCH  
DRIVER  
R12  
1M  
C6  
SENSE  
GND  
COMP  
SW1  
A4  
R6  
CꢀRL1  
CꢀRL2  
LOW OUꢀPUꢀ  
+
MINIMUM  
CURRENꢀ  
A±  
A6  
OSCILLAꢀOR  
MULIPLIER  
CꢀRL3  
FB  
S&H  
+
A8  
1.22V  
VC  
R10  
C4  
3798 BD  
3798f  
7
LT3798  
OPERATION  
ꢀhe L3798 is a current mode switching controller IC  
designed specifically for generating a constant current/  
constant voltage supply in an isolated flyback topology.  
ꢀhespecialproblemnormallyencounteredinsuchcircuits  
is that information relating to the output voltage and cur-  
rent on the isolated secondary side of the transformer  
must be communicated to the primary side in order to  
maintain regulation. Historically, this has been done with  
an opto-isolator. he L3798 uses a novel method of using  
the external MOSFEꢀs peak current information from the  
sense resistor to calculate the output current of a flyback  
converter without the need of an opto-coupler.  
part begins to switch. ꢀhe V hysteresis is set by the EN/  
IN  
UVLO resistor divider. he third winding provides power  
to V when its voltage is higher than the V voltage. A  
IN  
IN  
voltage shunt is provided for fault protection and can sink  
8mA of current when V is over 40V.  
IN  
During a typical cycle, the gate driver turns the external  
MOSFEonandacurrentflowsthroughtheprimarywind-  
ing. ꢀhis current increases at a rate proportional to the  
inputvoltageandinverselyproportionaltothemagnetizing  
inductanceofthetransformer.hecontrolloopdetermines  
the maximum current and the current comparator turns  
the switch off when the current level is reached. When the  
switch turns off, the energy in the core of the transformer  
flowsoutthesecondarywindingthroughtheoutputdiode,  
D1. ꢀhis current decreases at a rate proportional to the  
output voltage. When the current decreases to zero, the  
output diode turns off and voltage across the secondary  
winding starts to oscillate from the parasitic capacitance  
and the magnetizing inductance of the transformer. Since  
all windings have the same voltage across them, the third  
winding rings too. ꢀhe capacitor connected to the DCM  
pin, C1, trips the comparator A2, which serves as a dv/dt  
detector, whentheringingoccurs. ꢀhistiminginformation  
isusedtocalculatetheoutputcurrentandwillbedescribed  
below. ꢀhe dv/dt detector waits for the ringing waveform  
to reach its minimum value and then the switch turns back  
on.hisswitchingbehaviorissimilartozerovoltswitching  
and minimizes the amount of energy lost when the switch  
is turned back on and improves efficiency as much as  
±5. Since this part operates on the edge of continuous  
conduction mode and discontinuous conduction mode,  
the operating mode is called critical conduction mode (or  
boundary conduction mode).  
Active power factor correction is becoming a requirement  
for offline power supplies and the power levels are de-  
creasing. A power factor of one is achieved if the current  
drawn is proportional to the input voltage. ꢀhe L3798  
modulates the peak current limit with a scaled version  
of the input voltage. ꢀhis technique can provide power  
factors of 0.97 or greater.  
ꢀheBlockDiagramshowsanoverallviewofthesystem.he  
external components are in a flyback topology configura-  
tion. ꢀhe third winding senses the output voltage and also  
supplies power to the part in steady-state operation. ꢀhe  
V pin supplies power to an internal LDO that generates  
IN  
10V at the INꢀV pin. ꢀhe novel control circuitry consists  
CC  
of two error amplifiers, a minimum circuit, a multiplier,  
a transmission gate, a current comparator, a low output  
current oscillator and a master latch, which will be ex-  
plained in the following sections. ꢀhe part also features a  
sample-and-hold to sample the output voltage from the  
third winding. A comparator is used to detect discontinu-  
ous conduction mode (DCM) with a cap connected to the  
third winding. ꢀhe part features a 1.9A gate driver.  
ꢀhe L3798 is designed for both off-line and DC applica-  
tions.heEN/UVLOandaresistordividercanbeconfigured  
foramicropowerhystereticstart-up.IntheBlockDiagram,  
R3 is used to stand off the high voltage supply voltage.  
Primary Side Control Loops  
ꢀhe L3798 achieves constant current/constant voltage  
operation by using two separate error amplifiers. ꢀhese  
two amplifiers are then fed to a circuit that outputs the  
lower voltage of the two, shown as the "minimum" block in  
the Block Diagram. ꢀhis voltage is converted to a current  
before being fed into the multiplier.  
ꢀhe internal LDO starts to supply current to the INꢀV  
CC  
when V is above 2.±V. he V and INꢀV capacitors are  
IN  
IN  
CC  
charged by the current from R3. When V exceeds the  
IN  
turn-on threshold and INꢀV is in regulation at 10V, the  
CC  
3798f  
8
LT3798  
OPERATION  
Primary Side Current Control Loop  
I
PK(sec)  
ꢀhe CꢀRL1/CꢀRL2/CꢀRL3 pins control the output current  
of the flyback controller. ꢀo simplify the loop, let’s assume  
SECONDARY  
DIODE CURRENꢀ  
the V  
pin is held at a constant voltage above 1V  
IN_SENSE  
eliminating the multiplier from the control loop. ꢀhe error  
amplifier, A±, is configured as integrator with the external  
capacitor C6. ꢀhe COMP node voltage is converted to a  
+
SWIꢀCH  
WAVEFORM  
current into the multiplier with the V/I converter, A6. Since  
A7’s output is constant, the output of the multiplier is  
proportional to A6 and can be ignored. ꢀhe output of the  
multiplier controls the peak current with its connection to  
the current comparator, A1. ꢀhe output of the multiplier is  
also connected to the transmission gate, SW1, and to a  
1M resistor. he transmission gate, SW1, turns on when  
the secondary current flows to the output capacitor. his  
is called the flyback period when the output diode D1 is  
on. ꢀhe current through the 1M resistor gets integrated by  
A±. ꢀhe lowest CꢀRL input is equal to the negative input  
of A± in steady state.  
FLYBACK  
3798 F01  
PERIOD  
Figure 1. Secondary Diode Current and Switch Waveforms  
waveformwithaheightofthecurrentlimitandadutycycle  
of the flyback time over the entire cycle. In the feedback  
loop described above, the input to the integrator is such  
a waveform. ꢀhe integrator adjusts the peak current until  
calculated output current equals the control voltage. If the  
calculated output current is low compared to the control  
+
pin,theerroramplifierincreasesthevoltageontheCOMP  
node thus increasing the current comparator input.  
A current output regulator normally uses a sense resistor  
in series with the output current and uses a feedback loop  
to control the peak current of the switching converter. In  
this isolated case, the output current information is not  
available so instead the L3798 calculates it using the in-  
formation available on the primary side of the transformer.  
ꢀheoutputcurrentmaybecalculatedbytakingtheaverage  
oftheoutputdiodecurrent.AsshowninFigure1,thediode  
current is a triangle waveform with a base of the flyback  
time and a height of the peak secondary winding current.  
In a flyback topology, the secondary winding current is N  
Primary Side Voltage Control  
ꢀheoutputvoltageisavailablethroughthethirdwindingon  
the primary side. A resistor divider attenuates the output  
voltage for the voltage error amplifier. A sample-and-hold  
circuit samples the attenuated output voltage and feeds it  
to the error amplifier. he output of the error amplifier is  
the VC pin. ꢀhis node needs a capacitor to compensate  
the output voltage control loop.  
timestheprimarywindingcurrent,whereN istheprimary  
PS  
to secondary winding ratio. Instead of taking the area of  
the triangle, let’s think of it as a pulse width modulation  
(PWM) waveform. During the flyback time, the average  
current is half the peak secondary winding current and  
zero during the rest of the cycle. ꢀhe equation to express  
the output current is:  
Power Factor Correction  
WhentheV  
voltageisconnectedtoaresistordivider  
IN_SENSE  
of the supply voltage, the current limit is proportional to  
the supply voltage. ꢀhe minimum of the two error ampli-  
fier outputs is multiplied with the V  
pin voltage. If  
IN_SENSE  
the L3798 is configured with a fast control loop, slower  
I
= 0.± • I • N • D  
PK PS  
changes from the V  
pin would not interfere with  
OUꢀ  
IN_SENSE  
+
the current limit or the output current. ꢀhe COMP pin  
where D is equal to the percentage of the cycle that the  
flyback time represents. ꢀhe L3798 has access to the  
primary winding current, the input to the current com-  
parator, and when the flyback time starts and ends. Now  
the output current can be calculated by averaging a PWM  
would adjust to the changes of the V  
. ꢀhe only  
IN_SENSE  
way for the multiplier to function is to set the control loop  
to be an order of magnitude slower than the fundamental  
frequency of the V  
signal. In an offline case, the  
IN_SENSE  
3798f  
9
LT3798  
OPERATION  
V
fundamental frequency of the supply voltage is 120Hz so  
the control loop unity gain frequency needs to be set less  
thanapproximately12Hz.Withoutalargeamountofenergy  
storage on the secondary side, the output current will be  
affected by the supply voltage changes, but the DC com-  
ponent of the output current will be accurate. For DC input  
or non-PFC AC input applications, connect a 2±k resistor  
IN  
R1  
R2  
EN/UVLO  
L3798  
GND  
3798 F02  
from V  
to INꢀV instead of the AC line voltage.  
IN_SENSE  
CC  
Figure 2. Undervoltage Lockout (UVLO)  
Startup  
ꢀhe L3798 uses a hysteretic start-up to operate from  
high offline voltages. A resistor connected to the supply  
voltage protects the part from high voltages. ꢀhis resistor  
Programming Output Voltage  
ꢀhe output voltage is set using a resistor divider from  
the third winding to the FB pin. From the Block Diagram,  
the resistors R4 and R± form a resistor divider from the  
third winding. ꢀhe FB also has an internal current source  
that compensates for the diode drop. ꢀhis current source  
causes an offset in the output voltage that needs to be ac-  
counted for when setting the output voltage. ꢀhe output  
voltage equation is:  
is connected to the V pin on the part and bypassed with  
IN  
a capacitor. When the resistor charges the V pin to a  
IN  
turn-on voltage set with the EN/UVLO resistor divider and  
the INꢀV pin is at its regulation point, the part begins  
CC  
to switch. ꢀhe resistor cannot provide power for the part  
in steady state, but relies on the capacitor to start-up the  
part, then the third winding begins to provide power to the  
V pin along with the resistor. An internal voltage clamp  
V
OUꢀ  
= V (R4+R±)/(N • R±)–(V + (R4 • I )/N )  
BG Sꢀ F ꢀC Sꢀ  
IN  
is attached to the V pin to prevent the resistor current  
IN  
where V is the internal reference voltage, N is the  
BG  
Sꢀ  
from allowing V to go above the absolute maximum  
IN  
windingratiobetweenthesecondarywindingandthethird  
voltage of the pin. ꢀhe internal clamp is set at 40V and is  
winding, V is the forward drop of the output rectifying  
F
capable of 8mA(typical) of current at room temperature.  
diode, and I is the internal current source for the FB pin.  
ꢀC  
Setting the V Turn-On and Turn-Off Voltages  
ꢀhe temperature coefficient of the diode's forward drop  
IN  
needs to be the opposite of the term, (R4 • I )/N . By  
ꢀC  
Sꢀ  
A large voltage difference between the V turn-on voltage  
IN  
taking the partial derivative with respect to temperature,  
the value of R4 is found to be the following:  
andtheV turn-offvoltageispreferredtoallowtimeforthe  
IN  
third winding to power the part. ꢀhe EN/UVLO sets these  
two voltages. ꢀhe pin has a 10μA current sink when the  
pins voltage is below 1.2±V and 0μA when above 1.2±V.  
R4 = N (1/(δI /δꢀ)(δV /δꢀ))  
Sꢀ  
ꢀC  
F
δI /δꢀ = 12.4nA/°C  
ꢀC  
ꢀhe V pin connects to a resistor divider as shown in  
IN  
Figure 2. ꢀhe UVLO threshold for V rising is:  
I
= 4.2±μA  
ꢀC  
IN  
where δI /δꢀ is the partial derivative of the I current  
ꢀC  
ꢀC  
1.2±V R1+ R2  
(
)
+ 10μA R1  
V
=
source, and δV /δꢀ is the partial derivative of the forward  
IN(UVLO,RISING)  
F
R2  
drop of the output rectifying diode.  
ꢀhe UVLO ꢀhreshold for V Falling is :  
IN  
With R4 set with the above equation, the resistor value  
for R± is found using the following:  
1.2±V R1+ R2  
(
)
V
=
IN(UVLO,FALLING)  
R2  
R± = (V • R4)/(N (V +V )+R4 • I -V )  
BG  
Sꢀ OUꢀ  
F
ꢀC BG  
3798f  
10  
LT3798  
OPERATION  
Programming Output Current  
pins. ꢀhe following equation sets the output current with  
a resistor divider:  
ꢀhe maximum output current depends on the supply volt-  
age and the output voltage in a flyback topology. With the  
2NPS  
•RSENSE  
R1=R2  
– 1  
V
pinconnectedto100μAcurrentsourceandaDC  
IN_SENSE  
42 •I  
OUꢀ  
supplyvoltage,themaximumoutputcurrentisdetermined  
at the minimum supply voltage, and the maximum output  
voltage using the following equation:  
where R1 is the resistor connected to the V pin and the  
REF  
CꢀRL pin and R2 is the resistor connected to the CꢀRL  
pin and ground.  
NPS  
42 •RSENSE  
IOUꢀ(MAX) = 2(1– D)•  
Setting V  
Resistor  
IN_SENSE  
where  
ꢀheV  
resistorsetsthecurrentfeedingtheinternal  
IN_SENSE  
VOUꢀ NPS  
VOUꢀ NPS + V  
multiplierthatmodulatesthecurrentlimitforpowerfactor  
correction.Atthemaximumlinevoltage,V ,thecurrent  
D =  
MAX  
IN  
is set to 360μA. Under this condition, the resistor value is  
ꢀhe maximum control voltage to achieve this maximum  
output current is 2V • (1-D).  
equal to (V /360μA).  
MAX  
For DC input or non-PFC AC input applications, connect  
It is suggested to operate at 9±5 of these values to give  
margin for the part’s tolerances.  
a 2±k resistor from V  
AC line voltage.  
to INꢀV instead of the  
IN_SENSE  
CC  
When designing for power factor correction, the output  
currentwaveformisgoingtohaveahalfsinewavesquared  
shape and will no longer be able to provide the above  
currents. By taking the integral of a sine wave squared  
over half a cycle, the average output current is found to  
be half the value of the peak output current. In this case,  
the recommended maximum average output current is  
as follows:  
Critical Conduction Mode Operation  
Criticalconductionmodeisavariablefrequencyswitching  
scheme that always returns the secondary current to zero  
witheverycycle.heL3798reliesonboundarymodeand  
discontinuousmodetocalculatethecriticalcurrentbecause  
thesensingschemeassumesthesecondarycurrentreturns  
to zero with every cycle. ꢀhe DCM pin uses a fast current  
input comparator in combination with a small capacitor to  
detect dv/dt on the third winding. ꢀo eliminate false trip-  
ping due to leakage inductance ringing, a blanking time of  
between600nsand2sisappliedaftertheswitchturnsoff,  
depending on the current limit shown in the Leakage In-  
ductanceBlankingimevsSENSECurrentLimithreshold  
curve in the ꢀypical Performance Characteristics section.  
ꢀhe detector looks for 80ꢁA of current through the DCM  
pin due to falling voltage on the third winding when the  
secondarydiodeturnsoff.hisdetectionisimportantsince  
the output current is calculated using this comparator’s  
output. ꢀhis is not the optimal time to turn the switch on  
NPS  
42 •RSENSE  
IOUꢀ(MAX) = 2(1D) •  
• 47.±5  
where  
VOUꢀ NPS  
VOUꢀ NPS + V  
D =  
IN  
ꢀhe maximum control voltage to achieve this maximum  
output current is (1-D) • 47.±5.  
For control voltages below the maximum, the output cur-  
rent is equal to the following equation:  
NPS  
42 •RSENSE  
because the switch voltage is still close to V  
+ V  
• N  
IOUꢀ = CꢀRL•  
IN  
OUꢀ  
PS  
and would waste all the energy stored in the parasitic ca-  
pacitanceontheswitchnode.Discontinuousringingbegins  
when the secondary current reaches zero and the energy  
in the parasitic capacitance on the switch node transfers  
ꢀhe V  
pin supplies a 2V reference voltage to be used  
REF  
with the control pins. ꢀo set an output current, a resistor  
divider is used from the 2V reference to one of the control  
3798f  
11  
LT3798  
OPERATION  
to the input capacitor. his is a second-order network  
composed of the parasitic capacitance on the switch node  
and the magnetizing inductance of the primary winding  
of the transformer. he minimum voltage of the switch  
very high frequency. ꢀhe output voltage sensing circuitry  
needs a minimum amount of flyback waveform time to  
sense the output voltage on the third winding. ꢀhe time  
needed is 3±0ns. ꢀhe minimum current limit allows the  
useofsmallertransformerssincethemagnetizingprimary  
inductance does not need to be as high to allow proper  
time to sample the output voltage information.  
node during this discontinuous ring is V – V  
• N .  
IN  
OUꢀ  
PS  
ꢀhe L3798 turns the switch back on at this time, during  
the discontinuous switch waveform, by sensing when  
the slope of the switch waveform goes from negative to  
positive using the dv/dt detector. his switching technique  
may increase efficiency by ±5.  
ꢀo help improve crossover distortion of the line input  
current, a second minimum current limit of 65 becomes  
activewhentheV  
currentislowerthan27μA.Since  
IN_SENSE  
the off-time becomes very short with this lower minimum  
Sense Resistor Selection  
current limit, the sample-and-hold is deactivated.  
ꢀhe resistor, R  
, between the source of the external  
SENSE  
N-channelMOSFEandGNDshouldbeselectedtoprovide  
anadequateswitchcurrenttodrivetheapplicationwithout  
exceeding the current limit threshold.  
Universal Input  
ꢀhe L3798 operates over the universal input voltage  
range of 90VAC to 26±VAC. In the ꢀypical Performance  
For applications without power factor correction, select a  
resistor according to:  
Characteristics section, the Output Voltage vs V and the  
IN  
Output Current vs V graphs, show the output voltage  
IN  
and output current line regulation for the first application  
2(1– D)NPS  
IOUꢀ • 42  
picture in the ꢀypical Applications section.  
RSENSE  
=
• 9±5  
Selecting Winding Turns Ratio  
where  
Boundarymodeoperationgivesalotoffreedominselecting  
the turns ratio of the transformer. We suggest to keep the  
VOUꢀ NPS  
VOUꢀ NPS + V  
D =  
IN  
duty cycle low, lower N , at the maximum input voltage  
PS  
since the duty cycle will increase when the AC waveform  
For applications with power factor correction, select a  
resistor according to:  
decreases to zero volts. A higher N increases the output  
PS  
current while keeping the primary current limit constant.  
Although this seems to be a good idea, it comes at the  
expense of a higher RMS current for the secondary-side  
diodewhichmightnotbedesirablebecauseoftheprimary  
sideMOSFEꢀ’ssuperiorperformanceasaswitch.Ahigher  
2(1– D)NPS  
IOUꢀ • 42  
RSENSE  
=
• 47.±5  
where  
VOUꢀ NPS  
VOUꢀ NPS + V  
N
PS  
does reduce the voltage stress on the secondary-side  
D =  
diode while increasing the voltage stress on the primary-  
side MOSFEꢀ. If switching frequency at full output load is  
kept constant, the amount of energy delivered per cycle by  
IN  
Minimum Current Limit  
the transformer also stays constant regardless of the N .  
PS  
ꢀhe L3798 features a minimum current limit of approxi-  
mately 185 of the peak current limit. ꢀhis is necessary  
when operating in critical conduction mode since low  
current limits would increase the operating frequency to a  
ꢀherefore, the size of the transformer remains the same at  
practical N ’s. Adjusting the turns ratio is a good way to  
PS  
find an optimal MOSFEꢀ and diode for a given application.  
3798f  
12  
LT3798  
OPERATION  
Switch Voltage Clamp Requirement  
period, as well. Similarly, initial values can be estimated  
using stated switch capacitance and transformer leakage  
inductance. Once the value of the drain node capacitance  
and inductance is known, a series resistor can be added  
to the snubber capacitance to dissipate power and criti-  
cally dampen the ringing. ꢀhe equation for deriving the  
optimal series resistance using the observed periods  
Leakage inductance of an offline transformer is high due  
to the extra isolation requirement. ꢀhe leakage inductance  
energy is not coupled to the secondary but goes into  
the drain node of the MOSFEꢀ. ꢀhis is problematic since  
400V and higher rated MOSFEꢀs cannot always handle  
this energy by avalanching. ꢀherefore the MOSFEꢀ needs  
protection.Atransientvoltagesuppressor(ꢀVS)anddiode  
arerecommendedforallofflineapplicationandconnected,  
as shown in Figure 3. ꢀhe ꢀVS device needs a reverse  
(t  
, andt  
)andsnubbercapacitance  
PERIOD  
PERIOD(SNUBBED)  
) is below, and the resultant waveforms are  
(C  
SNUBBER  
shown in Figure 4.  
breakdown voltage greater than (V  
+ V ) • N where  
OUꢀ  
F PS  
CSNUBBER  
CPAR  
=
=
V
is the output voltage of the flyback converter, V is  
OUꢀ  
F
2
tPERIOD(SNUBBED)  
the secondary diode forward voltage, and N is the turns  
PS  
– 1  
ratio.AnRCDclampcanbeusedinplaceoftheVSclamp.  
tPERIOD  
V
V
SUPPLY  
2
SUPPLY  
tPERIOD  
LPAR  
CPAR • 4π2  
LPAR  
CPAR  
RSNUBBER  
=
GAꢀE  
GAꢀE  
90  
80  
70  
60  
±0  
40  
30  
20  
10  
3798 F03  
Figure 3. TVS & RCD Switch Voltage Clamps  
In addition to clamping the spike, in some designs where  
short circuit protection is desired, it will be necessary to  
decrease the amount of ringing by using an RC snubber.  
Leakage inductance ringing is at its worst during a short  
circuit condition, and can keep the converter from cycling  
on and off by peak charging the bias capacitor. On/off  
cycling is desired to keep power dissipation down in the  
output diode. Alternatively, a heat sink can be used to  
manage diode temperature.  
NO SNUBBER  
WIꢀH SNUBBER  
CAPACIꢀOR  
WIꢀH RESISꢀOR  
AND CAPACIꢀOR  
0
0
0.0± 0.10 0.1±  
ꢀIME (μs)  
0.30  
0.20 0.2±  
3798 F04  
Figure 4. Observed Waveforms at MOSFET Drain when  
Iteratively Implementing an RC Snubber  
ꢀherecommendedapproachfordesigninganRCsnubber  
is to measure the period of the ringing at the MOSFEꢀ  
drain when the MOSFEꢀ turns off without the snubber  
and then add capacitance—starting with something in  
the range of 100pF—until the period of the ringing is 1.±  
to 2 times longer. ꢀhe change in period will determine  
the value of the parasitic capacitance, from which the  
parasitic inductance can be determined from the initial  
Note that energy absorbed by a snubber will be converted  
to heat and will not be delivered to the load. In high volt-  
age or high current applications, the snubber may need to  
be sized for thermal dissipation. ꢀo determine the power  
dissipated in the snubber resistor from capacitive losses,  
measure the drain voltage immediately before the MOS-  
FEꢀ turns on and use the following equation relating that  
3798f  
13  
LT3798  
OPERATION  
voltageandtheMOSFEswitchingfrequencytodetermine  
the expected power dissipation:  
with several leading magnetic component manufacturers  
to produce predesigned flyback transformers for use with  
the L3798. ꢀable 1 shows the details of several of these  
transformers.  
2
P
= f • C  
• V  
/2  
SNUBBER  
SW  
SNUBBER  
DRAIN  
Decreasing the value of the capacitor will reduce the dis-  
sipated power in the snubber at the expense of increased  
peak voltage on the MOSFEꢀ drain, while increasing the  
value of the capacitance will decrease the overshoot.  
Loop Compensation  
ꢀhe voltage feedback loop is a traditional GM error ampli-  
fier. he loop cross-over frequency is set much lower than  
twice the line frequency for PFC to work properly.  
Transformer Design Considerations  
ꢀhe current output feedback loop is an integrator con-  
figuration with the compensation capacitor between the  
negative input and output of the operational amplifier.  
ꢀhis is a one-pole system therefore a zero is not needed  
in the compensation. For offline applications with PFC,  
the crossover should be set an order of magnitude lower  
than the line frequency of 120Hz or 100Hz. In a typical  
application, the compensation capacitor is 0.1ꢁF.  
ransformer specification and design is a critical part of  
successfully applying the L3798. In addition to the usual  
list of caveats dealing with high frequency isolated power  
supply transformer design, the following information  
should be carefully considered. Since the current on the  
secondarysideofthetransformerisinferredbythecurrent  
sampled on the primary, the transformer turns ratio must  
betightlycontrolledtoensureaconsistentoutputcurrent.  
In non-PFC applications, the crossover frequency may be  
increased to improve transient performance. ꢀhe desired  
crossoverfrequencyneedstobesetanorderofmagnitude  
below the switching frequency for optimal performance.  
A tolerance of ±±5 in turns ratio from transformer to  
transformercouldresultinavariationofmorethan±±5in  
outputregulation. Fortunately, mostmagneticcomponent  
manufacturers are capable of guaranteeing a turns ratio  
tolerance of 15 or better. Linear ꢀechnology has worked  
Table 1. Predesigned Transformers—Typical Specifications, Unless Otherwise Noted  
TARGET  
TRANSFORMER SIZE  
L
N
P
R
R
SEC  
APPLICATION  
PRI  
PSA  
S
PRI  
PART NUMBER (L × W × H)  
(μH)  
400  
2000  
2000  
300  
600  
600  
400  
100  
460  
±00  
300  
820  
14  
(N :N :N )  
(mΩ)  
(mΩ)  
126  
16±  
2±  
MANUFACTURER  
Coilcraft  
(V /I  
OUT OUT  
)
A
JA4429  
21.1mm × 21.1mm × 17.3mm  
1:0.24:0.24  
6.67:1:1.67  
20:1.0:±.0  
6:1.0:1.0  
4:1:0.71  
2±2  
22V/1A  
10V/0.4A  
3.8V/1.1A  
18V/±A  
7±08110210  
7±0813002  
7±0811330  
7±0813144  
7±0813134  
7±0811291  
7±0813390  
7±0811290  
X-11181-002  
7±0811248  
S001621  
1±.7±mm × 1±mm × 18.±mm  
1±.7±mm × 1±mm × 18.±mm  
43.2mm × 39.6mm × 30.±mm  
16.±mm × 18mm × 18mm  
16.±mm × 18mm × 18mm  
31mm × 31mm × 2±mm  
±100  
6100  
1±0  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Würth Elektronik  
Premo  
2±  
2400  
18±0  
±±0  
420  
10±  
1230  
688  
±60  
80  
28V/0.±A  
14V/1A  
8:1:1.28  
1:1:0.24  
8±V/0.4A  
90V/1A  
43.18mm × 39.6mm × 30.48mm  
31mm × 31mm × 2±mm  
1:1:0.22  
1±0  
1:1:0.17  
600  
12±V/0.32A  
30V/0.±A  
24V/2A  
23.±mm × 21.4mm × 9.±mm  
31mm × 31mm × 2±mm  
72:16:10  
4:1.0:1.0  
16:1.0:4.0  
1:1:0.8  
1000  
280  
2±  
Würth Elektronik  
Renco  
2±mm × 22.2mm × 16mm  
43.2mm × 39.6mm × 30.±mm  
11±0  
11  
10  
±V/4A  
7±0312872  
11  
Würth Elektronik  
28V/4A  
3798f  
14  
LT3798  
OPERATION  
MOSFET and Diode Selection  
Power Factor Correction/Harmonic Content  
With a strong 1.9A gate driver, the L3798 can effectively  
drive most high voltage MOSFEꢀs. A low Qg MOSFEꢀ is  
recommendedtomaximizeefficiency.Inmostapplications,  
ꢀhe L3798 attains high power factor and low harmonic  
content by making the peak current of the main power  
switch proportional to the line voltage by using an internal  
multiplier. A power factor of >0.97 is easily attainable for  
most applications by following the design equations in  
this data sheet. With proper design, L3798 applications  
can easily meet most harmonic standards.  
the R  
should be chosen to limit the temperature rise  
DS(ON)  
of the MOSFE. he drain of the MOSFEꢀ is stressed to  
• N + V during the time the MOSFEꢀ is off and  
V
OUꢀ  
PS  
IN  
the secondary diode is conducting current. But in most  
applications,theleakageinductancevoltagespikeexceeds  
thisvoltage. ꢀhevoltageofthisstressisdeterminedbythe  
switch voltage clamp. Always check the switch waveform  
with an oscilloscope to make sure the leakage inductance  
voltage spike is below the breakdown voltage of the MOS-  
FEꢀ. A transient voltage suppressor and diode are slower  
thantheleakageinductancevoltagespike,thereforecausing  
a higher voltage than calculated.  
Operation Under Light Output Loads  
ꢀhe L3798 detects output overvoltage conditions by  
looking at the voltage on the third winding. ꢀhe third  
windingvoltageisproportionaltotheoutputvoltagewhen  
the main power switch is off and the secondary diode is  
conducting current. Sensing the output voltage requires  
delivering power to the output. When the output current is  
verylow,thisperiodicdeliveryofoutputcurrentcanexceed  
the load current. ꢀhe OVP pin sets the output overvolt-  
age threshold. When the output of the sample-and-hold  
is above this voltage, the minimum switching frequency  
is divided by 8 as shown in Figure ±. ꢀhis OVP threshold  
needs to be set above 1.3±V and should be set out of the  
way of output voltage transients. ꢀhe output clamp point  
is set with the following formula:  
ꢀhe secondary diode stress may be as much as V  
+ 2  
OUꢀ  
• V /N due to the anode of the diode ringing with the  
IN PS  
secondary leakage inductance. An RC snubber in parallel  
with the diode eliminates this ringing, so that the reverse  
voltage stress is limited to V  
PS  
+ V /N . With a high  
IN PS  
OUꢀ  
N
and output current greater than 3A, the I  
through  
RMS  
the diode can become very high and a low forward drop  
Schottky is recommended.  
V
= V (R4 + R±)/(N • R±)–(V + (R4•I )/N )  
OVP Sꢀ F ꢀC Sꢀ  
OUꢀ  
Discontinuous Mode Detection  
ꢀhe V  
pin voltage may be provided by a resistor divider  
REF  
OVP  
ꢀhe discontinuous mode detector uses AC-coupling to  
detect the ringing on the third winding. A 22pF capacitor  
with a 30k resistor in series is recommended in most  
designs. Depending on the amount of leakage inductance  
ringing, an additional current may be needed to prevent  
falsetrippingfromtheleakageinductanceringing.Aresis-  
from the V pin. ꢀhis frequency division greatly reduces  
the output current delivered to the output but a Zener or  
resistor is required to dissipate the remaining output cur-  
rent. ꢀheZenerdiode’svoltageneedstobe±5higherthan  
the output voltage set by the resistor divider connected to  
the FB pin. Multiple Zener diodes in series may be needed  
for higher output power applications to keep the Zener’s  
temperature within the specification.  
tor from INꢀV to the DCM pin adds this current. Up to  
CC  
an additional 100ꢁA of current may be needed in some  
cases. ꢀhe DCM pin is roughly 0.7V, therefore the resistor  
value is selected using the following equation:  
10V – 0.7V  
R =  
I
where I is equal to the additional current into the DCM pin.  
3798f  
15  
LT3798  
OPERATION  
Protection from Shorted Output Conditions  
Usage with DC Input Voltage  
DuringashortedoutputconditionasshowninFigure6,the  
L3798 operates at the minimum operating frequency. In  
normal operation, the third winding provides power to the  
IC, but the third winding voltage is zero during a shorted  
ꢀhe L3798 is flexible enough to operate well from low  
voltage to very high voltage DC input voltage applications.  
When the supply voltage is less than 40V, the startup re-  
sistor is not needed and the part's V can be connected  
IN  
condition. ꢀhis causes the part’s V UVLO to shutdown  
directly to the supply voltage. ꢀhe startup sequence for  
voltages higher than 40V is the same as what is described  
for high voltage offline supply voltages.  
IN  
switching. ꢀhe part starts switching again when V has  
IN  
reached its turn-on voltage.  
ꢀhe loop compensation component values can be chosen  
to provide faster loop response since the L3798 does  
not have to provide PFC for the slow ±0Hz/60Hz AC input  
voltage. For DC input applications, connect a 2±k resistor  
V
3RD WINDING  
20V/DIV  
V
OUꢀ  
10V/DIV  
from V  
to INꢀV .  
IN_SENSE  
CC  
I
OUꢀ  
1A/DIV  
3798 F0±  
1ms/DIV  
Figure 5. Switching Waveforms When Output  
Open-Circuits or at Very Light Load Conditions  
V
IN  
20V/DIV  
V
3RD WINDING  
±0V/DIV  
I
PRI  
1A/DIV  
3798 F06  
100ms/DIV  
Figure 6. Switching Waveforms When Output Short-Circuits  
3798f  
16  
LT3798  
TYPICAL APPLICATIONS  
Universal Input 24W PFC Bus Converter  
L2  
800μH  
L1  
33mH  
BR1  
R17  
R7  
C1  
0.068μF  
D2  
90V  
ꢀO 26±V  
AC  
20Ω  
100k  
C2  
0.1μF  
4:1:1  
R3  
R8  
100k  
C4  
499k  
4.7pF  
10μF  
C±  
R4  
499k  
R13  
2k  
D3  
R14  
D4  
V
DCM  
IN  
90.9k  
24V  
1A  
V
FB  
R±  
1M  
IN_SENSE  
Z1  
+
C10  
±60μF  
× 2  
R1±  
4.99k  
C6  
22pF  
EN/UVLO  
D1  
R6  
9±.3k  
L3798  
R16  
20Ω  
GAꢀE  
M1  
V
REF  
Z2  
R11  
R9  
SENSE  
CꢀRL3  
CꢀRL2  
CꢀRL1  
100k  
40.2k  
R
INꢀV  
CC  
S
C9  
4.7μF  
0.0±Ω  
C8  
2.2nF  
GND  
OVP  
VC  
+
COMP  
COMP  
R12  
221k  
R10  
16.±k  
“Y1 CAP”  
C3  
C7, 0.1μF  
2.2μF  
3798 ꢀA02  
BR1: DIODES, INC. HD06  
C8:  
D1:  
VISHAY 440LD22-R  
CENꢀRAL SEMICONDUCꢀOR CMR1U-06M  
D2,D3: DIODES INC. BAV20W  
D4: CENꢀRAL SEMICONDUCꢀOR CMR1U-02M  
M1: FAIRCHILD FDPF1±N6±  
ꢀ1:  
Z1:  
Z2:  
COILCRAFꢀ JA4429-AL  
FAIRCHILD SMBJ170A  
CENꢀRAL SEMICONDUCꢀOR CMZ±937B  
3798f  
17  
LT3798  
TYPICAL APPLICATIONS  
Universal Input 48W PFC Application  
L1  
1mH  
L2  
27mH  
BR1  
C1  
0.1μF  
R17  
47Ω  
R3  
R7  
D2  
90V  
ꢀO 26±V  
AC  
499k  
100k  
C2  
0.22μF  
R4  
499k  
R8  
100k  
C4  
22pF  
4:1:1  
C±  
10μF  
R13  
33k  
D3  
R14  
100k  
D4  
R±  
V
DCM  
FB  
IN  
IN_SENSE  
24V  
2A  
2.4M  
V
Z1  
C10  
1000μF  
×2  
+
C6  
R1±  
EN/UVLO  
R6  
301k  
L3798  
22pF ±.49k  
C11  
10μF  
×2  
D1  
R16  
20Ω  
V
REF  
R11  
100k  
R9  
40.2k  
M1  
CꢀRL3  
CꢀRL2  
GAꢀE  
Z2  
SENSE  
R
INꢀV  
CC  
CꢀRL1  
OVP  
S
C9  
4.7μF  
0.03Ω  
C8  
2.2nF  
GND  
+
R12  
221k  
R10  
31.6k  
VC  
COMP  
COMP  
“Y1 CAP”  
C7, 0.1μF  
C3  
1μF  
3798 ꢀA03  
BR1: DIODES, INC. HD06  
C8: VISHAY 440LD22-R  
C11: MURAꢀA GRM32ER7YA106KA12L  
D1: CENꢀRAL SEMICONDUCꢀOR CMR1U-06M  
D2,D3: DIODES INC. BAV20W  
D4: DIODES INC. SBR20A200CꢀB  
M1: INFINEON IPB60R16±CP  
ꢀ1:  
Z1:  
Z2:  
WÜRꢀH ELEKꢀRONIK 7±0811248  
FAIRCHILD SMBJ170A  
CENꢀRAL SEMICONDUCꢀOR CMZ±937B  
3798f  
18  
LT3798  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
16-Lead Plastic MSOP, Exposed Die Pad  
(Reference LꢀC DWG # 0±-08-1667 Rev E)  
BOꢀꢀOM VIEW OF  
EXPOSED PAD OPꢀION  
2.84± 0.102  
(.112 .004)  
2.84± 0.102  
(.112 .004)  
0.889 0.127  
(.03± .00±)  
1
8
0.3±  
REF  
±.23  
(.206)  
MIN  
1.6±1 0.102  
(.06± .004)  
1.6±1 0.102  
(.06± .004)  
3.20 – 3.4±  
(.126 – .136)  
0.12 REF  
DEꢀAIL “B”  
CORNER ꢀAIL IS PARꢀ OF  
ꢀHE LEADFRAME FEAꢀURE.  
FOR REFERENCE ONLY  
DEꢀAIL “B”  
16  
9
0.30± 0.038  
(.0120 .001±)  
ꢀYP  
0.±0  
(.0197)  
BSC  
NO MEASUREMENT PURPOSE  
4.039 0.102  
(.1±9 .004)  
(NOꢀE 3)  
0.280 0.076  
(.011 .003)  
RECOMMENDED SOLDER PAD LAYOUꢀ  
161±1413121110  
9
REF  
DEꢀAIL “A”  
0.2±4  
(.010)  
3.00 0.102  
(.118 .004)  
(NOꢀE 4)  
0° – 6° ꢀYP  
4.90 0.1±2  
(.193 .006)  
GAUGE PLANE  
0.±3 0.1±2  
(.021 .006)  
1 2 3 4 ± 6 7 8  
DEꢀAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEAꢀING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
ꢀYP  
0.1016 0.0±08  
(.004 .002)  
0.±0  
(.0197)  
BSC  
MSOP (MSE16) 0911 REV E  
NOꢀE:  
1. DIMENSIONS IN MILLIMEꢀER/(INCH)  
2. DRAWING NOꢀ ꢀO SCALE  
3. DIMENSION DOES NOꢀ INCLUDE MOLD FLASH, PROꢀRUSIONS OR GAꢀE BURRS.  
MOLD FLASH, PROꢀRUSIONS OR GAꢀE BURRS SHALL NOꢀ EXCEED 0.1±2mm (.006") PER SIDE  
4. DIMENSION DOES NOꢀ INCLUDE INꢀERLEAD FLASH OR PROꢀRUSIONS.  
INꢀERLEAD FLASH OR PROꢀRUSIONS SHALL NOꢀ EXCEED 0.1±2mm (.006") PER SIDE  
±. LEAD COPLANARIꢀY (BOꢀꢀOM OF LEADS AFꢀER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOꢀ EXCEED 0.2±4mm (.010") PER SIDE.  
3798f  
Information furnished by Linear ꢀechnology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear ꢀechnology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3798  
TYPICAL APPLICATION  
112W Wide DC Input Industrial Power Supply  
V
IN  
20V ꢀO 60V  
R17  
20Ω  
R7  
C2  
D2  
6.8k  
10μF  
ꢀO  
CC  
R8  
6.8k  
C4  
1±pF  
INꢀV  
1:1:0.8  
C±  
10μF  
R4  
24k  
R13  
1±k  
D3  
R14  
100k  
D4  
R±  
V
DCM  
FB  
IN  
IN_SENSE  
28V  
4A  
402k  
V
C10  
10μF  
×4  
Z1  
Z3  
R1±  
±.9k  
EN/UVLO  
C6  
22pF  
R6  
±1.1k  
L3798  
D1  
D±  
V
REF  
R11  
100k  
R9  
40.2k  
M1  
CꢀRL3  
CꢀRL2  
GAꢀE  
Z2  
SENSE  
R
INꢀV  
CC  
CꢀRL1  
OVP  
S
C9  
4.7μF  
0.004Ω  
C8  
2.2nF  
GND  
+
R12  
221k  
R10  
34.8k  
VC  
COMP  
COMP  
“Y1 CAP”  
C7, 22nF  
C3  
0.1μF  
R3  
16.2k  
3798 ꢀA04  
C2:  
C8:  
ꢀDK C±7±0X7S2A106M  
VISHAY 440LD22-R  
M1: FAIRCHILD FDP2±32  
ꢀ1:  
Z1:  
Z2:  
Z3:  
WÜRꢀH ELEKꢀRONIK 7±0312872  
DIODES INC. SMCJ60A  
CENꢀRAL SEMICONDUCꢀOR CMZ±9398  
FAIRCHILD SMBJ170A  
C10: MURAꢀA GRM32ER7YA106KA12L  
D1: DIODES INC. DFLS11±0  
D2,D3: DIODES INC. BAV20W  
D4:  
D±:  
ON SEMICONDUCꢀOR MBR20200Cꢀ  
DIODES INC. DFLS2100  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
L3799/L3799-1  
Offline Isolated Flyback LED Controller No Opto-Coupler Required, ꢀRIAC Dimmable, V and V  
Limited Only by  
OUꢀ  
IN  
with Active PFC  
External Components, MSOP-16E  
L3748  
100V Isolated Flyback Controller  
40V Isolated Flyback Converters  
100V Isolated Flyback Converters  
40V/100V Flyback/Boost Controllers  
40V/100V Flyback/Boost Converters  
±V ≤ V ≤ 100V, No Opto Flyback , MSOP-16 with High Voltage Spacing  
IN  
L3±73/L3±74/L3±7±  
L3±11/L3±12  
L37±7/L37±8  
L39±7/L39±8  
Monolithic No-Opto Flybacks with Integrated 1.2±A/0.6±A/2.±A Switch  
Monolithic No-Opto Flybacks with Integrated 240mA/420mA Switch  
Universal Controllers with Small Package and Powerful Gate Drive  
Monolithic with Integrated ±A/3.3A Switch  
LC3803/LC3803-3/LC3803-± 200kHz/300kHz Flyback Controllers  
V
IN  
V
IN  
and V  
and V  
Limited Only by External Components  
Limited Only by External Components  
OUꢀ  
OUꢀ  
LC380±/LC380±-±  
Adjustable Frequency Flyback  
Controllers  
3798f  
LT 0212 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 9±03±-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0±07 www.linear.com  

相关型号:

750315225

5kVRMS Isolated CAN Transceiver with Integrated Transformer Driver
MAXIM

750315226

5kVRMS Isolated CAN Transceiver with Integrated Transformer Driver
MAXIM

750315227

5kVRMS Isolated CAN Transceiver with Integrated Transformer Driver
MAXIM

750315228

5kVRMS Isolated CAN Transceiver with Integrated Transformer Driver
MAXIM

750315229

5kVRMS Isolated CAN Transceiver with Integrated Transformer Driver
MAXIM

750315230

5kVRMS Isolated CAN Transceiver with Integrated Transformer Driver
MAXIM

750340476

TRANSFORMER
WURTH

750340477

TRANSFORMER
WURTH

750340505

TRANSFORMER
WURTH

750370024

TRANSFORMER
WURTH

750370026

TRANSFORMER
WURTH

750370040

TRANSFORMER
WURTH